

(An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

Curriculum/Syllabus

Programme Code : EE

Programme Name : B.E-Electrical and Electronics Engineering

Regulation : R-2016

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, Accredited by NAAC & NBA, Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dt, Tamil Nadu.

Ph. No.: 04287-220837

Email: principal@mec.edu.in.

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

INSTUTION VISION & MISSION

INSTUTION VISION

To be a Centre of Excellence in Engineering, Technology and Management on par with International Standards.

INSTUTION MISSION

- To prepare the students with high professional skills and ethical values
- To impart knowledge through best practices
- To instill a spirit of innovation through Training, Research and Development
- To undertake continuous assessment and remedial measures
- To achieve academic excellence through intellectual, emotional and social stimulation

INSTUTION MOTTO

Rural upliftment through Technical Education.

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

DEPARTMENT VISION & MISSION

DEPARTMENT VISION

To produce competent Electrical and Electronics Engineers with advanced skills and knowledge to contribute the society.

DEPARTMENT MISSION

- To establish the advance laboratories to enable the students to face the challenges in Electrical and Electronics industries
- To enable collaborative research in contemporary and sustainable technologies in Electrical and Electronics Engineering
- To produce Electrical and Electronics Engineering graduates with quest for excellence, enthusiasm for continuous learning, ethical behavior, integrity and exceptional leadership

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

DEPARTMENT PROGRAM EDUCATIONAL OBJECTIVES, PROGRAM OUTCOMES

& PROGRAM SPECIFIC OUTCOMES

PROGRAM EDUCATIONAL OBJECTIVES

The Electrical and Electronics Engineering Graduates should be able to

PEO1: Practice as an Engineer in the Electrical and Electronics industries and become an entrepreneur

PEO2: Pursue higher education and research for professional development

PEO3: Exhibit the leadership skills and ethical value for society

PROGRAM OUTCOMES

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and Engineering sciences.
- 3. **Design/Development solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Lifelong learning:** Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO1: Apply mathematical and engineering knowledge for designing Electrical and Electronics systems

PSO2: Derive sustainable solutions for complex Electrical and Electronics Engineering problems **PSO3:** Use modern software tools and techniques related to Electrical and Electronics Engineering industry

1		~		ŀ
	Z	83		
1	b×.	×>	<1	L
18	\sim	x	 	
£	1	82	10	Ľ
	-	1.0		
-	-		-	÷

MUTHAYAMMAL ENGINEERING COLLEGE (Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408

Depar	tment		Electrical and Electr	onics Engine	ering				
Progra	amme		B.E Electrical and	d Electronics	Engine	ering			
			SEMI	ESTER – I					
SI.	Course	0	course Name	Category	Hour	s/We		Credit	Contact Hrs
No.	Code		ourse manie	outegory	L	Т	Р	C	
1.	16SHA01	Technical	English	HS	3	2	0	4	5
2.	16SHB01		Calculus and al Equations	BS	3	2	0	4	5
3.	16SHB22	Material S	Science	BS	3	0	0	3	3
4.	16SHB31	Engineeri	ng Chemistry	BS	3	0	2	4	5
5.	16EEC01	Fundame and Prog	ntals of Computing ramming	ES	2	0	4	4	6
6.	16EEC03	Basic of C Engineeri	Civil and Mechanical	ES	4	0	0	4	4
7	16EEC06	Engineerin Electrical	ng Practices for Sciences	ES	0	0	4	2	4
			Total Credits						25

MUTHAYAMMAL ENGINEERING COLLEGE (Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408 CURRICULUM UG R - 2016

Department	Electrical and Electronics Engineering
Programme	B.E. – Electrical and Electronics Engineering

SEM	MEST	ſER	- 1	
-----	------	-----	-----	--

SI.	Course			Hour	s/We	ek	Credit	a
No.	Code	Course Name	Category	L	T	Ρ	С	Contact Hrs
1.	16SHA02	Communicative English	HS	3	0	4	5	7
2.	16SHB02	Complex Variables, Laplace Transforms and Vector Calculus	BS	3	2	0	4	5
3.	16SHB21	Engineering Physics	BS	2	0	4	4	6
4.	16SHB32	Environmental Science and Engineering	BS	3	0	0	3	3
5.	16EEC02	Advanced C Programming	ES	2	0	4	4	6
6.	16EEC05	Engineering Graphics	ES	0	0	4	2	4
7.	16EEC13	Circuit Theory	HS	3	0	4	5	7
		Total Credits	1				L.	26

The Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakika and

3.	16EED03	Electromagnetic Theory	PC	5	3	2	0	4
4.	16EED04	DC machines and Transformers	PC	5	3	0	2	4
5.	16EED05	AC Machines	PC	5	3	1	2	4
6.	16EED06	Control systems	PC	7	3	2	2	5
7.	16EED07	Power Electronics	PC	5	3	0	2	4
8.	16EED08	Linear Integrated Circuits And Its Applications	PC	5	3	0	2	4
9.	16EED09	Design of Electrical Apparatus	PC	5	3	2	0	4
10.	16EED10	Transmission and Distribution	PC	3	3	0	0	3
11.	16EED11	Power System Analysis	PC	5	3	2	0	4
12.	16EED12	Solid State Drives	PC	5	3	0	2	4
13.	16EED13	Power System Operation and Control	PC	5	3	0	2	4
14.	16EED14	High Voltage Engineering	PC	3	3	0	0	3
15.	16EED15	Power System Protection and Switchgear	PC	3	3	0	0	3
16.	16EED16	Energy Conservation and Energy Auditing	PC	3	3	0	0	3

5. Professional Elective (PE)

SI.	Course	Course Title	Category	Contact		struct urs/ W		с
No.	Code			Hours	L	Т	Р	
1.	16EEE01	Advanced Control Theory	PE	5	3	2	0	4
2.	16EEE02	Electrical System Design and Estimation	PE	5	3	2	0	4
3.	16EEE03	Power Semiconductor Devices	PE	3	3	0	0	3
4.	16EEE04	Computer Aided Analysis and Design of Electrical Apparatus	PE	5	3	2	0	4
5.	16EEE05	Smart Grid	PE	3	3	0	0	3
6.	16EEE06	Power system Stability	PE	3	3	0	0	3
7.	16EEE07	High Voltage Direct Current Transmission	PE	3	3	0	0	3
8.	16EEE08	Soft Computing Technique	PE	3	3	0	0	3
9.	16EEE09	Flexible AC Transmission Systems	PE	3	3	0	0	3
10.	16EEE10	Power Quality	PE	3	3	0	0	3
11.	16EEE11	Special Electrical Machines	PE	3	3	0	0	3
12.	16EEE12	Power System Transients	PE	3	3	0	0	3

The Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakkar Dt.

13.	16EEE13	Power Electronics for Renewable Energy Systems	PE	3	3	0	0	3
14.	16EEE14	Switched Mode Power Conversion	PE	3	3	0	0	3
15.	16EEE15	VLSI Design	PE	3	3	0	0	3
16.	16EEE16	Robotics	PE	3	3	0	0	3
17.	16EEE17	PLC and Automation	PE	3	3	0	0	3
18.	16EEE18	Virtual Instrumentation	PE	3	3	0	0	3
19.	16EEE19	Communication Engineering	PE	3	3	0	0	3
20.	16EEE20	Total Quality Management	PE	3	3	0	0	3
21.	16EEE21	Power Plant Engineering	PE	3	3	0	0	3
22.	16EEE22	Embedded Systems	PE	3	3	0	0	3
23.	16EEE23	Control of electric drives with PLC- SCADA controllers	PE	3	3	0	0	3
24.	16EEE24	Control of electric drives with digital controllers	PE	3	3	0	0	3

6. Employability Enhancement Courses (EEC)

SI. Course	Course Title	Category	Contact	Instruction Hours/ Week			с	
No.	Code			Hours	L	Т	P	
1.	16EEF01	Project work – Phase-I	EEC	6	0	0	6	3
2.	16EEF02	Project work – Phase-II	EEC	30	0	0	30	15
3.	16EEF03	Comprehension	EEC	4	0	0	4	2
4.	16EEF04	Design Project	EEC	4	0	0	4	2
5.	16EEF05	Presentation Skill and Technical Seminar	EEC	2	0	0	2	1

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka: DL

10.	16SHB21	Engineering Physics	BS	6	2	0	4	4
11.	16SHB22	Material Science	BS	3	3	0	0	3
12.	16SHB23	Physics for Electrical Engineering	BS	3	3	0	0	3
13.	16SHB24	Physics for Mechanical Engineering	BS	3	3	0	0	3
14.	16SHB31	Engineering Chemistry	BS	5	3	0	2	4
15.	16SHB32	Environmental Science and Engineering	BS	3	3	0	0	3

3. Engineering Science (ES)

SI.	Course	Course Title	Category	Contact		struct urs/ W		с
No.	Code		jj	Hours	L	Т	Р	
1.	16EEC01	Fundamentals of Computing and Programming	ES	5	3	0	2	4
2.	16EEC02	Advanced C Programming	ES	5	3	0	2	4
3.	16EEC03	Basic of Civil and Mechanical Engineering	ES	4	4	0	0	4
4.	16EEC04	Basics of Electrical and Electronics Engineering	ES	3	3	0	0	3
5.	16EEC05	Engineering Graphics	ES	4	0	0	4	2
6.	16EEC06	Engineering Practices for Electrical Sciences	ES	4	0	0	4	2
7.	16EEC07	Electrical Drives and Controls	ES	5	3	0	2	4
8.	16EEC08	Engineering Mechanics	ES	5	3	0	2	4
9.	16EEC09	Microprocessors and Microcontrollers	ES	5	3	0	2	4
10.	16EEC10	Object Oriented Programming	ES	5	3	0	2	4
11.	16EEC11	Data Structures	ES	5	3	0	2	4
12.	16EEC12	Electronic Devices and Circuits	ES	5	3	0	2	4
13.	16EEC13	Circuit Theory	ES	5	3	0	2	4
14.	16EEC14	Digital Principles and System Design	ES	5	3	0	2	4
15.	16EEC15	Fundamental of Nano-science and Technology	ES	3	3	0	0	3

4. Professional Core (PC)

SI.	Course	Course Title	ourse Title Category	Contact	In Ho	с		
No.	Code			Hours	L	Т	Р	
1.	16EED01	Measurement and Instrumentation	PC	3	3	0	0	3
2.	16EED02	Network Analysis and Synthesis	PC	5	3	2	0	4

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakke. etc.

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

B.E.- ELECTRICAL AND ELECTRONICS ENGINEERING

GROUPING OF COURSES

1. Humanities and Social Sciences (HS)

S. Course		Irse		Contact	In Ho			
No.	Code	Course Title	Category	Hours	L	Т	Р	C
1.	16SHA01	Technical English	HS	5	3	2	0	4
2.	16SHA02	Communicative English	HS	7	3	0	4	5
3.	16SHA03	Business English	HS	5	3	2	0	4
4.	16SHA04	Basics of Japanese	HS	5	3	2	0	4
5.	16SHA05	Functional Japanese	HS	5	3	2	0	4
6.	16SHA06	Basics of German	HS	5	3	2	0	4
7.	16SHA07	Functional German	HS	5	3	2	0	4
8.	16SHA08	Principles of Management and Engineering Ethics	HS	3	3	0	0	3

2. Basic Sciences (BS)

S.	Course	Course Little	Category	Contact	Instruction Hours/Week			-
No.	Code	Course Title	Category	Hours	L	т	Р	C
1.	16SHB01	Matrices, Calculus and Differential Equations	BS	5	3	2	0	4
2.	16SHB02	Complex Variables, Laplace Transforms and Vector Calculus	BS	5	3	2	0	4
3.	16SHB03	Transforms and Partial Differential Equations	BS	5	3	2	0	4
4.	16SHB04	Probability and Random Processes	BS	5	3	2	0	4
5.	16SHB05	Probability and Queuing Theory	BS	5	3	2	0	4
6.	16SHB06	Numerical Methods	BS	5	3	2	0	4
7.	16SHB07	Statistics and Numerical Methods	BS	5	3	2	0	4
8.	16SHB08	Discrete Mathematics	BS	5	3	2	0	4
9.	16SHB09	Operations Research	BS	5	3	2	0	4

The

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakkal Dt.

(An Autonomous Institution)

Estd. 2000

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

B.E. - ELECTRICAL AND ELECTRONICS ENGINEERING

GROUPING OF COURSES

1. Humanities and Social Sciences Courses (HS)

				Contact	h He	C		
S. No.	Course Code	Course Title	Category	Hours	L	Т	Р	C
1.	19HSS01	Business English	HS	3	2	0	0	2
2.	19HSS02	English Communicative Skills Laboratory	HS	2	0	0	2	1
3.	19HSS03	Life Skills and Workplace Psychology	HS	3	2	0	0	2
4.	19HSS04	Technical English For Engineers	HS	3	2	0	0	2
5.	19HSS05	Communicative English for Engineers	HS	3	2	0	0	2
6.	19HSS06	Basics of Japanese Language	HS	3	2	0	0	2
7.	19HSS07	Basics of French Language	HS	3	2	0	0	2

2. Basic Sciences (BS)

	Basic Science			Contact	I H			
S. No.	Course Code	Course Title	Category	Hours	L	т	Р	C
1.	19BSS01	Engineering Physics	BS	4	3	0	0	3
2.	19BSS02	Physics and Chemistry Laboratory	BS	2	0	0	2	1
3.	19BSS03	Bio and Nanomaterials Sciences	BS	4	3	0	0	3
4.	19BSS04	Material Sciences	BS	4	3	0	0	3
5.	19BSS05	Physics for Mechanical Engineers	BS	4	3	0	0	3
6.	19BSS11	Engineering Chemistry	BS	4	3	0	0	3
7.	19BSS12	Environmental Science and Engineering	BS	4	3	0	0	3
8.	19BSS13	Organic Chemistry	BS	4	3	0	0	3
9.	19BSS14	Physical Chemistry	BS	4	3	0	0	3
10.	19BSS15	Applied Chemistry	BS	4	3	0	0	3

The (Board of Sti

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namaktal Ot.

11.	19BSS16	Organic Chemistry Laboratory	BS	2	0	0	3	1
12.	19BSS17	Physical Chemistry Laboratory	BS	2	0	0	3	1
13.	19BSS21	Algebra and Calculus	BS	4	3	1	0	4
14.	19BSS22	Differential Equations and Vector Analysis	BS	4	3	1	0	4
15.	19BSS23	Transform and Partial Differential Equations	BS	4	3	1	0	4
16.	19BSS24	Discrete Mathematics	BS	4	3	1	0	4
17.	19BSS25	Statistical and Queuing Model	BS	4	3	1	0	4
18.	19BSS26	Numerical Methods	BS	4	3	1	0	4
19.	19BSS27	Probability and Random Processes	BS	4	3	1	0	4
20.	19BSS28	Statistic and Numerical Methods	BS	4	3	1	0	4

3. General Engineering Science (GES)

SI.	Course	Course flue	Category	Contact		nstruction ours/ W		С
No.	Code	Course The	Category	Hours	L	Т	Р	
1.	19GES01	Programming for Problem Solving Using C	GES	3	3	0	0	3
2.	19GES02	Programming for Problem Solving Technique	GES	3	3	0	0	3
3.	19GES03	Programming in C Laboratory	GES	2	0	0	2	1
4.	19GES04	Programming in C and Python Laboratory	GES	2	0	0	2	1
5.	19GES05	Electrical and Electronic Sciences	GES	3	3	0	0	3
6.	19GES06	Mechanical and Building Sciences	GES	3	3	0	0	3
7.	19GES07	Computer Aided Drafting Laboratory	GES	2	0	0	2	1
8.	19GES08	Python Programming	GES	3	3	0	0	3
9.	19GES09	Programming in Python Laboratory	GES	2	0	0	2	1
10.	19GES10	Soft Skills Laboratory	GES	2	0	0	2	1
11.	19GES11	Electronic Devices	GES	3	0	0	3	3
12.	19GES12	Electronic Simulation Laboratory	GES	. 2	0	0	2	1
13.	19GES13	Electric Circuits	GES	3	2	1	0	3
14.	19GES14	Electric Circuits Laboratory	GES	2	0	0	2	1
15.	19GES15	Manufacturing Process	GES	3	3	0	0	3
16.	19GES16	Manufacturing Process Laboratory	GES	2	0	0	2	1
17.		Mechanical and Building Sciences Laboratory	GES	2	0	0	2	1
18.	19GES18	Construction Materials	GES	3	3	0	0	3
19.	19GES19	Concepts in Product Design	GES	3	3	0	0	3
20.	19GES20	Renewable Energy Sources	GES	3	3	0	0	3
21.	19GES21	Electrical Drives and Control	GES	3	3	0	0	3
22.	19GES22	Electrical Drives and Control Laboratory	GES	2	0	0	2	1
23.	19GES23	Analog and digital communication	GES	3	3	0	0	3
24.	19GES24	Digital Principles and System Design	GES	3	3	0	0	3

The hairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakkai Dt.

25.	19GES25	Digital Principles and System Design Laboratory	GES	2	0	0	2	1
26.	19GES26	Engineering Drawing	GES	3	1	0	4	3
27.	19GES27	Engineering Geology	GES	3	3	0	0	3
28.	19GES28	Engineering Mechanics	GES	3	3	1	0	4
29.	19GES29	Wireless Communication	GES	4	3	0	0	3
30.	19GES30	Electronics and Microprocessor	GES	3	3	0	0	3
31.	19GES31	Electronics and Microprocessor Laboratory	GES	2	0	0	2	1
32.	19GES32	Data Structures using Python	GES	3	3	0	0	3
33.	19GES33	Electronic Devices and Circuits	GES	3	3	0	0	3
34.	19GES34	Electronic Devices and Circuits Laboratory	GES	2	0	0	2	1

4. Professional Core (PC)

-

SI.	Course	Course Title	Category	Contact		nstructi ours/ W		С
No.	Code	Course The	Category	Hours	L	Т	Р	
THEO	RY							
1.	19EEC01	Electromagnetic Fields	PC	3	2	1	0	3
2.	19EEC02	Measuring Instruments	PC	3	3	0	0	3
3.	19EEC03	Linear Integrated Circuits	PC	3	3	0	0	3
4.	19EEC04	DC machines and Transformers	PC	3	2	1	. 0	3
5.	19EEC05	AC Machines	PC	3	2	1	0	3
6.	19EEC06	Control Systems	PC	3	2	1	0	3
7.	19EEC07	Power Electronics	PC	3	3	0	0	3
8.	19EEC08	Electrical Drives	PC	3	3	0	0	3
9.	19EEC09	Micro-computing based system design	PC	3	3	0	0	3
10.	19EEC10	Power System Analysis	PC ·	3	2	1	0	3
11.	19EEC11	Operation and Control of Electrical Power Systems	PC	3	3	0	0	3
12.	19EEC12	Transmission and Distribution	PC	3	3	0	0	3
13.	19EEC13	Protection and switchgear	PC	3	3	0	0	3
14.	19EEC14	High Voltage Engineering	PC	3	3	0	0	3
15.	19EEC15	Network Analysis and Synthesis	PC	3	2	1	0	3
16.	19EEC16	Smart Grid	PC	3	3	0	0	3
17.	19EEC17	PLC and Automation	PC	3	3	0	0	3
18.	19EEC18	Power System Transients	PC	3	3	0	0	3

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakkal Dt.

PRACT	TICAL							
19.	19EEC19	Linear Integrated Circuits	PC	2	0	0	2	1
20.	19EEC20	DC machines and Transformers Laboratory	PC	2	0	0	2	1
21.	19EEC21	AC Machines Laboratory	PC	2	0	0	2	1
22.	19EEC22	Control Systems Laboratory	PC	2	0	0	2	1
23.	19EEC23	Power Electronics Laboratory	PC	2	0	0	2	1
24.	19EEC24	Power System Simulation Laboratory	PC	2	0	0	2	1
25.	19EEC25	Micro-computing based system design Laboratory	PC	2	0	0	2	1

5. Professional Elective (PE)

SI.	Course	Course Title	Category	Contact		nstructi ours/ W		С
No.	Code	course rule	8 ,	Hours	L	Т	Р	
1.	19EEE01	Intellectual Property Rights	PE	3	3	0	0	3
2.	19EEE02	Power System Stability	PE	3	3	0	0	3
3.	19EEE03	Communication Engineering	PE	3	3	0	0	3
4.	19EEE04	Special Electrical Machines	PE	3	3	0	0	3
5.	19EEE05	Design of Electrical Apparatus	PE	3	2	1	0	3
6.	19EEE06	Flexible AC Transmission Systems	PE	3	3	0	0	3
7.	19EEE07	HVDC Transmission Systems	PE	3	3	0	0	3
8.	19EEE08	Power Plant Engineering	PE	3	3	0	0	3
9.	19EEE09	Total Quality Management	PE	3	3	0	0	3
10.	19EEE10	VLSI Design	PE	3	3	0	0	3
11.	19EEE11	Power Quality	PE	3	3	0	0	3
12.	19EEE12	Emerging Intelligent Techniques	PE	3	3	0	0	3
13.	19EEE13	Electric Energy Utilization and Conservation	PE	3	3	0	0	3
14.	19EEE14	DC micro Grid	PE	3	3	0	0	3
15.	19EEE15	Wind and Solar Energy Systems	PE	3	3	0	0	3
16.	19EEE16	Robotics	PE	3	3	0	0	3
17.	19EEE17	Fiber Optics	PE	3	3	0	0	3
18.	19EEE18	Human Computer Interaction	PE	3	3	0	0	3
19.	19EEE19	Electrical Hybrid Vehicles	PE	3	3	0	0	3

6. Employability Enhancement Courses (EEC)

SI.	Course	Course Title	Category	Contact	Instruction Hours/ Week			с
No.	Code	Course This	- Berl	Hours	L	Т	Р	
1	19EES01	Project work - I	EEC	6	0	0	6	5
2.	19EES02	Project Work II & Dissertation	EEC	15	0	0	15	9
3.	19EES03	Comprehension	EEC	2	0	0	2	1
4.	19EEF04	Presentation Skill and Technical Seminar	EEC	2	0	0	2	1

0 The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Residue - 637 408 Namakkal Dt.

MUTHAYAMMAL ENGINEERING COLLEGE (Approved by AICTE & Affiliated to Anna University), RASIPURAM - 637 408 CURRICULUM UG R - 2016

Department	Electrical and Electronics Engineering
Programme	B.E. – Electrical and Electronics Engineering
	SEMESTER - III

SI.	Course			Hou	s/We	ek	Credit	0 4 4 11-
No. Code	Course Name	Category	L	T	Ρ	С	Contact Hrs	
1. 16SHB03		Transforms and Partial Differential Equations	BS	3	2	0	4	5
2.	16EEC10	Object Oriented Programming	ES	2	0	4	4	6
3.	16EEC12	Electronic Devices and Circuits	ES	2	0	4	4	6
4.	16EED01	Measurement and Instrumentation	PC	3	3 0	0	3	3
5.	16EED03	Electromagnetic Theory	PC	3	2	0	4	5
6.	5. 16EED04 DC machines and Transformers		PC	3	0	2	4	5
		Total Credits					23	

XX.	Į
	ĺ
1118 -7090	

MUTHAYAMMAL ENGINEERING COLLEGE 8

CURRICULUM UG R - 2016

(Approved by AICTE &	Affiliated to An	na University),	RASIP	URAM -	- 637	408

	SEMESTER - IV
Programme	B.E. – Electrical and Electronics Engineering
Department	Electrical and Electronics Engineering

SI.	Course			Hou	rs/We	ek	Credit	Contact Hrs
No.	Code	Course Name	Category	L	Т	Ρ	C	
1.	16SHB06	Numerical Methods	BS	3	2	0	4	5
2.	16EEC14	Digital Principles and System Design	ES	2	0	4	4	6
3.	16EED02	Network analysis and synthesis	PC	3	2	0	4	5
4.	16EED05	AC Machines	PC	3	0	2	4	5
5.	5. 16EED08 Linear Integrated Circuits and its Applications		PC	3	0	2	4	5
6.	16EEE21 Power Plant Engineering PE		3	0	0	3	3	
		Total Credits					23	

The Ch

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka. DL

MUTHAYAMMAL ENGINEERING COLLEGE (Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408 CURRICULUM UG R - 2016

Department	Electrical and Electronics Engineering
Programme	B.E. – Electrical and Electronics Engineering

SEMESTER - V

SI.	Course	Course Norma		Hou	rs/We	ek	Credit	Contact Hrs
No.	Code	Course Name	Category	L	Т	Ρ	С	Contact his
1.	16EEC09	Microprocessors and Microcontrollers	ES	3	0	2	4	5
2.	16EED06	Control systems	PC	3	2	2	5	7
3.	16EED07	Power Electronics	PC	3	0	2	4	5
4.	16EED09	Design of Electrical Apparatus	PC	3	2	0	4	5
5.	16EED10	Transmission and Distribution	PC	3	0	0	3	3
6.	16EEE19	Communication Engineering	PE	3	0	0	3	3
7.	16EEE20	EE20 Total Quality Management		3	0	0	3	3
		Total Credits	-				26	

3333
XXX
And the Party of t
Freedom Street Inc.

7.

