

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

Curriculum/Syllabus

Programme Code: MC

Programme Name : M.E- COMPUTER SCIENCE AND

• ENGINEERING

Regulation : R-2021

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, Accredited by NAAC & NBA, Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dt, Tamil Nadu.

Ph. No.: 04287-220837

Email: principal@mec.edu.in

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

INSTITUTION VISION &MISSION

INSTITUTION VISION

To be a Centre of Excellence in Engineering, Technology and Management on par with International Standards.

INSTITUTION MISSION

- To prepare the students with high professional skills and ethical values
- To impart knowledge through best practices
- To instill a spirit of innovation through Training, Research and Development
- To undertake continuous assessment and remedial measures
- To achieve academic excellence through intellectual, emotional and social stimulation

INSTITUTION MOTTO

Rural upliftment through Technical Education.

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

DEPARTMENT VISION & MISSION

DEPARTMENT VISION

To produce the Computer Science and Engineering students with the Innovative and Entrepreneur skills to face the challenges ahead

DEPARTMENT MISSION

- To impart knowledge in the state of art technologies in Computer Science and Engineering
- To inculcate the analytical and logical skills in the field of Computer Science and Engineering
- To produce the graduates to examine the issues and propose solutions with Ethical values

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

DEPARTMENT PROGRAM EDUCATIONAL OBJECTIVES. PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES

PROGRAM EDUCATIONAL OBJECTIVES

The Computer Science and Engineering Graduates should be able to

PEO1: Graduates will be able to Practice as an IT Professional in Multinational Companies

PEO2: Graduates will be able to Gain necessary skills and to pursue higher education for career growth

PEO3: Graduates will be able to Exhibit the leadership skills and ethical values in the day to day life

PROGRAM OUTCOMES

- **PO1 Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4 Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5 Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- **PO6 The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8 Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **P09 Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

ŝ

\$

PSO1: Graduates should be able to design and analyze the algorithms to develop an Intelligent Systems

PSO2: Graduates should be able to apply the acquired skills to provide efficient solutions for real time problems

PSO3: Graduates should be able to exhibit an understanding of System Architecture, Networking and Information Security

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MASTER OF COMPUTER SCIENCE AND ENGINEERING

REGULATION - 2021

GROUPING OF COURSES

FOUNDATION COURSE [FC]

S.	Course	Course Title	Category	Contact Hours		tructi irs/W	ion /eek	С
No.	Code			0.000011185.000	L	Т	Р	·
1.	21CSA01	Advanced Numerical Methods	FC	5	3	2	0	4
2.	21CSA02	Applied Mathematics	FC	5	3	2	0	4
3.	21CSA03	Applied Probability And Statistics	FC	5	3	2	0	4

PROFESSIONAL CORE [PC]

	_	Course Title	Category	Contact		tructi rs/We	ile. i tech	С
S. No.	Course Code	Course Title		Hours	L	Т	Р	
1.	21CSB01	Advanced Data Structures and Algorithms	PC	3	3	0	0	3
2.	21CSB02	Advanced Data Structures and Algorithms Laboratory	PC	2	0	0	2	1
3.	21CSB03	Machine learning techniques	PC	3	3	0	0	3
4.	21CSB04	Machine learning techniques Laboratory	PC	2	0	0	2	1
5.	21CSB05	Cloud Computing	PC	3	3	0	0	3
6.	21CSB06	Cloud Computing Laboratory	PC	2	0	0	2	1
7.	21CSB07	Advanced operating systems	PC	3	3	0	0	3
8.	21CSB08	Image Processing and Analysis	PC	3	3	0	0	3
9.	21CSB09	Image Processing and Analysis Laboratory	PC	2	0	0	2	1
10.	21CSB10	Soft Computing	PC	3	3	0	0	3
11.	21CSB11	Research Methodology and IPR	PC	3	3	0	0	3
12.	21CSB12	Data Mining Techniques	PC	2	0	0	2	1
13.	21CSB13	Network Design and Technologies	PC	3	3	0	0	3
14.	21CSB14	Advanced Software Engineering	PC	3	3	0	10	3

							_	
15.	21CSB15	Advanced Database Technology	PC	3	3	0	0	3
16.	21CSB16	Advanced Database Technology Laboratory	PC	2	0	0	2	1
17.	21CSB17	Big Data Analytics	PC	3	3	0	0	3

PROFESSIONAL ELECTIVES [PE]

	6	7.71	Category	Contact		ructions/We		
S. No.	Code	Course Course Title Code		Hours	L	Т	Р	С
1.	21CSC01	Advanced Algorithms	PE	3	3	0	0	3
2.	21CSC02	Advanced Algorithm Laboratory	PE	2	0	0	2	1
3.	21CSC03	Web Data Mining	PE	3	3	0	0	3
4.	21CSC04	Web Analytics and Development	PE	3	3	0	0	3
5.	21CSC05	Data Storage Technologies and Networks	PE	3	3	0	0	3
6.	21CSC06	Pattern classification and Analysis	PE	3	3	0	0	3
7.	21CSC07	Mobile and Pervasive Computing	PE	3	3	0	0	3
8.	21CSC08	Ad Hoc and Wireless Sensor Networks	PE	3	3	0	0	3
9.	21CSC09	Internet of things	PE	3	3	0	0	3
10.	21CSC10	Internet of things Lab	PE	2	0	0	2	1
11.	21CSC11	Data Preparation and Analysis	PE	3	3	0	0	
12.	21CSC12	Advanced Computer Architecture	PE	3	3	0	0	1
13.		Multicore Architecture	PE	3	3	0	0	
14.	21CSC14	Wireless Sensor Networks	PE	3	3	0	0	
15.	21CSC15	Computer Vision	PE	3	3	0	0	

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S.	Course	771	Category	Contact		truct rs/W		C
No.	Code	Course Title	Category	Hours	L	т	P	
1	21CSD01	Technical Seminar	EEC	2	2	0	0	2
2	21CSD02	Project Phase I	EEC	12	0	0	12	6
3	21CSD03	Project Phase II	EEC	24	0	0	24	12
4	21CSD04	Value Education	AC	2	2	0	0	0
5	21CSD05	Disaster Management	AC	2	2	0	0	0
6	21CSD06	English for Research Paper Writing	AC	2	2	0	0	0
7	21CSD07	Constitution of India	AC	2	2	0	0	0

	std.2000	MUTHAYAMMAL ENGINEERING (Approved by AICTE & Affiliate RASIPURAM –	ed to Anna				PG 1 – 2021	
Dep	partment	Computer Science and Engineering						
Pro	gramme	M.E						
		S	EMESTER –	ı				
SI.	Course	Course Name	Но	ours/ We	ek	Credit	Contact Hours	
No.	Code	Course Hamil	L	T	P	С		
THEO	RY							
1.	21CSA02	Applied Mathematics	3	2	0	4	5	
2.	21CSB03	Machine Learning Techniques	3	0	0	3	3	
3.	21CSB05	Cloud Computing	3	0	0	3	3	
4.	21CSB11	Research Methodology and IPR	3	0	0	3	3	
5.	21CSB12	Data Mining Techniques	3	0	0	3	3	
6.	PE	Professional Elective I	3	0	0	3	3	
PRACT	TICALS	- 100						
7.	21CSB04	Machine Learning Techniques Lab	0	0	2	1	2	
8.	21CSB06	Cloud Computing Lab	0	0	2	1	2	
			T	otal Cred	its	21		

	Extd. 2000	MUTHAYAMMAL ENGINEERING Co (Approved by AICTE & Affiliated RASIPURAM – 63	l to Anna U				CULUM PG 2021
Depart	tment	Computer Science and Engineering					
Progra	mme	M.E					
		S	EMESTER -	- 11			
SI.	Course	Course Name	Но	ours/ We	ek	Credit	Contact Hours
No.	Code		L	T	Р	С	
THEOF	RY					T	
1.	21CSB08	Image Processing and Analysis	3	0	0	3	3
2.	21CSB13	Network Design and Technologies	3	0	0	3	3
3.	21CSB17	Big Data Analytics	3	0	0	3	3
4.	PE	Professional Elective II	3	0	0	3	3
5.	PE	Professional Elective III	3	0	0	3	3
PRAC	TICALS						
6.	21CSB09	Image Processing and Analysis	0	0	2	1	2
7.	PE	Professional Elective II Lab	0	0	2	1	2
8.	21CSD01	Technical Seminar	0	0	2	1	2
		4.15	То	tal Credit	s	18	8
						MO	

E	etd. 2000	MUTHAYAMMAL ENGINEE (Approved by AICTE & AI RASIPURA	RING COLLEGE ffiliated to Ann AM – 637 408	(Autono a Univers	mous) sity),		CURRICULUM PG R - 2021
Depart	tment	Computer Science and Engineering					
Progra	mme	M.E					
			SEMESTER -	111			
SI.	Course	Course Name	Н	ours/ We	ek	Credit	Contact Hours
No.	Code	Total Se Hame	L	Т	Р	С	
THEOR	Υ						
1.	PE	Professional Elective - IV	3	0	0	3	3
2.	PE	Professional Elective - V	3	0	0	3	3
PRACTI	ICAL						
3.	21CSD02	Project Phase - I	0	0	12	6	12
			Total	Credits		12	

^{*}Students going for Industrial Project/Thesis will complete these courses through MOOCs

i i	Estd.2000	MUTHAYAMMAL ENGINEER (Approved by AICTE & Af	RING COLLEGE filiated to Anna .M – 637 408	(Autonor a Univers	nous) ity),	0	URRICULUI PG R – 2021	
D	epartment	Computer Science and Engineering						
Pr	ogramme	M.E						
		-11	SEMESTER - IN	/				
SI. No.	Course Code	Course Name	Н	ours/we	ek	Credit	Contact Hours	
140.	Code		L	Т	Р	С		
PRACTI	ICAL						1	
1.	21CSD03	Project Phase - II	0	0	24	12	24	
		Total Cro	edits			12		

21CSA01

ADVANCED NUMERICAL METHODS

L T P 0

COURSE OBJECTIVES

- To learn the algebraic equations this finds applications in many engineering branches.
- 2. To make the student acquire sound knowledge of computational techniques in solving ordinary differential equations that model engineering.
- To solve Elliptic equations by using computational techniques
- To introduce numerical tools for the solutions of partial differential equations that model several physical processes
- 5. To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise in engineering and technology.

COURSE OUTCOMES

COUNTE OF	
21CSA01.CO1	Demonstrate understanding and implementation of numerical solution algorithms applied to solve algebraic equations
24 55 101 502	Be familiar with numerical solutions of ordinary differential equation and partial differential
21CSA01.CO2	equations.
21CSA01.CO3	Be competent with finite difference method and finite element method.
	Understanding the theoretical and practical aspects of the use of numerical methods.
21CSA01.CO4	Implementing numerical methods for a variety of multidisciplinary applications. Establishing the limitations, advantages, and disadvantages of numerical methods
21CSA01.CO5	The students will have a clear perception of the power of numerical Techniques. This will also serve as a precursor for future research.

Course	Program Outcomes											PSOs			
Outcomes	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO:
19MCA01.CO1	X	x	x	-	-	-	-	-	-	-	х	×	-	X	-
19MCA01.CO2	×	х	X	-	*		5		-	-	х	x	-	×	-
19MCA01.CO3	×	×	х	-	-		-		-	-	×	х	÷	×	-
19MCA01.CO4	х	×	х	-	-	-	-		-	-	×	×	-	×	-
19MCA01.CO5	x	×	x	-		-	-	-	-		х	х	-	х	

UNITI

ALGEBRAIC EQUATIONS

9+6

Systems of linear equations: Gauss Elimination method, pivoting techniques, Thomas algorithm for tridiagonal system – Jacobi, Gauss Seidel, SOR iteration methods - Systems of nonlinear equations: Fixed point iterations, Newton Method, Eigenvalue problems: power method, inverse power method, Faddeev – Leverrier Method

UNIT II

ORDINARY DIFFERENTIAL EQUATIONS

9+6

Runge Kutta Meth ods for system of IVPs, numerical stability, Adams - Bashforth multistep method, solution of stiff ODEs, shooting method, BVP: Finite difference method, orthogonal collocation method, orthogonal collocation with finite element method, galerkin finite element method.

UNIT III

FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

9+6

Parabolic equations: explicit and implicit finite difference methods, weighted average approximation - Dirichlet and Neumann conditions — Two dimensional parabolic equations — ADI method; First order hyperbolic equations — method of characteristics, different explicit and implicit methods; numerical stability analysis, method of lines — Wave equation: Explicit scheme - Stability of above schemes.

UNIT IV

FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS

9+6

Laplace and Poisson's equations in a rectangular region: Five point finite difference schemes, Leibmann's iterative methods, Dirichlet and Neumann conditions — Laplace equation in polar coordinates: finite difference schemes — approximation of derivatives near a curved boundary while using a square mesh.

UNIT V

FINITE ELEMENT METHOD

9+6

Partial differential equations – Finite element method – orthogonal collocation method, orthogonal collocation with finite element method, Galerkin finite element method.

TOTAL: L: 45 + T: 30 = 75

LECKE	ICE BOOK			WEAD 6-
SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	M.K. Jain , S.R.K. lyengar, R.K. Jain	Computational Methods for Partial Differential Equations, 2 nd Edition	New Age Publishers	2016
2.	S. K. Gupta	Numerical Methods for Engineers, 3 rd Edition	New Age International Pvt Ltd Publishers	2015
3.	Saumyen Guha and Rajesh Srivastava	Numerical methods for Engineering and Science	Oxford Higher Education, New Delhi	2010
4.	M.K. Jain	Numerical Methods for Scientific & Engineering Computation, 6 th Edition	New Age International Publishers	2010
5.	Burden, R.L., and Faires, J.D.	Numerical Analysis –Theory and Applications	Cengage Learning, India Edition, New Delhi	2009

21CSA02

APPLIED MATHEMATICS

L T P 0

COURSE OBJECTIVES

- To realize the use of matrix theory techniques in engineering applications and to develop for future applications.
- 2. To analyze and solve the fundamental problem with prescribed or free boundary conditions in simple cases
- 3. Demonstrate knowledge of mathematics and mechanics to construct, analyze and interpret real world problems
- 4. Provide a foundation and motivation for exposure to statistical ideas subsequent to the course.
- 5. To formulate and construct a mathematical model for a linear programming problem in real life situation

COURSE OUTCOMES

21CSA02.CO1	Explain geometrical concepts related to orthogonality and least squares solutions and perform calculations related to orthogonality.
21CSA02.CO2	The variational calculus makes access to mastering in a wide range of classical results of variational calculus. Students get up apply results in technical problem solutions
21CSA02.CO3	The students will have a basic knowledge of the main fields of mathematics and mechanics, including differential equations, elasticity theory, fluid mechanics.
21CSA02.CO4	The students will have an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable
21CSA02.CO5	The knowledge gained on this course helps the students to do engineering optimization.

Course		Program Outcomes													
Outcomes	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
19MCA02.CO1	x	х	x		-			E	*	-	×	x	-	×	-
19MCA02.CO2	Х	×	х		-	-	-	_	-	-	х	Х	-	х	
19MCA02.CO3	X	×	×		-	-	-	-		-	х	x	14	×	-
19MCA02.CO4	x	×	×	-	-	-	-	-	-	-	×	×	-	×	
19MCA02.CO5	×	x	×		-	-	-	-	-	- 2	×	×		×	-

UNIT I MATRIX THEORY 9+6

The Cholesky decomposition - Generalized Eigen vectors, Canonical basis - QR factorization - Least squares method - Singular value decomposition.