16EEF04

Design Project

Total Credits

MUTHAYAMMAL ENGINEERING COLLEGE (Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408 CURRICULUM UG R - 2016

Depa	rtment Electrical and Electronics Engineering											
Programme B.E. – Electrical and Electronics Engineering												
	SEMESTER – VI											
SI.	Course		N	Catalan	Hou	rs/We	eek	Credit	Contact Hrs			
No.	Code	C	Course Name	Category	L	Т	Р	С	Contact his			
1.	16EED11	Power System Analysis		PC	3	2	0	4	5			
2.	16EED12	Solid State Drives		PC	3	0	2	4	5			
3.	16EED22	Embedde	ed Systems	PE	3	0	0	3	3			
4.	16EEE09	Flexible A Systems	C Transmission	PE	3	0	0	3	3			
5.	16EEE10	Power Qu	uality	PE	3	0	0	3	3			
6.	16ECE23	6ECE23 Digital Signal Processing		OE	3	2	0	4	5			

EEC

0

0

4

2

23

The Chairman

4

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namel

MUTHAYAMMAL ENGINEERING COLLEGE (Approved by AICTE & Affiliated to Anna University), RASIPURAM - 637 408 CURRICULUM UG R - 2016

Depa	rtment		Electrical and Elect	tronics Eng	ineerir	ng			
Programme B.E. – Electrical and Electronics Engineering									
			SEMES	TER - VII					
SI. No.	Course Name Category							Credit C	Contact Hrs
1.	16SHA08	Principles Engineeri	of Management and ng Ethics	HS	3	0	0	3	3
2.	16EED15	Power Sy Switchgea	stem Protection and ar	PC	3	0	0	3	3
4.	16EEE11	Special E	lectrical Machines	PE	3	0	0	3	3
5.	16EEE13		ectronics for le Energy Systems	PE	3	0	0	3	3
6.	16ECE04	Biomedic	al Engineering	OE	3	0	0	3	3
7.	16EEF01	Project work Phase – I		EEC	0	0	6	3	6
8.	16EEF03 Comprehension			EEC	0	0	4	2	4
			Total Credits					20	

	MUTHAYAMMAL ENGINEERING COLLEGE (Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408											
Depa	Department Electrical and Electronics Engineering											
Progr	amme		B.E. – Electrica	and Electroni	cs Eng	ginee	ring					
			SEM	ESTER – VIII								
SI.	Course	-	News	Catagony	Hour	s/We	ek	Credit	Contact Hrs			
No.	o. Code		ourse Name	Category	L	T	Ρ	С	Contact His			
1.	16EEF02	Project w	ork Phase - II	EEC	0	0	30	15	30			

Total Credits

Ander sound	
The Chairman	

15

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus, Rasipuram-637 408. Namakka. Di.

	Subject			Cre	dits Pe	er Sem	ester			Credits	Percentage
S.No.	Area	1	11	III	IV	V	VI	VII	VIII	total	credits
1.	HS	4	5	-	-	-	-	3	-	12	6.25
2.	BS	11	11	4	4	-	-	-	-	30	16.66
3.	ES	10	10	8	4	4	-	-	-	36	20.83
4.	PC	-	-	11	12	16	8	3	-	50	27.08
5.	PE	-	-	-	3	6	9	6	-	24	16.66
6.	OE	-	_	-	× _	-	4	3	-	7	4.16
7.	EEC	-	-	-	- 1	-	2	5	15	22	8.33
	DTAL	25	26	23	23	26	23	20	15	181	

COURSE COMPONENT SUMMARY

Total Credits: 181

The Chairman Board of Studies,

Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka; Di.

16EEC04 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LTPC

3 0 0 3

COURSE OBJECTIVES

- To identify the electrical components and explain the characteristics of electrical machines.
- To identify electronics components and use of them to design circuits.
- To explain the Motor and Transformer with their performance.
- To explain the Semiconductor devices and its applications.
- To design the Digital electronic circuits.

COURSE OUTCOMES:

16EEC04.CO1 Ability to identify the electrical components and explain the characteristics of electrical machines.

16EEC04.CO2 Ability to identify electronics components and use of them to design circuits.

16EEC04.CO3 Ability to explain the Motor and Transformer with their performance.

16EEC04.CO4 Ability to explain the Semiconductor devices and its applications.

16EEC04.CO5 Ability to design the Digital electronic circuits.

Course						Program	n Outco	mes					PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEC04.CO1	x	x	-	-	- 1	-	-		-	x	~	x	x	8	÷
16EEC04.CO2	x	x	x	x	-	-			-	x	2	x	x	x	
16EEC04.CO3	x	x	x	x	-	18	•		-	х	~	x	x	x	-
16EEC04.CO4	-	x	x	x	-	-	-		-	x	200	x	-	x	-
16EEC04.CO5	x	x	x	x	-	-	-		-	x		x	x	2	5

UNIT I ELECTRICAL CIRCUITS

Ohm's law - Kirchhoff's laws - Resistors in series and parallel circuits (simple problem) - Introduction to ac circuits - Form factor - Power and power factor - Single phase RLC series circuits - Three phase balanced circuits.

UNIT II MEASUREMENTS AND INSTRUMENTATION

Methods of measurements - Operating principles of Moving Coil and Moving Iron instruments -Induction type Energy meter – Classification and Selection of transducers – Linear Variable Differential Transducers.

UNIT III ELECTRICAL MACHINES

Construction, Principle of operation, Basics equation and Application of DC Generators, DC Motors, Single Phase Transformer and Single Phase Induction Motor

UNIT IV SEMICONDUCTOR DEVICES AND APPLICATIONS

Operation and characteristics of PN Junction Diode and Zener Diode - Half wave Rectifiers - Full wave Rectifiers - Bipolar Junction Transistor - CE Configuration and Characteristics.

UNIT V DIGITAL ELECTRONICS

Binary Number System - Logic Gates - Boolean algebra - Half Adders and Full Adders - Flip-Flops - Registers and Counters - A/D and D/A Conversion.

TOTAL: 45 Periods

The Chairman Board of Studies.

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namaka, etc.

TEVT POOKS.

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2011.	
1.	Mittle N	Basic Electrical Engineering	Tata McGraw Hill		
2.	Gupta JB	A Course in Electronic and Electrical Measurements	S. K. Kataria & Sons	.2003.	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Muthusubramanian R	Basic Electrical, Electronics and Computer Engineering	Tata McGraw Hill	2006
2.	Nagsarkar T K	Basics of Electrical Engineering	Oxford press	2005
3.	Kalsi HS	Electronic Instrumentation	Tata McGraw Hill	2004
4.	Premkumar N	Basic Electrical Engineering	Anuradha Publishers	2003
5.	Bhattacharya	Basics of Electrical Engineering	Pearson Education India	2011

WEB URLs

1. www.khanacademy.org/science/physics/circuits-topic/circuits-resistance/v/circuits-part-1

2. www.watchknowlearn.org/Category.aspx?CategoryID=1764

- 3. www.study.com/academy/practice/quiz-worksheet-characteristics-of-electric-circuits.html
- 4. www.youtube.com/watch?v=VnnpLaKsqGU
- www.youtube.com/watch?v=M0mx8S05v60&list=PLBlnK6fEyqRjMH3mWf6kwqiTbT798eAO

The Chairman

Board of Studies, Department of Electrical and Electronics Engineerin Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka. Lt.

16EEC06 ENGINEERING PRACTICES FOR ELECTRICAL SCIENCES

COURSE OBJECTIVES

- To construct the electrical wiring of domestic and industry.
- · To measure the electrical quantities using measuring instruments
- · To explain the operation of logic gates and rectifier circuits.
- To analyze the operation of mobile phones.
- To explain the operation of FM Radios.

COURSE OUTCOMES:

16EEC06.CO1 Construct the electrical wiring of domestic and industry.

- 16EEC06.CO2 Measure the electrical quantities using measuring instruments
- 16EEC06.CO3 Explain the operation of logic gates and rectifier circuits.
- 16EEC06.CO4 Analyze the operation of mobile phones.

16EEC06.CO5 Explain the operation of FM Radios.

Course						Program	m Outco	mes					PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEC06.CO1	x	x	x	x	x	-	-	-	x	-	-	х	-	x	-
16EEC06.CO2	x	x	x	x	x	-	14		x		-	x	~	x	-
16EEC06.CO3	-	~	x	x	x	-	-	-	-	-	æ	х	•	x	÷
16EEC06.CO4			x	x	x	-		-		æ.	127	x	-	x	-
16EEC06.CO5	-	-	x	x	x	-	-	-	-	-	-	x	-	x	-

LIST OF EXPERIMENTS

- 1. Residential House Wiring.
- 2. Fluorescent Lamp Wiring.
- 3. Stair Case Wiring.
- 4. Measurements of Electrical Quantities.
- 5. Measurement of Energy using Single Phase Energy Meter.
- 6. Study of Electrical Components and Equipment's.
- 7. Colour Coding and Soldering Practice.
- 8. Measurements of AC Signal Parameters Using CRO.
- 9. Study of Logical Gates AND, OR, EX-OR and NOT.
- 10. Measuring of Ripple Factors of Half Wave Rectifier and Full Wave Rectifier.
- 11. Study of Mobile phone and F.M Radio.

TOTAL: 60 Periods

Т

0 0

4 2

L

C

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka Dt.

16EEC07 ELECTRICAL DRIVES AND CONTROLS

L T P C 3 0 2 4

COURSE OBJECTIVES

- To explain the basics of electrical drives.
- To describe drive motor characteristics and different methods of starting D.C motors and Induction Motors.
- To describe speed control of DC drives
- To explain the conventional and solid state speed control of AC drives.
- To describe the different types of special electrical machines and their performance.

COURSE OUTCOMES:

16EECO7.CO1 Explain the basics of electrical drives.

16EECO7.CO2 Describe drive motor characteristics and different methods of starting D.C motors and Induction Motors.

16EECO7.CO3 Describe speed control of DC drives

16EECO7.CO4 Explain the conventional and solid state speed control of AC drives.

16EEC07.C05 Describe the different types of special electrical machines and their performance.

Course						Program	n Outco	mes					PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EECO7.CO1	x	-	х		х	-	-		х	x	X	x	-	4	x
16EECO7.CO2	x	-	x	-	x		-	18	x	x	X	х	-	-	х
16EECO7.CO3	x	x	x	-	x	-	-	-	x	х	x	x		-	х
16EECO7.CO4	x	x	x	-	х	-	-	-	х	х	x	x			х
16EECO7.CO5	x	x	x		x		-		х	x	x	x	-	- 1	x

UNIT I INTRODUCTION

Ohm's law - Kirchhoff's laws - Resistors in series and parallel circuits (simple problem) - Introduction to ac circuits - Form factor - Power and power factor - Single phase RLC series circuits - Three phase balanced circuits.

UNIT II DRIVE MOTOR CHARACTERISTICS

Dynamics of Motor load system – Multiquadrant operation – DC Motor (Types, Torque Equation, Characteristics and Applications) - Single phase induction motor (Types and Applications) - Three phase induction motors(Types, Characteristics) - Braking of Electric motors.

UNIT III STARTING METHODS

Necessity of a starters – Types of DC Motor Starters – Types of 3 phase squirrel cage and slip ring Induction Motor Starters.

UNIT IV CONVENTIONAL AND SOLID STATE SPEED CONTROL OF DC DRIVES 9 Speed control of DC series and shunt motors - Armature and field control, Ward-Leonard control system -Using controlled rectifiers and DC choppers - Applications.

UNIT V CONVENTIONAL AND SOLID STATE SPEED CONTROL OF AC DRIVES 9 Speed control of three phase induction motor - Voltage control, voltage / frequency control, slip power recovery scheme - Using inverters and AC voltage regulators - Applications.

TOTAL: 45 Periods

The Ch

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 403, Nama

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Vedam Subrahmaniam	Electric Drives (Concepts and Applications)	Tata McGraw-Hill	2001	
2.	Nagrath IJ & Kothari DP	Electrical Machines	Tata McGraw-Hill	1998	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Pillai SK	A First Course on Electric Drives	Wiley Eastern Limited	1998
2.	Singh MD	Power Electronics	Tata McGraw-Hill	1998
3.	Partab H	Art and Science and Utilization of Electrical Energy	Dhanpat Rai and Sons	1994
4.	Krishnan R	Switched Reluctance Motor Drives – Modeling, Simulation, Analysis, Design and Application	CRC Press	2001
5.	Fitzgerald	Electric Machinery	McGraw-Hill	2003

WEB URLs

- 1. www.nptel.ac.in/courses/108104011/
- www.youtube.com/watch?v=Ub-csHc4VhA
 www.nptelvideos.in/2012/11/advanced-electric-drives.html
 www.youtube.com/watch?v=74T0i8zitMo
- 5. www.youtube.com/watch?v=6b_8c-GOZ_Y

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namak-٤.

16EEC09 MICROPROCESSORS AND MICROCONTROLLERS

COURSE OBJECTIVES

- To analyze the architecture in 8085 microprocessor.
- To explain the architecture of 8051 microcontroller.
- To develop an ALP of 8085 and 8051 and analyze the PIC microcontroller.
- To create programming and interfacing of 8085 and 8051.
- To design the various applications of 8085 and 8051..

COURSE OUTCOMES:

16EECO9.CO1	Analyze the architecture in 8085 microprocessor.
16EECO9.CO2	Explain the architecture of 8051 microcontroller.
16EECO9.CO3	Develop an ALP of 8085 and 8051 and analyze the PIC microcontroller.
16EECO9.CO4	Create programming and interfacing of 8085 and 8051.
16EECO9.CO5	Design the various applications of 8085 and 8051

Course						Program	n Outco	mes					PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EECO7.CO1	x	-	x	-	x		-	-	x	x	x	x	T	•	x
16EECO7.CO2	х -	۱.	x	-	x	-	•	-	x	x	x	х	-	-	x
16EECO7.CO3	x	x	x		x	-		-	x	x	x	x	-	-	x
16EECO7.CO4	x	x	x	÷	x	-	-	-	x	x	x	x	-	-	x
16EECO7.CO5	x	x	x	-	x			-	x	х	х	x	-	-	x

UNIT I 8085 PROCESSOR

Basics of Microprocessor - Architecture of 8085 - Pin Diagram - Instruction Set - Addressing Modes - Interrupts of 8085 - Timing diagram - Memory Organization

UNIT II 8051 CONTROLLER

Basics of Microcontroller - Architecture of 8051 - I/O Ports of 8051 - Pin Diagram - Instruction Set - Addressing Modes of 8051 - Timing Diagram.

UNIT III PROGRAMMING AND ADVANCED CONTROLLERS

Necessity of a starters – Types of DC Motor Starters – Types of 3 phase squirrel cage and slip ring Induction Motor Starters.

UNIT IV PROGRAMMING AND INTERFACING OF 8085 & 8051

Interfacing: Architecture, configuration and interfacing, with ICs: Programmable Peripheral Interface (PPI) 8255 -programmable interrupt controller (PIC) 8259 - Programmable Interval Timer (PIT) 8254 - DMA Controller 8237 - USART 8251 - keyboard display controller 8279.

UNIT V APPLICATIONS OF PROCESSORS AND CONTROLLERS

Key board and display interface - stepper motor control - Washing Machine Control - LED Control, servo motor Control with 8085 & 8051.

TOTAL: 45 Periods

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka, Jt.

T P C 0 2 4

L

3

9

9

9

LIST OF EXPERIMENTS:

- 1. Programming With 8085 -Addition and Subtraction.
- 2. Calculate the sum of series of numbers.
- 3. Programming With 8085- Multiplication and Division.
- 4. Programming With 8085-Ascending and Descending Order.
- 5. Programming With 8085- Maximum and Minimum Number in A Group of Data.
- 6. Code Conversion ASCII/Binary/BCD.
- 7. Interfacing A/D with 8085 Microprocessor.
- 8. 8-Bit Addition and Subtraction Using 8051.
- 9. 8-Bit Multiplication and Division Using 8051.
- 10. Parallel Port Programming With 8051-Stepper Motor Control.
- 11. Keil C Programming

TOTAL: 30 Periods

Sl.No	BOOKS: Author(s)	Title of the Book	Publisher	Year of Publication		
1.	Soumitra Kumar Mandal	Microprocessor & Microcontroller Architecture, Programming & Interfacing using 8085,8086,8051	McGraw Hill Education	2013		
2.	Furber,S,	ARM System on Chip Architecture	Addison Wesley trade Computer Publication	2000		

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely		The 8051 Micro Controller and Embedded Systems	PHI Pearson Education, 5th Indian reprint	2003	
2.	N.Senthil Kumar, M.Saravanan, S.Jeevananthan	Microprocessors and Microcontrollers	2013		
3.	Rafiquzzaman. M	Microprocessors Theory and applications - Intel and Motorola	Prentice Hall India	2001	
4.	R.S. Gaonkar	'Microprocessor Architecture Programming and Application', with 8085	Wiley Eastern Ltd., New Delhi	2013	
5.	Michael McRoberts	Beginning Arduino	Apress Publications	2013	

WEB URLs

- 1. www.nptel.ac.in/courses/108104011/
- 2. www.youtube.com/watch?v=Ub-csHc4VhA
- www.nptelvideos.in/2012/11/advanced-electric-drives.html
 www.youtube.com/watch?v=74T0i8zitMo
- 5. www.youtube.com/watch?v=6b_8c-GOZ_Y

The man Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka, Di.

COURSE OBJECTIVES

- To analysis the Boolean algebra and logic gates.
- To design the combinational logic circuits.
- To develop the synchronous sequential logic circuits.
- To construct the asynchronous sequential logic circuits.
- To discuss the memory and programmable logic circuits.

COURSE OUTCOMES:

16EEC14.CO1	Analysis the Boolean algebra and logic gates.
16EEC14.CO2	Design the combinational logic circuits.
16EEC14.CO3	Develop the synchronous sequential logic circuits.
16EEC14.CO4	Construct the asynchronous sequential logic circuits.
16EEC14.CO5	Discuss the memory and programmable logic circuits.

Course Outcomes		Program Outcomes													PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EEC14.CO1	x	x	x	~	-	-	-	-	-	х	-	x	x	-	-		
16EEC14.CO2	x	x	x	x	-	-	-	-	-	х	-	x	x	x			
16EEC14.CO3	x	x	x	x	~	-	-	-	-	x	-	x	x	x			
16EEC14.CO4	x	x	x	x	-	-	-	-	-	x	-	х	. x	x	-		
16EEC14.CO5	-	x	x	-	18	-	-	-	14	x	-	x	x				

Boolean Algebra and Logic Gates Unit I

Review of Number Systems -Arithmetic Operations -Binary Codes-Boolean Algebra and Theorems -Boolean Functions-Simplification of Boolean Functions using Karnaugh Map and \Tabulation Methods -Logic Gates-NAND and NOR Implementations.

Combinational Logic Unit II

Combinational Circuits -Analysis and Design Procedures-Circuits for Arithmetic Operations, Code Conversion -Decoders and Encoders -Multiplexers and Demultiplexers -Introduction to HDL -HDL Models of Combinational circuits.

Unit III Synchronous Sequential Logic

Sequential Circuits -Latches and Flip Flops -Analysis and Design Procedures -State Reduction and State Assignment -Shift Registers-Counters -HDL for Sequential Logic Circuits.

Asynchronous Sequential Logic Unit IV

Analysis and Design of Asynchronous Sequential Circuits-Reduction of State and Flow Tables -Racefree State Assignment-Hazards.

Memory and Programmable Logic Unit V

Addressing model, IP Switching types -flow driven and topology driven solutions, IP over ATM address and next hop resolution, multicasting, Ipv6 over ATM. Switching Concepts, switch forwarding techniques, switch path control, LAN Switching, cut through forwarding, store and forward, virtual LANs.

TOTAL: 30 Periods

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakk, Lu

2 3

6

LIST OF EXPERIMENTS:

- 1. Verification of Boolean theorems using digital logic gates
- 2. Design and implementation of combinational circuits using basic gates
- 3. Design and implementation of 4-bit binary adder using basic gates and MSI devices
- 4. Design and implementation of 4-bit binary Subtractor using basic gates and MSI devices
- 5. Design and implementation of parity generator/checker using basic gates and MSI devices
- 6. Design and implementation of magnitude comparator
- 7. Design and implementation of application using multiplexer/de multiplexer
- 8. Design and implementation of shift registers
- 9. Design and implementation of synchronous and asynchronous counters

10. Design and implementation of coding combinational/ sequential circuits using HDL

TOTAL: 60 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. and	Morris Mano M. and Michael D. Ciletti	Digital Design	Pearson Education	IV Edition, 2008.	
2.	John F. Wakerly,	Digital Design Principles and Practices	Pearson Education	IV Edition, 2007	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Charles H. Roth Jr,		Fundamentals of Logic Design	Jaico Publishing House	Fifth Edition–, Mumbai, 2003	
2.	Donald D. Givone	Digital Principles and Design	Tata Mcgraw Hill	2003	
3.	Kharate G. K	Digital Electronics	Oxford University Press	2010	
4.	Thomas L. Floyd	Digital Fundamentals	Pearson Education Inc	10th Edition, 2011	
5.	Donald D.Givone	Digital Principles and Design	ТМН	2003	

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka, bt.

16EEC13

CIRCUIT THEORY

L T P C 3 0 2 4

COURSE OBJECTIVES

- To explain circuits behaviour using Ohms law and Kirchhoff's laws.
- To explain AC circuits using phasor techniques under steady state conditions.
- To utilize the concepts of network theorem to improve the stability of the system.
- To develop circuit representations quantitatively in Laplace domain.
- To elaborate the circuit concepts to Three Phase Circuits.

COURSE OUTCOMES:

16EEC13.CO1	Explain circuits behaviour using Ohms law and Kirchhoff's laws.
16EEC13.CO2	Explain AC circuits using phasor techniques under steady state conditions.
16EEC13.CO3	Utilize the concepts of network theorem to improve the stability of the system.
16EEC13.CO4	Develop circuit representations quantitatively in Laplace domain.
16EEC13.CO5	Elaborate the circuit concepts to Three Phase Circuits.

Course Outcomes		Program Outcomes													PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EEC13.CO1	x	-	x	x	x	x			-	x	x	x	х	х	-		
16EEC13.CO2	x	x	-	x	x	x	-	-	х	x	-	x	x	9	-		
16EEC13.CO3	x	x	x	x	x	x	-	-	х	x	х	x	x	x	-		
16EEC13.CO4	x	x	x	x	x	x	-	-	x	x	x	x	x	х	-		
16EEC13.CO5	x	x	x	x	x	x	-	-	x	x	x	x	х	x	-		

UNIT I DC CIRCUITS

Introduction to semiconductor diode, PN junction diode structure, operation and VI characteristics - Zener diode -. Display devices- LED, LCD, Rectifiers: Half Wave and Full Wave Rectifiers.

UNIT II AC CIRCUITS

UJT, BJT, JFET, MOSFET, IGBT Construction, operation and V-I characteristics – Thyristor construction, operation and V-I characteristics, Two transistor analogy.

UNIT III NETWORK THEOREMS FOR DC AND AC CIRCUITS

BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET small signal model– Analysis of CS and Source follower – Gain and frequency response.

UNIT IV RESONANCE CIRCUITS AND TRANSIENT RESPONSE

BICMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers – Types (Qualitative analysis).

UNIT V THREE PHASE CIRCUITS

Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition for oscillations, RC phase shift, Wien bridge, Hartley, Colpitts and Crystal oscillators.

TOTAL: 30 Periods

airmar The C

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakkai DL

6

6

6

LIST OF EXPERIMENTS:

- 1. Verification of ohm's law
- 2. Verification of Kirchhoff's voltage and current laws.
- 3. Verification of Superposition theorem
- 4. Verification of Thevenin's theorem
- 5. Verification of Norton 's theorem
- 6. Verification of Maximum Power Transfer Theorem.
- 7. Study of CRO and measurement of sinusoidal voltage and frequency.
- 8. Determination of time constant of series R-C electric circuits.
- 9. Determination of frequency response of series & parallel RLC circuits.
- 10. Calibration of single phase energy meter.
- 11. Determination of power in three phase circuits by two-watt meter method.

TOTAL: 60 Periods

TEXT BOOKS:

Sl.No	Author(s)	Publisher	Year of Publication	
1.	William H. Hayt	Engineering Circuits Analysis	Tata McGraw Hill publishers	2003
2.	Joseph A	Electric circuits	Tata McGraw-Hill	2001

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication			
1. Paranjothi SR		Electric Circuits Analysis	New Age International Ltd	1996			
2.	Sudhakar A and Shyam Mohan SP	Circuits and Network Analysis and Synthesis	Tata McGraw Hill				
3.	Chakrabati A	Circuits Theory (Analysis and synthesis)	Dhanpath Rai & Sons	1999			
4.	Charles K.	Charles K. Fundamentals of Electric Circuits		2003			
5.	Franklin F. Kuo	Basic Circuit Theory	Tata McGraw Hill	2009			

WEB URLs

- 1. www.nptel.ac.in/courses/108102042/
- www.youtube.com/watch?v=c4piqzh7-Gw
 www.quora.com/Which-is-best-NPTEL-lectures-prof-for-ECE-network-analysis
 4. www.nptel.ac.in/courses/108105053/10-11
- 5. www.nptel.ac.in/courses/108105053/18

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka, UL

COURSE OBJECTIVES

16EED01

- To analyze the performance characteristics, error, standards and calibration of instrument.
- To discuss about the measuring instruments.
- To estimate resistance, capacitance and inductance by using electrical bridges.
- To discuss about the digital instruments and display devices.
- To elaborate the transducers and data acquisition systems.

COURSE OUTCOMES:

COURSE OUTC	Omes.
16EED01.CO1	Analyze the performance characteristics, error, standards and calibration of instrument.
16EED01.CO2	Discuss about the measuring instruments.
16EED01.CO3	Estimate resistance, capacitance and inductance by using electrical bridges.
16EED01.CO4	Discuss about the digital instruments and display devices.
16EED01.CO5	Elaborate the transducers and data acquisition systems.

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EED01.CO1	x	x	-		-	-	-	-	-	x	-	x	x	÷ 5.	- an		
16EED01.CO2	x	x	x	x	-	-	-	-		x	-	х	x	x			
16EED01.CO3	x	x	x	x	-	-	- 1		-	x	ω.	x	x	x	-		
16EED01.CO4	-	x	x	x	-	-		11	-	x	-	x	-	x	8		
16EED01.CO5	x	x	. x	x	-	-		-	-	x	23	x	х	x	-		

INTRODUCTION UNIT I

Introduction to semiconductor diode, PN junction diode structure, operation and VI characteristics - Zener diode -. Display devices- LED, LCD, Rectifiers: Half Wave and Full Wave Rectifiers.

MEASURING INSTRUMENTS UNIT II

UJT, BJT, JFET, MOSFET, IGBT Construction, operation and V-I characteristics - Thyristor construction, operation and V-I characteristics, Two transistor analogy.

BRIDGES UNIT III

BJT small signal model - Analysis of CE, CB, CC amplifiers- Gain and frequency response -MOSFET small signal model- Analysis of CS and Source follower - Gain and frequency response.

DIGITAL INSTRUMENTS AND DISPLAY DEVICES **UNIT IV**

BICMOS cascade amplifier, Differential amplifier - Common mode and Difference mode analysis -Single tuned amplifiers - Gain and frequency response - Neutralization methods, power amplifiers -Types (Qualitative analysis).

TRANSDUCERS AND DATA ACQUISITION SYSTEMS UNIT V

Advantages of negative feedback - voltage / current, series, Shunt feedback -positive feedback -Condition for oscillations, RC phase shift, Wien bridge, Hartley, Colpitts and Crystal oscillators.

TOTAL: 45 Periods

man

Board of Studies. Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonome Rasipuram-637 408, Namaka

9

9

0

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	A.K. Sawhney	A Course in Electrical & Electronic Measurements & Instrumentation	Dhanpat Rai and Co	2004
2.	Gupta JB	A Course in Electronic and Electrical Measurements	S. K. Kataria & Sons	2003

REFERENCE BOOKS:

Sl.No	Author(s) Title of the Book Doebelin E.O. and Manik D.N Measurement Systems – Applications and Design D.V.S. Moorthy Transducers and Letermentation	Publisher	Year of Publication	
1.	A State of the second sec		Tata McGraw Hill	2007
2.	D.V.S. Moorthy	Transducers and Instrumentation	Prentice Hall of India Pvt Ltd	2007
3.	Kalsi HS	Electronic Instrumentation	Tata McGraw Hill	2004
4.	Alan. S. Morris	Principles of Measurements and Instrumentation	Prentice Hall of India Pvt Ltd	2003
5.	A.J. Bouwens	Digital Instrumentation	Tata McGraw Hill	1997

WEB URLs

1. www.nptel.ac.in/courses/108105064/

2. www.nptel.ac.in/.../L-42%28GDR%29%28ET%29%20%28%28EE%29NPTEL%29.p

3. www.toolingu.com/class-350130-basics-of-the-optical-comparator-130.html

4. www.nptel.ac.in/courses/112106139/pdf/5_1.pdf

5. www.youtube.com/watch?v=NyxUSsdbKI4 (Resistive, Capacitive and Inductive Transducers)

airman The

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-627 100 makka. pt.

16EED02

NETWORK ANALYSIS AND SYNTHESIS

L T Р C 2 0 3 4

COURSE OBJECTIVES

- To analyze the electrical networks.
- To discuss about the characteristics of one port and two port networks. .
- To explain the network interconnections.
- To elaborate the characteristics of filters.
- To estimate the elements of network synthesis

COURSE OUTCOMES:

- Analyze the electrical networks. 16EED02.CO1 Discuss about the characteristics of one port and two port networks.
- 16EED02.CO2
- Explain the network interconnections. 16EED02.CO3
- Elaborate the characteristics of filters. 16EED02.CO4
- Estimate the elements of network synthesis 16EED02.CO5

Course Outcomes		Program Outcomes											PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED02.CO1	x	x	x	-	-	-	-	-	-	х	-	х	x	-	1
16EED02.CO2	x	x	x		-		-	-	-	x	-	x	х	-	-
16EED02.CO3	x	x	x	-	-	-	-	-	-	x	-	х	x	-	-
16EED02.CO4	x	x	x	-	-	-	-	-	19	x	-	x	x	-	-
16EED02.CO5	x	x	x	-	-	-	-	-		x	~	x	x	-	

NETWORK FUNCTIONS UNIT I

Conceptofcomplex frequency-compleximpedance and admittance-Conceptofpoles and zerosfrequencyresponse from pole-zero configuration-Properties of driving point and transfer functions-Time response and stability from pole-zero plot.

TWO PORT NETWORKS UNIT II

Driving point impedance and admittance of one port networks - Characterization of linear timeinvariant two port networks, Z, Y, ABCD and h-parameters, reciprocity and symmetry.

INTERCONNECTION OF NETWORKS UNIT III

Inter-relationships between the parameters, inter-connections of two port networks, Ladder and Lattice networks - T and IT representation.

UNIT IV FILTERS

Characteristics of ideal filters - low pass and high pass filters - Attenuation and phase shift - Constant K and M - derived filters - Band pass filters.

ELEMENTS OF NETWORK SYNTHESIS UNIT V

Reliability of one port networks - Hurwitz polynomials - Positive real - Necessary and sufficient conditions of Positive real function - Properties of driving point impedance - Synthesis of LC, RL and RC driving point impedance.

TOTAL: 45+30=75 Periods

The C harman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autono.i.a., Rasipurem-637 408, 11-

9

9

TEXT BOOKS

Sl.No	Author(s)	Author(s) Title of the Book Publish				
1.	A. Sudhakar, Shyammohan S Palli	Circuits and NETWORKS Analysis and Synthesis	Tata McGraw Hill	2010		
2.	WilliamHHayt, JackE Kemmerly, Steven MDurbin	A Course in Electronic EngineeringCircuitAnalysis	Tata McGraw Hill	2013.		

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Ghosh, A K Chakraborty	Network Analysis and Synthesis	Tata McGraw Hill	2006.	
2.	S. P. Eugene Xavier	Electric Circuit Analysis	New Age International Ltd	2008	
3.	Ravish R. Singh	Electrical Networks	Tata McGraw Hill	2009	
4.	M.E.Van Valkenburg	Network Analysis PHI Learning	Tata McGraw Hill	2014	
5.	Anbukumar kavitha and Govindarajan Uma	Experimental Verification of Hopf Bifurcation in DC-DC Luo Converter	IEEE Transaction on Power Electronics Vol.23, No.6, , 2008, pp 2878-2883	2008	

WEB URLs

1. www.nptel.ac.in/courses/108105065/

2. www.youtube.com/watch?v=UMhBgyK8F0U

www.youtube.com/water.v/ormbg/reared
 www.nptelvideos.in/2012/11/circuit-theory.html
 www.youtu.be/PYqN2NeS3_w
 www.globalspec.com/.../10-10-interconnections-of-two-port-networks,

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonon.u., Rasipuram-637 408. Namakka. Ut.

ELECTRO MAGNETIC THEORY

3 2

16EED03

COURSE OBJECTIVES

- To identify appropriate coordinate systems and visualize practical significance of vector calculus.
- To compare the nature, characteristics, properties and applications of Electric fields with the help of fundamental laws of fields.
- To develop resistance, capacitance and inductance of a given electrical component.
- To distinguish between the static and time-varying fields, establish the corresponding sets of Maxwell's Equations and Boundary Conditions.
- To analyze the Wave Equations for good conductors and good dielectrics.

COURSE OUTCOMES:

Identify appropriate coordinate systems and visualize practical significance of vector 16EED03.CO1 calculus.

Compare the nature, characteristics, properties and applications of Electric fields with 16EED03.CO2 the help of fundamental laws of fields.

Develop resistance, capacitance and inductance of a given electrical component. 16EED03.CO3

Distinguish between the static and time-varying fields, establish the corresponding 16EED03.CO4 sets of Maxwell's Equations and Boundary Conditions.

Analyze the Wave Equations for good conductors and good dielectrics. 16EED03.CO5

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EED03.CO1	x	x			x	-	-	-	-	-		-	x	x	x		
16EED03.CO2	x	x	-	-	-	-		-	-	-	-	x	х	x	-		
16EED03.CO3	x	x	-	-	x		-	-	x	-			x	x	x		
16EED03.CQ4	x	x		-	-	-		12	-	-		x	x	x	-		
16EED03.CO5	x	x	x	-	-	- 1		-	-	-	-	-	x	x			

INTRODUCTION UNIT I

Sources and effects of electromagnetic fields - Vector fields - Different co-ordinate systems - Divergence theorem - Stoke's theorem - Coulomb's Law - Electric field intensity - Field due to point and continuous charges - Electric flux density - Gauss's law and application.

ELECTROSTATICS UNIT II

Electrical potential - Electric field and equipotential plots - Electric field in free space, conductors, dielectric - Dielectric polarization, Electric field in multiple dielectrics - Boundary conditions, Poisson's and Laplace's equations - Capacitance energy density - Dielectric strength

MAGNETOSTATICS UNIT III

Lorentz Law of force, magnetic field intensity - Biot savart Law - Ampere's Law - Magnetic field due to straight conductors, circular loop, infinite sheet of current - Magnetic flux density in free space, conductor, magnetic materials - Boundary conditions - Scalar and vector potential - Magnetic force -Torque - Inductance - Energy density - Magnetic circuits.

ELECTRODYNAMIC FIELDS UNIT IV

Faraday's laws, induced emf - Static and dynamic EMF, Maxwell's equations (differential and integral forms) - Displacement current - Relation between field theory and circuit theory.

ELECTROMAGNETIC WAVES UNIT V

Electromagnetic wave generation equations - Wave parameters, velocity, intrinsic impedance, propagation constant - Waves in free space, lossy and lossless dielectrics, conductors - Skin depth, Poynting theorem and vector.

TOTAL: 45+30=75 Periods

0

9

airman Board of Studies. Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 468 Namek

TEXT BOOKS:

Sl.No Author(s)		Title of the Book	Publisher	Year of Publication	
1.	Gangadhar K A, Ramanathan	Electromagnetic Field Theory	Khanna Publishers	2011	
2.	William H. Hayt & Buck	Engineering Electromagnetics	Tata McGraw Hill	2012	

REFERENCE BOOKS:

Sl.No	Author(s)	Author(s) Title of the Book Pr				
1.	Meenakumari R & Subasri R	Electromagnetic Fields	New Age International Ltd Publishers	2010		
2.	Mathew N. O. Sadiku	Principles of Electromagnetics	Oxford University Press	2010		
3.	Kraus and Fleish	Electromagnetics with Applications	Tata McGraw Hill	2008		
4.	Ashutcsh Pramanik	Electromagnetism – Theory and Applications	PHI Learning Private Limited	2009		
5.	Bhag Singh Guru and Hüseyin R	Electromagnetic field theory Fundamentals	Cambridge University Press	2009		

WEB URLs

- 1. www.archive.org/details/MitOpencoursewareElectromagneticFieldsAndEnergy
- 2. www.nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/em/index.htm
- 3. www.sites.google.com/site/engps171grp4/Home/videos-and-animations-section
- 4. www.youtube.com/watch?v=uj0DFDfQajw
- 5. www.freevideolectures.com/Course/3288/Electromagnetic-Theory

man The C

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College Autonomusy Rasing reserved.

16EED04

DC MACHINES AND TRANSFORMERS

COURSE OBJECTIVES

- To analyze the concepts of electro mechanical energy conversion.
- To explain the operation and characteristics of DC Generators.
- To elaborate the operation and characteristics DC Motors.
- To discuss about the operation and characteristics of Transformers.
- To test the DC Machines and Transformers.

COURSE OUTCOMES:

16EED04.CO1	Analyze the concepts of electro mechanical energy conversion.
16EED04.CO2	Explain the operation and characteristics of DC Generators.
16EED04.CO3	Elaborate the operation and characteristics DC Motors.
16EED04.CO4	Discuss about the operation and characteristics of Transformers.
16EED04.CO5	Test the DC Machines and Transformers.

Course		Program Outcomes										PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED04.CO1	x	x	x	-	-	-	-	-	-	x	-	x	x		2
16EED04.CO2	x	x	x	-	-	x	-	-	x	х	-	x	x	-	-
16EED04.CO3	x	x	x	-	-	х			х	X	-	x	x	-	÷
16EED04.CO4	x	x	x	-	-	x	•	-	x	x	-	х	х	÷	-
16EED04.CO5	x	x	x	-	14	x	-	-	х	x	-	x	x	-	-

UNIT I ELECTRO-MECHANICAL ENERGY CONVERSION

Introduction - Principles of electromechanical energy conversion - Single excited system - Energy in terms of Electrical parameters - Multiple excited systems - Role of Airgap – Statically and Dynamically induced EMF.

UNIT II GENERATORS

Constructional details - Principle of operation – EMF equation – Methods of excitation – Types of DC generators – Armature reaction - Commutation – Methods of Improving Commutation – Interpoles – Equalizing Connections – Characteristics of DC generators –No load and Load Characteristics – Parallel operation of D.C. Generators – Load Sharing – Procedure for Paralleling DC Generators – Applications of D.C. Generators.

UNIT III DC MOTORS

Principle of operation – Back EMF – Types of DC Motors – Voltage & Torque equations - Condition for maximum power - Characteristics of DC motors – Speed torque and Performance Characteristics – Speed control of D.C. motors – Methods of speed control – Starters: Necessity of a starter, Types of starters - Applications of DC Motors.

UNIT IV TRANSFORMERS

Constructional details – Principle of operation – EMF equation – Transformation ratio – Transformer on no-load – Transformer on load – Equivalent circuit – Regulation – Parallel operation of single phase transformers – Auto transformer – Three phase transformers – Types of Connections.

UNIT V TESTING OF DC MACHINES AND TRANSFORMERS

Losses and efficiency in DC machines and transformers – Condition for maximum efficiency – Testing of DC machines – Brake test, Swinburne's test, Hopkinson's test and Retardation test – Testing of transformers – Polarity test, open circuit and short circuit test – Sumpner's test –All day efficiency.

LIST OF EXPERIMENTS:

The Chairman Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasiburam-637 408, Macrob

TOTAL: 45 Periods

0

- 1. Open circuit and load characteristics of DC shunt generator- critical resistance and critical speed.
- 2. Load characteristics of DC compound generator with differential and cumulative connections.
- 3. Load test on DC shunt and compound motor.
- 4. Load test on DC series motor.
- 5. Swinburne's test.
- 6. Speed control of DC shunt motor.
- 7. Study of starters and 3-phase transformers connections
- 8. Load test on single-phase transformer and three phase transformers.
- 9. Open circuit and short circuit tests on single phase transformer.
- 10. Polarity Test and Sumpner's test on single phase transformers.
- 11. Separation of no-load losses in single phase transformer.

TOTAL: 30 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2002	
1.	D.P. Kothari and I.J. Nagrath	Electric Machines	Tata McGraw Hill		
2.	B.L.Theraja and A.K.Theraja	A text book of Electrical Technology – Volume II (AC & DC Machines	S.Chand & Company Ltd., New Delhi	2005	

REFERENCE BOOKS:

SI.No	Author(s)	Title of the Book	Publisher	Year of Publication 2003		
1.	E. Fitzgerald, Charles Kingsley, Stephen.D.Umans	Electric Machinery	Tata McGraw Hill			
2.	K. Murugesh Kumar	Murugesh Kumar DC Machines and Vikas publishing hot Transformers Pvt Ltd				
3.	S.Sarma & K.Pathak	Electric Machines	Cengage Learning India (P) Ltd., Delhi,	2011		
4.	Syed A. Nasar	Syed A. Nasar Electric Machines and Power Systems		1995		
5.	M.N.Bandyopadhyay	Electrical Machines Theory and Practice	PHI Learning PVT LTD., New Delhi	2009		

WEB URLs

- www.indiastudychannel.com/resources/159374-Electromechanical-Energy-Conversion-Principles.aspx
- 2. www.electrical4u.com/working-or-operating-principle-of-dc-motor/
- 3. www.transformers.hasbro.com/en-us
- 4. www.imdb.com/title/tt0418279/
- 5. www.ncert.nic.in/html/learning_basket/electricity/electricity/machine/dc_generator.htm

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakke Ju

16EED05

AC MACHINES

COURSE OBJECTIVES

- To analyze the operation and regulation of an Alternator
- To explain the characteristics and operation of synchronous motor
- To discuss the characteristics and operation of 3 phase Induction Motor .
- To elaborate the starting and speed control of 3 phase Induction Motor

To explain the operation of single phase and special Electrical Machines

COURSE OUTCOMES:

16EED05.CO1	Analyze the operation and regulation of an Alternator
16EED05.CO2	Explain the characteristics and operation of synchronous motor
16EED05.CO3	Discuss the characteristics and operation of 3 phase Induction Motor
16EED05.CO4	Elaborate the starting and speed control of 3 phase Induction Motor
16EED05.CO5	Explain the operation of single phase and special Electrical Machines

Course Outcomes		Program Outcomes												PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16EED05.CO1	x	x	x	-	-	-	-	-	х	х	<i></i>	x	x	-		
16EED05.CO2	x	x	x	-	-	-		-	x	х		x	x	-	8	
16EED05.CO3	x	x	x	-	-	-	-	-	x	x	-	х	x	-		
16EED05.CO4	x	x	x	-	-	-	-		x	х		х	х	-	-	
16EED05.CO5	x	x	x	-	-	-	-	-	x	x	ж. ₁ ,	x	x	σ	-	

ALTERNATOR UNIT I

Introduction - Principles of electromechanical energy conversion - Single excited system - Energy in terms of Electrical parameters - Multiple excited systems - Role of Airgap - Statically and Dynamically induced EMF.

SYNCHRONOUS MOTOR **UNIT II**

Constructional details - Principle of operation - EMF equation - Methods of excitation - Types of DC generators - Armature reaction - Commutation - Methods of Improving Commutation - Interpoles -Equalizing Connections - Characteristics of DC generators -No load and Load Characteristics - Parallel operation of D.C. Generators - Load Sharing - Procedure for Paralleling DC Generators - Applications of D.C. Generators.

THREE PHASE INDUCTION MOTOR UNIT III

Principle of operation - Back EMF - Types of DC Motors - Voltage & Torque equations - Condition for maximum power - Characteristics of DC motors - Speed torque and Performance Characteristics - Speed control of D.C. motors - Methods of speed control - Starters: Necessity of a starter, Types of starters -Applications of DC Motors.

STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION UNIT IV MOTORS

Constructional details - Principle of operation - EMF equation - Transformation ratio - Transformer on no-load -Transformer on load - Equivalent circuit - Regulation - Parallel operation of single phase transformers - Auto transformer - Three phase transformers - Types of Connections ...

SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES UNIT V Losses and efficiency in DC machines and transformers - Condition for maximum efficiency - Testing of DC machines - Brake test, Swinburne's test, Hopkinson's test and Retardation test - Testing of transformers - Polarity test, open circuit and short circuit test - Sumpner's test -All day efficiency.

> **TOTAL: 45+15 = 60 Periods** The Chairman Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasinu

0

LIST OF EXPERIMENTS:

- 1. Regulation of three phase alternator by EMF and MMF methods.
- 2. Regulation of three phase alternator by ZPF methods.
- 3. Regulation of three phase salient pole alternator by slip test.
- 4. Measurements of negative sequence and zero sequence impedance of alternators.
- 5. V and Inverted V curves of Three Phase Synchronous Motor.
- 6. Load test on three-phase induction motor.
- 7. No load and blocked rotor test on three-phase induction motor
- (Determination of equivalent circuit parameters).
- 8. Separation of No-load losses of three-phase induction motor.
- 9. Load test on single-phase induction motor.
- 10. No load and blocked rotor test on single-phase induction motor.
- 11. Study of Induction motor Starters

TOTAL: 30 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	A.E. Fitzgerald, Charles Kingsley, Stephen. D.Umans,	Electric Machinery	Tata Mc Graw Hill publishing Company Ltd	2003	
2.	D.P. Kothari and I.J. Nagrah	Electric Machines	Tata Mc Graw Hill publishing Company Ltd	2002	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2009	
1.	M.N.Bandyopadhyay	Electrical Machines Theory and Practice	PHI Learning pvt Ltd., New Delhi		
2.	Charless A. Gross	Electric Machines	CRC Press	2010	
3.	K. Murugesh Kumar	Electrical Machines	Vikas Publishing House Pvt. Ltd,	2002	
4.	Syed A. Nasar	Electric Machines and Power Systems: Volume I	Mcgraw Hill College International	1995	
5.	A.K. Sawhney Alexander S. Langsdorf,	Theory of Alternating-Current Machinery,	Tata McGraw Hill Publications	2001	

WEB URLs

- 1. www.globalspec.com/reference/59727/203279/chapter-5-ac-machine-fundamentals
- 2. www.nptel.ac.in/courses/108106072/
- www.nptel.iitg.ernet.in/courses/Elec_Engg/IIT%20Roorkee/Electrical%20Machines%202%20(V ideo).htm
- 4. www.nptel.ac.in/courses/IIT-MADRAS/Electrical_Machines_II/index.php
- 5. www.youtube.com/watch?v=ThIbiFCRaa

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomics Rasipuram-637 408, Namak

CONTROL SYSTEMS

C 3 5

COURSE OBJECTIVES

16EED06

- To analyze electromechanical systems using mathematical modelling.
- To determine Transient and Steady State behaviour of systems using standard test signals.
- To analyze linear systems for steady state errors, absolute stability and relative stability.
- To design a stable control system satisfying requirements of stability and reduced steady state error.

.

To analyze the concepts of modern control theory using state-space approach.

COURSE OUTCOMES:

16EED06.CO1	Analyze electromechanical systems using mathematical modelling.
16EED06.CO2	Determine Transient and Steady State behaviour of systems using standard test
	signals. Analyze linear systems for steady state errors, absolute stability and relative stability.
16EED06.CO3	Design a stable control system satisfying requirements of stability and reduced steady
16EED06.CO4	state error.
	Analyze the concepts of modern control theory using state-space approach.