UNITII

CALCULUS OF VARIATIONS

9+6

Concept of variation and its properties – Euler's equation – Functional dependant on first and higher order derivatives – Functionals dependant on functions of several independent variables – Variational problems with moving boundaries – problems with constraints - Direct methods: Ritz and Kantorovich methods.

UNIT III

ONE DIMENSIONAL RANDOM VARIABLES

9+6

Random variables - Probability function — moments — moment generating functions and their properties — Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions — Function of a Random Variable.

UNITIV

LINEAR PROGRAMMING

9+6

Formulation – Graphical solution – Simplex method – Two phase method - Transportation and Assignment Models.

UNIT V

FOURIER SERIES AND EIGEN VALUE PROBLEMS

9+6

Fourier Trigonometric series: Periodic function as power signals – Convergence of series – Even and odd function: cosine and sine series – Non-periodic function: Extension to other intervals - Power signals: Exponential Fourier series – Parseval's theorem and power spectrum – Eigen value problems and orthogonal functions – Regular Sturm-Liouville systems – Generalized Fourier series.

TOTAL: L: 45 + T: 30 = 75

REFERI	ENCE BOOK			
SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Mital.K.V. Mohan and Chander	Optimization Methods in Operations Research and Systems Analysis, 4th Edition	New Age International Publishers	2016
2.	Stark. H., and Woods. J.W.	Probability and Random Processes with Applications to Signal Processing, 4th Edition	Pearson Education, Asia	2014
3.	Hamdy ATaha	Operations Research, 9th Edition (Asia)	Pearson Education, Asia	2014
4.	Gupta A.S.	Calculus of Variations with Applications	Prentice Hall of India Pvt. Ltd., New Delhi	2011
5.	Richard Bronson	Matrix Operation, Schaum's outline series, 2nd Edition	McGraw Hill	2011

21CSA03

APPLIED PROBABILITY AND STATISTICS

L T P 0

COURSE OBJECTIVES

- 1. To introduce the basic concepts of one dimensional and two dimensional Random Variables.
- 2. To gain knowledge in the application of family of random variables in real life situations
- 3. To provide information about Correlation and Regression
- 4. Learn about maximum likelihood estimation, unbiased estimation and least square methods.
- 5. To enable the students to use the concepts of multivariate normal distribution and principle components analysis.

COURSE OUTCOMES

21CSA03.CO1	Analyze random or unpredictable experiments and investigate important features of random experiments. Construct probabilistic models for observed phenomena through distributions which play an important role in many engineering applications.
21CSA03.CO2	Associate random variables by designing joint distributions and correlate the random variables
21CSA03.CO3	Perform and interpret correlation and regression analysis and develop correlation models to predict changes in processes and products for linear and non-linear relationships
21CSA03.CO4	Be familiar with multivariate analysis.
21CSA03.CO5	The student will able to acquire the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems

Course	Prog	ram Gu	utcome	S									PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
19MCA03.CO1	×	×	×	-	-	-	-	-	16	-	х	×	2	x	-
19MCA03.CO2	×	х	×	-	-	-	-	-		-	х	×	-	х	-
19MCA03.CO3	Х	х	×	1 2	-	-	-	-	-	-	×	×	-	Х	-
19MCA03.CO4	×	×	×		-		-	-	-	-	×	×	-	х	-
19MCA03.CO5	X	×	×	-	-			-	-	-	×	×	2	х	-

UNITI

ONE DIMENSIONAL RANDOM VARIABLES

9+6

Random variables - Probability function - Moments - Moment generating functions and their properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Functions of a Random Variable.

UNIT II

TWO DIMENSIONAL RANDOM VARIABLES

9+6

Joint distributions – Marginal and Conditional distributions – Functions of two dimensional random variables – Regression Curve – Correlation.

UNIT III

ESTIMATION THEORY

9+6

Unbiased Estimators – Method of Moments – Maximum Likelihood Estimation - Curve fitting by Principle of least squares – Regression Lines.

UNIT IV

TESTING OF HYPOTHESES

9+6

Sampling distributions - Type I and Type II errors - Tests based on Normal, t, Chi-Square and F distributions for testing of mean, variance and proportions – Tests for Independence of attributes and Goodness of fit.

Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Dist.
TAMILNADU.

Chairman

UNIT V

MULTIVARIATE ANALYSIS

9+6

Random Vectors and Matrices - Mean vectors and Covariance matrices - Multivariate Normal density and its properties - Principal components Population principal components - Principal components from standardized variables

TOTAL: L: 45 + T: 30 = 75

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Douglas C. Montgomery, George C. Runger	Applied Statistics and Probability for Engineers (International Student Version), 6 th Edition	John Wiley & Sons, Inc.	2016
2.	Richard A. Johnson and Dean W. Wichern	Applied Multivariate Statistical Analysis, 6 th Edition	Pearson Education, Asia	2015
3.	Gupta S.C. and Kapoor V.K	Fundamentals of Mathematical Statistics	Sultan Chand & Sons	2014
4.	HweiP.Hsu,	Schaum"s Outline of Theory and Problems of Probability, Random Variables and Random Processes	Tata Mc Graw Hill Edition, New Delhi	2014
5.	Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K.	Probability and Statistics for Engineers and Scientists, 8th Edition	Pearson Education, Asia	2013

PROFESSIONAL CORE (PC)

ADVANCED DATA STRUCTURES AND ALGORITHMS

L T P C

COURSE OBJECTIVES

- To review the basic data structures such as list, stack & queue and introduce concurrency on them.
- 2. To learn advanced search structures such as Splay tree, Red Black trees, Multi way search tree and Skip lists.
- To study advanced heap structures such as Leftist Heaps, Binomial Heaps and Fibonacci Heaps.
- 4. To introduce various advanced concurrent structures.
- 5. To learn the various advanced algorithms.

COURSE OUTCOMES

- 21CSB01.CO1 Implement and apply concurrency in linked lists, stacks and queues.
- 21CSB01.CO2 Perform operations on advanced search trees.
- 21CSB01.CO3 Design and implement various types of advanced heaps structures.
- 21CSB01.CO4 Implement advanced concurrent structures such as hash table & priority queue.
- Solve applications using advanced algorithm such as Randomized, Approximation and Parallel algorithms.

		Program Outcomes													
Course Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB01.CO1	х	x	х	- 3	-	•		*	•	•	2		х	х	-
21CSB01.CO2	х	×	x	•	+	-	-			-	-	8	х	×	141
21CSB01.CO3	-	×	x		х	-	-	8	*			-	х	x	-
21CSB01.CO4		×	x	-	х			-		*	*	×		х	
21CSB01.CO5			×	×	х	14	-			-	-		х	X	+

UNIT

DATA STRUCTURES AND CONCURRENCY

9

Review of elementary data structures – data structures and concurrency – locking linked lists – coarse-grained synchronization – fine-grained synchronization – lazy synchronization – non-blocking synchronization – concurrent queues – bounded partial queues – unbounded lock-free queues – dual data structures – concurrent stacks – elimination back off stack.

UNIT II

ADVANCED SEARCH STRUCTURES

9

Binary Search tree - Splay tree - Red Black trees - Interval tree - 2-D tree - Digital Search tree - Multi way Trie - Skip lists.

UNIT III

ADVANCED HEAP STRUCTURES

9

Min heap - Min-Max heap - Double ended heap - Leftist Heaps - Binomial Heaps - Fibonacci Heaps - Skew Heaps - Interval Heap.

UNIT IV

ADVANCED CONCURRENT STRUCTURES

9

Concurrent hashing — closed-address hash sets — lock-free hash sets — open-addressed hash sets — lock-based concurrent skip lists — lock-free concurrent skip lists — concurrent priority queues — bounded priority queue — unbounded priority queue — concurrent heap — skip list based unbounded priority queues.

UNIT V

ADVANCED ALGORITHMS

q

Introduction to Approximation algorithms: Vertex cover - Travelling Salesman Problem - knapsack problem. Introduction to Randomized algorithms — Randomized Searching and Sorting - Online hiring problem. Introduction to Parallel algorithms — parallel sorting algorithms - Odd-even transposition sort - Quick sort based parallel sort.

TOTAL: L: 45

REFEREN	NCE BOOK	174		
Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	S.K. Chang	Data Structures and Algorithms— Series of Software Engineering and Knowledge Engineering.	World Scientific Publishing	2003.
2.	M. Herlihy and N. Shavit, Morgan Kaufmann	The Art of Multiprocessor Programming	Pearson education	2012.
3.	E. Horowitz, S.Sahni and Dinesh Mehta	Fundamentals of Data structures in C++	Universities Press	2007.
4.	Thomas H Cormen, Charles E Leiserson, Ronald L Rivest and Clifford Stein	Introduction to Algorithms	Prentice Hall of India, New Delhi	2007
5.	Michael J. Quinn	Parallel Computing: Theory & Practice	Tata McGraw Hill Edition.	2003

ADVANCED DATASTRUCTURES AND ALGORITHMS LABORATORY

L T P C

COURSE OBJECTIVES

- Understand the concept of linear and non linear data structures
- 2. Implement Various operations of tree concept
- 3. Design and analyze and Concepts of different types of heap
- 4. Analyze hashing, probing methods like linear probing and quadratic probing tree
- 5. Identify suitable data structure to solve various computing problems

COURSE OUTCOMES

21CSB02.CO1	Design and implement Stack operation and double ended Queue
21CSB02.CO2	Implement Tree operations in Binary search tree and red black tree
21CSB02.CO3	Perform the operations on Fibonacci tree and Binomial tree Operation
21CSB02.CO4	Apply hashing function to implement hash Data Structure and Implement Binary search tree
21CSB02.CO5	Analyze greedy algorithm and divide and conquer technique and implement quick sort and travelling sales man problem

Course Outcomes			PSOs												
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POH	PO12	PSO1	PSO2	PSO3
21CSB02.CO1	x	х	x					-					×	×	
21CSB02.CO2	x	x	×								*	8	х	x	
21CSB02.CO3	-	x	x		×			-					x	x	
21CSB02.CO4	x	-	×		×		-						×	x	
21CSB02.CO5			x	x	×					¥			х	x	

SI.No

List of Experiments

- 1. Implement Stacks of size m" with all the basic operations such as Is Empty(i), Push(i), Pop(i), IsFull(i) where "i" denotes the element in a stack
- 2. Design and implement double ended Queue and its operations using Linked List

Beginning with an empty binary search tree, Construct binary search tree by inserting the values in the order given. After constructing a binary tree –

- 3. i. Insert new node
 - ii. Find number of nodes in longest path
 - iii. Minimum data value found in the tree
 - iv. Search a value
- 4. Implement a Red Black tree Operation

Implement Fibonacci tree Operation -

- 5. i. Create Fibonacci tree
 - ii. Insert new node in Fibonacci tree
 - iii. Get Minimum value

Implement Binomial tree Operation -

- 6 i. Create Binomial tree
 - ii. Insert new node in Binomial tree
 - iii. Get Minimum value

Chairman Board of Studies

Programme Code & Name: MC & M.E-Computer Science and Engineering

- Write a program to store k keys into an array of size n at the location computed using a hash function, loc =key % n, where k<=n and k takes values from [1 to m], m>n. Beginning with an empty binary search tree, Construct min priority Queue by inserting the values in the order given. After constructing a priority tree -
- Insert new node 8
 - Delete a given node ii.
 - Find Min value node in a priority queue tree
- Implement Program for Travelling Salesman Problem
- Implement Quick Sort on 1D array of Student structure (contains student name, 10 student_roll_no,total_marks), with key as student_roll_no

TOTAL: P:30

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist.

TAMILNADU.

MACHINE LEARNING TECHNIQUES

COURSE OBJECTIVES

- To learn the concept of how to learn patterns and concepts from data without being explicitly 1. programmed in various IOT nodes
- To design and analyse various machine learning algorithms and techniques with a modern outlook 2. focusing on recent advances
- Explore supervised and unsupervised learning paradigms of machine learning 3.
- To explore Deep learning technique and various feature extraction strategies 4.
- To learn the concept of how to learn patterns and concepts from data without being explicitly 5. programmed in various IOT nodes

COURSE OUTCOMES

21CSB03.CO1	Identify the perspectives of machine learning
21CSB03.CO2	Apply decision tree and Artificial neural networks for real world problems
21CSB03.CO3	Design a Bayesian classifier for solving a problem
21CSB03.CO4	Illustrate the principles of instance based learning and genetic algorithm
21CSB03.CO5	Describe the algorithms for rule and reinforcement learning
2103003.003	Describe the algorithms

		•	PSOs												
Course Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB03.CO1	х	x	x	×	.*	×	-	B	×	×	- 1	х	×		×
21CSB03.CO2	×	х	×	x		-	×	-	-	1/2	х	х	+	х	
21CSB03.CO3	×	х	×	-	-	x	-	-		=	×	1	×		х
21CSB03.CO4	×	x	×	-	×	-	-	×	x			x	•	×	
21CSB03.C05	×	x	×	-	2	С		×	2	×	×	-	х	-	×

UNITI

INTRODUCTION

Learning Problems - Designing a Learning System - Perspectives and Issues in Machine Learning - Concept Learning – task – search – finding maximally specific Hypotheses – version spaces and candidate elimination algorithm-inductive bias.

UNIT II

DECISION TREE LEARNING AND ARTIFICIAL NEURAL NETWORKS

Decision Tree Representation - Problems - basic decision tree learning algorithms - hypotheses search -Issues - Artificial Neural Networks: Introduction - Representations - Problems - Perceptrons - Multilayer networks and Back Propagation Algorithm - example.

UNIT III

BAYESIAN LEARNING

9

Bayes Theorem - Concept Learning - Maximum Likelihood and Least-Squared Error Hypothesis - Maximum Likelihood Hypotheses for Predicting Probabilities - Bayes Optimal Classifier - Gibbs Algorithm - Naïve Bayes Classifier - Example.

UNITIV

INSTANCE BASED LEARNING AND GENETIC ALGORITHM

Introduction - k-Nearest Neighbour Learning - Locally Weighted Regression - Radial Basis Functions - Case-Based Reasoning. Genetic Algorithm - Example - Hypothesis Space Search - Genetic Programming- Models of Evolution and Learning – Parallelizing Genetic Algorithms.

> Chairman Board of Studies

Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE AUTONOMOUS RASIPURAM-637 408, NAME PAL Dist.

TAMILNACU

UNITV

LEARNING SETS OF RULES

9

Learning sets of rules: Introduction – sequential covering algorithms – First order rules – FOIL – Induction as Inverted deduction – inverting resolution – Reinforcement learning – Introduction – Learning task – Q learning

TOTAL: L: 45

REFER	ENCE BOOK			
SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Tom M. Mitchell	Machine Learning	Indian Edition, McGraw-Hill Education (India)	2013
2.	Simon Rogeres and Mark Girolami	A First Course in Machine Learning	CRC Press	2015
3.	Ethem Alpaydin	Introduction to Machine Learning	3rd Edition, Prentice Hall India	2015
4.	Christopher Bishop	Pattern Recognition and Machine Learning	Springer	2007

MACHINE LEARNING TECHNIQUES LABORATORY

COURSE OBJECTIVES

- To understand the concept of algorithms and illustrate the hypothesis using sets of trained data 1
- To learn and understand the concept of building the decision tree and Artificial neural networks 2. using sample data sets.
- To evaluate and understand the concept of Bayesian classifier using sample trained data sets. 3.
- To understand the EM algorithm and k-mean algorithms using trained data set 4.
- To understand the concept of Regression algorithm and nearest neighbor algorithm 5.