Analyze the concepts of modern control theo 16EED06.CO5

Course Outcomes		Program Outcomes													PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EED06.CO1	x	x	x	x	x	-	-	-	x	x	x	x	-	x			
16EED06.CO2	x	x	x	x	x	-		-	х	x	x	x	-	x	- 3		
16EED06.CO3	x	x	x	x	x	-	-	-	x	x	x	х	8	x	-		
16EED06.CO4	x	x	x	x	x	-	-	-	х	x	x	x	-	x			
16EED06.CO5	x	x	x	x	x	-	-	-	x	x	x	x	-	x	÷		

SYSTEMS AND THEIR REPRESENTATION UNIT I

Basic elements in control systems - Open and closed loop systems - Electrical analogy of mechanical and thermal systems - Transfer function - Synchros - AC and DC servomotors - Block diagram reduction techniques - Signal flow graphs

TIME RESPONSE ANALYSIS UNIT II

Time response - Time domain specifications - Types of test input - I and II order system response - Error coefficients - Generalized error series - Steady state error - Root locus construction- Effects of P, PI, PID modes of feedback control -Time response analysis using MATLAB (only simulation).

FREQUENCY RESPONSE ANALYSIS UNIT III

Frequency response - Bode plot - Polar plot - Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Lag, lead and lag-lead networks - Lag, lead and lag-lead compensator design using bode plots.

STABILITY AND COMPENSATOR DESIGN UNIT IV

Characteristics equation - Routh Hurwitz criterion - Nyquist stability criterion - effects of addition of poles and zeros - root locus construction - applications of root locus.

STATE VARIABLE ANALYSIS UNIT V

Concept of state variables - State models for linear and time invariant Systems - Solution of state and output equation in controllable canonical form - Concepts of controllability and observability - Effect of state feedback.

TOTAL: 45+30 = 75 Periods

0

0

0

0

Board of Studies. Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 406. Namakati Ji.

LIST OF EXPERIMENTS:

- 1. Determination of transfer function of DC servomotor
- 2. Determination of transfer function of AC servomotor
- 3. DC motor position control systems
- 4. AC motor position control systems
- 5. Open loop and closed loop response of first order type-0 and type-1 system
- 6. Stepper motor position control systems
- 7. Digital simulation determination of step response and impulse response for first order &second order system with unity feedback using MATLAB
- (i) Digital simulation of stability analysis using Root locus techniques
 (ii) Digital simulation of stability analysis using bode plot
 (iii) Digital simulation of stability analysis using Nyquist plot
- 9. Digital design lag, lead and lag-lead compensations
- 10. Digital design of P,PI and PID controllers
- 11. Syncro transmitter and receiver characteristics

TOTAL: 30 Periods

TEXT BOOKS:

Sl.No	Author(s)					
1.	M. Gopal	Control Systems, Principles and Design	Tata McGraw Hill	2012		
2.	S.K.Bhattacharya	Control System Engineering	Pearson education	2013.		

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Arthur,G.O.Mutambara	Design and Analysis of Control; Systems	CRC Press	2009	
2.	Richard C. Dorf and Robert H. Bishop	Modern Control Systems	Pearson Prentice Hall	Hall 2012	
3.	Benjamin C. Kuo	Automatic Control systems	PHI press	2010.	
4.	K. Ogata	Modern Control Engineering	PHI press	2012	
5.	S.N.Sivanandam, S.N.Deepa	Control System Engineering using Mat Lab	Vikas Publishing	2012	

WEB URLs

- 1. www.nptel.ac.in/courses/108101037/3
- 2. www.nptel.ac.in/courses/108101037/7
- 3. www.youtube.com/watch?v=vVFDm_CdQw
- 4. www.nptel.ac.in/courses/108101037/20
- 5. www.freevideolectures.com/Course/3116/Control-Engineering-I/10

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakiwa 24

16EED07

POWER ELECTRONICS

L	Т	Р	С
3	0	2	4

COURSE OBJECTIVES

- To select an appropriate power semiconductor device for specific applications.
 - To analyze the phase controlled rectifiers driving Resistive (R), Inductive (L), RL and RLE loads.
- To design inverters for voltage and harmonic control.
- To determine the performance of various types of DC-DC.
- To explain power electronic converters for AC-AC power conversion.

COURSE OUTCOMES:

16EED07.CO1 Select an appropriate power semiconductor device for specific applications.

16EED07.CO2 Analyze the phase controlled rectifiers driving Resistive (R), Inductive (L), RL and RLE loads.

16EED07.CO3 Design inverters for voltage and harmonic control.

16EED07.CO4 Determine the performance of various types of DC-DC.

16EED07.CO5 Explain power electronic converters for AC-AC power conversion.

Course Outcomes		Program Outcomes												PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16EED07.CO1	x	-	x	-	-	x	x	÷.,	-	x	~	x	-			
16EED07.CO2	x	x	-	-	x	x	-	-		x		х	x	· ·	х	
16EED07.CO3	x	x	x	-	x	x	x	-	х	x	-	х	х	-	x	
16EED07.CO4	x	x	x	-	x	x	x	-	x	x	~ I.	x	x	- 1	x	
16EED07.CO5	x	x	-	-	x	x		-	-	х	-	x	-	ж. П	x	

UNIT I POWERSEMI-CONDUCTOR DEVICES

Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs

UNIT II PHASE CONTROLLED CONVERTERS

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID modes of feedback control – Time response analysis using MATLAB (only simulation).

UNIT III INVERTERS

Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Lag, lead and lag-lead networks - Lag, lead and lag-lead compensator design using bode plots.

UNIT IV DC TO DC CONVERTERS

Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion – effects of addition of poles and zeros – root locus construction – applications of root locus.

UNIT V AC TO AC CONVERTERS

Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback.

TOTAL: 45 Periods

0

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakk2, JL

LIST OF EXPERIMENTS:

- 1. Generation of gate pulse using R, RC and UJT.
- 2. Characteristics of SCR and TRIAC
- 3. Characteristics of MOSFET and IGBT
- 4. Experimental verification and simulation of single phase half controlled converters
- 5. Experimental verification and simulation of single phase fully controlled converters
- 6. Experimental verification and simulation of three phase half controlled Converters
- 7. Experimental verification and simulation of three phase fully controlled Converters
- 8. Four quadrant operation of dc motor using chopper.
- 9. Single phase and three phase IGBT based PWM inverters.
- 10. Experimental verification of single phase AC voltage controller.
- 11. Experimental verification of single phase cyclo converter.

TOTAL: 30 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Rashid.M.H	Power Electronics Circuits Devices and Applications	Prentice Hall, 3rd Edition, New Delhi	2009
2.	Bimbhra.P.S	Power Electronics,	Khanna Publishers	2006

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Sen.P.C,		Power Electronics	Tata Mc Graw Hill	2008	
2.	Singh.M.D and Khanchandani.K.B	Power Electronics	Tata Mc Graw Hill	2007	
3.	Dubey.G.K and Sinha.R.M	Thyristorised Power Controllers	Wiley	2005	
4.	Ned Mohan	Power Electronics	Wiley	2009	
5.	Daniel.W.Hart	Power Electronics	Tata Mc Graw Hill	2013	

WEB URLs

1. www.completepowerelectronics.com/

- 2. www.nptel.ac.in/courses/108101038/1
- 3. www.powere.dynamictopway.com/topics.htm
- 4. www.powerguru.org/power-electronics-videos/
- 5. www.youtube.com/watch?v=mi26LHNmXj0&list=PLB0B030A687A6ADD2

man The (

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka st.

LINEAR INTEGRATED CIRCUITS AND ITS APPLICATIONS 16EED08 3

COURSE OBJECTIVES

- To develop the fabrication of IC and switching devices.
- To analyze the characteristics of operational amplifier.
- To construct various applications using operational amplifier.
- To implement various applications using IC555 Timer, IC566 and IC565.

To design various applications using LM317, LM723, LM380 and ICL 8038 ICs.

COURSE OUTCOMES:

- Develop the fabrication of IC and switching devices. 16EED08.CO1
- Analyze the characteristics of operational amplifier. 16EED08.CO2

Construct various applications using operational amplifier. 16EED08.CO3

Implement various applications using IC555 Timer, IC566 and IC565. 16EED08.CO4

Design various applications using LM317, LM723, LM380 and ICL 8038 ICs. 16EED08.CO5

Course Outcomes		Program Outcomes											PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED08.CO1	x	-	x	x	-	-		-	-	x	-	x	x	x	8
16EED08.CO2	x	x		-		x	-	- 1	x	x	-	х	x	-	-
16EED08.CO3	x	x	x	x	-	x	-	-	x	x	x	x	x	x	
16EED08.CO4	x	x	x	x	-	x	-		x	x	x	x	x	x	-
16EED08.CO5	x	x	x	x	-	x	-	-	x	x	x	х	x	x	-

IC FABRICATION UNIT I

IC classification, fundamental of monolithic IC technology, Basic Planner process- Fabrication of diode (Monolithic Diode, Avalanche Diode, Schottky Diode), JFET, MOSFET in ICs.

CHARACTERISTICS OF OPAMP UNIT II

Ideal OP-AMP characteristics, DC characteristics, AC characteristics, Frequency response of OP-AMP, Basic applications of OP-AMP, Inverting and Non-inverting Amplifiers - Voltage follower, summer, differentiator and integrator

APPLICATION OF OPAMP UNIT III

Instrumentation amplifier - Waveform generators - Sine wave, Square wave, Triangular wave generator. First and second order active filters, Comparators, Astable & Monostable Multivibrators, Clippers, Clampers, Peak detector, S/H circuit.

UNIT IV SPECIAL ICs

Functional block, Features & application circuits with 555 Timer IC - 566 voltage controlled oscillator IC; 565-phase lock loop IC, Analog multiplier ICs.

APPLICATION ICs UNIT V

IC voltage regulators - Fixed voltage regulators - LM317, 723 Variable voltage regulators, switching regulator - SMPS - LM 380 power amplifier- ICL 8038 function generator IC.

TOTAL: 45 Periods

The C airman Board of Studies,

9

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonor hus, Rasipuram-637 408. Namakka, Jr.

LIST OF EXPERIMENTS:

- Testing of Inverting & Non inverting amplifier. 1.
- Testing of Differential amplifier 2.
- 3. Testing of integrator & Differentiator.
- Testing of instrumentation amplifier. 4.
- 5. Testing of active low pass and Band pass filters.
- 6. Testing of Astable and Monostable Multivibrators Using LM741 Timer.
- 7. Testing of Astable and Monostable Using NE555 Timer.
- 8. Testing of Frequency Multiplier using PLL.
- Testing of DC Voltage regulator using LM317.
 Testing of DC Voltage regulator using LM723.

TOTAL: 30 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	David A.Bell	Op-amp & Linear ICs	Oxford	2013	
2.	D.RoyChoudhary, Sheil B.Jani	Linear Integrated Circuits	II edition, New Age	2003	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Fiore		Opamps& Linear Integrated Circuits Concepts & Applications	Cengage	2010	
2.	Floyd Buchla	Fundamentals of Analog Circuits	Pearson	2013	
3.	Jacob Millman, Christos C Halkias,	Integrated Electronics - Analog and Digital circuits System	Tata McGraw Hill	2003	
4.	Robert F. Coughlin, Fredrick F. Driscoll	Op-amp and Linear ICs	PHI Learning, 6th edition	2012	
5.	Ramakant A.Gayakward	Op-amps and Linear Integrated Circuits	IV edition, Pearson Education	2003	

WEB URLs

- 1. www.nptel.ac.in/courses/117106030/nptel-aic/opampsummary.pdf
- 2. www.youtube.com/watch?v=clTA0pONnMs
- 3. www.hyperphysics.phy-astr.gsu.edu/hbase/Electronic/a741p.html
- 4. www.en.wikipedia.org/wiki/Operational_amplifier_applications
- 5. www.gsa.gov/portal/getMediaData?mediaId=122190

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namelale

DESIGN OF ELECTRICAL APPARATUS

C Т р 3 2 4

COURSE OBJECTIVES

16EED09

- To analyze the various thermal rating of electrical machines.
- To design the D.C Machines.
- To develop the Transformer.
- To formulate the Induction Machines.
- To design the Synchronous machine.

COURSE OUTCOMES:

16EED09.CO1	Analyze the various thermal rating of electrical machines.
16EED09.CO2	Design the D.C Machines.
16EED09.CO3	Develop the Transformer.
16EED09.CO4	Formulate the Induction Machines.
16EED09.CO5	Design the Synchronous machine.

Course		Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED09.CO1	x	x	x	x	-	x	-	-	-	x	-	x	x	x	-
16EED09.CO2	x	x	x	x	-	x	-	-	-	x	-	x	x	x	-
16EED09.CO3	x	x	x	x	-	х	-	-	-	x	-	x	x	х	-
16EED09.CO4	x	x	x	x	-	x	-	-	-	x	-	x	x	x	-
16EED09.CO5	x	x	x	x	-	x	-	-	-	x	-	x	x	x	-

INTRODUCTION UNIT I

Major considerations in Electrical Machine Design - Electrical Engineering Materials - Choice of Specific Electrical and Magnetic loadings - Thermal considerations - Insulating Materials - Rating of machines -Standard specifications.

D.C MACHINES UNIT II

Output Equations - Main Dimensions - Choice of Specific Electric and Magnetic Loading - selection of number of poles (Derivation and simple problem) - Problem on Armature Design - Derivation on commutators and brushes design.

TRANSFORMERS UNIT III

Main Dimensions - kVA output equation on single and three phase transformers - Window space factor - Design of core and winding - Overall dimensions - Temperature rise in Transformers - tank design -Methods of cooling of Transformers.

INDUCTION MOTORS UNIT IV

Output equation of Induction motor - Main dimensions- Length of air gap- Rules for selecting rotor slots of squirrel cage machines - Design of rotor bars & slots - Design of end rings - Design of wound rotor -Magnetizing current - Short circuit current - Operating characteristics- Losses and Efficiency ...

SYNCHRONOUS MACHINES UNIT V

Output equations - choice of Electrical and Magnetic Loading - Design of salient pole machines - Short circuit ratio - Armature design - Estimation of air gap length - Design of rotor - Design of damper winding.

TOTAL: 45+30 Periods

The Chain

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakkai UL

9

9

TEXT BOOKS:

Sl.NoAuthor(s)1.Sawhney, A.K		Title of the Book	Publisher	Year of Publication
		A Course in Electrical Machine Design	Dhanpat Rai & Sons	2010
2.	Sen, S.K	Principles of Electrical Machine Designs with Computer Programmes	Oxford and IBH Publishing Co. Pvt. Ltd	2009

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. A.Shanmuga sundaram		Electrical Machine Design Data Book	New Age Intenational Pvt. Ltd	2007	
2.	Nagsarkar T K	Basics of Electrical Engineering	Oxford press	2005	
3.	H .M.Rai	Principles of Electrical Machine Design	Sathya prakashan	1988	
4.	V.K.Mehta	Principle of Electrical Machines	S. Chand Limited	2002	
5.	R.K.Agarwal	Principal of Electrical Machine Deisign	S. K. Kataria & Sons	2009	

WEB URLs

1. www.nptel.ac.in/downloads/108101039/

- 2. www.nptel.ac.in/courses/108101039/download/Lecture-1.pdf
- 3. www.nptel.ac.in/courses/103103027/pdf/mod9.pdf
- 4. www.youtube.com/watch?v=JxDsa9MlylI
- 5. www.youtube.com/watch?v=--Br0dNExGk

rman The

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namal.....Dt

16EED10

TRANSMISSON AND DISTRIBUTION

COURSE OBJECTIVES

To understand basic structure of power systems and its recent trends

To develop expressions for the transmission line parameters

- To obtain the equivalent circuits for the transmission lines
- To analyses the voltage distribution in insulator strings, cables and methods to improve the same
- To understand the operation of the different distribution schemes

COURSE OUTCOMES:

16EED10.CO1 Discuss the structure of power systems and its recent trends

16EED10.CO2 Analyze the computation of transmission line parameters.

16EED10.CO3 Evaluate the performance of various types of transmission lines

16EED10.CO4 Choose appropriate insulators and underground cables for power transmission

16EED10.CO5 Develop the mechanical design of transmission lines and grounding

Course		Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED10.CO1	-	x	x	÷	-	х	x		- 1	x	-	х			4
16EED10.CO2	x	x	x	-		x	-			x		x	x	-	-
16EED10.CO3	x	X	x	-	-	x	-	. *	- a	x	~	x	x	-	-
16EED10.CO4	x	x	x	-	- 1	x	x	÷		x	-	x	x	-	
16EED10.CO5	x	x	x	-	-	x	-	-	-	x	-	x	x		1

UNIT I STRUCTUREOFPOWER YSTEM

Structure of electric power system: generation, transmission and distribution; Types of AC and DC distributors – distributed and concentrated loads – interconnection – EHVAC and HVDC transmission – Introduction to FACTS

UNIT II TRANSMISSIONLINEPARAMETERS

Parameters of single and three phase transmission lines with single and double circuits - Resistance, inductance and capacitance of solid, stranded and bundled conductors. Symmetrical and unsymmetrical spacing and transposition - application of self and mutual GMD; skin and proximity effects - interference with neighboring communication circuits - corona discharges.

UNIT III MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines - short line, medium line and long line - equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance; transmission efficiency and voltage regulation, real and reactive power flow in lines, Power circle diagrams, surge impedance loading, methods of voltage control; Ferranti effect.

UNIT IV INSULATORS AND CABLES

Insulators - Types, voltage distribution in insulator string, improvement of string efficiency, testing of insulators. Underground cables - Types of cables, Capacitance of Single-core cable, Grading of cables, Power factor and heating of cables, Capacitance of 3- core belted cable.

UNIT V MECHANICAL DESIGN OF LINES AND GROUNDING

Mechanical design of transmission line – sag and tension calculations for different weather conditions, Tower spotting, Types of towers, Substation Layout (AIS, GIS), Methods of grounding.

TOTAL: 45 Periods The Chairman Board of Studies,

0

9

9

Department of Electrical and Electronics Engineering Muth Lommal Engineering College (Autonomics) Rasiperan-607 408, Namai-

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	B.R.Gupta	Power System Analysis and Design	Chand	2003	
2.	S.N. Singh	Electric Power Generation, Transmission and Distribution'	Prentice Hall of India Pvt Ltd	2002	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2010	
1.	Luces M. Fualkenberry, Walter Coffer	Electrical Power Distribution and Transmission	Pearson Education		
2.	Hadi Saadat	Power System Analysis	Tata McGraw Hill	2003	
3.	M.A.Pai and W.Sauer	Power System Dynamics and Stability	Pearson Education Asia	2002	
4.	Olle.I.Elgerd	Electric Energy Systems Theory – An Introduction	Tata McGraw Hill	2003	
5.	J.Nagrath.andD.P.Kothari	Modern Power System Analysis	Tata McGraw Hill	2005	

WEB URLs

1. www.nptel.ac.in/courses/108102047/

- www.iitmandi.ac.in/academics/courses/even_feb-june2017/EE303.pdf
 www.nptel.ac.in/courses/108105067/33
- 4. www.nptelvideos.in/2012/11/power-sys-generation-transmission.html
- 5. www.youtube.com/watch?v=Su6YC2W46x4

The Ch

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Automation) Rasipuram-837 408. No "ka. Cr.

PURE AND DE A MARIE, EE & CEPTOCOLOU AND DESCONDED DE MOOTING

16EED11

POWER SYSTEM ANALYSIS

PSO

COURSE OBJECTIVES

- To analyze the basic components of a power system using per phase analysis.
- To determine the power flow and losses in a power system network using non-linear iterative solution methods.
- To evaluate the effects of balanced faults in power system using the concepts of Bus impedance matrix, reactance diagrams.
- To evaluate the effects of unbalanced faults in power system using the concept of symmetrical components.
- To analyze the stability of the power system during transient operations.

COURSE OUTCOMES:

16EED11.CO1 Analyze the basic components of a power system using per phase analysis.

16EED11.CO2 Determine the power flow and losses in a power system network using non-linear iterative solution methods.

- 16EED11.CO3 Evaluate the effects of balanced faults in power system using the concepts of Bus impedance matrix, reactance diagrams.
- 16EED11.CO4 Evaluate the effects of unbalanced faults in power system using the concept of symmetrical components.

16EED11.CO5

O5 Analyze the stability of the power system during transient operations.

Course		Program Outcomes											1303		
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED11.CO1	x	x	÷	- 1	-	-	-		-	x	8	х	x	-	
16EED11.CO2	x	x	x	x	- 1	-	-	-	-	х	۱.	x	x	x	3
16EED11.CO3	x	x	x	x		-	-	-	-	x		x	x	х	•
16EED11.CO4	x	x	x	x	-	-	-	-	-	х	•	х	x	x	
16EED11.CO5	x	x	x	x	-	-	-	-	-	x	-	x	x	х	-

UNIT I INTRODUCTION

Need for system planning and operational studies – Introduction to restructuring – Single line diagram – per phase and per unit analysis – Generator – transformer – transmission line and load representation for different power system studies.-Primitive network – construction of Y – bus using inspection and singular transformation methods – z-bus.

UNIT II POWER FLOW ANALYSIS

Importance of power flow analysis in planning and operation of power systems – statement of power flow problem – classification of buses – development of power flow model in complex variables form- Power flow solution using Newton Raphson, Gauss seidel and Fast decoupled method.

UNIT III FAULT ANALYSIS – BALANCED FAULTS

Importance of short circuit analysis - assumptions in fault analysis – analysis using Thevenin's theorem – Z –bus building algorithm – fault analysis using Z-bus – computations of short circuit capacity, post fault voltage and currents.

UNIT IV FAULT ANALYSIS – UNBALANCED FAULTS

Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machine, transformer and transmission lines - sequence networks analysis of single line to ground, line to line and double line to ground faults using Thevenin's theorem and Z-bus matrix.

UNIT V STABILITY ANALYSIS

Mechanical design of transmission line – sag and tension calculations for different weather conditions, Tower spotting, Types of towers, Substation Layout (AIS, GIS), Methods of grounding.

TOTAL: 45+30=75 Periods The Chai

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasiguram-637 403, Namakis, Ju

TEXT	BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	NagrathI.J. and Kothari D.P	Modern Power System Analysis	Tata McGraw Hill	2011
2.	John J.Grainger and W.D.Stevenson Jr.	Power System Analysis	Tata Mc Graw-Hill	2010

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Hadi Saadat	Power System Analysis	Tata McGraw Hill	2010
2.	P.Venkatesh, B.V.Manikandan, S.Charles Raja, A.Srinivasan	Electrical Power Systems- Analysis, Security and Deregulation	PHI Learning Private Limited	2012
3.	Kundur P	Power System Stability and Control	Tata McGraw Hill	2010
4.	J.DuncanGlover, Mulukutla S.Sarma, Thomas J.Overbye	Power System Analysis & Design	Cengage Learning,	2012
5.	Olle.I .Elgerd	Electric Energy Systems Theory–An Introduction	Tata Mc Graw Hill	2012

WEB URLs

1. www.onlinecourses.nptel.ac.in/nec17_ec08

www.ommecourses.nptchac.m/necer/_ccool
 www.ommecourses.nptchac.m/necer/_ccool
 www.nptelvideos.in/2012/11/power-system-analysis.html
 www.classle.net/category/tagskeywords/electrical-power-system-analysis
 www.youtube.com/watch?v=24m4xnIFj4E&list=PL36A60B630E8C7B56&index=28
 www.satishkashyap.com/2012/01/video-lectures-from-iit-professors_07.html

man The Ch

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 403. Namakkal Di.

16EED12

.

SOLID STATE DRIVES

COURSE OBJECTIVES

· To analyze the basic concepts of steady state and transient operation of electric drive system.

To design the operation of the converter / chopper fed dc drive

To interpret the operation of both classical and modern induction motor drives

To able to relate v/f and self-control of synchronous motor

• To develop the current and speed controllers for a closed loop solid state DC motor drives.

COURSE OUTCOMES:

16EED12.CO1 Analyze the basic concepts of steady state and transient operation of electric drive system.

16EED12.CO2 Design the operation of the converter / chopper fed dc drive

16EED12.CO3 Interpret the operation of both classical and modern induction motor drives

16EED12.CO4 Relate v/f and self-control of synchronous motor

16EED12.CO5 Develop the current and speed controllers for a closed loop solid state DC motor drives.

Course	Program Outcomes											PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED12.CO1	x	x	x	x	-	-	-			x	-	x	x	x	x
16EED12.CO2	x	x	x	х		-	-	-	-	x	-	x,	x	х	х
16EED12.CO3	x	x	x	x	-	-	-			x	-	x	x	x	х
16EED12.CO4	x	x	x	x	-	-	-			x	I	x	x	x	x
16EED12.CO5	x	x	x	x	-	-	-	÷	-	x	-	х	x	x	х

UNIT I DRIVE CHARACTERISTICS

Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant Dynamics: acceleration, deceleration, starting & stopping – typical load torque characteristics –Selection of motor – Heating and cooling curve - Types of Enclosure and classes of motor duties

UNIT II CONVERTER / CHOPPER FED DC MOTOR DRIVE

Steady state analysis of the single and three phase converter fed separately excited DC motor drivecontinuous and discontinuous conduction- Time ratio and current limit control - Four quadrant operation of converter / chopper fed drive.