COURSE OUTCOMES

21CSR04 CO1 IDENTITY THE digorithms for trained data samples	21CSB04 CO1	Identify	the algorithms for trained data sample
--	-------------	----------	--

- 21CSB04.CO2 Understanding the concept of decision tree and Artificial neural networks
- 21CSB04.CO3 Develop the sample data sets by calculating the accuracy, precision and recall.
- 21CSB04.CO4 Compare the results of two different algorithms based on ML library classes and API
- Implement the algorithm for data sets based on predictions using data graph in order to fit the 21CSB04.CO5 data points.

Course					P	rogram (Outcomes							PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO:1	PO12	PSO1	PSO2	PSO3
21CSB04.CO1	×	x	Х		х	×		×	x	x	(A)	х	×	х	x
21CSB04.CO2	×	x	Х	х	х	×			×	-	4	х	х	х	~
21CSB04.CO3	×	х	X	-	x	-	x	-		х	×	×	х		х
21CSB04.CO4	У	×	X	×	×	-	1.4	×		x	×	×	-	×	-
21CSB04.CO5	×	×	X	-x	х		×	-	х	-	x	×	*	×	x

SI.No

List of Experiments

Implement and demonstrate the FIND S algorithm for finding the most specific hypothesis based

- 1.
- a given set of training data samples. Read the training data from a .CSV file.
- For a given set of training data examples stored in a .CSV file, implement and demonstrate the 2. Candidate
 - Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an
- appropriate data set for building the decision tree and apply this knowledge to classify a new 3.
- Build an Artificial Neural Network by implementing the Back propagation algorithm and test the 4. same using appropriate data sets.
- Write a program to implement the naïve Bayesian classifier for a sample training data set stored 5. as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy,
- precision, and recall for your data set. Write a program to construct a Bayesian network considering medical data. Use this model to
- demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

- Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and commenton the quality of clustering. You can add Java/Python ML library classes/API in the program.
- Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 10 Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

TOTAL: P:30

CLOUD COMPUTING

0

COURSE OBJECTIVES

- To learn how to apply trust-based security model to real-world security problems. 1.
- To study the concepts, processes and best practices needed to successfully secure information 2. within Cloud infrastructures.
- To know the basic Cloud types and delivery models and develop an understanding of the risk and compliance responsibilities and challenges for each Cloud type and service delivery model.

COURSE OUTCOMES

- 21CSB05.CO1 Identify security aspects of each cloud model.
- 21CSB05.CO2 Develop a risk-management strategy for moving to the cloud.
- 21CSB05.CO3 Implement a public cloud instance using a public cloud service provider.
- 21CSB05.C04 Apply trust based security model to different layer.
- 21CSB05.CO5 Examine the concept of audit and compliance.

					P	rogram C	utcomes							PSOs	
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12	PSO1	PSO2	PSO3
21CSB05.C01	х	x	х	x	2	-	-1	-	~	-	-	*	х	E .	100
21CSB05.CO2	x	х	х	-	X		-	-	-	4	x	-	+	x	-
21CSB05.CO3	x	x	х				-	-	-	-	х	*	х	•	-
21CSB05.CO4	x	х	x	-	X	X	-	-	-	-	-	х	-	Х	-
21CSB05.CO5	x	4		-	X		-	-	-	-	х	х	X		-

UNITI

BASICS OF CLOUD COMPUTING

9

Online Social Networks and Applications - Cloud introduction and overview -Different clouds - Risks - Novel applications of cloud computing-Cloud Computing Architecture: Requirements - Introduction Cloud computing architecture -On Demand Computing Virtualization at the infrastructure level -Security in Cloud computing environments - CPU Virtualization -Hypervisors Storage Virtualization Cloud Computing Defined - SPI Framework for Cloud Computing –Traditional Software Model– Cloud Services Delivery Model.

UNIT II

CLOUD DEPLOYMENT MODELS AND SECURITY ISSUES

Key Drivers to Adopting the Cloud – The Impact of Cloud Computing on Users – Governance in the Cloud – Barriers to Cloud Computing Adoption In the Enterprise. Infrastructure Security: The Network Level - The Host Level -The Application Level – Data Security and Storage – Aspects of Data Security – Data Security Mitigation Provider Data and Its Security.

UNIT III

ACCESS AND SECURITY MANAGEMENT

Identity and Access Management: Trust Boundaries and IAM - IAM Challenges - Relevant IAM Standards and Protocols for Cloud Services - IAM Practices in the Cloud - Cloud Authorization Management. Security Management in the Cloud: Security Management Standards – Security Management in the Cloud – Availability Management: SaaS, PaaS, laaS.

UNIT IV

PRIVACY ISSUES

Privacy Issues - Data Life Cycle - Key Privacy Concerns in the Cloud - Protecting Privacy - Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing - Legal and Regulatory Implications - U.S. Laws and Regulations - International Laws and Regulations.

> **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist.

TAMILNAD!

UNIT V

AUDIT AND COMPLIANCE

Internal Policy Compliance - Governance - Risk and Compliance (GRC) -Regulatory/External Compliance -Cloud Security Alliance - Auditing the Cloud for Compliance - Security-as-a-Cloud.

TOTAL: L: 45

DECEDENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	John Rhoton	Cloud Computing Explained: Implementation Handbook for Enterprises	Amazon.com	2009
2.	Tim Mather	Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory in Practice)	O'Reilly Media	2009
3.	Rajkumar Buyya	Christian Vecchiola, and ThamaraiSelvi, "Mastering Cloud Computing"	Tata McGraw Hill Edition	2013
4.	Tom White	Hadoop: The Definitive Guide	Yahoo Press	2012

Chairman Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Dist.

TAMILNADU.

CLOUD COMPUTING LABORATORY

L T P C

COURSE OBJECTIVES

- 1. To learn how to apply trust-based security model to real-world security problems.
- 2. To study the concepts, processes and best practices needed to successfully secure information within Cloud infrastructures.
- 3. To know the basic Cloud types and delivery models and develop an understanding of the risk and compliance responsibilities and challenges for each Cloud type and service delivery model.

COURSE OUTCOMES

21CSB06.CO1 Identify security aspects of each cloud model.
 21CSB06.CO2 Develop a risk-management strategy for moving to the cloud.
 21CSB06.CO3 Implement a public cloud instance using a public cloud service provider.
 21CSB06.CO4 Apply trust based security model to different layer.

21CSB06.CO5 Examine the concept of audit and compliance.

					P	rogram C	utcomes							PSOs	
Course Outcomes	PO1	PO2	PO3	PO4	PO5	P/16	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB06.CO1	х	x	x		-	х	-	•	-	-	-	-	X		-
21CSB06.CO2	x	x	x		x	-	3	-	-	-	x	-	9	х	-
21CSB06.CO3	х	x	х	-	-	-	4	-	x	-	X	-	X	•	-
21CSB06.CO4	x	x	-	x	161	х	-	-	-			x		х	a
21CSB06.CO5	x	-	-	2	х	-	*	x	-	-	x	х	х	-	8.

SI.No

List of Experiments

- a) Installation of various hypervisors and instantiation of VMs with image file using open source hypervisors such as Virtual Box, VMWare Player, Xen and KVM.
- b) Client server communication between two virtual machine instances, execution of chat application.
- Creation of simple network topology using open source network virtualization tools (like mini net and others).
- 3. Implementation of simple network protocols using open source network controllers (like Open Daylight).
- Implementation of various scheduling mechanisms using open source cloud simulator.
 Familiarization and usage of the following cloud services with open source cloud tools(like Eucalyptus, Open stack, Open Nebula and others)
- 5. a) Scheduling mechanisms
 - b) Load balancing mechanisms
 - c) Hashing and encryption mechanisms
- 6 Familiarization and usage of collaborative applications (SaaS).
- 7 Implementing applications using Google App Engine (PaaS).
- Bevelop MapReduce application (example-URL Pattern count and others) using Hadoop cluster set up (Single node and multi node).

Total: P:30

Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)

RASIPURAM-637 498, NAMAKKAL Dist.

ADVANCED OPERATING SYSTEMS

L T P C

COURSE OBJECTIVES

- 1. To learn the fundamentals of Operating Systems
- 2. To gain knowledge on Distributed operating system concepts that includes architecture, Mutual exclusion algorithms, Deadlock detection algorithms and agreement protocols
- 3. To gain insight on to the distributed resource management components
- 4. To know the components of Real time, Mobile operating systems.
- 5. To learn the management aspects of Mobile operating systems

COURSE OUTCOMES

- 21CSB07.CO1 Discuss the various synchronization, scheduling and memory management issues.
- Demonstrate the Mutual exclusion, Deadlock detection and agreement protocols of
- 21CSB07.CO2 Distributed Operating system.
- 21CSB07.CO3 Discuss the various resource management techniques for distributed systems.
- 21CSB07.CO4 Identify the different features of real time and mobile operating systems.
- 21CSB07.CO5 Ability To Learn the management aspects of Mobile operating systems

Course					P	rogram C	outcomes							PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO2
21CSB07.CO1	x	x	×		-			±8	×	×	8	x	•	х	•
21CSB07.CO2	х	×	×		×	-	V (*		×	-	×		×		x
21CSB07.CO3	х	x	×						x	×	-		х	х	¥
21CSB07.CO4	х	х	×) e			-	E,		×	×	-	×	х
21CSB07.CO5	×	x	×		x				x	x	×		×	×	×

UNITI

FUNDAMENTALS OF OPERATING SYSTEMS

9

Overview — Synchronization Mechanisms — Processes and Threads - Process Scheduling — Deadlocks: Detection, Prevention and Recovery — Models of Resources — Memory Management Techniques.

UNIT II

DISTRIBUTED OPERATING SYSTEMS

q

Issues in Distributed Operating System – Architecture – Communication Primitives – Lamport's Logical clocks – Causal Ordering of Messages – Distributed Mutual Exclusion Algorithms – Centralized and Distributed Deadlock Detection Algorithms – Agreement Protocols.

UNIT III

DISTRIBUTED RESOURCE MANAGEMENT

C

Distributed File Systems – Design Issues - Distributed Shared Memory – Algorithms for Implementing Distributed Shared memory–Issues in Load Distributing – Scheduling Algorithms – Synchronous and Asynchronous Check Pointing and Recovery – Fault Tolerance – Two-Phase Commit Protocol – Non blocking Commit Protocol – Security and Protection.

UNIT IV

REAL TIME AND MOBILE OPERATING SYSTEMS

9

Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems - Real Time Task Scheduling - Handling Resource Sharing - Mobile Operating Systems - Micro Kernel Design - Client Server Resource Access - Processes and Threads - Memory Management - File system.

Chairman Board of Studies

UNIT V

CASE STUDIES

9

Linux System: Design Principles - Kernel Modules - Process Management Scheduling - Memory Management - Input-Output Management - File System – Inter process Communication. iOS and Android: Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System.

TOTAL: L: 45

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Mukesh Singhal and Niranjan G. Shivaratri	Advanced Concepts in Operating Systems – Distributed, Database, and Multiprocessor Operating Systems	Tata McGraw-Hill	2001
2.	Abraham Silberschatz; Peter Baer Galvin; Greg Gagne	Operating System Concepts	John Wiley &	2004
3.	Daniel P Bovet and Marco Cesati	Understanding the Linux Kernel	O'Reilly	2005
4.	Singhal	Advanced concepts in operating systems	TataMcGraw-Hill Education	2001
5.	Dang Van Duc	Operating System	Institute of Information Technology	2012

IMAGE PROCESSING AND ANALYSIS

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. Learn digital image fundamentals.
- 2. Be familiar with image enhancement techniques in spatial and frequency domain
- 3. Be familiar with image compression and segmentation techniques and morphological image processing
- 4. Understand the concept of image representation and description
- 5. Learn to recognition image in form of features

COURSE OUTCOMES

- 21CSB08.CO1 Explain the fundamentals of Digital image and its Processing
- 21CSB08.CO2 Perform Image Enhancement Techniques in spatial and frequency domain
- 21CSB08.CO3 Apply the concept of image segmentation and Morphological Image processing
- 21CSB08.CO4 Use various image Representation and Description techniques
- 21CSB08.CO5 Describe Object detection and Recognition Techniques

Course					P	rogram C	outcomes							PSOs	V
Ou.comes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB08.CO1	x	-	-	-	х	-	-	-		-	x	x	-	X	×
21CSB08.CO2	x	x	x	-	Х	-	-	1	-	-	X	х	-	Х	-
21CSB08.CO3	x	Х	X	-	х	-	-	-	s=.	-	х	X	7	Х	-
21CSB08.CO4	x	X	х	-	x	-	-	-	-	-	x	X	-	X	-
21CSB08.CO5	X	х	X	х	x	420	-	-	74	=	x	х	-	X	-

UNIT I INT

INTRODUCTION TO IMAGE PROCESSING AND COMPUTER

Q

Introduction, Digital Image Fundamentals, image acquisition and display using digital devices - Human visual perception, properties-Image Formation-Image sampling and quantization- Basic relationship between pixels.

UNIT II

IMAGEENHANCEMENT

9

Image enhancement in the spatial domain: basic grey level transformation, Histogram Processing - Enhancement using arithmetic/Logic operations - Spatial filtering: smoothing and sharpening.

Image enhancement in the frequency domain: Introduction to two - dimensional transforms- Discrete Fourier Transform, Discrete Cosine Transform, Discrete Wavelet Transform - smoothing frequency domain filtering - sharpening frequency domain filtering.

UNIT III

RPHOLOGICALIMAGEPROCESSINGANDIMAGESEGMENTATION

9

Morphological Image Processing: Dilation and Erosion -Opening and Closing - Hit or Miss Transformation - Basic morphological algorithm

Image Segmentation: Detection of discontinuities- Object Detection Methods, Edge Liking and Boundary Detection, Thresholding Methods, Region Oriented Methods.

UNIT IV

REPRESENTATION AND DESCRIPTION

0

Chain codes, Polygonal approximation, Signature Boundary Segments, Skeletons, Boundary Descriptors, Regional Descriptors, Some Simple Descriptors Topological Descriptors Texture Moment Invariants Use of Principal Components for Description Relational Descriptors.

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAME WAL Dist.
TAMILNAD!

UNIT V

OBJECT RECOGNITION

9

Patterns and Pattern Classes Recognition Based on Decision-Theoretic Methods Optimum Statistical Classifiers Neural Networks Matching Biological Neural Network, McCulloch Pitts Neuron, Thresholding Logic, Perceptron Learning Matching Shape Numbers String Matching Algorithm Feed forward Neural Network, Back propagation Neural Network

TOTAL: L: 45

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	1. Rafael C. Gonzalez , Richard E . Woods	Digital Image Processing	Pearson Education, Third Edition	2013
2.	A.K. Jain	Fundamentals of Digital Image Processing.	Prentice Hall India	1988

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	David A .Forsyth , JeanPonce	Computer Vision : A Modern Apprach	Prentice Hall; Second edition	2011
2.	Scott E Umbaugh	Digital Image Processing andAnalysis: Human and ComputerVision Application with CVIPtools	Second Edition , CRC Press	2011

IMAGE PROCESSING AND ANALYSIS LABORATORY

L T P C

COURSE OBJECTIVES

- 1. Be exposed to simple image processing techniques.
- 2. Be familiar with image enhancement and segmentation techniques.
- 3. Be familiar with morphological and image transform.

COURSE OUTCOMES

21CSB09.CO1 Perform the image enhancement and edge detection

21CSB09.CO2 Implement Morphological operation

21CSB09.CO3 Demonstrate image transform and Color image processing

Course		74.				Program	Outcome	s						PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB09.CO1	x			-	×	-	-	-	-		х	×	•	х	
21CSB09.CO2	х	×	X		×	-	-	-	142	-	×	×	-	х	-
21CSB09.CO3	v	×	x		x		_	-	-		х	×	-	х	(4)

SI.No

List of Experiments

- Program to enhance image using image arithmetic and logical operations.
- Program for image enhancement using histogram equalization.
- Program for image enhancement using Image Negative and Gray level slicin
- Program to filter an image using averaging low pass filter in spatial domain and median filter.
- 5. Program for smooth an image using low pass filter in frequency domain.(Butterworth lpf)
- 6. Program for smooth an image using high pass filter in frequency domain.(Butterworth hpf)
- 7. Program for morphological image operations-erosion, dilation, opening &closing.
- Program for edge detection algorithm.
- To fill the region of interest for the image.
- 10. Program of sharpen image using gradient mask.

Total: P:30

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Dist.

TAMILNADU.

SOFT COMPUTING

C

COURSE OBJECTIVES

- Classify the various soft computing frame works
- Be familiar with the design of neural networks, fuzzy logic and fuzzy systems 2.
- Learn mathematical background for optimized genetic programming
- 4 Be exposed to neuro-fuzzy hybrid systems and its applications

COURSE OUTCOMES

- Apply various soft computing concepts for practical applications 21CSB10.CO1
- Choose and design suitable neural network for real time problems 21CSB10.CO2
- Use fuzzy rules and reasoning to develop decision making and expert system 21CSB10.CO3
- Explain the importance of optimization techniques and genetic programming 21CSB10.CO4
- 21CSB10.CO5 Review the various hybrid soft computing techniques and apply in real time problems

Course Outcomes	Program Outcomes												PSOs		
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB10.CO1	x		x								-5	N	3		-
21CSB10.CO2	x	x	2					х	٠		-	X	x	х	19
21CSB10.CO3	x	x	¥	x			1 2	-	-	-	1	х		х	x
21CSB10.CO4	x	х	x	x	x				x	Z	8	ā	1.0		X
21CSB10.CO5	x	х	x	x	x		*				X	X	- 1		×

UNITI

INTRODUCTION TO SOFT COMPUTING

Soft Computing Constituents-From Conventional AI to Computational Intelligence- Artificial neural network: Introduction, characteristics- learning methods - taxonomy - Evolution of neural networks - basic models important technologies - applications. Fuzzy logic: Introduction - crisp sets - fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm-Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts.

UNIT II

NEURAL NETWORKS

9

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network; auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative auto associative memory network & iterative associative memory network -unsupervised learning networks: Kohonen self-organizing feature maps, LVQ - CP networks, ART network.

UNIT III

FUZZY LOGIC

9

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy

> Chairman Board of Studies

Department of Computer Science and Engine: MUTHAYAMMAL ENGINEERING COLLEGE RASIPURAM-637 408, MAMAXKAL PAGE

TANILNADU.

reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNITIV

GENETIC ALGORITHM

9

Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts - operators - Encoding scheme - Fitness evaluation - crossover - mutation - genetic programming - multilevel optimization - real life problem- advances in GA .

UNIT V

HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

q

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers.

TOTAL: L: 45

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1.	J.S.R.Jang, C.T. Sun and E.Mizutani	Neuro-Fuzzy and Soft Computing	PHI / Pearson Education	2004		
2.	S.N.Sivanandam and S.N.Deepa	Principles of Soft Computing	Wiley India Pvt Ltd	2011		
3.	S.Rajasekaran and G.A.Vijayalakshmi Pai	Neural Networks, Fuzzy Logic and Genetic Algorithm Synthesis and Applications	Prentice-Hall of India Pvt. Ltd.,	2006		
4.	George J. Klir, Ute St. Clair, Bo Yuan,	Fuzzy Set Theory	Foundations and Applications Prentice Hall,	1997		
5.	David E. Goldberg	Algorithm in Search Optimization and Machine Learning	Genetic Pearson Education India	2013		
6	James A. Freeman, David M. Skapura	Neural Networks Algorithms, Applications, and Programming Techniques	Pearson Education India	1991		
7	Simon Haykin			2005		

RESEARCH METHODOLOGY AND IPR

L T P C

COURSE OBJECTIVES

- To learn the basics of research problem, effective technical writing and developing a research proposal.
- 2 To study about Nature of Intellectual Property and Patent Rights.

COURSE OUTCOMES

21CSB11.CO1	Understand research problem formulation.
21CSB11.CO2	Analyze research related information
	The state of the s

21CSB11.CO3 Follow research ethics

21CSB11.CO4 Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity

Understanding that when IPR would take such important place in growth of individuals &

21CSB11.CO5 nation, it is needless to emphasis the need of information about Intellectual Property Right to

be promoted among students in general & engineering in particular

Course Outcomes	Program Outcomes												PSOs		
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
21CSB11.CO1	x	-	-	x	-		х		x	(*)	x		-	x	-
21CSB11.CO2	-	X	-	4	x	-		x	-	124	X	: -	X	(4)	
Z1CSB11.CO3	-	X	-	x	-	x	х	•	-	- 2	x	7.21	4		
21CSB11.CO4		x	x	100	x				х			х	16	8	-
21CSB11.CO5		3.	х	-	х				х	-	X	-	-	Х	

UNITI

BASICS OF RESEARCH PROBLEM

(

Meaning of research problem – Sources of research problem – Criteria Characteristics of a good research problem – Errors in selecting a research problem – Scope and objectives of research problem. Approaches of investigation of solutions for research problem – Data collection – Analysis – Interpretation – Necessary instrumentations

UNIT II

TECHNICAL WRITING AND PROPOSAL

9

Effective literature studies approaches – Analysis Plagiarism – Research ethics – Effective technical writing – How to write Report – Paper – Developing Research Proposal – Format of research proposal – Presentation and Assessment by a review committee.

UNIT III

INTELLECTUAL PROPERTY

9

Nature of Intellectual Property: Patents – Designs –Trade and Copyright. Process of Patenting and Development: Technological research – Innovation – Patenting – Development. International Scenario: International cooperation on Intellectual Property – Procedure for grants of patents – Patenting under PCT.

UNIT IV

PATENT RIGHTS

g

Patent Rights: Scope of Patent Rights – Licensing and transfer of technology – Patent information and databases – Geographical Indications.

UNIT V

DEVELOPMENTS IN IPR

0

New Developments in IPR: Administration of Patent System – New developments in IPR – IPR of Biological Systems – Computer Software – Traditional knowledge Case Studies – IPR and IITs.

TOTAL: L: 45

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Wayne Goddard and Stuart Melville	Research methodology: an introduction for science & engineering students	Juta and Company Ltd, 2nd Edition	2004
2.	Ranjit Kumar	Research Methodology: A Step by Step Guide for beginners	2nd Edition	2004
3.	Halbert	Resisting Intellectual Property	Taylor & Francis Ltd	2007
4.	Mayal	Industrial Design	McGraw Hill	1992
5.	Niebel	Product Design	McGraw Hill	1974
6.	Asimov	Introduction to Design	Prentice Hall	1952
7.	Robert P. Merges, Peter S. Menell, Mark A. Lemley,	Intellectual Property in New Technological Age	McGraw Hill	2016

Chairman Board of Studies

Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL DETAMILNADU.

21CSB12

DATA MINING TECHNIQUES

L T P C

COURSE OBJECTIVES

- 1. To learn the fundamentals of Data mining
- 2. To gain knowledge on association rule concepts in real time systems
- 3. To gain insight on various classification
- 4. To gain insight on different clustering methods
- 5. To study the different types of tools for complex mining techniques

COURSE OUTCOMES

- 21CSB12.CO1 Apply the functionalities of data mining in real time applications.
- 21CSB12.CO2 Do the preprocessing and apply association rule concepts in real time systems
- 21CSB12.CO3 Implement the various classification
- 21CSB12.CO4 Implement the different clustering methods
- 21CSB12.CO5 Study the different tools for complex mining techniques

Course						Program	Outcom	es					PSOs		
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB12.CO1	х	х	х	-	-	15	-	-	x	х	x	x	х	-	х
21CSB12.CO2	х	х	x	-	14	х		140	x	х	x	х	-	S#4	-
21CSB12.CO3	х	х	x	100	x	-	-	-	x	-	x	x	x	x	
21CSB12.CO4	х	х	х		X		-		x	-	x	x	x	х	
21CSB12.CO5	x	X-	X	-	X	-		-	x	x	x	-	X	-	x

UNIT I INTRODUCTION 9

Data Mining-Steps in Knowledge Discovery Process- Kinds of Data and Patterns — Technologies used-Targeted applications - Major issues in Data Mining - Data objects and attribute types - Statistical descriptions of data - Data Visualization- Measuring data similarity and dissimilarity.

UNIT II DATA PREPROCESSING 9

Data Cleaning, Integration, Reduction, Transformation and Discretization, Mining Frequent Patterns – Frequent Item set Mining Methods.

UNIT III CLASSIFICATION 9

Decision Tree Induction-Bayesian Classification - Rule based Classification - classification by Back Propagation - Support Vector Machines - Lazy Learners - Model Evaluation and Selection - Techniques to improve Classification Accuracy - k-Nearest Neighbor Classifier.

UNIT IV CLUSTER ANALYSIS 9

Clusters Analysis: Partitioning Methods – Hierarchical Methods – Density based Methods – Grid based Methods – Evaluation of Clustering – Outliers and Outlier analysis – Outlier detection Methods - Statistical Approaches.

UNIT V APPLICATIONS

Rules - Knowledge Bases - Active And Deductive Databases - Parallel Databases - Multimedia Databases - Image Databases - Text Database Mining Complex data types - Statistical Data Mining - Data Mini

Board of Studies

Department of Computer Science and Engineering

MUTHAYAMMAL ENGINEERING COLLEGE

(AUTONOMOUS)

RASIPURAM-637 408, NAMAKK

TAMILNADU.

Visual and Audio Data Mining - Applications - Ubiquitous and invisible Data Mining - Social impacts of Data Mining.

TOTAL: L: 45

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Jiawei Han Micheline Kamber	Data Mining Concepts and Techniques	3rd Edition, Elsevier	2011.
2.	Alex Berson, Stephen J. Smith	Data Warehousing, Data Mining & OLAP	Tata McGraw Hill	2007.
3.	K.P. Soman, Shyam Diwakar and V. Ajay	Insight into Data mining Theory and Practice	2 nd Edition, Prentice Hall of India	2006.
4.	G. K. Gupta	Introduction to Data Mining with Case Study	Prentice Hall of India	2011
5.	Pang-Ning Tan, Michael Steinbach Vipin Kumar	Introduction to Data Mining	2 nd Edition,Pearson Education	2007

Board of Studies

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)

RASIPURAM-637 408, NAMAKKA

21CSB13

NETWORK DESIGN AND TECHNOLOGIES

L T P 0

COURSE OBJECTIVES

- 1. To understand the fundamental concepts of computer networks.
- 2. To understand the design of Network architectures.
- 3. To understand the working principles of different protocols in various layers.
- 4. To study the implementation concepts in congestion control
- 5. To study the implementation concepts in error detections

COURSE OUTCOMES

- 21CSB13.CO1 Familiar with the basics of Computer Networks.
- 21CSB13.CO2 Understand Network architectures.
- 21CSB13.CO3 Understand Concepts of fundamental protocols.
- 21CSB13.CO4 Understand the knowledge of internetworking concepts in various applications.

21CSB13.CO5 Ability to study the implementation concepts in error detections

Course						Program	o Outcom	es					PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSB13.CO1	×	×		-	×	-	х	-	-		-	×	×	-	х	
21CSB13.CO2	-		×	×	-	×	-	-	х	-	*	2	•	UII	x	
21CSB13.CO3	х		х	-	x	(5	-	-		х	-		x	-	*	
21CSB13.CO4	-	х		х	×	-	-	х	-	-		×	(16)	х		
21CSB13.CO5	-	-	×	×	×	-	-	-	×	-			-	3	x	

UN!T I

NETWORK DESIGN FUNDAMENTALS

9

Introduction -Cooperative communications -The OSI model -The TCP/IP model -The Internet protocols-Networking hardware-Physical connectivity-Virtual connectivity.

UNIT II

NETWORK MONITORING AND ANALYSIS

9

Network monitoring and Analysis: An effective network monitoring LAN and WAN - Monitoring yournetwork -The dedicated monitoring server — monitoring various network parameters - characteristics of monitoring tools - Types of monitoring tools-Spot check tools-Log analyzers-Trending tools-Real time tools-Benchmarking-Interpret the traffic graph - Monitoring RAM and CPU usage.

UNIT III

WIRELESS NETWORKS

9

IEEE802.16 and WiMAX – Security – Advanced 802.16 Functionalities – Mobile WiMAX - 802.16e – Network Infrastructure – WLAN – Configuration – Management Operation – Security – IEEE 802.11e and WMM – QoS – Comparison of WLAN and UMTS.

UNIT IV

4G AND 5G NETWORKS

9

4G and 5G Networks: LTE – Network Architecture and Interfaces – FDD Air Interface and Radio Networks – Scheduling – Mobility Management and Power Optimization – LTE Security Architecture – Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10)- 4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Introduction to 5G.

UNIT V

SOFTWARE DEFINED NETWORKS

9

Software Defined Networks: Introduction – Centralized and Distributed Control and Data Planes – October SDN Controllers.

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Dist,
TAMILNADU.

oners.

EFERENC	E BOOK			
Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATI ON
1.	Martin Sauter	From GSM to LTE, An Introduciton to Mobile Networks and Mobile Broadband	1st Edition Wiley	20 14
2.	Thoman D. Nadeau, and Ken Gray	SDN - Software Defined Networks	1st Edition, O"Reilly Publishers	20 13
3.		Packet Analyzer and Network Management Tools	-	-

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Dist.
TAMILNADU.

21CSB14

ADVANCED SOFTWARE ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. To realize the relationship between UML diagrams
- 2. To design and test software project
- 3. To understand the concept of system design
- 4. To understand the concept of object design.
- 5. To understand the concepts of testing

COURSE OUTCOMES

- 21CSB14.CO1 Execute the software project using software engineering methodologies
- 21CSB14.CO2 Design various UML diagrams and inter relate them
- 21CSB14.CO3 Design, test and manage the software project using various tools
- 21CSB14.CO4 Analyze the concept of system design
- 21CSB14.CO5 Analyze the concept of object design

Course					P	rogram C	outcomes						PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSB14.CO1	x	x	-		-	-	-	-	-		-	-	X	х	-	
21CSB14.CO2	Х	-	х			-	-	-	-		-	x	17.0	(a)	-	
21CSB14.CO3	X	-	-	х	X	-	-	-	-	-	-	-		X	-	
21CSB14.CO4	x	-	x	х	-	20	200	-	х	-	-	x	847	х	x	
21CSB14.CO5		(#)	х	x	х	31	-	-	x	-	-	x	x		x	

UNITI

INTRODUCTION SOFTWARE ENGINEERING

q

Software engineering concepts -Software engineering development activities - Managing software development -Introduction to UML- Modeling concepts - UML diagrams - Project organizations - Project communication concepts- Organizational activities

UNIT II

REQUIREMENTS ELICITATION AND ANALYSIS

9

An overview of requirements elicitation – Requirements elicitation concepts - Requirements elicitation activities - Managing requirements elicitation - Analysis overview – Concepts of analysis - Activities: from use cases to objects- Managing analysis

UNIT III

SYSTEM DESIGN AND OBJECT DESIGN

9

Decomposing the system- An overview of system design - System design concepts - System design activities - From objects to subsystems - Addressing design goals - Managing system design - Object design - Reusing pattern solutions - Reuse concepts - Solution objects - Inheritance - Design patterns - Reuse activities - Managing reuse.