UNIT III INDUCTION MOTOR DRIVES

Stator voltage control-energy efficient drive-v/f control-constant airgap flux-field weakening modevoltage / current fed inverter – Slip power recovery schemes: Static Kramer drive and static scherbuis drive - closed loop control

UNIT IV SYNCHRONOUS MOTOR DRIVES

self and separate control of synchronous motor: Margin angle control and power factor control – Selfcontrol of CSI and VSI fed synchronous motor - permanent magnet synchronous motor: Sinusoidal PMAC – Trapezoidal PMAC

UNIT V DESIGN OF CONTROLLERS AND APPLICATION FOR DRIVES

Design of controllers; current controller and speed controller - Selection of drives and control schemes for steel rolling mills, Paper mills, Lifts and Cranes – Microprocessor/Microcontroller based control of drives.

TOTAL: 45 Periods

L'de The Chairman

0

0

9

9

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering Communication Profile

LIST OF EXPERIMENTS:

- 1. Simulation of closed loop control of converter fed DC motor.
- 2. Simulation of closed loop control of chopper fed DC motor.
- 3. Simulation of VSI fed 3\u00f6induction motor.
- 4. Simulation of 3¢ synchronous motor drive.
- 5. Speed control of DC motor using 36 Rectifier.
- 6. Speed control of 3\u00f6 induction motor using PWM inverter.
- 7. DSP based closed loop drive for induction motor.
- 8. Induction motor speed control using FPGA.
- 9. Speed control of Brush Less DC motor.
- 10. DSP based chopper fed DC motor drive.
- 11. Switched Reluctance Motor Drive using DSP.and PLC based drives.

TOTAL: 30 Periods

TEXT BOOKS:

Sl.No Author(s)		Title of the Book	Publisher	Year of Publication	
1.	Dubey G K	Fundamentals of Electrical Drives	Narosa Publishing House	2007	
2.	Bimal K Bose	Modern Power Electronics and AC Drives	Pearson Education	2002	

REFERENCE BOOKS:

Sl.No Author(s) 1. R.Krishnan		Title of the Book	Publisher	Year of Publication 2001	
		Electric Motor & Drives: Modeling, Analysis and Control	Prentice Hall of India		
2.	John Hindmarsh and Alasdain Renfrew	Electrical Machines and Drives System	Elsevier	2012	
3.	Shaahin Felizadeh,	Electric Machines and Drives	CRC Press(Taylor and Francis Group)	2013	
4.	Pillai S K	A First course on Electrical Drives	Wiley Eastern Limited	1993	
5.	SEN P K	Electric drives	Prentice Hall of India	2012	

WEB URLs

- 1. www.nptel.ac.in/courses/117106091/
- 2. www.nptelvideos.in/2012/12/solid-state-devices.html
- 3. www.youtube.com/watch?v=A7SUJ669TEI
- www.ocw.mit.edu/courses/materials-science...solid-state.../14-semiconductors 5. www.ee.iitm.ac.in/2015/07/ee3001

The Chai man Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka. et.

POWER SYSTEM OPERATION AND CONTROL

C 3 2 4

COURSE OBJECTIVES

- To have an overview of power system operation and control. •
 - To model power-frequency dynamics and to design power-frequency controller.
- To model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
- To study the economic operation of power system.
- To teach about SCADA and its application for real time operation and control of power systems.

COURSE OUTCOMES:

16EED13.CO1	Ability to have an overview of power system operation and control.
16EED13.CO2	Ability to have an overview of power system operation and control.
16EED13.CO3	Ability to model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
16EED13.CO4	Ability to study the economic operation of power system.
16EED13.CO5	Ability to teach about SCADA and its application for real time operation and control of power systems

Causea		Program Outcomes											PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED12.CO1	x	-	x	x	-	-	-	-	-	x	- 1	х	x	x	×
16EED12.CO2	x	x	-	-	- 1	x	-	-	x	x	-	x	x	x	-
16EED12.CO3	x	x	x	x	-	x	-	÷.	x	x	x	x	x	x	
16EED12.CO4	x	x	x	x	-	x		-	x	x	x	х	x	x	×
16EED12.CO5	x	x	x	x	- 1	x	-	-	x	x	х	х	x	x	-

INTRODUCTION UNIT I

Electric drive - Equations governing motor load dynamics - steady state stability - multi quadrant Dynamics: acceleration, deceleration, starting & stopping - typical load torque characteristics -Selection of motor - Heating and cooling curve - Types of Enclosure and classes of motor duties

REAL POWER - FREQUENCY CONTROL UNIT II

Steady state analysis of the single and three phase converter fed separately excited DC motor drivecontinuous and discontinuous conduction- Time ratio and current limit control - Four quadrant operation of converter / chopper fed drive.

REACTIVE POWER-VOLTAGE CONTROL UNIT III

Stator voltage control-energy efficient drive-v/f control-constant airgap flux-field weakening modevoltage / current fed inverter - Slip power recovery schemes: Static Kramer drive and static scherbuis drive - closed loop control

UNIT COMMITMENT AND ECONOMIC DISPATCH UNIT IV

self and separate control of synchronous motor: Margin angle control and power factor control - Selfcontrol of CSI and VSI fed synchronous motor - permanent magnet synchronous motor: Sinusoidal PMAC - Trapezoidal PMAC

COMPUTER CONTROL OF POWER SYSTEMS UNIT V

Design of controllers; current controller and speed controller - Selection of drives and control schemes for steel rolling mills, Paper mills, Lifts and Cranes - Microprocessor/Microcontroller based control of drives.

TOTAL: 45 Periods

The C

9

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakike, etc.

LIST OF EXPERIMENTS:

- 1. Computation of Parameters and Modelling of Transmission Lines
- Formation of Bus Admittance and Impedance Matrices and Solution of Networks. 2.
- Load Flow Analysis I: Solution of load flow and related problems using Gauss-Seidel Method 3.
- Load Flow Analysis II: Solution of load flow and related problems using Newton Raphson. 4.
- 5. Fault Analysis
- Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System 6.
- Transient Stability Analysis of Multi machine Power Systems 7.
- 8. Electromagnetic Transients in Power Systems
- 9. Load Frequency Dynamics of Single- Area and Two-Area Power Systems
- 10. Economic Dispatch in Power Systems.

TOTAL: 30 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2010	
1.	Olle.I.Elgerd	Electric Energy Systems theory - An introduction'	Tata McGraw Hill Education Pvt. Ltd.		
2.	Abhijit Chakrabarti	Power System Analysis Operation and Control	PHI learning Pvt. Ltd	2010	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Allen. J. Wood and Bruce F.		Power Generation, Operation and Control'	John Wiley & Sons	2003	
2.	Nagrath I.J. and Kothari D.P	Modern Power System Analysis	Tata McGraw-Hill	2011	
3.	Kundur P	Power System Stability and Control	Tata McGraw Hill Education Pvt. Ltd	2010	
4.	Hadi Saadat	Power System Analysis	Tata McGraw Hill Education Pvt. Ltd	2010	
5.	N.V.Ramana	Power System Operation and Control	Pearson Education	2011	

WEB URLs

- www.nptel.ac.in/courses/108104052/
 www.youtube.com/watch?v=zkN13OmgGOs
 www.nptelvideos.in/2012/12/power-system-operations-and-control.html
- 4. www.nptel.ac.in/courses/108104052/26
- 5. www.youtube.com/watch?v=rpdygqOI9mM

The Chain

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus Rasipuram-637 408. Namakka: UI.

16EED14

HIGH VOLTAGE ENGINEERING

COURSE OBJECTIVES

- To understand the various types of over voltages in power system and protection methods.
- Generation of over voltages in laboratories.
- Measurement of over voltages. .
- Nature of Breakdown mechanism in solid, liquid and gaseous dielectrics.
- . Testing of power apparatus and insulation coordination.

4

COURSE OUTCOMES:

16EED14.CO1	Ability to understand the various types of over voltages in power system and protection methods.
16EED14.CO2	Ability to understand generation of over voltages in laboratories.
16EED14.CO3	Ability to understand measurement of over voltages.
16EED14.CO4	Ability to understand nature of Breakdown mechanism in solid, liquid and gaseous dielectrics.
16EED14.CO5	Ability to understand testing of power apparatus and insulation coordination.

Course						Program	m Outco	mes					PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED14.CO1	-	x	x	-	-	x	x		-	x	-	x	-	-	-
16EED14.CO2	x	x	x	÷		x			-	x	-	x	x	-	
16EED14.CO3	x	x	x		-	x				x		x	x	-	-
16EED14.CO4	x	x	x	-	-	x	x		-	x	-	x	x	-	-
16EED14.CO5	x	x	x	-	-	x			-	x		x	x	-	

UNIT I **OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS**

Causes of over voltages and its effects on power system - Lightning, switching surges and temporary overvoltage's, Corona and its effects - Reflection and Refraction of Travelling waves- Protection against overvoltages.

UNIT II DIELECTRIC BREAKDOWN

Gaseous breakdown in uniform and non-uniform fields - Corona discharges - Vacuum breakdown -Conduction and breakdown in pure and commercial liquids, Maintenance of oil Quality - Breakdown mechanisms in solid and composite dielectrics.

UNIT III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS

Generation of High DC, AC, impulse voltages and currents - Triggering and control of impulse generators.

MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS UNIT IV High Resistance with series ammeter - Dividers, Resistance, Capacitance and Mixed dividers - Peak

Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers, Electrostatic Voltmeters - Sphere Gaps - High current shunts- Digital techniques in high voltage measurement.

HIGH VOLTAGE TESTING & INSULATION COORDINATION UNIT V

High voltage testing of electrical power apparatus as per International and Indian standards -- Power frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing, isolators and transformers- Insulation Coordination.

TOTAL: 45 Periods

The Cha man

9

9

9

9

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering Collour (Autonomus

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	S.Naidu and V. Kamaraju	High Voltage Engineering	Tata McGraw Hill	2013
2.	E. Kuffel and W.S. Zaengl, J.Kuffel	High voltage Engineering fundamentals	Newnes Second Edition Elsevier	2005

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Subir Ray	An Introduction to High Voltage Engineering	PHI Learning Private Limited	2013
2.	L.L. Alston	High Voltage Technology	Oxford University	2011
3.	C.L. Wadhwa	High voltage Engineering	New Age International Publishers	2010
4.	Küchler, Andreas	High voltage Engineering- Fundamentals-Technology- Applications	Springer	2015
5.	Farouk A.M. Rizk, Giao N. Trinh	High voltage Engineering	CRC Press	2017

WEB URLs

1. www.nptel.ac.in/courses/108104048/

- 2. www.btechguru.com/courses--nptel--electrical-engineering--high-voltage-engi...
- 3. www.studynama.com/.../329-High-voltage-engineering-ebook-pdf-lecture-not
- www.freevideolectures.com > Electrical Engineering > IIT Kanpur
 www.youtube.com/watch?v=p6E7IW45EQM

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autons Rasipuram-637 408. Namaking ----

POWER SYSTEM PROTECTION AND SWITCHGEAR 16EED15

COURSE OBJECTIVES

- To educate the causes of abnormal operating conditions (faults, lightning and switching surges) of the apparatus and system.
 - To introduce the characteristics and functions of relays and protection schemes.
- To impart knowledge on apparatus protection
- To introduce static and numerical relays
- To impart knowledge on functioning of circuit breakers

COURSE OUTCOMES:

Analysis the power system protection scheme 16EED15.CO1

- Explain the protective relays in power system 16EED15.CO2
- Discuss the apparatus and line protection in power system 16EED15.CO3
- Elaborate the circuit interruption in power system 16EED15.CO4
- Elaborate the circuit interruption in power system. 16EED15.CO5

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EED15.CO1	-	x	x	x	-		-		-	x	- '	x	-	x			
16EED15.CO2	x	x	x	x	-	-	-	-	-	x		х		x	-		
16EED15.CO3	-	x	x	x	-	-	-		-	x	-	x	-	x			
16EED15.CO4	x	x	x	x	-		-	-	-	x	-	х	-	x			
16EED15.CO5	-	x	x	x	-	-	-		- I	x		x	~	x	-		

INTRODUCTION TO PROTECTION SCHEMES UNIT I

Principles and need for protective schemes, Nature and causes of faults, Types of faults, Symmetrical components and its applications to fault analysis, Power system earthing, Step and Touch potential, Zones of protection, primary and backup protection.

UNIT II PROTECTIVE RELAY

Non directional and directional over current relays, Distance Impedance, reactance and mho relays, principle of operation - Torque equation - RX diagram - Differential protection, Static and numerical over current relays

UNIT III APPARATUS AND LINE PROTECTION

Alternator, transformer, induction motor, bus bar and feeder protection schemes, CTs and PTs and their applications in protection schemes, microprocessor based protective schemes.

THEORY OF CIRCUIT INTERRUPTION UNIT IV

Physics of arc phenomena and arc interruption, Restriking voltage, Recovery voltage, rate of rise of restriking voltage, resistance switching, current chopping and interruption of capacitive current.

UNIT V CIRCUIT BREAKERS

Introduction - Types of Circuit Breakers - Miniature, Earth leakage, Air blast, Air break, oil, SF6 and Vacuum circuit breakers, advantages and disadvantages - High voltage dc circuit breakers - Moulded Case Circuit Breaker - Residual Current Circuit Breaker - Testing of circuit breakers.

TOTAL: 45 Periods

The C Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakwa. Ju.

0

C 3

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Sunil S. Rao	Switchgear Protection and Power Systems	Khanna publishers	2008
2.	Ravindranath B, and Chander N	Power System Protection & Switchgear	New age International Ltd	2009

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Badri Ram & Viswakarma D N	Power system Protection and switchgear	Tata Mcgraw Hill	2013
2.	Wadhwa C L	Electrical Power Systems	New age International	2010
3.	Metha V K and Rohit Metha	Principles of power system	S. Chand company	2011
4.	Blackburn J. Lewis	Protective Relaying: Principles and Applications	CRC Press, New York	2006
5.	Donald Reimert	Protective Relaying for Power Generation Systems	Taylor & Francis, New York	2006

WEB URLs

1. www.nptel.ac.in/downloads/108101039/

- 2. www.electrical4u.com/protection-system-in-power-system/
- www.etcetteat/atcom/protection/system in point system
 www.youtube.com/watch?v=PKXPeTvmVQg
 www.ecomanonline.com/english/eLearningSolution/programDetails.aspx?Work_ID=36373
 www.training-classes.com/learn/_k/c/i/r/circuit_breakers/_t/online/

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonchuc) Rasipuram-637 408. Namakika. Ju

16EED16

ENERGY CONSERVATION AND AUDITING

COURSE OBJECTIVES

To analyze the various concepts behind renewable energy resources.

To introduce the energy saving concept by different ways of illumination.

- To understand the different methods of electric heating and electric welding.
- To introduce knowledge on Solar Radiation and Solar Energy Collectors

To introduce concepts of Wind Energy and its utilization

COURSE OUTCOMES:

16EED16.CO1 Ability to understand the concepts behind renewable energy resources.

16EED16.CO2 Ability to understand the energy saving concept by different ways of illumination.

16EED16.CO3 Ability to understand different methods of electric heating and electric welding.

16EED16.CO4 Ability to understand on Solar Radiation and Solar Energy Collectors

16EED16.CO5 Ability to understand the concepts of Wind Energy and its utilization

C		Program Outcomes													PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EED16.CO1	-	x	x	x	-	-	-			х	-	x	-	x	-		
16EED16.CO2	x	x	x	x	-	÷.,	-		~	х	-	x	-	x	1		
16EED16.CO3	-	x	x	x	-	-	-	-	-	x	-	x	-	x			
16EED16.CO4	x	x	x	x		-	-	•		х	-	x	-	x			
16EED16.CO5	-	x	x	x	-	-	-		~	x	-	x		x	Ξ		

UNIT I ELECTRIC DRIVES AND TRACTION

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services - traction motors - characteristic features of traction motor - systems of railway electrification -electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear

UNIT II ILLUMINATION

Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps - design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - energy saving lamps, LED.

UNIT III HEATING AND WELDING

Introduction - advantages of electric heating – modes of heat transfer - methods of electric heating - resistance heating - arc furnaces - induction heating - dielectric heating - electric welding – types - resistance welding - arc welding - power supply for arc welding - radiation welding.

UNIT IV ENERGY CONSERVATION

Energy efficient motors and Soft starters - Automatic power factor Controllers - Variable speed drivers - Electronic ballasts - LED Lighting

UNIT V ENERGY AUDITING AND MANAGEMENT

General Philosophy - need of Energy Audit and Management. Definition and Objective of Energy Management - General Principles of Energy Management - Energy Management Skills - Energy Management Strategy - Economics of implementation of energy optimization projects & its constraints barriers and limitations - Report-writing - preparations and presentations of energy audit reports.

TOTAL: 45 Periods

The Ch

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomic) Rasipuram-637 408, Namakko. or.

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2011	
1.	1. N.V. Suryanarayana	Utilisation of Electric Power	Wiley Eastern Limited, New Age International Limited		
2.	J.B.Gupta	Utilisation Electric power and Electric Traction	S.K.Kataria and Sons,	2010	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	R.K.Rajput,	Utilisation of Electric Power	Laxmi publications Private Limited	2010
2.	H.Partab	Art and Science of Utilisation of Electrical Energy	Dhanpat Rai and Co., New Delhi	2012
3.	C.L.Wadhwa,	Generation and Utilization of Electrical Energy	New Age International Pvt.Ltd	2010
4.	S. Sivanagaraju, M. Balasubba Reddy	Generation and Utilization of Electrical Energy	Pearson Education	2010
5.,	Donals L. Steeby,' Alternative,.	Energy Sources and Systems	Cengage Learning	2012

WEB URLs

1. www.youtube.com/watch?v=uy9IZCdkQIM

2. www.nptel.ac.in/courses/108105058/

- 3. www.rajagiritech.ac.in/home/EEE/Pdf/CourseHandoutS6.pdf
- www.youtube.com/watch?v=-NkoZx8gdqM&index=33&list=PL36A60B630E8C7B56
 www.ecozensolutions.com/audit.pdf

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipura

16EEE01

ADVANCED CONTROL THEORY

L	Т	Р	С
3	2	0	4

COURSE OBJECTIVES

- To study the state variable design
- To provide adequate knowledge in the phase plane analysis
- To study describing function analysis
- To analyze the stability of the systems using different techniques
- To introduce the concepts on design of optimal controller

COURSE OUTCOMES:

- Outline the state variables and feedback. 16EEE01.CO1
- Features of tools used for studying the nature of non-linear systems are studied. 16EEE01.CO2
- Able to perform describing function analysis. 16EEE01.CO3
- Basics of stability and the assessment of stability are studied 16EEE01.CO4

Basics of optimal control and its features are studied. 16FFF01 CO5

Course		Program Outcomes												PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16EEE01.CO1	x	x	-	-	-	1	-	-	-	х	-	X .,	x	-	-	
16EEE01.CO2	x	x	x	x		-	-	-	-	x	-	x	x	x		
16EEE01.CO3	x	x	x	x	-		-	-	-	х		х	х	x	-	
16EEE01.CO4	x	x	x	x	-		-	-	-	x	÷	x	х	x	-	
16EEE01.CO5	x	x	x	x	-	· .	-	-	-	x	- 1	x	x	x	-	

STATE VARIABLE DESIGN UNIT I

Control law design - State feedback and pole placement - Estimator design - Regulator design -Combined control law and estimator - Introduction of the reference input - Integral control and disturbance estimation - Effect of delays

PHASE PLANE ANALYSIS UNIT II

Features of linear and non-linear systems - Common physical non-linearities - Methods of linearizing non-linear systems - Concept of phase portraits - Singular points - Limit cycles- Construction of phase portraits - Phase plane analysis of linear and non-linear systems - Isocline method.

DESCRIBING FUNCTION ANALYSIS UNIT III

Basic concepts - Derivation of describing functions for common non-linearities - Analysis of non-linear systems - Limit cycle - Stability.

STABILITY ANALYSIS UNIT IV

Introduction - Concept of stability - Equilibrium points- Lyapunov's stability theorems - Lyapunov's direct method for LTI systems - Lyapunov's method for non-linear systems - Krasovski's theorem on Lyapunov function

OPTIMAL CONTROL UNIT V

Problem formulation - Linear quadratic regulator - Finite and infinite time - Variational approach to optimal control problem - Solution of Ricatti equation - Differential and Algebraic

TOTAL: 45 Periods

The Cl man

Board of Studies. Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasiouram.Caz too

0

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2012.	
	J. Nagrath and M. Gopal	Control Systems Engineering	New Age International Publishers, Fourth Edition,		
2.	K P Mohandas	Modern Control Engineering	Sanguine Technical Publishers,	2008	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	George J. Thaler	Automatic Control Systems,	Jaico Publishers	2010	
2.	Ashish Tewari	Modern Control Design with Matlab and Simulink	John Wiley	2002	
3.	M. Gopal	Modern Control System Theory	New Age International Publishers	2005	
4.	Gene F. Franklin, J. David Powell and Abbasemami-Naeini	Feedback Control of Dynamic Systems	Pearson Education	2002	
5.	William A. Wolovich	Automatic Control Systems	Oxford University Press	2010	

WEB URLs

- www.nptel.ac.in/courses/108103007/
 www.youtube.com/watch?v=bbm79-UcNN0
- 3. www.nptelvideos.in/2012/11/advanced-control-system-design_27.html
- 4. www.freevideolectures.com/Course/3488/Advanced-Control-Systems
- 5. www.youtube.com/watch?v=1wsAG4F2H0g

man The Chain

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonc. . . Rasipuram-637 408. Namakika

ELECTRICAL SYSTEM DESIGN AND ESTIMATION

COURSE OBJECTIVES

- To study about power generation and requirement of power
- To study about distribution and estimation of power.
- To study about specification of electrical equipments.
- To study the control technique of power generation.
- To study about various electrical equipments.

COURSE OUTCOMES:

16EEE02.CO1	Ability to understand importance power generation.
16EEE02.CO2	Ability to empathize power estimation in distribution station.
16EEE02.CO3	Ability to understand inevitability of equipments specification.
16EEE02.CO4	Ability to empathize advance controlling equipments.
16EEE02.CO5	Ability to identify different advance electrical equipments.

Course	-	Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE02.CO1	x	x	-	-	x	-	-		•	x	-	x	x	-	-
16EEE02.CO2	x	x	-	x	x	-	-	-	-	x	-	x	x	x	
16EEE02.CO3	x	x	x	x	x	-	-	-	-	x	-	х	x	x	~
16EEE02.CO4	x	x	x	x	x	-	-	-	-	x	ē	-	-	x	-
16EEE02.CO5	x	x	x	x	x	-	14	-	-	x	-	x	x	x	~

UNIT I INTRODUCTION AND PLANT

General power distribution of an industry and its basic specifications - Plant motor list from the mechanical supplier - typical examples of motor list and analysis of the same - arriving at the overall power requirement and the various voltage levels for distribution in various HT levels and the LT levels.

UNIT II POWER DISTRIBUTION AND ESTIMATION

Segregation of the plant requirements based on main mill equipment, auxiliary mill equipment and utility equipment - Deciding the loading and voltage levels and calculation of fault levels for the specific plant at all the different locations – arriving at the single line diagrams - Power distribution boards - main equipment power requirements - Auxiliary and utility equipment and Motor control centers.

UNIT III ELECTRICAL EQUIPMENT AND ESTIMATION

General requirements for the various equipment and standards - Standards IEC, IEEE ,DIN, BSS, JS -HT power distribution boards including breakers and HT isolators - HT cables and power distribution boards and MCCs - Motors for the main and auxiliary loads - assignment for preparing specification for typical major electrical equipment.

UNIT IV CONTROL EQUIPMENT AND POWER EQUIPMENT

Analysis of plant control list from the mechanical supplier - standard control items and their functions - Estimation of number of inputs and outputs for a overall plant PLC based on central or distributed control system for the plant main and auxiliary power equipment - feedback sensors for the above – Identifying and incorporating protection and other monitoring requirements for the above.