UNITIV

TESTING AND MANAGING CHANGES

9

Testing concepts - Testing activities - Component inspection- Managing testing - Rationale management - Rationale concepts - Rationale activities - From issues to decisions - Managing rationale heuristics for communicating about rationale - Issue modeling and negotiation - Conflict resolution strategies.

Chairman Board of Studies

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAMAKK/ t.

UNIT V

CONFIGURATION MANAGEMENT AND PROJECT MANAGEMENT

Configuration management concepts - Configuration management activities - Managing configuration management- Project management - Project management activities - Agile project management activities.

TOTAL: L: 45

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Sommer ville	Software Engineering	Pearson Education	2009
2.	Roger S. Pressman	Software Engineering - A Practitionar's Approach	McGraw-Hill International Edition,	2012
3.	Robert N. Britcher	The Limits of Software: People, Projects, and Perspectives	Addison-Wesley Pub Co; 1st edition	2007
4.	Frederick P. Brooks	Essays on Software Engineering,	Addison-Wesley Pub Co; 1st edition	2005
5.	Richard H. Thayer	Requirements Engineering: A Good Practice Guide	Software Requirements Engineering.	2007

Chairman Board of Studies

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COL: 15

RASIPURAM-637 488, NAMAKKATAN MADU.

21CSB15

ADVANCED DATABASE TECHNOLOGY

COURSE OBJECTIVES

- To understand database systems, data models, database languages. 1.
- To be able to design a database system by understanding the concepts of functional dependencies 2. and normalization.
- To acquire the knowledge on its query processing. 3.
- To understand the principles of object oriented databases. 4.
- To gain knowledge about the emerging database technologies

COURSE OUTCOMES

21CSB15.CO1 Study the database systems, data models, database languages.

Able to design a database system by understanding the concepts of functional dependencies 21CSB15.CO2 and normalization.

Apply the knowledge on its query processing. 21CSB15.CO3

21CSB15.CO4 Analyze the principles of object oriented databases.

21CSB15.CO5 Study about the different emerging database technologies.

Course					P	rogram C	utcomes						PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSB15.CO1	x		x	×	×	15			-				х	х	=	
21CSB15.CO2	×	х	-	x	×	-	1.	300			1.5	19		×	-	
21CSB15.CO3	-	х	×	×	×	-	•.				×	*	х			
21CSB15.CO4	15.	x	x	-	х	-	=	-		18	х	х	-	×		
21CSB15.CO5	+	x	x	x	×			-		3	-	2	×	TIGHT	-	

UNITI

DISTRIBUTED DATABASES

9

Distributed Databases Vs Conventional Databases - Architecture - Fragmentation - Query Processing -Transaction Processing - Concurrency Control - Recovery.

OBJECT ORIENTED DATABASES

Introduction to Object Oriented Data Bases - Approaches - Modeling and Design - Persistence - Query Languages - Transaction - Concurrency - Multi Version Locks - Recovery 9

EMERGING SYSTEMS

Enhanced Data Models - Client/Server Model - Data Warehousing and Data Mining - Web Databases - Mobile Databases.

UNIT IV

DESIGN DATABASE ISSUES

9

ER Model - Normalization - Security - Integrity - Consistency - Database Tuning - Optimization and Research Issues - Design of Temporal Databases - Spatial Databases.

UNIT V

CURRENT ISSUES

Rules - Knowledge Bases - Active And Deductive Databases - Parallel Databases - Multimedia Databases -Image Databases - Text Database

TOTAL: L: 45

Chairman **Board of Studies**

Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING CHURGE AUTONOMOUS) RASIPURAM-637 408, NAMAKE TAMILNADU.

REFERENCE BOOK

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Elisa Bertino, Barbara Catania, Gian Piero Zarri	Intelligent Database Systems	Addison-Wesley	2001
2.	Carlo Zaniolo, Stefano Ceri, Christos Faloustsos,R.T.Snodgrass, V.S.Subrahmanian,	Advanced Database Systems	Pearson Publication	1997
3.	Morgan KaufmanN.Tame Ozsu, Patrick Valduriez	Principles Of Distributed Database Systems	Prentice Hall International Inc	1999
4.	Abdullah Uz Tansel Et Al	Temporal Databases: Theory, Design and Principles	Benjamin Cummings Publishers	1993
5.	Raghu Ramakrishnan, Johannes Gehrke	Database Management Systems	McGraw Hill, Third Edition	2004

21CSB16

ADVANCED DATABASE TECHNOLOGY LABORATORY

L T P C 0 0 2 1

COURSE OBJECTIVES

- 1. To understand database systems, data models, database languages.
- 2. To be able to design a database system by understanding the concepts of functional dependencies and normalization.
- 3. To acquire the knowledge on its query processing.
- 4. To understand the principles of object oriented databases.
- 5. To gain knowledge about the emerging database technologies

COURSE OUTCOMES

21CSB16.CO1 Study the database systems, data models, database languages.

21CSB16.CO2 Able to design a database system by understanding the concepts of functional dependencies and normalization.

21CSB16.CO3 Apply the knowledge on its query processing.

21CSB16.CO4 Analyze the principles of object oriented databases.

21CSB16.CO5 Study about the different emerging database technologies.

Course					P	rogram C	Outcomes						PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSB16.CO1	-	х	×	×	×			N.	х	-	х	-	-	-	Х
21CSB16.CO2	-	-	×	×	×	-	-	-	Х		Х	-	-	7	Х
21CSB16.CO3	-	-	×	х	x	4	-	-	х	-	X	-	-	-	Х
21CSB16.CO4	-		×	х	×	-	Æ	-	×	-	×	2		-	×
21CSB16.CO5	_	-	х	×	х	-	-	-	×	-	×		2	-	×

SI.No

List of Experiments

- 1. Implement parallel sorting and aggregates
- 2. Implement parallel joins and Hash joins
- 3. Implement semi join and bloom join in distributed DBMS
- 4. Implement two phase commit in distributed DBMS
- 5. Implementation of cube operator in OLAP queries in data warehousing and decision support system
- 6 Implement decision tree of data mining problem
- 7 Implement a priori algorithm in data mining
- 8 Simulation of a search engine
- 9 Implement view modification and materialization in data warehousing and decision support systems
- 10 Implementation of data log queries for deductive databases (Negation, Aggregate, Recursive etc.)

Minimum 8 to 10 experiments based on the syllabus and above experiment list should be implemented using ORACLE /MSSQL SERVER / JAVA.

TOTAL : P : 30

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL DIST.
TAMILNADIL.

21CSB17

BIG DATA ANALYTICS

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. To understand the various algorithms for handling big data
- 2. To understand the techniques for handling big data
- 3. To learn No SQL database system
- 4. To learn concepts for Data stream mining
- 5. To analyse the stream computing

COURSE OUTCOMES

- 21CSB17.CO1 Understand how to leverage the insights from big data analytics through various algorithms
- 21CSB17.CO2 Analyze data by utilizing various statistical and data mining approaches
- 21CSB17.CO3 Perform analytics on real time data using Hadoop related tools
- 21CSB17CO4 Comprehend the various methods for mining the data
- 21CSB17.COS Analyze the concepts of real time data streaming

Course					P	rogram O	Outcomes						PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSB17.CO1	х	x	х	х	-	-	-	X	-	Х	-	Х	x	-		
21CSB17.CO2		-	х	х	х	14	х		x	-	х	*	-	x	х	
21CSB17.CO3	х	x		-	•		X	*		λ			-	x	-	
21CSB17CO4	х	-	х			x		X		-	175	x	х	x	8	
21CSB17.CO5	х	x	-	x	2,42	x	х		x	-	х	-	-	-	X	

UNIT I BIG DATA

Big Data: Definition — Wholeness of big data: Understanding — Capturing —Benefits and management — Organizing and analyzing — Challenges — Big data architecture — Big data sources and applications: Big data sources — Machine to machine Communications—Big data Applications.

UNIT II

MAPREDUCE FRAMEWORK

q

Introducing Hadoop – Starting Hadoop – Components of Hadoop: Working with files in HDFS - Anatomy of a MapReduce program – Reading and writing - Writing basic MapReduce programs: Getting the patent data set-Constructing the basic template of a MapReduce program-Counting things-Adapting for Hadoop"sAPI changes-Streaming in Hadoop-Improving performance with combiners – Hadoop Ecosystem

UNIT III

NOSQL DATABASE SYSTEMS

9

Introduction to NoSQL – CAP theorem - MongoDB: Data types – MongoDB Query Language – Cassandra: Features of Cassandra- Data types – CRUD- Collections Alter Commands – Import and Export- Querying system tables.

UNIT IV

MINING DATA STREAMS

9

Stream Data Model - Sampling Data in a Stream–Filtering Streams–Counting Distinct Elements in a Stream–Estimating Moments–Counting Ones in a Window–Decaying Window - Stream processing with SPARK and Kafka.

Chairman
Board of Studies
It of Computer Science and

Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS)

RASIPURAM-637 408, NAMAK' ... Yest.

TAMILNADU.

UNIT V CASE STUDIES 9

Implement using open source frameworks/tools : Time Series Analysis - Text analysis - Social Network Analysis - Data streams.

TOTAL: L: 45

REFERENCE BOOK

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Anil Maheshwari	Big Data	1 st Edition, McGraw Hill Education	2017
2.	Chuck Lam	Hadoop in Action	2 nd Edition, Manning Publications	2011
3.	Seema Acharya and Subhashini Chellappan	Big Data and Analytics	1st Edition, Wiley	2015
4.	Pfleeger & Pfleeger	Security in Computing	Pearson Education, 3rd Edition	2003
5.	Carmit Hazay, Yehuda Lindell	Efficient Secure Two Party Protocols: Techniques and Constructions	Springer-Verlag	2010

PROFESSIONAL ELECTIVE (PE)

ADVANCED ALGORITHMS

T 3 0 0

COURSE OBJECTIVES

- 1. Introduce students to the advanced methods of designing and analyzing algorithms.
- The student should be able to choose appropriate algorithms and use it for a specific problem. 2.
- To familiarize students with basic paradigms and data structures used to solve advanced algorithmic 3. problems
- Students should be able to understand different classes of problems concerning their computation 4. difficulties.
- 5. To introduce the students to recent developments in the area of algorithmic design

COURSE OUTCOMES

- Analyze the complexity/performance of different algorithms. 21CSC01.CO1
- Determine the appropriate data structure for solving a particular set of problems. 21CSC01.C02
- 21CSC01.CO3 Categorize the different problems in various classes according to their complexity.
- 21csco1.co4 Students should have an insight of recent activities in the field of the advanced data structure.
- 21CSC01.CO5 Evaluate the linear programming of different algorithms

Course					P	rogram (Outcomes							PSOs	
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSC01.C01	x	х	-	-	×	-		-	×		х	х	x	æ	*
21CSC01.CO2	×	×	-	2	- 2	-	4	¥	×	2	х		×	**	2
21CSC01.CO3	-	×	-	×	-			3	×	-	×	-	×	-	-
21CSC01.CO4	(*)	х	х	(4)	-	-		•	х		×		х		-
21CSC01.C05	-	х		х	18	-			х		х		х	-	-

UNITI

SORTING AND GRAPHING

Sorting: Review of various sorting algorithms, topological sorting Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkastra's), depth-first search and computation of strongly connected components, Emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.

UNITII

MATROIDS AND GRAPH MATCHING

Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.

UNIT III

FLOW-NETWORKS AND MATRIX COMPUTATIONS

Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond- Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition.

UNIT IV

GRAPHS, POLYNOMIALS AND DISCRETE FOURIER TRANSFORM

Shortest Path in Graphs: Floyd-Warshall algorithm and dynamic programming paradigm. More Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between baserepresentation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm. Chairman

> Board of Studies Department of Computer Science and Engineering

> MUTHAYAMMAL ENGINEERS LLEGE (AUTONOMOUS. RASIPURAM-637 408, NAP

TAMILNAD!

UNITV

LINEAR PROGRAMMING

9

Linear Programming: Geometry of the feasibility region and Simplex algorithm NP-completeness: Examples, proof of NP-hardness and NP-completeness-Approximation algorithms - Randomized Algorithms.

TOTAL: L: 45

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Cormen, Leiserson, Rivest, Stein	Introduction to Algorithms	MIT Press, 3rd Edition,	2009
2.	Aho, Hopcroft, Ullman	The Design and Analysis of Computer Algorithms	Addison-Wesley Longman	1985
3.	EthemAlpaydin	Introduction to Machine Learning	Data Kleinberg, Jon	2005
4.	Hari Mohan Pandy	Design analysis and Algorithms	University Science Press	2009
5.	Kleinberg and Tardos	Algorithm Design	Pearson	2006

Chairman Board of Studies

Board of Studies

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)

RASIPURAM-637 498, NAMAKKAL Dist.
TAMILNADU.

ADVANCED ALGORITHMS LABORATORY

L T P C

COURSE OBJECTIVES

- To understand the concept of sorting and searching algorithms.
- 2. Analyze various algorithm to find minimum spanning tree.
- 3. To Study the Euclidean algorithm
- 4. To implement modular exponentiation techniques.
- 5. To apply matrix for various algorithms.

COURSE OUTCOMES

21CSC02.CO1	Understand the concept of sorting and searching algorithms
21CSC02.CO2	Implement Prim's algorithm to find minimum spanning tree.
21CSC02.CO3	Apply Dijkstra's algorithm to find shortest path.
21CSC02.CO4	Implement warshall's algorithm to find all pair shortest path.
21CSC02.C05	Perform matrix calculation for various applications.

Course					P	rogram (Outcomes							PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIU	POH	PO12	PSO1	PSO2	PSO3
21CSC02.CO1	x	x	×	-	×	-		-	-	-	×		х	(*)	-
21CSC02.CO2	-	х	×		×	-		(a)			×	-	×	19	125
21CSC02.CO3	-	х	×		×			-	-		х	-	-	×	-
21CSC02.CO4	-	×	×		×	-		-	-		×		-	х	
21CSC02.C05	12	х	х	-	х	-		-	-		×	-	х	-	(*)

SI.No

List of Experiments

- 1. Write a menu based program for sorting algorithms.
- 2. Write a menu based program for searching algorithms.
- 3. Write a menu driven program to perform DFS and BFS.
- 4. Implementation of Prim's algorithm to find minimum cost spanning tree.
- 5. Implementation of Dijkstra's algorithm.
- 6 Implementation of Warshall's Algorithm.
- 7 Implementation of the extended Euclidean algorithm.
- 8 Implementation of the Modular exponentiation technique on an input data set.
- 9 Implementation of matrix multiplication Algorithm.
- 10 Implementation of Matrix Chain Multiplication.

TOTAL: P:30

Los

Board of Studies
Department of Computer Science and Engineer

MUTHAYAMMAL ENGINEERING (AUTONOMOUS) RASIPURAM-637 408, NAMAH TAMILMADU.

WEB DATA MINING

T

COURSE OBJECTIVES

- 1. Introduces basic concepts, tasks, methods, and techniques in web mining
- Develop an understanding of the web mining process and issues, learn various techniques for data 2.
- 3. Learn the techniques in solving data mining problems using tools
- 4. Understand classification and prediction algorithms for web data mining
- 5. Apply the techniques in solving data mining problems using data mining tools and systems

COURSE OUTCOMES

21CSC03.C01 Gain the knowledge of basic concepts data mining and its functionalities.

21CSC03.CO2 Familiar with data mining and knowledge discovery process

21CSC03.CO3 Learn various techniques for web usage mining process and techniques

21CSC03.CO4 Learn classification and prediction algorithms for web data mining

21CSC03.CO5 Apply the techniques in solving data mining problems using data mining tools and systems.

Course					Pi	rogram O	utcome	s						PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSC03.C01	×	×	×		4			-	-		-	x	x	-	•
21CSC03.C02	×	х	×	-	×			-			х	100		×	
21CSC03.C03	×	×	-	-	15	-	-	-	×	-	х	•	x	F	
21CSC03.CO4	×	х	-	-	×		-		-	×	-	х	*	×	-
21CSC03.CO5	×	x	-	-	×	-		-	х						×

INTRODUCTION UNITI

What is Data Mining - Relational Databases - Data Warehouses - Transactional Databases - Advanced Database Systems - Data Mining Functionalities - Interestingness of a pattern Classification of Data Mining Systems - Major issues in Data Mining.

UNITII

DATA MINING AND KNOWLEDGE DISCOVERY

The KDD process and methodology - Data preparation for knowledge discovery - Overview of data mining techniques - Market basket analysis - Classification and prediction - Clustering - Memory-based reasoning -Evaluation and Interpretation.

UNIT III

WEB USAGE MINING PROCESS AND TECHNIQUES

Data collection and sources of data- Data preparation for usage mining - Mining navigational patterns -Integrating e-commerce data - Leveraging site content and structure - User tracking and profiling - E- Metrics: measuring success in e-commerce Privacy issues.

UNIT IV

CLASSIFICATION AND PREDICTION

Concepts and Issues regarding Classification and Prediction - Classification by Decision Tree Induction -Bayesian Classification - Classification by Back-propagation - Classification Based on Concepts from Association Rule Mining.

UNITV

WEB MINING APPLICATIONS AND OTHER TOPICS

Data integration for e-commerce - Web personalization and recommender systems - Web content structure mining - Web data warehousing - Review of tools, applications, and systems.

> **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOLIS

TAMILE

RASIPURAM-637 408. N

REFER	ENCE BOOK			
SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Michael Berry and Gordon Linoff, John Wiley	Data Mining Techniques for Marketing, Sales, and Customer Relationship Management	Second Edition	2004
2.	Ralph Kimball and Richard Merz,	The Data Web house Toolkit	John Wiley	2000
3.	RajkumarBuyya,	Mining the Web: Transforming Customer Data into Customer Value	Tata McGraw Hill Edition	2013
4.	Gordon Linoff and Michael Berry	Hadoop: The Definitive Guide	John Wiley & Sons	2001

Moss

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINE
(AUTONOM
RASIPURAM-637-468
TAMAL

WEB ANALYTICS AND DEVELOPMENT

3 0 0 3

COURSE OBJECTIVES

- 1. The course explores use of social network analysis
- 2. To understand growing connectivity and complexity in the world ranging from small groups to WWW
- 3. Apply various web search Techniques in Real time problems
- 4. Analyze the Random Graphs and Network evolution
- 5. Implement the Robustness Social involvements

COURSE OUTCOMES

21CSC04.C01 Gain the knowledge of Social network and Web data

21CSC04.CO2 Familiar with web analytics tools and development

21CSC04.CO3 Illustrate Web Search and Retrieval techniques

21CSC04.CO4 Identify the Affiliation and identity of social connects

21CSC04.CO5 Aware the robustness in social involvements and diffusion of innovation

Course					P	rogram C	utcomes							PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSC04.CO1	x	x	х		9	•	-	122	×	· ·	if.	•	×	~	•
21CSC04.CO2	×	x	×	9.	×			-			х		•	×	
21CSC04.CO3	×	х	-		х			*			х	-	х	-	
21CSC04.CO4	x	×	=	x	12	-	х		-		-	х		х	
21CSC04.CO5	×	×			×	-	-		х		-	-	•	-	×

UNIT I INTRODUCTION 9
Social network and Web data and methods, Graph and Matrices, Basic measures for individuals and networks, Information Visualization.

UNIT II WEB ANALYTICS TOOLS 9

Click Stream Analysis, A/B testing, Online Surveys.

UNIT III WEB SEARCH AND RETRIEVAL 9

Search Engine Optimization, Web Crawling and indexing, Ranking Algorithms, Web traffic models

UNIT IV MAKING CONNECTION 9

Link Analysis, Random Graphs and Network evolution, Social Connects: Affiliation and identity.

UNIT V CONNECTION 9

Connection Search, Collapse, Robustness Social involvements and diffusion of innovation.

TOTAL: L: 45

Board of Studies

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 409, NAMAKKAL Dist.
TAMIENADU.

REFERENCE BOOK

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Hansen, Derek, Ben Sheiderman, Marc Smith	Analyzing Social Media Networks with NodeXL: Insights from a Connected World.	Morgan Kaufmann	2011
2.	Avinash Kaushik	Web Analytics 2.0: The Art of Online Accountability	Sybex	2009
3.	Easley, D. & Kleinberg, J.	Networks, Crowds, and Markets: Reasoning About a Highly Connected World.	New York: Cambridge University Press	2010
4.	Wasserman, S. & Faust, K.	Social network analysis: Methods and applications	New York: Cambridge University Press	1994
5.	P. R. & Contractor, N. S.	Theories of communication networks	New York: Oxford University Press.	2003

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, MAMAKKAL Diet,
TAMILNADU.

DATA STORAGE TECHNOLOGIES AND NETWORKS

C

COURSE OBJECTIVES

- To provide learners with a basic understanding of Enterprise Data Storage and Management Technologies
- 2. To explain the design of a data center and storage requirements
- 3. To discuss the various types of storage and their properties
- 4. To explain physical and virtualization of storage
- 5. To explain the backup, archiving with regard to recovery and business continuity

COURSE OUTCOMES

21CSC05.CO1 Learn Storage System Architecture

21CSC05.C02 Overview of Virtualization Technologies, Storage Area Network

21CSC05.CO3 Analyze different aspects of data storage.

21CSC05.CO4 Apply many transformations in terms of techniques and hardware used for the same.

21CSC05.CO5 Describe Storage Area Networks And Storage QOS

Course					P	rogram C	utcomes							PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSC05.C01	5	×	-	-	X		125			(*)		x	-	×	
21CSC05.CO2		9	x	x	-	х		х	-		х		-	-	Х
21CSC05.CO3	×	ш	=	-	2		x		(2)		х	-	×	-	×
21CSC05.CO4		×		х	-	-	-	-	~	•		Х		-	i ne
21CSC05.C05	×	×	х						×	х		.00	×		100

STORAGE MEDIA AND TECHNOLOGIES

Storage Media and Technologies - Magnetic, Optical and Semiconductor Media, Techniques for read/write Operations, Issues and Limitations.

UNITII

USAGE AND ACCESS

9

Usage and Access -Positioning in the Memory Hierarchy, Hardware and Software Design for Access, Performance issues.

UNIT III

LARGE STORAGES

9

Large Storages -Hard Disks, Networked Attached Storage, Scalability issues, Networking issues.

UNIT IV

STORAGE ARCHITECTURE SYSTEMS

Storage Architecture - Storage Partitioning, Storage System Design, Caching, Legacy Systems.

UNIT V

STORAGE AREA NETWORKS AND STORAGE QOS

Storage Area Networks - Hardware and Software Components, Storage Clusters/Grids. Storage QoS-Performance, Reliability, and Security issues.

TOTAL: L: 45

Board of Studies

Department of Computer Science and Engineer: MUTHAYAMMAL ENGINEERING COLLEGE

AUTONOMOUS RASIPURAM-637 408, NAMAKRAL Tiet,

REFER	ENCE BOOK			
Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Franklyn E. Dailey	The Complete Guide to Data Storage Technologies for Network-centric Computing- Paperback	Computer Technology Research Corporation	1998
2.	Nigel Poulton	Data Storage Networking : Real World Skills for the CompTIA Storage	Sybex	2014

NAS

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 488, NAMAKKAL 7
TAMILNADU.

PATTERN CLASSIFICATION AND ANALYSIS

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. To Study the fundamental algorithms for pattern recognition.
- 2. To instigate the various Pattern classification techniques.
- To originate the various structural pattern recognition and feature extraction techniques
- 4. To understand the clustering concepts
- To learn the recent advances in neural networks.

COURSE OUTCOMES

21CSC06.C01 Understand and apply various algorithms for pattern recognition.

21CSC06.CO2 Realize the clustering concepts and algorithms.

21CSC06.CO3 Bring out feature extraction techniques

21CSC06.CO4 Easily understand the concept of fundamental algorithms for pattern recognition.

21CSC06.CO5 Analyze the recent advances in neural networks.

Course					P	rogram C	utcomes							PSOs	
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSOI	PSO2	PSO3
21CSC06.CO1	×	×	×	×			8/	*		-60	*		×	-	Х
21CSC06.CO2	×	x	×	×	-			6		*	x		-	×	
21CSC06.CO3	×	×	х	· •	-	-		×	-	(40)	×	-	х	-	100
21CSC06.CO4	×	x	×	×	×	-	-	-	-			х	-	-	×
21CSC06.CO5	×	x	×			-	-	9	(2)		*	×	×	-	

UNIT I PATTERN CLASSIFIER

Overview of pattern recognition - Discriminant functions - Supervised learning - Parametric estimation Maximum likelihood estimation - Bayesian parameter estimation - Perceptron algorithm - LMSE algorithm - Problems with Bayes approach - Pattern classification by distance functions - Minimum distance pattern classifier.

UNIT II

UNSUPERVISED CLASSIFICATION

5

Clustering for unsupervised learning and classification - Clustering concept - C-means algorithm — Hierarchical clustering procedures - Graph theoretic approach to pattern clustering - Validity of clustering solutions.

UNIT III

STRUCTURAL PATTERN RECOGNITION

9

Elements of formal grammars - String generation as pattern description - Recognition of syntactic description - Parsing - Stochastic grammars and applications - Graph based structural representation.

UNIT IV

FEATURE EXTRACTION AND SELECTION

9

Entropy minimization - Karhunen - Loeve transformation - Feature selection through functions approximation - Binary feature selection.

UNIT V

RECENT ADVANCES

C

Neural network structures for pattern recognition - Neural network based pattern associators — Unsupervised learning in neural pattern recognition - Self organizing networks - Fuzzy logic - Fuzzy pattern classifiers — Pattern classification using Genetic Algorithms. STATE OF ART (Not for Exam) Image Transforms: DFT, DCT, Haar, SVD and KL-Introduction to Matlab Toolbox.

Chairman

Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS)

RASIPURAM-637 408, NAME AND AUTONOMOUS

TAMILNA

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Robert J.Schalkoff, Pattern Recognition	Statistical, Structural and Neural	John Wiley &Sons Inc., New York	2007.
2.	Tou and Gonzales	Pattern Recognition Principles	Wesley Publication Company, London	2008
3.	Duda R.O., and Hart.P.E	Pattern Classification and Scene Analysis	Wiley, New York	2009
4.	Morton Nadier and Eric Smith P	Pattern Recognition Engineering	John Wiley & Sons, New York	2009
5.	LFD Costa, RM Cesar Jr	Shape analysis and classification: theory and practice	ACM Digital Library	2011

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-6.27 18, NAMAKWAYAMADU.

MOBILE AND PERVASIVE COMPUTING

L T P C

COURSE OBJECTIVES

- 1. To learn the basic architecture and concepts till Third Generation Communication systems
- 2. To understand the latest 4G Telecommunication System Principles
- 3. To introduce the broad perspective of pervasive concepts and management
- 4. To explore the HCI concepts in Pervasive environment
- 5. To apply the pervasive concepts in mobile environment

COURSE OUTCOMES

21CSC07.CO1 Obtain a thorough understanding of basic architecture and concepts of till Third Generation Communication systems

21CSC07.CO2 Explain the latest 4G Telecommunication System Principles

21CSC07 CO3 Incorporate the pervasive concepts

21CSC07.CO4 Implement the HCI in Pervasive environment

21CSC07.CO5 Work on the pervasive concepts in mobile environment

Course					P	rogram C	utcomes						PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	208	PO9	PO10	PO11	PO12	PSOI	PSO2	PSO3	
21CSC07.CO1	x	-	×	×				×	X	4	-	*	×		- 5-	
21CSC07.CO2	-		×	×	-	*	- 1	~		*	×	×	8	×	-	
21CSC07.CO3	-	х	5	×	-	-	х	8		3		8	×	-	х	
21CSC07.CO4	×	х	2	- 2	×	-	-	-	-	-	×	-	-	×	-	
21CSC07.CO5	x		×	-	-	-	×	-	-54		-	-	×		х	

UNIT I INTRODUCTION 9

History – Wireless communications: GSM – DECT – TETRA – UMTS – IMT – 2000 – Blue tooth, WiFi, WiMAX, 3G, WATM.- Mobile IP protocols -WAP push architecture-Wml scripts and applications. Data networks – SMS – GPRS – EDGE – Hybrid Wireless 100 Networks – ATM – Wireless ATM.

UNIT II OVERVIEW OF A MODERN 4G TELECOMMUNICATIONS SYSTEM

q

Introduction. LTE-A System Architecture. LTE RAN. OFDM Air Interface. Evolved Packet Core. LTE Requirements. LTE-Advanced. LTE-A in Release. OFDMA – Introduction. OFDM Principles. LTE Uplink—SC-FDMA. Summary of OFDMA.

UNIT III

PERVASIVE CONCEPTS AND ELEMENTS

q

Technology Trend Overview - Pervasive Computing: Concepts - Challenges - Middleware - Context Awareness - Resource Management - Human—Computer Interaction - Pervasive Transaction Processing - Infrastructure and Devices - Wireless Networks - Middleware for Pervasive Computing Systems - Resource Management - User Tracking- Context Management - Service Management - Data Management - Security Management - Pervasive Computing Environments - Smart Car Space - Intelligent Campus .

UNIT IV

HCI IN PERVASIVE COMPUTING

9

Prototype for Application Migration - Prototype for Multimodalities - Human—Computer Interface in Pervasive Environments - HCI Service and Interaction Migration - Context-Driven HCI Service Selection - Interaction Service Selection Overview - User Devices - Service-Oriented Middleware Support - User History and Preference - Context Manager - Local Service Matching - Global Combination - Effective Region - User Active Scope - Service Combination Selection Algorithm.

Chairman
Board of Studies
Descriment of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-B37 408, I'AMAKK

UNIT V

PERVASIVE MOBILE TRANSACTIONS

9

Pervasive Mobile Transactions - Introduction to Pervasive Transactions - Mobile Transaction Framework - Unavailable Transaction Service - Pervasive Transaction Processing Framework - Context-Aware Pervasive Transaction Model - Context Model for Pervasive Transaction Processing - Context-Aware Pervasive Transaction Model - A Case of Pervasive Transactions - Dynamic Transaction Management - Context-Aware Transaction Coordination Mechanism - Coordination Algorithm for Pervasive Transactions - Participant Discovery - Formal Transaction Verification - Petri Net with Selective Transition.