UNIT V MISCELLANEOUS ELECTRICAL EQUIPMENT OF THE PLANT 9 Various utility equipment's like UPS, control desks and stations, pulpits, HMI-s, plant lighting, material handling equipment like cranes, communication systems, CCTV-s, fire alarm system, safety equipment including earthing, specifying and Estimating of the same

TOTAL: 45 +30 = 75 Periods

The Chairman

9

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Racing 196 37 498, Namakika et a

16EEE02

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. K. B. Raina		Electrical Design Estimating and Costing	New Age International,	2007	
2.	M. K. Giridharan	Electrical Systems Design	I. K. International Pvt Ltd	2000	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication		
1. J.B. Gupta		A Course in Electrical Installation Estimating and Costing	S K Kataria& Sons	2013		
2.	K. B. Raina	Electrical Design Estimating and Costing	e			
3.	Steven J The Electrical Systems Design & Specification Handbook for Industrial Facilities		The Fairmont Press, Inc.	1998		
4.	Jain	A Text Book of Design of Electrical Installations	Firewall Media	2004		
5.	Moncef Krarti	Energy-Efficient Electrical Systems for Buildings	CRS Press	2016		

WEB URLs

1. www.iitk.ac.in/infocell/Archive/dirmarl/power_distribution.html

www.nptel.ac.in/courses/108105059/
 www.youtube.com/watch?v=qaNOwQU3YMA
 www.onlinevideolecture.com/?university=nptel-iit-kharagpur
 www.youtube.com/watch?v=qInfYKB1_Jo

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Name

16EEE03

POWER SEMICONDUCTOR DEVICES

L T P C 3 0 0 3

COURSE OBJECTIVES

- To understand the operating regions of different switching devices.
- To understand the static and dynamic characteristics of current controlled power semiconductor devices.
- To understand the static and dynamic characteristics of voltage controlled power semiconductor devices.
- To enable the students for the selection of devices for different power electronics applications.

• To understand the control, firing circuit for different devices and concept of thermal protection COURSE OUTCOMES:

16EEE03.CO1 Able to explain the various operating regions of different switching devices.

16EEE03.CO2 Able to analyze the characteristics of power semiconductor devices

16EEE03.CO3 Able to explain the basic principle and operation of thyristor.

16EEE03.CO4 Able to demonstrate the principle and operation of current and voltage controlled devices.

16EEE03.CO5 Able to Analyze the firing protection circuits and thermal Protection

Course		Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE03.CO1	x	x		-	x	-	-	-		-	-	x	х	~	-
16EEE03.CO2	x	x	-	x	x	-	-	-	-	-	× 1	x	x	x	
16EEE03.CO3	x	x	x	x	x	-	-		-	-	-	x	x	x	
16EEE03.CO4	x	x	x	x	x	-	-	-	-	-	-	-	-	x	-
16EEE03.CO5	x	x	x	x	x	-	-	-	-	-		x	x	X	-

UNIT I INTRODUCTION

Power switching devices overview – Attributes of an ideal switch, application requirements, circuit symbols, Power handling capability – safe operating area ; Device selection strategy – On-state and switching losses – EMI due to switching - Power diodes - Types, forward and reverse characteristics, switching characteristics – rating

UNIT II CURRENT CONTROLLED DEVICES

BJT's – Construction, static characteristics, switching characteristics; Negative temperature co-efficient and secondary breakdown; Power Darlington - Thyristor – Physical and electrical principle underlying operating mode, Two transistor analogy – concept of latching; Gate and switching characteristics; converter grade and inverter grade and other types; series and parallel operation; comparison of BJT and Thyristor – steady state and dynamic models of BJT & Thyristor.

UNIT III VOLTAGE CONTROLLED DEVICES

Power MOSFETs and IGBTs – Principle of voltage controlled devices, construction, types, static and switching characteristics, steady state and dynamic models of MOSFET and IGBTs -Basics of GTO, MCT, FCT, RCT and IGCT.

UNIT IV FIRING AND PROTECTION CIRCUITS

Necessity of isolation, Pulse transformer, and Opto coupler – Gate drives circuit: SCR, MOSFET, IGBTs and base driving for power BJT-Over voltage, over current and gate protections; Design of snubber.

UNIT V THERMAL PROTECTION

Heat transfer – conduction, convection and radiation; Cooling – liquid cooling, vapour – phase cooling; Guidance for hear sink selection – Thermal resistance and impedance - Electrical analogy of thermal components, heat sink types and design – Mounting types.

TOTAL: 45 +30 = 75 Periods

The Ch Board of Studies

Content of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka, Ly

...9

Programme code & Name: pr & b:p-meconcar and piece onics onglicering

Sl.No 1.	Author(s)	Title of the Book	Publisher	Year of Publication		
	Rashid M.H	Power Electronics Circuits, Devices and Applications, Third Edition	Prentice Hall India, New Delhi	2004		
2.	MD Singh and K.B Khanchandani	Power Electronics	Tata McGraw Hill	2001		

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. David A.Bell		Electronic Devices and Circuits	Prentice Hall of India Private Limited	2013	
2.	Gupta.J.B	Electron Devices and Circuits	S.K.Kataria & Sons	2012	
3.	Mohan, Undeland and Robins	Power Electronics – Concepts, applications and Design	John Wiley and Sons	2000	
4.	Andrews L.C. and Phillips R.L	Mathematical Techniques for Engineers and Scientists	Prentice Hall of India Pvt.Ltd.	2005	
5.	B.W Williams	Power Electronics Circuit Devices and Applications	Prentice Hall of India Private Limited	2006	

WEB URLs

- 1. www.youtube.com/watch?v=xhn188JafbM
- 2. www.quora.com/Which-are-the-best-NPTEL-lectures-regarding-electronic-device...
- 3. www.svecw.edu.in/Docs%5CEEEPELNotes2013.pdf
- 4. www.youtube.com/watch?v=aO6tA1z933k
- 5. www.freevideolectures.com/Course/3305/Semiconductor-Device-Modeling

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuran-637 408, Namakiu, Jt.

COMPUTER AIDED ANALYSIS AND DESIGN OF ELECTRICAL APPARATUS

COURSE OBJECTIVES

- To introduce the importance of computer aided design method.
- To provide basic electromagnetic field equations and the problem formulation for CAD applications.
- To get familiarized with Finite Element Method as applicable for Electrical Engineering.
- To introduce the organization of a typical CAD package.
- To introduce Finite Element Method for the design of different Electrical apparatus.

COURSE OUTCOMES:

		DCO
16EEE04.CO5	An ability to use research-based knowledge and research methods i experiments	ncluding design of
16EEE04.CO4	An ability to create, select, and apply appropriate techniques	
16EEE04.CO3	Ability to model and analyze electrical apparatus and their applicat system	ion to power
16EEE04.CO2	Validate various design processing of electrical machines	
16EEE04.CO1	Apply various design processing of electrical machines	

Course		Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE04.CO1	x	x			x	-	-	-	-	-	-	÷	x	-	-
16EEE04.CO2	x	x	-	x	x		-	-	-	-	-	x	x	-	~
16EEE04.CO3	x	x	x	-	x	-	-		-	-	-	x	x	x	-
16EEE04.CO4	x	x	x	x	x	-	-		1.0	-	1 y	-	-	x	-
16EEE04.CO5	x	x	x		x		•	• •	1	-	-	-	x	x	-

UNIT I INTRODUCTION

Conventional design procedures – Limitations – Need for field analysis based design – Review of Basic principles of energy conversion – Development of Torque/Force.

UNIT II PHASE PLANE ANALYSIS

Features of linear and non-linear systems - Common physical non-linearities – Methods of linearizing non linear systems - Concept of phase portraits – Singular points – Limit cycles– Construction of phase portraits - Phase plane analysis of linear and non-linear systems – Isocline method.

UNIT III DESCRIBING FUNCTION ANALYSIS

Basic concepts - Derivation of describing functions for common non-linearities – Analysis of non-linear systems – Limit cycle - Stability.

UNIT IV CAD PACKAGES

Elements of a CAD System –Pre-processing – Modelling – Meshing – Material properties- Boundary Conditions - Setting up solution – Post processing.

UNIT V DESIGN APPLICATIONS

Voltage Stress in Insulators – Capacitance calculation - Design of Solenoid Actuator – Inductance and force calculation – Torque calculation in Switched Reluctance Motor.

TOTAL: 45 +30 = 75 Periods

The Chairman Board of Studies.

9

9

9

9

0

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-537 408, Namakus

TEVT POOKS.

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Ramasamy natarajan	Computer aided power system analysis	Marcell Dekker	2002	
2.	Yogesh, M, Nagaraja, B.S, Nandan, N	Computer aided electrical drawing	John Wiley and Sons, Singapore	2010	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Joao Pedro A. Bastos and Nelson Sadowski	Electromagnetic Modeling by Finite Element Methods	Marcell Dekker	2003	
2.	P.P.Silvester and Ferrari	Finite Elements for Electrical Engineers	Cambridge University Press	2004	
3.	D.A.Lowther and P.P Silvester	Computer Aided Design in Magnetics	Springer Verlag	2014	
4.	S.R.H.Hoole	Computer Aided Analysis and Design of Electromagnetic Devices	Elsevier	2005	
5.	Nicola Bianchi	Electrical Machine Analysis using Finite Elements	CRC Taylor & Francis	2005	

WEB URLs

- www.nptel.ac.in/courses/112102101/
 www.nptelvideos.in/2012/12/computer-aided-design.html
- 3. www.iitk.ac.in/infocell/flier/cad1.pdf
- 4. www.iitr.ac.in/departments/EE/pages/Academics+Courses_Offered.html
- 5. www.youtube.com/watch?v=ZDeLwFwnFKg

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka. Jt.

16EEE04

SMART GRID

L T P C 3 0 0 3

COURSE OBJECTIVES

- To understand the basic concept of smart grid
- To Study about Smart Grid technologies,
- To study the different smart meters and advanced metering infrastructure.
- To familiarize the power quality management issues in Smart Grid.
- To familiarize the high performance computing for Smart Grid applications

COURSE OUTCOMES:

16EEE05.CO1	Able to understand the basic concept of smart grid
16EEE05.CO2	Able to Study about Smart Grid technologies,
16EEE05.CO3	Able to study the different smart meters and advanced metering infrastructure.
16EEE05.CO4	Able to familiarize the power quality management issues in Smart Grid.
16EEE05.CO5	Able to familiarize the high performance computing for Smart Grid application

Course Outcomes	Program Outcomes													PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16EEE05.CO1	x	x	-	-	x	-	x		-	-	-	-	x	x	-	
16EEE05.CO2	x	x	-	x	x	-	x	-	-	-		x	x	x	-	
16EEE05.CO3	x	x	x	-	x	-	x	-	, a. I	-	÷	x	x	x	-	
16EEE05.CO4	x	x	x	x	x	-	x	•		-	_	-	-	x	-	
16EEE05.CO5	x	x	x	-	x	-	x	-	-	-	-	~	x	x	9	

UNIT I INTRODUCTION TO SMART GRID

Conventional design procedures – Limitations – Need for field analysis based design – Review of Basic principles of energy conversion – Development of Torque/Force.

UNIT II SMART GRID TECHNOLOGIES

Features of linear and non-linear systems - Common physical non-linearities – Methods of linearizing non linear systems - Concept of phase portraits – Singular points – Linit cycles– Construction of phase portraits - Phase plane analysis of linear and non-linear systems – Isocline method.

UNIT III SMART METERS AND ADVANCED METERING INFRASTRUCTURE 9 Basic concepts - Derivation of describing functions for common non-linearities – Analysis of non-linear systems – Limit cycle - Stability.

UNIT IV POWER QUALITY MANAGEMENT IN SMART GRID

Elements of a CAD System –Pre-processing – Modelling – Meshing – Material properties- Boundary Conditions - Setting up solution – Post processing.

UNIT V HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATIONS 9 Voltage Stress in Insulators – Capacitance calculation - Design of Solenoid Actuator – Inductance and force calculation – Torque calculation in Switched Reluctance Motor.

TOTAL: 45 Periods

The Chairman Board of Studies.

Department of Electrical and Electronics Enstrating Muthayammal Engineering College (Autonomus, Rasipuram-637 408, Namakka, Jt.

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. JanakaEkanayake		Smart Grid:Technologyand Applications	Yokoyama Jo&Sons, NewJersey	2012	
2.	Stuart Borlase	Smart Grid :Infrastructure, Technology and Solutions	CRC Press	2012	

REFERENCE BOOKS:

SI.N 0	Author(s)	Title of the Book	Publisher	Year of Publicati on	
1.	Xiao	Securityand Privacyin SmartGrids	CRC Press	2012	
2.	YangXiao	CommunicationandNetworkinginSmartGrids	TaylorandFranc is	2012	
3.	JamesMomo h	SMARTGRID:FundamentalsofDesignandAnalys is,	JohnWileyandS ons	2012	
4.	TonyFlick, JustinMoreho use	SecuringtheSmartGrid:NextGenerationPowerGri dSecurity	Academic Press Boston	2011	
5.	K. B. Raina	Electrical Design Estimating and Costing	PHI Learning Private Limited	2013	

WEB URLs

1. www.coursera.org/learn/electric-utilities/lecture/gwFy5/1-1-introduction

2. www.sap.com/sk/developer/topics/api.html

www.invata.com/warehouse-management-system/
 www.energy.siemens.com/hq/en/power-transmission/high-voltage-products/circuit-breaker/
 www.youtube.com/watch?v=Myg9JYDPSh4

airman The Ch

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka, pt.

POWER SYSTEM STABILITY

COURSE OBJECTIVES

16EEE06

· To introduce the basics of dynamics and stability problems

- To educate on modeling of synchronous machines
- To educate on the excitation system and speed-governing controllers.
- To study small signal stability of a single-machine infinite bus system with excitation system

To educate on the transient stability simulation of multi machine power system..

COURSE OUTCOMES:

16EEE06.CO1 Able to understand the basics of dynamics and stability problems

16EEE06.CO2 Able to understand the modeling of synchronous machines

16EEE06.CO3 Able to understand the excitation system and speed-governing controllers.

16EEE06.CO4 Able to study small signal stability of a single-machine infinite bus system with excitation system

16EEE06.CO5 Able to demonstrate skills to use modern engineering tools and equipment's to analyze problems

Course Outcomes		Program Outcomes													PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EEE06.CO1	x	x	-	-	-	-	x	-	-	-	-		x	x	. *		
16EEE06.CO2	x	x		x	-	-	x	*)	-	-	-	x	x	x			
16EEE06.CO3	x	x	x	-	- 1	-	x	-		-	=	x	x	x	-		
16EEE06.CO4	x	x	x	x	x	-	х	-		-	-	-	-	x	-		
16EEE06.CO5	x	x	x	э.	x	-	x	-	-	-	-		x	x	~~		

UNIT I INTRODUCTION

Basics of system dynamics – numerical techniques – introduction to software packages to study the responses. Concept and importance of power system stability in the operation and design – distinction between transient and dynamic stability - complexity of stability problem in large system – necessity for reduced models - stability of interconnected systems

UNIT II SYNCHRONOUS MACHINE MODELLING

Synchronous machine - flux linkage equations - Park's transformation - per unit conversion -normalizing the equations - equivalent circuit - current space model - flux linkage state space model. Sub-transient and transient inductances - time constants. Simplified models (one axis and constant flux linkage) - steady state equations and phasor diagrams.

UNIT III MACHINE CONTROLLERS

Exciter and voltage regulators - function and types of excitation systems - typical excitation system configuration - block diagram and state space representation of IEEE type 1 excitation system - saturation function - stabilizing circuit. Function of speed governing systems - block diagram and state space.

UNIT IV TRANSIENT STABILITY

State equation for multi machine system with one axis model and simulation – modelling of multimachine power system with one axis machine model including excitation system and speed governing system and simulation using R-K method of fourth order (Gill's technique) for transient stability analysis - power system stabilizer. For all simulations, the algorithm and flow chart have to be discussed.

UNIT V DYNAMIC STABILITY

System response to small disturbances - linear model of the unregulated synchronous machine and its modes of oscillation - regulated synchronous machine - distribution of power impact – linearization of the load equation for the one machine problem – simplified linear model - effect of excitation on dynamic stability - approximate system representation – supplementary stabilizing signals – dynamic performance measure - small signal performance measures.

The Chairman Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuration of the three

TOTAL: 45 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	P.M. Anderson and A.A.Fouad	Power System Control and Stability	Galgotia Publications	2003
2.	PrabhaKundur	Power System Stability and Control	McGraw Hill	2010

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	M.A.Pai and W.Sauer	Power System Dynamics and Stability	Pearson Education Asia	2002	
2.	Olle.I.Elgerd	Electric Energy Systems Theory – An Introduction	Tata McGraw Hill Publishing Company Ltd, New Delhi,	2003	
3.	J.Nagrath.andD.P.Kothari	Modern Power System Analysis	Tata McGraw Hill Publishing Company, New Delhi,	2005	
4.	K. B. Raina	Electrical Design Estimating and Costing	PHI Learning Private Limited	2013	
5.	M.A.Pai,	Computer Techniques in Power System Analysis	Tata McGraw Hill Publishing Company, New Delhi,	2003	

WEB URLs

1. www.selinc.com/featured-stories/gse/5/

www.senite.com/reatured/stories/gsc/3/
 www.coursera.org/learn/converter-control/lecture/dz5JE/sect-7-1-introduction-to-ac-modeling
 www.youtube.com/watch?v=cIUVp_51hg0
 www.youtube.com/watch?v=MtMt6qbSo5s
 www.digitalcombatsimulator.com/en/

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomas) Rasipuram-637 408. Namaking on

16EEE07

HIGH VOLTAGE DIRECT CURRENT TRANSMISSION

COURSE OBJECTIVES

- To understand the concept, planning of DC power transmission and AC Power transmission.
- To analyze HVDC converters.
- To study about the HVDC system control.
- To analyze harmonics and design of filters.
- To model and analysis the DC system under study state.

COURSE OUTCOMES:

16EEE07.CO1	Able to analyze HVDC Power transmission Technology
16EEE07.CO2	Able to analyze HVDC converters.
16EEE07.CO3	Able to Understand converter control characteristics in HVDC
16EEE07.CO4	Able to Understand harmonics and design of filters.

16EEE07.CO5 Able to analyze the power flow analysis in DC/AC systems

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16EEE07.CO1	x	X	-	-	-	-	x		-	-	÷	÷	х	x	~		
16EEE07.CO2	x	x	-	x	-		x		-	-	-	х	х	x			
16EEE07.CO3	x	х	-		-	х	х			-	-	x	х	х	~		
16EEE07.CO4	x	x	-	x	x	x	x		-	-	~	-	-	x	-		
16EEE07.CO5	x	x	-	-	x	x	x	-	-	-	-	-	x	x	1.00		

UNIT I INTRODUCTION

DC Power transmission technology–Comparison of AC and DC transmission–Application of DC transmission–Description of DC transmission system– Planning for HVDC transmission–Modern trendsinHVDCtechnology–DCbreakers–Operatingproblems–HVDCtransmissionbasedon VSC–Types and applications of MTDC systems.

UNIT II ANALYSISOFHVDCCONVERTERS

Linecommutatedconverter-AnalysisofGraetzcircuitwithandwithoutoverlap-Pulsenumber – Choice of converter configuration–Converter bridge characteristics –Analysisofa12pulse converters–Analysis of VSC topologies and firing schemes.

UNIT III CONVERTER ANDHVDCSYSTEMCONTROL

PrinciplesofDClinkcontrol–Convertercontrol characteristics–Systemcontrolhierarchy–Firing anglecontrol– Currentandextinctionanglecontrol–StartingandstoppingofDClink–Power control– Higher level controllers– ControlofVSCbased HVDClink.

UNIT IV REACTIVEPOWERANDHARMONICSCONTROL

Reactivepowerrequirementsinsteadystate-Sourcesofreactivepower-SVCandSTATCOM Generationofharmonics-DesignofACandDC filters-Activefilters.

UNIT V POWERFLOWANALYSISIN AC/DCSYSTEMS

Per unitsystemfor DCquantities-DCsystem model-Inclusionofconstraints-Powerflowanalysis-casestudy.

TOTAL: 45 Periods

The (Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus Rasipuram-637 408, Namakka, pt.

9

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Padiyar,K.R		HVDCpowertransmissionsystem	NewAgeInternational (P) Ltd.,NewDelhi,	2010	
2.	Kundur P	Power System Stability and Control	Tata McGraw Hill	2011	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Edward Wilson Kimbark	Direct Current Transmission	Vol. I, Wiley interscience, New York, London, Sydney	2000	
2.	Rakosh Das Begamudre	Extra High Voltage AC Transmission Engineering	New Age International (P) Ltd., New Delhi	2008	
3.	Colin Adamson and Hingorani N G	High Voltage Direct Current Power Transmission	Garraway Limited, London,		
4.	S.Kamakshaiah, V. Kamaraju,	HVDC Transmission	Tata McGraw Hill Education Private Limited	2011	
5.	Arrillaga, J.	High Voltage Direct Current Transmission	Peter Pregrinus, London	2005	

WEB URLs

- 1. www.nptel.ac.in/courses/108104013/
- 2. www.youtube.com/watch?v=yP7OACmLP48
- 3. www.nptelvideos.in/2012/11/high-voltage-dc-transmission.html 3
- www.coursebuffet.com/course/.../nptel/high-voltage-dc-transmission-iit-kanpur
 www.elect.mrt.ac.lk/HV_Chap11.pdf

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autono...... Rasipuram-637 408. Nainakku. --

SOFT COMPUTING TECHNIQUE

16EEE08

COURSE OBJECTIVES

- To understand basic concept of intelligent controller.
- To study various types of artificial neural network
- To introduce the concept of genetic algorithm
- To study measures to improve the fuzzy logic system
- To study GA application to power system optimization problem.

COURSE OUTCOMES:

16EEE08.CO1	Able to	understand	basic	concept	of	intelligent	controller.
-------------	---------	------------	-------	---------	----	-------------	-------------

- 16EEE08.CO2 Able to study various types of artificial neural network
- 16EEE08.CO3 Able to introduce the concept of genetic algorithm
- 16EEE08.CO4 Able to study measures to improve the fuzzy logic system

16EEE08.CO5 Able to study GA application to power system optimization problem

Course Outcomes				PSOs											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	рон	PO12	PSO1	PSO2	PSO3
16EEE08.CO1	x	x		-	-	-	x	-		-	14	-	x	x	
16EEE08.CO2	x	x		x	-		x	-		-	~	x	-	x	
16EEE08.CO3	x	x	-	-	-	x	x	-	-	-	5×1	х	x	-	-
16EEE08.CO4	x	x	-	x	x	-	x	-	-	-		-	-	x	-
16EEE08.CO5	-	x	-	-	x	x	x			-	-	-	x	x	-

UNIT I INTRODUCTION

Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rulebased systems, the AI approach. Knowledge representation. Expert systems.

UNIT II ARTIFICIAL NEURAL NETWORKS

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron. Learning and Training the neural network. Data Processing: Scaling, Fourier transformation, principal -component analysis and wavelet transformations. Hopfield network, Self-organizing network and Recurrent network. Neural Network based controller

UNIT III GENETIC ALGORITHM

Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and ant-colony search techniques for solving optimization problems.

UNIT IV FUZZY LOGIC SYSTEM

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to fuzzy logic modeling and control. Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases. Fuzzy modeling and control schemes for nonlinear systems. Selforganizing fuzzy logic control. Fuzzy logic control for nonlinear time-delay system.

UNIT V APPLICATIONS

GA application to power system optimization problem, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab-Neural Network toolbox. Stability analysis of Neural-Network interconnection systems. Implementation of fuzzy logic controller using Matlab fuzzy-logic toolbox. Stability analysis of fuzzy control systems.

TOTAL: 45 Periods

9

The Chair

Board of Studies, Department of Electrical and Electronics Engineering Muthovammal Engineering College (Autonomus) Rasingrow 697,409

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Padhy.N.P	Artificial Intelligence and Intelligent System	Oxford University Press	2005	
2.	Kosko,B.	Neural Networks And Fuzzy Systems	Hall of India Pvt. Ltd	2002	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Jacek.M.Zurada	Introduction to Artificial Neural Systems	Jaico Publishing House	2004	
2.	klir G.J. & folger T.A	Fuzzy sets, uncertainty and Information	Prentice-Hall of India Pvt.Ltd	1993	
3.	Zimmerman H.J	Fuzzy set theory-and its Applications	Kluwer Academic Publishers	1994	
4.	Driankov, Hellendroon	Introduction to Fuzzy Control	Narosa Publishers	2004	
5.	Goldberg D.E.	Genetic algorithms in Search, Optimization and Machine learning	Prentice-Hall of India Pvt.Ltd	2001	

WEB URLs

.