TOTAL: L: 45

REFER	ENCE BOOK			
SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1	Alan Colman, Jun Han, and Muhammad Ashad Kabir	Pervasive Social Computing Socially-Aware Pervasive Systems and Mobile Applications	Springer	2016
2	J.Schiller	Mobile Communication	Addison Wesley	2000
3	Juha Korhonen	Introduction to 4G Mobile Communications	Artech House Publishers	2014

Chairman
Beard of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-537 408, MAMAKA:
TAMILNADU.

AD HOC AND WIRELESS SENSOR NETWORKS

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. To learn the basics of sensor networks.
- To impart knowledge on the design and development of the data link and network layers in the WSN protocol stack.
- 3. To understand the working of protocols in different layers of sensor networks.
- 4. To learn the establishment of wireless sensor networks.
- 5. To familiarize the students with the hardware and software platforms used in the design of WSN.

COURSE OUTCOMES

21CSC08.CO1 Ability to learn the basics of sensor networks.

To impart knowledge on the design and development of the data link and network layers in

the WSN protocol stack.

21CSC08.CO3 Analyze the working of protocols in different layers of sensor networks.

21CSC08.CO4 To learn the establishment of wireless sensor networks.

21CSC08.CO5 Analyze to understand the hardware

Course					P	rogram (Outcomes						PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSC08.CO1	×		×			х	-	×	×	170	×	.5	-	×	-	
21CSC08.CO2		(-)	×	×		+	19.	-		-	х	-	×	×	х	
21CSC08.CO3	x	х	-		×		x		×	×		-	-	×	-	
21CSC08.CO4	х	х	-	x	347	-			×	*	х	x	×	×	х	
21CSC08.CO5	x		х	-	1923	×	-	х	9	×		×	-	-	х	

UNIT I AD-HOC MAC

Introduction - Issues in Ad-Hoc Wireless Networks. MAC Protocols - Issues, Classifications of MAC protocols, Multi channel MAC & Power control MAC protocol.

UNIT II

AD-HOC NETWORK ROUTING & TCP

0

Issues - Classifications of routing protocols - Hierarchical and Power aware. Multicast routing - Classifications, Tree based, Mesh based. Ad Hoc Transport Layer Issues. TCP Over Ad Hoc - Feedback based, TCP with explicit link, TCP-BuS, Ad Hoc TCP, and Split TCP.

UNIT III

WSN-MAC

9

Introduction - Sensor Network Architecture, Data dissemination, Gathering. MAC Protocols - self-organizing, Hybrid TDMA/FDMA and CSMA based MAC.

UNITIN

WSN ROUTING, LOCALIZATION & QOS

9

Issues in WSN routing - OLSR, AODV. Localization - Indoor and Sensor Network Localization. QoS in WSN.

UNIT V

MESH NETWORKS

9

Necessity for Mesh Networks - MAC enhancements- IEEE802.11s Architecture- Opportunistic routing - Self configuration and Auto configuration - Capacity Models - Fairness - Heterogeneous Mesh Networks - Vehicular Mesh Networks.

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, RAMAKKA Mist.
TAMILNADU.

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	C.Siva Ram Murthy and B.Smanoj	Ad Hoc Wireless Networks - Architectures and Protocols	Pearson Education	2004
2.	Feng Zhao and Leonidas Guibas	Wireless Sensor Networks	Morgan Kaufman Publishers	2004
3.	C.K.Toh	Ad Hoc Mobile Wireless Networks	Pearson Education	2002

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 488, NAMAKK:
TAMILNADU.

INTERNET OF THINGS

COURSE OBJECTIVES

- To get acquainted with the building blocks of Internet of Things (IoTs), characteristics and taxonomy of IoT levels.
- 2. To learn a generic design methodology
- 3. To learn a programming aspects of IoT.
- To know about various packages, frameworks and cloud services. 4
- To get acquainted with data analytics for IoT.

COURSE OUTCOMES

21CSC09.C01 Identify and design the new models for market strategic interaction.

Design business intelligence and information security for WoB. 21CSC09.CO2

21cscog.co3 Analyze various protocols for IoT.

21csco9.co4 Analyze programming aspects of IoT.

21cscoo.cos To know about various packages, frameworks and cloud services.

Course					P	rogram (outcomes						PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSC09.CO1	x		х	-	х	-	-	x	-	×	8	×	х	×	-	
21CSC09.CO2	×	х		14	Х	-	-	х	x	x		*	×			
21CSC09.CO3	×	х	×	х		×		-	×	×	х	×	(4)	×	٩	
21CSC09.CO4	x	х	×	×		×	-	-	x	x	x	-	×	-	×	
21CSC09.CO5	x	х	х	х		х	-		×	х	х	х	x	х	-	

INTRODUCTION TO LOT UNITI

Definition and Characteristics - Physical Design Things - Protocols - Logical Design - Functional Blocks -Communication Models - Communication APIs - Introduction to measure the physical quantities - IoT Enabling Technologies - Wireless Sensor Networks - Cloud Computing - Big Data Analytics - Communication Protocols – Embedded Systems – IoT Levels and Deployment Templates.

UNITII

DEVELOPING INTERNET OF THINGS

Introduction to Smart Systems using IoT - IoT Design Methodology - Case Study: Weather Monitoring -Logical Design using Python - Data types & Data Structures - Control Flow - Functions - Modules - Packages - File Handling - Date/Time Operations - Classes - Python Packages of Interest for IoT.

UNIT III

DOMAIN SPECIFIC IoTs

Home Automation - Cities - Environment - Energy - Retail - Logistics - Agriculture - Industry - Health and Lifestyle – IoT and M2M.

UNIT IV

IOT PHYSICAL DEVICES, ENDPOINTS AND CLOUD OFFERINGS

IoT Device - Raspberry Pi - Interfaces - Programming Raspberry Pi with Python - Other IoT Devices - IoT Physical Servers and Cloud Offerings - Cloud Storage Models and communication APIs - WAMP - Xively Cloud - Diango - Amazon Web Services for IoT - SkyNet IoT Messaging Platform - Basics of Secure IoT Programming – Case Study: Home Automation.

> **Board of Studies** Department of Computer Science and Engineeting MUTNAYAMMAL ENGINEERING COLLEGE AUTONOMHOU RASIPURAM-637 408, MAMAI!

UNIT V

DATA ANLYTICS FOR IOT

Introduction - Apache Hadoop - Using Hadoop MapReduce for Batch Data Analysis - Apache Oozie - Apache Spark - Apache Strom - Using Apache Strom for Real-time Data Analysis - Case Study: Structural Health Monitoring.

TOTAL: L: 45

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Arshadeep Bahga, Vijay Madisetti	Internet of Things: A Hands- On Approach	Published by Arshdeep Bahga & Vijay Madisetti	2014
2.	Mike Kuniavsky	Smart Things: Ubiquitous Computing User Experience Design	Morgan Kaufmann Publishers	2010
3.	Wimer Hazenberg	Meta Products: Building the Internet of Things. Sara Cordoba	Menno Huisman BIS Publishers	2011
4.	Massimo Banzi	Getting Started with Arduino (Make: Projects).	O'Reilly Media	2008
5.	Barnaghi	Semantics for the Internet of things	Addison Wesley	2012

Chairman Board of Studies

Department of Compute Sci- ce and Engineering RASIPUBAM-63/ 410, HAMAKKA) COL

INTERNET OF THINGS LABORATORY

L T P C

COURSE OBJECTIVES

- 1. To study the assembly language using simulator and kit.
- 2. To implement ALU operations.
- 3. To generate waveforms and test timers
- 4. To develop applications using Embedded Clanguage.
- 5. To design IoT applications using Aurdino, Raspberry Pi, and Bluemix.

COURSE OUTCOMES

21CSC10.CO5

21CSC10.C01 Execute Assembly Language experiments using simulator.
21CSC10.C02 Implement ALU operations.
21CSC10.C03 Design waveforms and test timers.
21CSC10.C04 Develop real time applications and explore ARM/PIC using Embedded C.

Course					F	rogram C	Outcomes						PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSC10.CO1	х	2	х	X	-		X	(4)	•	x		X	x	x		
21CSC10.CO2	х	x	*	¥	x	-	x	х	х	x	1	120	x		•	
21CSC10.CO3	×	x	x	,i		х			x.	x	x	x	х	-		
21CSC10.CO4	x	x	x	4	X	x		x	x	X	x	*			x	
21CSC10.CO5	х	x	X	x		x			x	λ.	x	х	x	×		

Demonstrate real time applications using Aurdino, Raspberry Pi, and Bluemix.

SI.No

List of Experiments

- Write Basic and arithmetic Programs Using Embedded C.
- 2. Write Embedded C program to test interrupt and timers.
- 3. Develop Real time applications clock generation, wave form generation, counter using embedded C.
- Explore ARM/PIC based controllers using Embedded C.
- 5. Explore different communication methods with IoT devices
- 6 Develop simple application testing infrared sensor IoT Applications using Aurdino.
 - Develop simple application testing temperature, light sensor IOT Application using open
- platform/Raspberry Pi.
- 8 Deploy IOT applications using platforms such as Bluemix.

TOTAL: P:30

Cha. Jan

Board of Studies

Department of Company Tass on and Engineering

MUTHAYAR

RASIPURAM-63. - HAMAKKA! Dist.

DATA PREPARATION AND ANALYSIS

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. To prepare the data for analysis
- 2. To develop meaningful Data
- 3. Learn the different ways of Data Analysis
- 4. Be familiar with data streams
- 5. Be familiar with the visualization

COURSE OUTCOMES

21CSC11.CO1 Work in a business environment in which data preparation occurs.

21CSC11.CO2 Apply data cleaning techniques on real world data and prepare data for analysis

Perform exploratory analysis on data, such as calculating descriptive and comparative

21CSC11.CO3

21CSC11.CO4 Experiment visualization techniques for various data analysis tasks

21CSC11.CO5 Illustrate Clustering and association techniques

Course					P	rogram C	outcomes						PSOs			
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
21CSC11.CO1	x	-	-	x	-	1/2	x		-	(4)	×	-	х	-	15	
21CSC11.CO2	-	-	x	×	x	(A)	-	-	(4)		(#)	х		×	+:	
21CSC11.CO3	8.5	×	•	-	-	-	2	-	-	-	×	×	х	-	×	
21CSC11.CO4	х	x	14	-	×	740	-		-	×	-	22		x	-	
21CSC11.CO5	×	-	х	-	-	×	-		-		×	-	×	6	-	

UNITI

DATA GATHERING AND PREPARATION

9

Defining Data analysis problems: Knowing the client-understanding the questions- Data Gathering and Preparation: Data formats-parsing and transformation-Scalability and real-time issues

UNIT II

DATA CLEANING

9

Data Cleaning: Consistency checking-Heterogeneous and missing data- Data Transformation and segmentation.

UNIT III

EXPLORATORY ANALYSIS

a

Exploratory Analysis: Descriptive and comparative statistics- Clustering and association-Hypothesis Generation

UNIT IV

VISUALIZATION

9

Visualization: Designing visualizations- Time series-Geolocated data- Correlations and connections-Hierarchies and networks- interactivity.

UNIT V

STATISTICS

9

Descriptive statistics-Inferential statistics-Comaparative statistics

TOTAL: L: 45

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMMAL
(AUTO, C. DOS)
RASIPURAM-637 448, NAMAKKA

FERENC	Е ВООК			
SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Glenn J. Myatt	Making sense of Data: A practical Guide to Exploratory Data Analysis and Data Mining	John Wiley & Sons, Inc Second edition	2014
2.	Michael Berthold, David J. Hand	Intelligent Data Analysis	Springer	2007
3.	Donald J. Wheeler	Making Sense of Data	SPC Press	2003
4.	Dorian Pyle	Data Preparation for Data Mining	Morgan Kaufmann	1999
5.	Gerhard Svolba	Data Preparation for Analytics Using SAS	SAS Institute	2006

Beard of Studies

Beard of Studies

MUTHAYAMIAL MOTORIO

(AUTORIO

FASIPURAM-637 400, NAMAKKAL Dist.

TAMENADU.

ADVANCED COMPUTER ARCHITECTURE

L T P (

COURSE OBJECTIVES

- 1. To analyze various performance related parameters in computer architecture and understand instruction set architectures
- 2. To understand Instruction Level Parallelism(ILP) with its limitations
- 3. To utilize the ILP concept for memory design
- 4. To review various issues in multiprocessor
- 5. To understand the design of the memory hierarchy and analyze the types of multiprocessors

COURSE OUTCOMES

21CSC12.CO1	Understand performance related parameters and the concepts of Instruction Set architectures
21CSC12.CO2	Describe Instruction Level parallelism and identify the limitations of ILP
21CSC12.CO3	Discuss the approaches of exposing and exploiting ILP
21CSC12.CO4	Design hierarchical memory System
21CSC12.CO5	Analyze the types of multiprocessor architecture and storage devices

Course					P	rogram C	outcomes						PSOs			
Outcomes	POI	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POH	PO12	PSO1	PSO2	PSO3	
21CSC12.CO1	×	-	×	- 5	×	-	-	-	×		-		x		-	
21CSC12.CO2	×	×	8	-	E	х	×					· (4)		х	948	
21CSC12.CO3	-		×	-	x			×		×			x		-	
21CSC12.CO4	-		×	x	4	-	-		2		×	×	-	×	-	
21CSC12.CO5		×	×	-	×		-		×		-		-		×	

UNITI

FUNDAMENTALS OF COMPUTER DESIGN

9

Introduction-measuring and reporting performance- Quantitative principles of computer design-Instruction set principles and examples- classifying instructions- set architectures-memory addressing- addressing modes for signal processing-type and size of operands.

UNIT II

INSTRUCTION LEVEL PARALLELISM

9

Concepts and challenges – overcoming data hazards with dynamic scheduling – examples- reducing branch costs with dynamic hardware prediction- high performance instruction delivery- taking advantages of ILP with multiple issues-limitations of ILP.

UNIT III

ILP WITH SOFTWARE APPROACHES

9

Basic compiler techniques for exposing ILP- static branch prediction- static multiple issues: VLIW approach-Advanced compiler support for exposing and exploiting ILP-Hardware support-cross cutting issues- Intel IA64 architecture.

UNIT IV

MEMORY HIERARCHY DESIGN

9

Introduction- review of caches- cache performance- reducing cache miss penalty-reducing miss rate- miss rate via parallelism –reducing hit time – main memory and organizations for improving performance-memory technology- virtual memory.

Chairman Board of Studies

Department of Computer Sumpce and Engineering
MUTHAYAMMAL CERING COLLEGE

(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Dist.
TAMILNADU.

UNITV

MULTIPROCESSORS AND THREAD LEVEL PARALLELISM

9

Symmetric shared memory architectures-performance of symmetric shared memory multiprocessors — Distributed shared memory architectures-synchronization- storage systems — types of storage devices- buses-reliability-availability and dependability—RAID — errors and failures in real systems—I/O performance measures- Introduction to queuing theory.

TOTAL: L: 45

REFERENCE BOOK

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	John L. Hennessy and David A. Patterson	Computer Architecture: A Quantitative Approach	Morgan Kaufmann, 3rd Edition	2003
2.	Sima D. FountainT. And Kacsuk P	Advanced Computer Architectures: A Design Space Approach	Addison Wesley	2000
3.	Kai Hwang	Advanced Computer Architecture: Parallelism, Scalability, Programmability	Tata McGraw Hill Edition	2001

(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Birt.
TAMILNADU.

MULTICORE ARCHITECTURE

L T P 0

COURSE OBJECTIVES

- To understand the recent trends in the field of Computer Architecture and identify performance related parameters
- 2. To appreciate the need for parallel processing
- 3. To expose the students to the problems related to multiprocessing
- 4. To understand the different types of multicore architectures
- 5. To expose the students to warehouse-scale and embedded architectures

COURSE OUTCOMES

- 21CSC13.CO1 Identify the limitations of ILP and the need for multicore architectures
- Point out the salient features of different multicore architectures and how they exploit
- 21CSC13.CO3 Expose the different multiprocessor issues.
- 21CSC13.CO4 Discuss the warehouse-scale computers architectures
- 21CSC13.CO5 Build the Requirements of Embedded Systems

Course					P	rogram C	utcomes						PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12	PSOI	PSO2	PSO3
21CSC13.CO1	x	×	×	x	1=	-	-	ж	*	S#4	-	*	×	-	-
21CSC13.CO2	X	*	×	×	-			×		-	х		-	х	100
21CSC13.CO3	x	х	×			-	x			*	x	-	x		×
21CSC13.CO4	×	×	×	*	×	194	-	-	=	*	-	x	•	x	
21CSC13.CO5	×	х	X	-		-		-	×	х			×		-

UNIT!

FUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS

9

Classes of Computers – Trends in Technology, Power, Energy and Cost – Dependability – Measuring, Reporting and Summarizing Performance – Quantitative Principles of Computer Design – Classes of Parallelism - ILP, DLP, TLP and RLP.

UNIT II

DLP IN VECTOR, SIMD AND GPU ARCHITECTURES

9

Vector Architecture - SIMD Instruction Set Extensions for Multimedia - Graphics Processing Units - Detecting and Enhancing Loop Level Parallelism.

UNIT III

TLP AND MULTIPROCESSORS

9

Symmetric and Distributed Shared Memory Architectures – Cache Coherence Issues - Performance Issues – Synchronization Issues – Models of Memory Consistency - Interconnection Networks – Buses, Crossbar and Multi-stage Interconnection Networks.

UNIT IV

WAREHOUSE-SCALE ARCHITECTURES

9

Programming Models and Workloads for Warehouse-Scale Computers – Architectures for Warehouse-Scale Computing – Physical Infrastructure and Costs – Cloud Computing – Case Studies.

UNIT V

ARCHITECTURES FOR EMBEDDED SYSTEMS

C

Features and Requirements of Embedded Systems – Signal Processing and Embedded Applications – The Digital Signal Processor – Embedded Multiprocessors.

Chairman

Department of Computer Science and Engineering
MUTHAYAMMAL ENGINEERING COLLEGE
(AUTONOMOUS)
RASIPURAM-637 408, NAMAKKAL Dist.
TAMILNADU.

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	John L. Hennessey and David A. Patterson	"Computer Architecture – A Quantitative Approach"	Morgan Kaufmann / Elsevier, 5 th edition	2012
2.	Darryl Gove	"Multicore Application Programming for Windows, Linux, and Oracle Solaris"	Pearson	2011
3.	Richard Y. Kain,	"Advanced Computer Architecture a Systems Design Approach"	Prentice Hall	2011

WIRELESS SENSOR NETWORKS

0 0

COURSE OBJECTIVES

- To understand the working of protocols in different layers of sensor networks.
- 2. To learn the establishment of wireless sensor networks.
- 3. To familiarize the students with the hardware and software platforms used in the design of WSN.
- 4. To learn the establishment of wireless sensor networks.
- 5. To Analysis of various critical parameters in deploying a WSN

COURSE OUTCOMES

21CSC14.CO1 Ability to learn the basics of sensor networks.

To impart knowledge on the design and development of the data link and network layers in the 21CSC14.CO2

WSN protocol stack.

21CSC14.CO3 Analyze the working of protocols in different layers of sensor networks.

21CSC14.CO4 Technical knowhow in building a WSN network.

21CSC14.CO5 Analyze to understand the hardware

				P	rogram C	dutcomes						PSOs		
POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
7.	×	×		×		(2)	27			F.	×	(#a)	×	-
-		×	×	-	×		х	-		х		-	×	
×			-			х	-	*		х		×	-	х
	×	х	х	-	-		-			-	-		-	•
×	×	×	-	5			2	×	×	-		×	-	
	- - x	- x x x	- x x x - x x x x x x x x x x x x x x x	- x x x x x - x x x x x x x x x x	POI PO2 PO3 PO4 PO5 - X X - X - - X X - X X X X -	POI PO2 PO3 PO4 PO5 PO6 - X X - X - - - X X - X X X X X - -	POI PO2 PO3 PO4 PO5 PO6 PO7 - X X - X - - - - - X X - X - - X X X X X -	- x x - x x - x - x - x - x - x	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 - X X - X -	POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 - X X - X -	POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 - X X - X - <td>POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 - X X - X - - - - - X - - X X - X - - X - - X -</td> <td>POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 - X X - X - - - - - - X - - - X - - X - <t< td=""><td>POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 - X X - X - - - - - X - X - - X X - - - - - X - - X X X X X -</td></t<></td>	POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 - X X - X - - - - - X - - X X - X - - X - - X -	POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 - X X - X - - - - - - X - - - X - - X - <t< td=""><td>POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 - X X - X - - - - - X - X - - X X - - - - - X - - X X X X X -</td></t<>	POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 - X X - X - - - - - X - X - - X X - - - - - X - - X X X X X -

UNITI Introduction 9

Fundamentals of wireless communication technology, the electromagnetic spectrum radio propagation, characteristics of wireless channels, modulation techniques, multiple access techniques, wireless LANs, PANs, WANs, and MANs, Wireless Internet.

UNIT II

WIRELESS SENSOR NETWORKS

9

Introduction - Sensor Network Architecture, Data dissemination, Gathering. MAC Protocols - selforganizing, Hybrid TDMA/FDMA and CSMA based MAC.

UNIT III

WSN-ROUTING

MAC Protocols: Issues in designing MAC protocols for adhoc wireless networks, design goals, classification of MAC protocols, MAC protocols for sensor network, location discovery, quality, other issues, S-MAC, IEEE 802.15.4.

UNIT IV

QoS and Energy Management

Issues and Challenges in providing QoS, classifications, MAC, network layer solutions, QoS frameworks, need for energy management, classification, battery, transmission power, and system power management schemes.

UNIT V

WSN LOCALIZATION & QOS

Issues in WSN routing - OLSR, AODV. Localization - Indoor and Sensor Network Localization. QoS in WSN.

Department of Computer Science and Engineering
MUTHAYAMMAL FACTOR FAILING COLL

RASIPURAM-63/ 408, RAWAKKAT. TAMILNADU

Board of Studies

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Feng Zhao and Leonidas Guibas	Wireless Sensor Networks	Morgan Kaufman Publishers	2004
2.	William Stallings	Wireless Communications and Networks	Pearson Education	2004
3.	C.Siva Ram Murthy and B.Smanoj	Ad Hoc Wireless Networks - Architectures and Protocols	Pearson Education	2004

Chairman Speed of Studies

Chairman
Board of Studies
Department of Computer Science and Engineering
MUTHAYAMTERAL COLLEGE

COMPUTER VISION

L T P (

COURSE OBJECTIVES

- 1. To review image processing techniques for computer vision.
- 2. To understand shape and region analysis.
- 3. To understand Hough Transform and its applications to detect lines
- 4. To understand motion analysis.
- 5. To study some applications of computer vision algorithms

COURSE OUTCOMES

21CSC15.CO1 Implement fundamental image processing techniques required for computer vision.

21CSC15.CO2 Perform shape analysis

21CSC15.CO3 Apply Hough Transform for line, circle, and ellipse detections

21CSC15.CO4 Implement motion related techniques.

21CSC15.CO5 Develop applications using computer vision techniques

Course					· b	rogram (Outcomes						PSOs		
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIC	PO11	PO12	PSO1	PSO2	PSO:
21CSC15.CO1	×	x	х	-	×	-	2	-		2	-	×	2	×	P
21CSC15.CO2	×	-	х	×		х	-	×	14	>	×	-	-	×	-
21CSC15.CO3	×	x	×	-	7.5		х				×	m I	х		×
21CSC15.CO4	x	x	х	×		3	13	•		*		-	х	-	-
21CSC15.CO5	×	×	х	-	261		1 27		x	x			×		2

UNIT!

IMAGE PROCESSING FOUNDATIONS

9

Review of image processing techniques – classical filtering operations – thresholding techniques – edge detection techniques – corner and interest point detection – mathematical morphology – texture.

UNIT II

SHAPES AND REGIONS

Q

Binary shape analysis – connectedness – object labeling and counting – size filtering – distance functions – skeletons and thinning – deformable shape analysis – boundary tracking procedures – active contours – shape models and shape recognition – centroidal profiles – handling occlusion – boundary length measures – boundary descriptors – chain codes – Fourier descriptors – region descriptors – moments.

UNIT III

HOUGH TRANSFORM

9

Line detection – Hough Transform (HT) for line detection – foot-of-normal method – line localization – line fitting – RANSAC for straight line detection – HT based circular object detection – accurate center location – speed problem – ellipse detection – Case study: Human Iris location – hole detection – generalized Hough Transform (GHT).

UNIT IV

3D VISION AND MOTION

9

from texture – shape from focus – active range finding – surface representations – point-based representation – volumetric representations – 3D object recognition – 3D reconstruction – introduction to motion – layered motion.

Department of Cor and Science and Engineering MUTHAYA WINIAL ENGINEERING COLLEGE (AUTONOMOUS)

PASIPURA M-637 408, NAMAKKAL Diet.

UNIT V APPLICATIONS 9

Application: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models faces - Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians- Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion.

TOTAL: L: 45

REFERENCE BOOK

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION	
1. D. L. Baggio et al		Mastering OpenCV with Practical Computer Vision Projects	Packt Publishing,	2012	
2.	Mark Nixon and Alberto S. Aquado	Feature Extraction & Image Processing for Computer Vision	Third Edition, Academic Press	2012	
3.	R. Szeliski	Computer Vision: Algorithms and Applications	Springer	2011	

21CSD04

VALUE EDUCATION

L T P C 2 0 0 2

COURSE OBJECTIVES

- 1. Understand value of education and self-development
- 2. Imbibe good values in students
- 3. Let the should know about the importance of character
- 4. To teach and inculcate the importance of value based living.
- 5. To give students a deeper understanding about the purpose of life.

COURSE OUTCOMES

21CSD04.CO1 Knowledge of self-development

21CSD04.CO2 Learn the importance of Human values

21CSD04.CO3 Developing the overall personality

21CSD04.CO4 Infer the importance of behavior development. 21CSD04.CO5 Know the self-management and good health

Course		1			P	rogram (outcomes						PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSD04.C01	-	-				х	х	х	-	x	(4)	х	-	-	-
21CSD04.CO2	-	-	-			x	х	х	•	×	x		w	х	-
21CSD04.C03	•	16.			-	х	х	х	х	x	×		-		-
21CSD04.C04		14	12	-		х	x	×	-	×	-	×	-		-
21CSD04.C05						х	х	х		×		×			

UNITI

VALUES AND SELF-DEVELOPMENT

.....

5

Social Values And Individual Attitudes -Work ethics, Indian vision of humanism- Moral and non- moral valuation- Standards and principles- Value judgments.

UNIT II

CULTIVATION OF VALUES

5

Importance of cultivation of values – Sense of duty – Devotion – Self-reliance – Confidence – Concentration – Truthfulness – Cleanliness – Honesty – Humanity – Power of faith – National Unity – Patriotism – Love for nature – Discipline.

UNIT III

PERSONALITY

5

Personality and Behavior Development – Soul and Scientific attitude – Positive Thinking – Integrity and discipline – Punctuality – Love and Kindness – Avoid fault Thinking – Free from anger – Dignity of labour.

UNIT IV

BEHAVIOR DEVELOPMENT

5

Universal brotherhood and religious tolerance – True friendship – Happiness Vs suffering – Love for truth – Aware of self-destructive habits – Association and Cooperation – Doing best for saving nature.

UNIT V

CHARACTER AND COMPETENCE

5

Character and Competence – Holy books Vs Blind faith – Self-management and Good health – Science of reincarnation – Equality – Nonviolence – Humility – Role of Women – All religions and same message – Mind your Mind – Self-control Honesty – Studying effectively.

Total: L:25

Department of Commuter Science and Engineering
MUTHAYAMMAL ENCINEERING COLLEGE

RASIPURAM-637 A. B. MAMAKKAL Dist.

Refere	nce Books:			
SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	1. Y.K. Singh	Value Education	APH Publishing, New Delhi	2008
2.	R. P. Shukla,	Value education and human rights	Sarup & Sons, New Delhi, 1st edition	2004
3.	Chakroborty, S.K.	Values and Ethics for organizations Theory and practice	Oxford University Press, New Delhi	1998

21CSD05

DISASTER MANAGEMENT

L T P C 2 0 0 2

COURSE OBJECTIVES

Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and

- 1. humanitarian response.
 - Critically evaluate disaster risk reduction and humanitarian response policy and practice from
- 2. multiple perspectives.
- 3. Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- 4. Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country.

COURSE OUTCOMES

21CSD05.C01	Demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.
21CSD05.CO2	Realize critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
21CSD05.CO3	Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
21CSD05.CO4	Understand the strengths and weaknesses of disaster management approaches, planning and Programming in different countries, particularly their home country.
2105005 005	Gain Knowledge in emerging trend mitigation of disasters.

Course					P	rogram (utcomes						PSOs		
Outcomes	POI	PO2	PO3	PO4	PO5	FO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
21CSD05.CO1	х		х	х	х	-	×	-	- 2	×	-		×	-	-
21CSD05.CO2	×	х	х	×	-	х	-	х	-	-	×		-	×	-
21CSD05.CO3	×	×			•	х	-	×	15	×	×		x	-	-
21CSD05.CO4	×	-	х	-	×	-	-		-	-	-	×	-	×	-
21CSD05.C05	x	×	х	-	x	-	x	x	948	×	-		x		-

UNITI

INTRODUCTION

Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

UNIT II

REPERCUSSIONS OF DISASTERS AND HAZARDS

5

5

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease And Epidemics, War And Conflicts.

UNIT III

DISASTER PRONE AREAS IN INDIA

5

Study of Seismic Zones; Areas Prone To Floods And Droughts, Landslides and Avalanches; Areas Prone to Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases and Epidemics.

Chairman

Board of Studies

Department of Computer Science and Engineering

MUTHAYAMMAL ENCIMEERING COLLEGE
(AUTONOMOUS)

RASIPURAM-637 408, NAMAKKAL Dist.

TAMILNADU.

UNITIV

DISASTER PREPAREDNESS AND MANAGEMENT

5

Preparedness: Monitoring of Phenomena Triggering A Disaster Or Hazard; Evaluation of Risk: Application of Remote Sensing.

UNIT V

RISK ASSESSMENT

5

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

TOTAL: L: 25

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION	
1.	R. Nishith, Singh AK	Disaster Management in India: Perspectives, issues and strategies	New Royal book Company	~	
2.	Sahni, Pardeep et.al. (Eds.)	p et.al. Disaster Mitigation Experiences And Reflections Prentice Hall Of India, New Delhi		jii	
3.	Goel S. L	Disaster Administration And Management Text And Case Studies	Deep & Deep Publication Pvt. Ltd, New Delhi	-	