1. www.youtube.com/watch?v=McLq1hEq3UY

www.nptel.ac.in/courses/108105019/
 www.nptelvideos.in/2012/11/numerical-optimization.htm
 www.ocw.mit.edu/courses/electrical-engineering.../video-lectures/lecture-9-trajectory

5. www.cosmo!earning.org

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autononics) Rasipuram-637 408. Namakiw. Ju

16EEE09

FLEXIBLE AC TRANSMISSION SYSTEMS

L T P C 3 0 0 3

COURSE OBJECTIVES

- To analyze the various types of FACTS controllers.
- To design the shunt compensation devices used for power factor improvement.
- To develop the series compensation devices based on their operating characteristics.
- To create Static Synchronous Compensator and static synchronous series compensator.
- To analyze the co-ordination of FACTS controllers.

COURSE OUTCOMES:

16EEE09.CO1	Analyze the various types of FACTS controllers.
16EEE09.CO2	Design the shunt compensation devices used for power factor improvement.
16EEE09.CO3	Develop the series compensation devices based on their operating characteristics.
16EEE09.CO4	Create Static Synchronous Compensator and static synchronous series compensator.
16EEE09.CO5	Analyze the co-ordination of FACTS controllers.

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI®	PO11	PO12	PSO1	PSO2	PSO3		
16EEE09.CO1	x	x	-	-	x	-	-		~	х	-	x	x	-	x		
16EEE09.CO2	x	x	x	x	x	-	-	-	-	x	3	х	x	x	x		
16EEE09.CO3	x	x	x	x	x	-	-	-	-	x	-	x	x	x	x		
16EEE09.CO4	x	x	x	x	x				-	x	-	x	x	·x	x		
16EEE09.CO5	x	x	x	x	x		- 1	-	-	x		x	x	х	х		

UNIT I INTRODUCTION

Reactive power control in electrical power transmission lines - Uncompensated transmission line - Series compensation - Basic concepts of Static Var Compensator (SVC) - Thyristor Controlled Series capacitor (TCSC) - Unified power flow controller (UPFC).

UNIT II STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS

Voltage control by SVC - Advantages of slope in dynamic characteristics - Influence of SVC on system voltage - Design of SVC voltage regulator - Modelling of SVC for power flow and fast transient stability - Applications: Enhancement of transient stability - Steady state power transfer - Enhancement of power system damping.

UNIT III THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATIONS

Operation of the TCSC - Different modes of operation - Modelling of TCSC - Variable reactance model - Modelling for Power Flow and stability studies. Applications: Improvement of the system stability limit - Enhancement of system damping.

UNIT IV VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS

Static Synchronous Compensator (STATCOM) - Principle of operation - V-I Characteristics. Applications: Steady state power transfer-enhancement of transient stability - prevention of voltage instability. SSSC - operation of SSSC and the control of power flow – modelling of SSSC in load flow and transient stability studies.

UNIT V CO-ORDINATION OF FACTS CONTROLLERS

Controller interactions - SVC to SVC interaction - Co-ordination of multiple controllers using linear control techniques - Control coordination using genetic algorithms.

TOTAL: 45 Periods 1. de DAN The Chairman

9

0

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka, or

SI.No	Author(s)	Title of the Book	Publisher	Year of Publication
1	R.Mohan Mathur Rajiv K.Varma	Thyristor – Based Facts Controllers for ElectricalTransmission Systems	IEEE press and John Wiley & Sons	2002
2.	Narain G. Hingorani	Understanding FACTS -Concepts and Technology of Flexible AC Transmission Systems	Standard Publishers Distributors	2011

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. K.R.Padiyar		FACTS Controllers in Power Transmission and Distribution	New Age International(P) Limited	2008	
2.	A.T.John	ohn Flexible A.C. Institution of Electrical Transmission Systems and Electronic Engineers			
3.	V.K.Sood	HVDC and FACTS controllers – Applications of Static Converters in Power System	Kluwer Academic Publishers	2004	
4.	Xiao – Ping Zang	Christian Rehtanz and Bikash Pal, "Flexible AC Transmission System: Modelling and Control	Springer	2012	
5.	K. Sawhney	A course in Electrical Machine Design	Khanna Puplications	2007	

WEB URLs

1. www.nptel.ac.in/courses/108104052/26

2. www.iitb.ac.in/~cep/brochures/kulkarni-Mar03-bro.html

- www.vidyarthiplus.com/vp/thread-21596.html
 www.videos.gitam.edu/nptel/108101040/Power%20Systems%%20and%20Control/About-Faculty.html
- 5. www.youtube.com/watch?v=olq593YoRuQ

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakica. Jt.

POWER QUALITY

COURSE OBJECTIVES

19EEE11

- To analyze the various types of power quality problem.
- To discuss the voltage sag and Interruption power quality problem.
- To explain the overvoltage power quality issue.
- To illustrate the harmonics in power quality issue.
- To know the importance of power quality monitoring devices.

COURSE OUTCOMES:

- 19EEE11.CO1 Analyze the various types of power quality problem.
- 19EEE11.CO2 Discuss the voltage sag and Interruption power quality problem.
- 19EEE11.CO3 Explain the overvoltage power quality issue.
- 19EEE11.CO4 Illustrate the harmonics in power quality issue.
- 19EEE11.CO5 Know the importance of power quality monitoring devices.

Course		Program Outcomes											PSOs		
Outcomes	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
19EEE11.CO1	1 H	x	x	x	-	x	-			х	1	х	-	х	-
19EEE11.CO2	x	x	x	x		x	-		-	x	-	x	x	x	×.
19EEE11.CO3		x	x	x	•	х	-	-	-	х		х	-	х	
19EEE11.CO4	x	x	x	x	•	x	•	-	-	x		х	x	x	
19EEE11.CO5	-	x	x	x	· .	x	-			х	12	x	0	x	-

UNIT I INTRODUCTION TO POWER QUALITY

Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients – short Duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency Variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve.

UNIT II VOLTAGE SAGS AND INTERRUPTIONS

Sources of sags and interruptions - estimating voltage sag performance. Thevenin's equivalent sourceanalysis and calculation of various faulted condition. Voltages sag due to induction motor starting.Estimation of the sag severity - mitigation of voltage sags, active series compensators. Static transfer switches and fast transfer switches.

UNIT III OVERVOLTAGES

Sources of over voltages - Capacitor switching – lightning - Ferro resonance. Mitigation of voltage swells - surge arresters - low pass filters - power conditioners. Lightning protection – shielding – line arresters - protection of transformers and cables. An introduction to computer analysis tools for transients, PSCAD and EMTP.

UNIT IV HARMONICS

Harmonic sources from commercial and industrial loads, locating harmonic sources. Power system Response characteristics - Harmonics Vs transients. Effect of harmonics - harmonic distortion – voltage and current distortion - harmonic indices - inter harmonics – resonance. Harmonic distortion evaluation - devices for controlling harmonic distortion - passive and active filters. IEEE and IEC standards.

UNIT V POWER QUALITY MONITORING

Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modeling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer – quality measurement equipment - harmonic / spectrum analyzer - flicker meters - disturbance analyzer. Applications of expert systems for power quality monitoring.

TOTAL: 45 Periods The Chairman Board of Studies, Department of Electrical and Electronics Engineering Muthavammal Engineering College (Autonomus) Rasipuram 637 408, Namatka, ct.

Sl.No	BOOKS: Author(s)	Title of the Book	Publisher	Year of Publication 2003	
1.	Roger. C. Dugan	Electrical Power Systems Quality	McGraw Hill		
2.	Eswald.F.Fudis and Masoum	Power Quality in Power System and Electrical Machines	Elsevier Academic Press	2013	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	E.Aeha and M.Madrigal	Power System Harmonics, Computer Modelling and Analysis	Wiley	2012	
2.	G.T. Heydt	Electric Power Quality	Circle Publications	1983	
3.	M.H.J Bollen	H.J Bollen Understanding Power Quality Problems: Voltage Sags and Interruptions		1999	
4.	G.J.Wakileh	J.Wakileh J.Wakileh J.Wakileh Fundamentals, Analysis and Filter Design		2007	
5.	R.S.Vedam, M.S.Sarma	Power Quality – VAR Compensation in Power Systems	CRC Press	2013	

The C airman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomos) Rasipuram-637 408 1999

SPECIAL ELECTRICAL MACHINES

16EEE11

COURSE OBJECTIVES

- · To analyze the operation and characteristics of synchronous reluctance motor
 - To explain the operation and characteristics of stepper motors
- To elaborate the operation and characteristics of switched reluctance motors
- To discuss the operation and characteristics of permanent magnet brushless D.C. motors
- To know the importance of operation and characteristics of permanent magnet Synchronous
- motors.

COURSE OUTCOMES:

16EEE11.CO1	Analyze the operation and characteristics of synchronous reluctance motor
16EEE11.CO2	Explain the operation and characteristics of stepper motors
16EEE11.CO3	Elaborate the operation and characteristics of switched reluctance motors
16EEE11.CO4	Discuss the operation and characteristics of permanent magnet brushless D.C.
IOEEEII.CO4	motors
16EEE11.CO5	Know the importance of operation and characteristics of permanent magnet
TOLLETT.COS	Synchronous motors.

Course Outcomes		Program Outcomes											PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE11.CO1	x	x	x	x	-	x		-	-	x	-	x	-	x	-
16EEE11.CO2	x	x	x	x	-	x	-	-	-	х	-	x	-	x	-
16EEE11.CO3	x	x	x	x	-	x	-	-	-	x	-	x	-	x	-
16EEE11.CO4	x	x	x	x	-	х	-	-	-	x	-	x	-	х	-
16EEE11.CO5	x	x	x	x	-	x	-	-	-	x	-	х	-	х	-

SYNCHRONOUS RELUCTANCE MOTORS UNIT I

Constructional features - Types - Axial and Radial motors - Operating principle - Steady state phasor diagram - Circle diagram - Characteristics - Applications

STEPPER MOTORS UNIT II

Constructional features - Principle of operation - Classification of stepping motors - Variable reluctance motors - PM Stepping motor - Hybrid motors - Single and multi-stack configurations - Modes of excitation - Theory of torque predictions - Characteristics - Drive circuits - Microprocessor based control - Applications ..

SWITCHED RELUCTANCE MOTORS UNIT III

Principle of operation - Types - EMF and torque equations - Magnetic circuit analysis - Static and dynamic torque production - Energy conversion loop - Power controllers - Motor characteristics and control - Applications.

PERMANENT MAGNET BRUSHLESS D.C. MOTORS UNIT IV

Comparison of conventional and brushless DC motors - Electronic and mechanical commutation - PMDC motors - Constructional features - Principle of operation - EMF and torque equations - Magnetic circuit analysis - Power controllers - Microprocessor based control - Applications.

PERMANENT MAGNET SYNCHRONOUS MOTORS UNIT V

Constructional features - Principle of operation - Classifications of PMSM - EMF and torque equations -Phasor diagram - Power controllers - Torque speed Characteristics - Microprocessor based control -Applications.

TOTAL: 45 Periods The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakh.

TEXT BOOKS.

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication		
1. T.J.E. Miller		Brushless Permanent Magnet and Reluctance Motor Drives	Clarendon Press, Oxford	1989		
2.	T.Kenjo	Stepping Motors and Their Microprocessor Controls	Clarendon Press London	1984		

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. R.Krishnan		Switched Reluctance Motor Drives – Modeling, Simulation, Analysis, Design and Application	CRC Press, New York	2001	
2.	P.P. Aeamley	Stepping Motors – A Guide to Motor Theory and Practice	Peter Perengrinus London	1982	
3.	T. Kenjo and S. Nagamori	Permanent Magnet and Brushless DC Motors	Clarendon Press, London	1988	
4.	E.G. Janardanan	Special Electrical Machines	PHI learning Private Limited, Delhi	2014	
5.	K.Venkataratnam	Special Electrical Machines	Universities Press (India) Private Limted	2008	

WEB URLs

1. www.nptel.ac.in/courses/108105017/

www.nptet.ac.in/courses/10810501//
 www.academia.edu/9885014/SPECIAL_ELECTRICAL_MACHINES_NPTEL_NOTES
 www.egr.msu.edu/~fzpeng/ECE320/ECE320-Notes-Part1.pdf
 www.nptelvideos.in/2012/11/electrical-machines-i.html

5. www.youtube.com/watch?v=H97HpwZNqZI

airman The

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipurani-637 408. Namakke

16EEE12

POWER SYSTEM TRANSIENTS

C 3 3

COURSE OBJECTIVES

- · To study the generation of switching transients and their control using circuit theoretical concept.
- To study the mechanism of lighting strokes and the production of lighting surges.
- To study the propagation, reflection and refraction of travelling waves.
- To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.
- Prerequisite Basic knowledge in generation, transmission and distribution of electric power.

COURSE OUTCOMES:

- Understand the Basic concepts of transients and effects of transients. 16EEE12.CO1
- Able to understand the generation of switching transients and control circuits. 16EEE12.CO2

Design the mechanism of lighting strokes and productions. 16EEE12.CO3

16EEE12.CO4

Able to understand the Computation of transients in and distributed lines. Able to understand impact of voltage transients and circuit breaker 16EEE12.CO5

Course Outcomes		Program Outcomes											PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE12.CO1	x	-	x	x	- 1	x	-	-	-	x	-	x	-	x	-
16EEE12.CO2	x	-	x	x	-	x	-	-	-	x	-	x	-	x	-
16EEE12.CO3	x	-	x	x	-	x	-	-	-	x	-	x	-	x	-
16EEE12.CO4	x	-	x	x	- 1	x	-	-	-	x	-	x	-	x	-
16EEE12.CO5	x	-	x	x		x	-	-	-	x	-	x	-	x	-

INTRODUCTION AND SURVEY UNIT I

Source of transients - Various types of power systems transients - Effect of transients on power systems, importance of study of transients in planning.

SWITCHING TRANSIENTS **UNIT II**

Introduction, circuit closing transients: RL circuit with sine wave drive, double frequency transients, observations in RLC circuit and basic transforms of the RLC circuit - Resistance switching - Load switching - Normal and abnormal switching transients - Current suppression, current chopping and effective equivalent circuit - Capacitance switching, effect of source regulation, capacitance switching with a restrike, with multiple restrikes, illustration for multiple restriking transients, Ferro resonance.

LIGHTNING TRANSIENTS UNIT III

Causes of over voltage - lightning phenomenon, charge formation in the clouds - Rate of charging of thunder clouds, mechanisms of lighting strokes - Mathematical model for lightning, characteristics of lightning strokes; factors contributing to good line design, protection afforded by ground wires - Tower footing resistance- Interaction between lightning and power system.

TRAVELLING WAVES ON TRANSMISSION LINE COMPUTATION OF UNIT IV TRANSIENT

Computation of transients: Transient response of systems with series and shunt lumped parameters and distributed lines - Travelling wave concept: step response, reflection and refraction of travelling waves -Bewely's lattice diagram - Attenuation and distortion of travelling waves.

TRANSIENTS IN INTEGRATED POWER SYSTEM UNIT V

The short line and kilometric fault - distribution of voltage in a power system: Line dropping and load rejection - Voltage transients on closing and reclosing lines - Over voltage induced by faults - Switching surges on integrated system - Computation of transient: Transient network analyzer, EMTP.

TOTAL: 45 Periods

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipurem-637 408 Namath

9

one or wall -mechica: and cletchonics cugmeeting 1 3 dl

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Pritindra Chowdhari	Electromagnetic transients in Power System	John Wiley and Sons Inc Second Edition,	2009	
2.	R.D.Begamudre	Extra High Voltage AC Transmission Engineering	Wiley Eastern Limited	2011	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2009	
1.	M.S.Naidu and V.Kamaraju	High Voltage Engineering	Tata McGraw Hill, 4th edition		
2.	Y.Hase	Handbook of Power System Engineering	Wiley India	2012	
3.	J.L.Kirtley	Electric Power Principles, Sources, Conversion, Distribution and use	Wiley India	2012	
4.	Allan Greenwood	Electrical Transients in Power Systems	Wiley Inter science	2010	
5.	C.S. Indulkar, D.P.Kothari	Power System Transients	PHI Learning Private Limited, Second Edition	2010	

WEB URLs

1. www.nptel.ac.in/courses/108104052/12

- 2. www.youtube.com/watch?v=UMhBgyK8F0U
- 3. www.powershow.com/view1/187e36ZDc1Z
- www.faadooengineers.com/.../24872-Power-system.
 www.youtube.com/watch?v=QZ9IqQ1LoZo

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka. Ja

POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS

COURSE OBJECTIVES

- To elaborate the different renewable energy resources and its environmental impacts
- To function of electrical machines for renewable energy conversion
- To Discuss about the power converters for renewable energy systems.
- To analyze the wind and solar energy system.
- To explain the hybrid power systems.

COURSE OUTCOMES:

16EEE13.CO1 Elaborate the different renewable energy resources and its environmental impacts

- 16EEE13.CO2 Function of electrical machines for renewable energy conversion
- 16EEE13.CO3 Discuss about the power converters for renewable energy systems.
- 16EEE13.CO4 Analyze the wind and solar energy system.

16EEE13.CO5 Explain the hybrid power systems.

Course		Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE13.CO1	L	x		-	1	-	x	- I -	-	x		x	19	-	-
16EEE13.CO2	x	x	x	x	-	-	x	-		x	μ	x	x	x	-
16EEE13.CO3	x	x	x	x	-	-	x	-		x	-	x	x	x	3
16EEE13.CO4	1	x	x	x		-	x	-	-	x	-	x		x	-
16EEE13.CO5	x	x	x	x	-	-	x	-	-	x	-	x	x	x	. ÷

UNIT I INTRODUCTION

Environmental aspects of electric energy conversion impacts of renewable energy generation on environment (cost-GHGEmission)-Qualitativestudyofdifferentrenewable energy sources: Solar, wind ,ocean ,Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.

UNIT II ELECTRICALMACHINESFORRENEWABLEENERGY CONVERSION

Reference frame theory fundamentals - Principle of operation and analysis: Induction Generator (IG), Permanent Magnet Synchronous Generator (PMSG), Self Excited Synchronous Generator (SEIG) and Doubly Fed Induction generator (DFIG)

UNIT III ANALYSIS OF WIND AND PV SYSTEMS

Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing, array sizing Wind: Three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

UNIT IV TRAVELLING WAVES ON TRANSMISSION LINE COMPUTATION OF TRANSIENT

Standalone operation of fixed and variable speed wind energy conversion systems and solar system-Grid connection Issues -Grid integrated PMSG, SEIG Based WECS, grid Integrated solar system

UNIT V HYBRIDRENEWABLEENERGYSYSTEMS

Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

TOTAL: 45 Periods

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka, etc.

0

9

TEXT BOOKS.

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Twidell, J.W. and Weir	Renewable Energy Sources	EFN Spon Ltd	2005	
2.	Sukhatme, S.P	Solar Energy	Tata McGraw Hill	2000	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Kothari D. P		Renewable Energy Sources and Emerging Technologies	PHI Learning Private Limited, New Delhi	2013	
2.	Tasneem Abbasi Renewable Energy Sources		PHI Learning Private Limited	2013	
3.	Kreith,F	F Principles of Solar McG		1978	
4.	Freris L.L	Wind Energy Conversion systems	Prentice Hall	1990	
5.	R.K.Agarwal	Principal of Electrical Machine Deisign	S. K. Kataria & Sons	2009	

WEB URLs

- 1. www.coursera.org/learn/globalenergyandclimatepolicy/lecture/vOYuX/week-3-introduction
- 2. www.ravivarmans.com/course-materials/power-electronics-for-renewable-energy-systems
- 3. www.youtube.com/watch?v=GSUdCVS6rcE
- 4. www.study.com/academy/lesson/what-is-solar-energy-definition-lesson-quiz.html
- 5. www.youtube.com/watch?v=JTssFo0TijQ

man The C

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autono......) Rasipuram-637 408. Namakkal Dt.

16EEE14

SWITCHED MODE POWER CONVERSION

L	Т	Р	С
3	0	0	3

COURSE OBJECTIVES

- To study the Converter Topology.
- To study the Carrier Modulation.
- To study the Current Control Schemes.
- To study the basic closed loop control.
- To study the power factor control

COURSE OUTCOMES:

16EEE14.CO1	Able to design the Converter module.
-------------	--------------------------------------

16EEE14.CO2 Able to analysis Carrier modulation of converter

- 16EEE14.CO3 Able to design current control schemes.
- 16EEE14.CO4 Able to design basic closed loop control.

16EEE14.CO5 Able to analysis power factor control

Course		Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE14.CO1	-	x	-	-	1.	-	x	-	-	x	-	x		1	-
16EEE14.CO2	x	x	x	x	-	-	x	-	3	х	-	x	x	x	
16EEE14.CO3	x	x	x	x		-	x	-		x	-	x	x	x	-3
16EEE14.CO4	-	x	x	x	-	-	x	-		x	-	x	-	x	~
16EEE14.CO5	x	x	x	x	-	-	x	-	-	x	-	x	x	x	

UNIT I CONVERTER TOPOLOGIES

Buck, Boost, Buck – Boost SMPST topologies. Basic Operation - Waveforms – modes of operation - switching stresses - switching and conduction losses – optimum switching frequency – practical voltage, current and power limits –design relations – voltage mode control principles - Datasheets

UNIT II CARRIER MODULATION

Switch-Mode dc-ac Inverters - Basic Concepts - Single Phase Inverters - Push Pull - Half Bridge and Full Bridge Square Inverters - Blanking Time - Single Pulse Modulation of Single Phase Square Wave Inverters - Multi pulse modulation - PWM Principles - Sinusoidal Pulse Width Modulation in Single Phase Inverters - Choice of carrier frequency in SPWM - Bipolar and Unipolar Switching in SPWM.

UNIT III CURRENT CONTROL SCHEMES

Current Regulated Inverter - Current Regulated PWM Voltage Source Inverters - Methods of Current Control - Hysteresis Control - Variable Band Hysteresis Control - Fixed Switching Frequency Current Control Methods - Switching Frequency Vs accuracy of Current Regulation - Areas of application of Current Regulated VSI Methods of current control

UNIT IV CLOSED LOOP CONTROL

Switched Mode Rectifier - Operation of Single/Three Phase Bridges in Rectifier Mode - Control Principles - Control of the DC Side Voltage - Voltage Control Loop - The inner Current Control Loop. Inner current control loop

UNIT V POWERFACTORCONTROL

Shunt Reactive Power Compensators - Switched Capacitors - Static Reactor Compensators based on thyristor - Static Reactive VAR Generators using PWM Current Regulated VSIs - Principles - Control Strategies - Series Compensation by PWM-VSI based Voltage Injection Scheme - Principles - Control Strategies ClassificationofResonantConverter

TOTAL: 45 Periods

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakkal Dt.

9

9

SI.No	BOOKS: Author(s)	Title of the Book	Publisher	Year of Publication	
1. Apraham I Pressman		Switching Power Supply Design	McGrawHillPublishing Company	2008	
2.	Ned Mohan	Power Electronics	John Wiley and Sons	2006	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Otmar Kilgenstein		Switched Mode Power Supplies in practice	John Wiley and Sons	2002	
2.	KeithHBillings	Handbook of Switched Moder Power Supplies			
3.	Mark J Nave	Power Line Filter Design for Switched - Mode Power Supplies	Van Nostrand Reinhold, New York	2004	
4.	Daniel M Mitchell	DC - DC Switching Regulator Analysis	Mc Graw Hill publishing Company	2005	
5. R.S.Vedam, M.S.Sarma		Power Quality – VAR Compensation in Power Systems	CRC Press	2013	

WEB URLs

1. www.coursera.org/learn/converter-circuits/lecture/1TmBd/sect-6-1-1-2-dc-dc-convertertopologies

- 2. www.nptel.ac.in/courses/108108036/
- 3. www.youtube.com/watch?v=YmPziPfaByw
- 4. www.freevideolectures.com/Course/3208/Switched-Mode-Power-Conversion
- 5. www.peg.ee.iisc.ernet.in/people/faculty/vram/smpc/smpcbook.pdf

man T

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakue, 20

VLSI DESIGN

COURSE OBJECTIVES

16EEE15

- · To study the building block of digital VLSI circuit.
- To study the architectural, designing and realizing the circuits in CMOS technology.
- · To study the transistor circuit level design and realization for digital operation
- To understand the Basic operations on IC
- The main focus is on implementation of FPGA based system

COURSE OUTCOMES:

16EEE15.CO1	Able to understand different MOS Transistors.
16EEE15.CO2	Able to explain the basic concepts of CMOS circuits and the CMOS process technology.
16EEE15.CO3	Able to explain the techniques of chip design using programmable devices.
16EEE15.CO4	Able to Model the digital system using Hardware Description Language.
16EEE15.CO5	Able to explain the basic FPGA circuits.

Course		Program Outcomes											PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE15.CO1	-	x	-	-	-	-	x	-	-	-	-	x	i.	-	-
16EEE15.CO2	x	x	x	x	-	-	x	-	-	-		х	x	x	-
16EEE15.CO3	x	x	x	x	-	-	x	-	÷	-		x	x	x	
16EEE15.CO4	-	x	x	x	-	-	x	-	-	-	-	х		x	8
16EEE15.CO5	x	x	x	x	1.5	-	x	-	-	-	~	x	x	x	-

UNIT I MOS TRANSISTOR PRINCIPLE

NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS Circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter Scaling, propagation delays, Stick diagram, Layout diagrams.

UNIT II COMBINATIONAL LOGIC CIRCUITS

Examples of Combinational Logic Design, Elmore's constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design, Power dissipation – Low power design principles

UNIT III SEQUENTIAL LOGIC CIRCUITS

Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory Architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design

UNIT IV DESIGNING ARITHMETIC BUILDING BLOCKS

Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders, Accumulators, Multipliers, dividers, Barrel shifters, and speed and area tradeoff

UNIT V IMPLEMENTATION STRATEGIES

Full custom and Semi-custom design, Standard cell design and cell libraries, FPGA building block Architectures, FPGA interconnect routing procedures.

TOTAL: 45 Periods

9

9

The (

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Abb)

TEVT BOOKS.

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Jan Rabaey, Anantha Chandrakasan, B.Nikolic	Digital Integrated Circuits: A Design Perspective	Second Edition, Prentice Hall of India	2003
2.	M.J. Smith	Application Specific Integrated Circuits	Addison Wesley	1997

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2005	
1.	R.Jacob Baker, Harry W.LI., David E.Boyee	CMOS Circuit Design, Layout and Simulation	Prentice Hall of India		
2.	A.Pucknell, Kamran Eshraghian			2013	
3.	Charles H.Roth,	Fundamentals of Logic Design	Jaico Publishing House	2006	
4.	Weste N H	Veste N H Principles of CMOS VLSI Design		2003	
5.	Eugene D.Fabricius	Introduction to VLSI Design	Tata McGraw Hill	2010	

WEB URLs

- www.nptel.ac.in/downloads/117101058/
 www.youtube.com/watch?v=fCymWHssFlQ
- 3. www.study.com/.../arithmetic-logic-unit-alu-definition-design-function.
- 4. www.hsrd.research.va.gov/for.../video_archive.cfm
- 5. www.youtube.com/watch?v=9SnR3M3CIm4

man The C

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakkai DL

16EEE16

ROBOTICS

COURSE OBJECTIVES

- To introduce the functional elements of Robotics
- To impart knowledge on the direct and inverse kinematics
- To introduce the manipulator differential motion and control
- To educate on various path planning techniques
- To introduce the dynamics and control of manipulators

COURSE OUTCOMES:

- 16EEE16.CO1 Able to introduce the functional elements of Robotics
- 16EEE16.CO2 Able to impart knowledge on the direct and inverse kinematics
- 16EEE16.CO3 Able to introduce the manipulator differential motion and control
- 16EEE16.CO4 Able to educate on various path planning techniques

16EEE16.CO5

Able to introduce the dynamics and control of manipulators

Course	Program Outcomes										PSOs				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE16.CO1	-	x	•	<u>ي</u> ا	-	-	x	-	-	-	-	х	8		-
16EEE16.CO2	x	x	x	-	-	-	x	-	x	-	1	X	x	x	-
16EEE16.CO3	x	x	x	-	-	-	х		-	-		x	х	x	x
16EEE16.CO4	-	x	x	- I	-	-	x	-	x	-	x	x	÷	x	-
16EEE16.CO5	x	x	x	-	-		x	-	-			x	x	x	x

UNIT I BASIC CONCEPTS

Briefhistory-TypesofRobot–Technology-Robotclassificationsandspecifications-Designandcontrol issuesVariousmanipulators–Sensors- workcell- Programminglanguages.

UNIT II DIRECTAND INVERSEKINEMATICS

Mathematical representation of Robots - Position and orientation - Homogeneous transformation - Various joints- Representation using the Denavit Hartenberg parameters - Degrees of freedom - Direct kinematics - Inverse kinematics-PUMA560 & SCARA robots- Solvability - Solution methods - Closed form solution.

UNIT III MANIPULATOR DIFFERENTIALMOTION ANDSTATICS

Linear and angular velocities-Manipulator Jacobian-Prismatic and rotary joints-Inverse -Wrist and arm singularity - Static analysis - Force and moment Balance

UNIT IV PATHPLANNING

Definition-Joint space technique-Use of p-degree polynomial-Cubic polynomial-Cartesian space technique - Parametric descriptions - Straight line and circular paths - Position and orientation planning.

UNIT V DYNAMICSANDCONTROL

Lagrangian mechanics-2DOF Manipulator-Lagrange Euler formulation-Dynamic model -Manipulator control problem-Linear control schemes-PID control scheme-Force control of robotic manipulator.

TOTAL: 45 Periods

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomuc) Rasipuram-637 408, Namakka, Ju

9

C

3

Т

9

TEVT BOOKS.

SI.N 0	Author(s)	Title of the Book	Publisher	Year of Publicati on
1.	R.K.Mittal andI.J.Nagra th	Roboticsand Control	Tata McGraw Hill,New Delhi,4th Reprint	2005
2.	JohnJ.Craig	IntroductiontoRoboticsMechanicsandC ontrol,	Thirdedition,PearsonEduca tion,	2009

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication 2010	
1.	AshitavaGhoshal	Robotics-Fundamental ConceptsandAnalysis'	Oxford University Press,Sixthimpression		
2.	K.K.AppuKuttan	.K.AppuKuttan Robotics, IKInternational			
3.	EdwinWise,	AppliedRobotics	CengageLearning	2003	
4.	R.D.Klafter,T.A.Chimi elewskiandM.Negin,	RoboticEngineering- AnIntegratedApproach,	Prentice Hall of India Pvt Ltd, NewDelhi	2003	
5.	A.J. Bouwens	Digital Instrumentation	Tata McGraw Hill	2004	

WEB URLs

- 1. www.wired.com/video/2017/03/neuroscientist-explains-one-concept-in-5-levels-of-difficulty/
- www.nptel.ac.in/courses/112101099/
 www.youtube.com/watch?v=DaWMvEY3Qgc
 www.onlinevideolecture.com/?course_id=551
- 5. www.robtronic.wordpress.com/mechanical-robotics-nptel/

The CI

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomas, Rasipuram-637 408. Namakka. Jt.

FIGUERINE CODE & DRIVELEE & DIE-DIECCHCH AND FIGURIER ENGINEERIN

16EEE17

PLC AND AUTOMATION

COURSE OBJECTIVES

- To study the programming controllers.
- To study the programming on PLC.
- To study the SCADA system.
- To study the application of PLC.
- To study the Automation control.

COURSE OUTCOMES:

16EEE17.CO1	Able to acquire knowledge about Programming Controller.
16EEE17.CO2	Able to program on PLC
16EEE17.CO3	Able to acquire knowledge about SCADA.
16EEE17.CO4	Able to gain basic about application of PLC.
16EEE17.CO5	Able to design PLC Automation control system.

Course	Program Outcomes										PSOs				
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12	PSO1	PSO2	PSO3
16EEE17.CO1	x	x			-	х	х			÷	2	x	-	-	-
16EEE17.CO2	x	x	x		-	x	x	•	x	- [-	x	x	x	
16EEE17.CO3	x	x	x	-	-	x	x		-	-		х	x	x	x
16EEE17.CO4	x	x	x	-	-	x	x	-	x	-	х	x	-	x	-
16EEE17.CO5	x	x	x	-	-	-	x	-	~	-		x	x	x	х

UNIT I PROGRAMMABLELOGICCONTROLLERS

Programmable Logic Controllers Basics of PLC - Architecture of PLC - Advantages - Types of PLC - Introduction to PLC Networking- Networking standards - Protocols - Field bus - Process bus and Ethernet IEEE Standard. Process bus and Ethernet IEEE Standard

UNIT II PROGRAMMING OF PLC & HMI SYSTEMS PROGRAMMING OF PLC

Types of Programming - Simple process control programs using Relay Ladder Logic and Boolean logic methods - PLC arithmetic functions - Introduction to advanced programming methods. HMI systems: Necessity and Role in Industrial Automation, Text display - operator panels - Touch panels - Panel PCs - Integrated displays (PLC & HMI).

UNIT III DISTRIBUTED CONTROL SYSTEMS (DCS)

Difference between SCADA system and DCS – architecture – local control unit – programming language – communication facilities – operator interface – engineering interfaces

UNIT IV APPLICATIONS OF PLC & DCS

Switched Mode Rectifier - Operation of Single/Three Phase Bridges in Rectifier Mode - Control Principles - Control of the DC Side Voltage - Voltage Control Loop - The inner Current Control Loop. Inner current control loop

UNIT V AUTOMATION

Factory Automation: Flexible Manufacturing Systems concept – Automatic feeding lines, ASRS, transfer lines, automatic inspection– Computer Integrated Manufacture – CNC, intelligent automation, Industrial networking, bus standards, HMI Systems, DCS and SCADA, Wireless controls

TOTAL: 45 Periods

The C airman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka, etc.

9

9

C

TEXT BOOKS: Sl.No Author(s)		Title of the Book	Publisher	Year of Publication
1.	John.W.Webb & Ronald A. Reis	Programmable logic controllers: Principles and Applications	Prentice Hall of India	2003
2.	W. Bolton	Programmable Logic Controllers	Elsevier India Private Limited, New Delhi	2008

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1. Michael P. Lukas		Distributed Control systems	Van Nostrand Reinfold Company	2002	
2.	Gary Dunning	Introduction to Programmable Logic Controllers	ThomsonPress	2005	
3.	Groover	ProgrammableLogicContro llers	VanNostrandReinfoldCo mpany	2008	
4.	MikellP	Automation Production systems and Computer Integrated Manufacturing	Prentice Hall of India	2007	
5.	krishna kant	computer based industrial control	Prentice Hall of India	2002	

WEB URLs

1. www.nptel.ac.in/courses/108105062/

- www.nptet.ac.in/courses/10310302/
 www.onlinecourses.nptel.ac.in/noc16_ee02/preview
 www.youtube.com/embed/oxMdDsud5vg
 www.freevideolectures.com/Course/2345/Industrial-Automation-and-Control/22
 www.youtube.com/watch?v=FZh_FiLBOnY

hairman The (

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autono-Rasipuram-637 408, Namakika, 24

oper commercial de la servicie de la competencia de la comp

16EEE18

VIRTUAL INSTRUMENTATION

L T P C 3 0 0 3

COURSE OBJECTIVES

- To review background information required for studying virtual instrumentation.
- To study the basic building blocks of virtual instrumentation.
- To study the various techniques of interfacing of external instruments of PC.
- To study the various graphical programming environment in virtual instrumentation.
- To study a few applications in virtual instrumentation.

COURSE OUTCOMES:

16EEE18.CO1	Ability to explain the review of digital instrumentation.
16EEE18.CO2	Ability to explain the concept of fundamentals of virtual instrumentation.
16EEE18.CO3	Ability to explain the concept of cluster of instruments in VI system.
16EEE18.CO4	Ability to explain the concept of graphical programming environment in VI.
16EEE18.CO5	Ability to explain the concept of analysis tools and simple applications in VI.

Course	Program Outcomes										PSOs				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE18.CO1	x	x		8	-	x	x	-		-		х	-	-	-
16EEE18.CO2	x	x	x	-	-	x	x	-	х	-	-	x	x	x	
16EEE18.CO3	x	x	x	-	· .	x	x	-	-	-	~	х	х	x	х
16EEE18.CO4	x	x	x	-	-	x	x	-	x	-	х	х	-	x	-
16EEE18.CO5	x	x	x	-	-	-	x	-	- E	-	-	x	x	x	x

UNIT I REVIEW OF DIGITAL INSTRUMENTATION

Representation of analog signals in the digital domain – Review of quantization in amplitude and time axes, sample and hold, sampling theorem, ADC and DAC.

UNIT II FUNDAMENTALS OF VIRTUAL INSTRUMENTATION

Concept of virtual instrumentation – PC based data acquisition – Typical on board DAQ card – Resolution and sampling frequency - Multiplexing of analog inputs – Single-ended and differential inputs – Different strategies for sampling of multi-channel analog inputs. Concept of universal DAQ card - Use of timer-counter and analog outputs on the universal DAQ card.

UNIT III CLUSTER OF INSTRUMENTS IN VI SYSTEM

Interfacing of external instruments to a PC – RS232, RS 422, RS 485 and USB standards - IEEE 488 standard – ISO-OSI model for serial bus – Introduction to bus protocols of MOD bus and CAN bus.

UNIT IV GRAPHICAL PROGRAMMING ENVIRONMENT IN VI

Concepts of graphical programming – Lab-view software – Concept of VIs and sub VI - Display types – Digital – Analog – Chart – Oscilloscopic types – Loops – Case and sequence structures - Types of data – Arrays – Formulae nodes –Local and global variables – String and file I/O.

UNIT V ANALYSIS TOOLS AND SIMPLE APPLICATIONS IN VI

Fourier transform - Power spectrum - Correlation – Windowing and filtering tools – Simple temperature indicator – ON/OFF controller – P-I-D controller - CRO emulation - Simulation of a simple second order system – Generation of HTML page.

TOTAL: 45 Periods

The Cha

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomee, Rasipuram-637 408, Namakka, etc.

TEXT	BOOKS:
------	---------------

Sl.No Author(s)		Title of the Book	Publisher	Year of Publication
1.	S. Gupta and J.P Gupta	PC Interfacing for Data Acquisition and Process Control	Instrument society of America	1994
2.	Peter W. Gofton	Understanding Serial Communications	Sybex International	2002

REFERENCE BOOKS:

Sl.No	Auther(s)	Title of the Book	Publisher	Year of Publication	
1. Robert H. Bishop		Learning with Lab-view	Prentice Hall	2003	
2.	Kevin James	PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control	Newness	2000	
3.	Gary W. Johnson, Richard Jennings	Lab-view Graphical Programming	McGraw Hill Professional Publishing	2001	
4.	Walt Boyes	Instrumentation Reference Book	Elsevier	2009	
5.	Poonam Shah	Advanced Instrumentation Systems -	TechMax Publications	2010	

WEB URLs

1. www.youtube.com/watch?v=moSUpIRCKMk

- www.freevideolectures.com/Course/3126/Process-Control-and-Instrumentation
 www.freevideolectures.com/Course/2347/Industrial-Instrumentation
- 4.www.youtube.com/watch?v=70gVR6ZuMHk

5.www.youtube.com/watch?v=tL5Q8DSsjss

The an

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomuc, Rasipuram-637 408. Namakka, JL.

COMMUNICATION ENGINEERING

16EEE19

COURSE OBJECTIVES

- To introduce different methods of analog communication and their significance
 - To introduce Digital Communication methods for high bit rate transmission
- To introduce the concepts of source and line coding techniques for enhancing rating of transmission of minimizing the errors in transmission
- To introduce MAC used in communication systems for enhancing the number of users
- To introduce various media for digital communication

COURSE OUTCOMES:

16EEE19.CO5

16EEE19.CO1 Students will be able to analyze the modulation techniques in analog communication. 16EEE19.CO2 Students will be able to discuss the modulation techniques in digital communication. 16EEE19.CO3 Students will be able to determine the error using source and line coding techniques.

Students will be able to explain wired and wireless communication using multiple 16EEE19.CO4 access techniques.

Students will be able to evaluate the concepts of satellite and optical fiber communication.

			Program Outcomes													
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16EEE18.CO1	x	x	x		-	-	-	-		x	1 3	x	x	-	-	
16EEE18.CO2	x	x	x	-	-	-	-	-	3	x	-	х	x		ž	
16EEE18.CO3	x	x	x		-	-	-	- 1	-	x	-	х	x	-	-	
16EEE18.CO4	x	x	x		-	-	-	-	-	x		x	x	-	-	
16EEE18.CO5	x		-	- 1	-	-	-	-	3	x	-	x	x	-	- ÷	

ANALOG COMMUNICATION UNIT I

AM - Frequency spectrum - vector representation - power relations - generation of AM - DSB,DSB/SC, SSB, VSB AM Transmitter & Receiver; FM and PM - frequency spectrum - power relations: NBFM & WBFM, Generation of FM and DM, Amstrong method & Reactance modulations : FM & PM frequency.

DIGITAL COMMUNICATION UNIT II

Pulse modulations - concepts of sampling and sampling theorems, PAM, PWM, PPM, PTM, quantization and coding : DCM, DM, slope overload error. ADM, DPCM, OOK systems - ASK, FSK, PSK, BSK, QPSK, QAM, MSK, GMSK, applications of Data communication.

SOURCE CODES, LINE CODES & ERROR CONTROL UNIT III

Primary communication - entropy, properties, BSC, BEC, source coding: Shaum, Fao, Huffman coding: noiseless coding theorem, BW - SNR trade off codes: NRZ, RZ, AMI, HDBP, ABQ, MBnBcodes: Efficiency of transmissions, error control codes and applications: convolutions & block codes.

MULTIPLE ACCESS TECHNIQUES UNIT IV

SS&MA techniques : FDMA, TDMA, CDMA, SDMA application in wire and wireless communication: Advantages (merits) :

SATELLITE, OPTICAL FIBER - POWERLINE, SCADA UNIT V

Orbits : types of satellites : frequency used link establishment, MA techniques used in satellite communication, earth station; aperture actuators used in satellite - Intelsat and Insat: fibers - types: sources, detectors used, digital filters, optical link: power line carrier communications: SCADA

TOTAL: 45 Periods

The Cha

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autono......, Rasipuram-637 408. Namakka Ju

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Taub & Schiling	Principles of Communication Systems	Tata McGraw Hill	2007
2.	J.Das	Principles of Digital Communication	New Age International	1986

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Kennedy and Davis	Electronic Communication Systems	Tata McGraw Hill	1993
2.	Sklar	Digital Communication Fundamentals and Applications	Pearson Education	2001
3.	Bary le, Memuschmidt	Digital Communication	Kluwer Publication	2004
4.	B.P.Lathi	Modern Digital and Analog Communication Systems	Oxford University Press	1998
5.	Miller	Modern Electronic Communication	Prentice Hall of India	2003

WEB URLs

1. www.nptel.ac.in/courses/117102059/

2. www.nptelvideos.in/2012/11/communication-engineering.html

www.youtube.com/watch?v=TPm0XSPx1d8
 www.gatemitra.com/nptel-lectures-for-gate.html
 www.engineeringvideolectures.com/discipline/electronics-and-communication-engineering

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autono.... Rasipuram-637 408. Namakka, Di

COURSE OBJECTIVES

- To understand the Total Quality Management concept and principles and the various tools available to achieve Total Quality Management
- To understand the application of statistical approach for quality control
- To create an awareness about the ISO and QS certification process and its need for the industries To apply the quality concepts in product design, manufacturing etc in order to maximize customer
- Satisfaction
- Human involvement to improve quality and the development and transformation

COURSE OUTCOMES:

16EEE20.CO1	Discuss the concept of total quality management
16EEE20.CO2	Analyze the evolution and principles of TQM.
16EEE20.CO3	Explain the statistical process control of TQM.
16EEE20.CO4	Elaborate the TQM tools.
16EEE20.CO5	Know the importance of the Quality Systems.

Comme			PSOs												
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE20.CO1	1		-		-	x	x	x	x	x	х	x	-	-	-
16EEE20.CO2	-	-	-	-	-	x	x	x	x	x	х	x	-	-	-
16EEE20.CO3	x	x	-	x	x		-	- 1	-	х	x	x	-	-	ೆ
16EEE20.CO4	x	x	-	x	x		-	-	-	x	х	х	÷ 1	-	-
16EEE20.CO5	-	-		-	-	x	x	x	-	x	х	х		-	-

UNIT I INTRODUCTION

Definition of Quality - Dimensions of Quality - Quality Planning - Quality costs - Analysis Techniques for Quality Costs - Basic concepts of Total Quality Management - Historical Review - Quality Statements - Strategic Planning, Deming Philosophy - Crosby philosophy - Continuous Process Improvement - Juran Trilogy, PDSA Cycle, 5S, Kaizen - Obstacles to TQM Implementation

TOM PRINCIPLES **UNIT II**

Principles of TQM, Leadership - Concepts - Role of Senior Management - Quality Council, Customer satisfaction - Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement - Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits- Supplier Partnership - Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures - Basic Concepts, Strategy, Performance Measure

STATISTICAL PROCESS CONTROL (SPC **UNIT III**

The seven tools of quality - Statistical Fundamentals - Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables X bar and R chart and attributes P, nP, C, and u charts, Industrial Examples, Process capability, Concept of six sigma - New seven Management tools

TOM TOOLS UNIT IV

Benchmarking - Reasons to Benchmark - Benchmarking Process, Quality Function Deployment (QFD) -House of Quality, QFD Process, and Benefits - Taguchi Quality Loss Function - Total Productive Maintenance (TPM) - Concept, Improvement Needs, and FMEA - Stages of FMEA - Case studies

QUALITY SYSTEMS UNIT V

Need for ISO 9000 and Other Quality Systems - ISO 9000:2000 Quality System - Elements, Implementation of Quality System, Documentation, Quality Auditing, ISO 9000:2005 (definitions), ISO 9001:2008 (requirements) and ISO 9004:2009 (continuous improvement), TS 16949, ISO 14000, AS9100 - Concept, Requirements and Benefits- Case studies

TOTAL: 45 Periods

The C

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasita. 10-637 408.11

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Dale H. Besterfiled	Total Quality Management	Pearson Education Inc, New Delhi	2003
2.	James R. Evans and William M. Lidsay,	The Management and Control of Quality	South-Western	2002

TEXT BOOKS:

DEFERENCE BOOKS

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	N. Gupta and B. Valarmathi,	Total Quality Management	Tata McGraw-Hill Publishing Company Pvt Ltd., New Delhi	2009
2.	Dr S. Kumar	Total Quality Management,	Laxmi Publications Ltd., New Delhi	2006
3.	P. N. Muherjee	Total Quality Management	Prentice Hall of India, New Delhi	2006
4.	James R. Evans and William M. Lindsay	The Management and Control of Quality	8 th Edition, First Indian Edition, Cengage Learning	2012
5.	Suganthi.L and Anand Samuel	Total Quality Management	Prentice Hall (India) Pvt. Ltd	2006

WEB URLs

- 1. www.nptel.iitm.ac.in/COURSEs/WebCOURSE-contents/IIT-roorkee/industrial engineering/index.htm

- www.statit.com/services/SPCOverview_mfg.pdf
 www.3.ha.org.hk/qeh/wiser/doc/7bqt.pdf
 www.directory.umm.ac.id/Data%20Elmu/pdf/TQMTools.pdf
 www.pqm-online.com/assets/files/lib/books/holye2.pdf

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autononius) Rasipuram-637 408. Namakin. -..

POWER PLANT ENGINEERING

16EEE21

COURSE OBJECTIVES

Acquire the knowledge about Coal based thermal power plants.

Diesel, Gas Turbine and Combined Cycle Power Plants.

Acquire the knowledge about nuclear power plants.

Acquire the knowledge about power from renewable energy.

Analyze and solve energy and economic related issues in power sectors.

COURSE OUTCOMES:

Analyze about the steam power plant and its various components. 16EEE21.CO1

Elaborate the working of diesel, gas turbine and combined cycle power plants. 16EEE21.CO2

Measure the various nuclear reactors and safety measures. 16EEE21.CO3

Design the various techniques involved in harvesting power from renewable 16EEE21.CO4 energy.

Develop tariff structure and sharing of loads to different types of power plants 16EEE21.CO5 economically.

Course						Program Outcomes													
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
16EEE21.CO1	x	-	x	-	-	-	-	-	-	x	~	x	-	-	-				
16EEE21.CO2	x	x	x	-	-			-		x	<u>s</u>	х	x	-	-				
16EEE21.CO3	x	-	x	-	-	-	-		-	х	•	x	-	•					
16EEE21.CO4	x	-	x	-	÷.	x	х	-	-	X	-	х	x	2	-				
16EE21.CO5	x	x	x	-	-	-	-	-		x	· .	x	х	-	-				

COAL BASED THERMAL POWER PLANTS UNIT I

Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Steam & Heat rate, Subsystems of thermal power plants - Fuel and ash handling, Draught system, Cooling towers, Feed water treatment. Binary Cycles and Cogeneration systems.

DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS 9 UNIT II Otto, Diesel, Dual & Brayton Cycle - Analysis. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

NUCLEAR POWER PLANTS UNIT III

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), Canada Deuterium- Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Waste disposal and Safety measures for Nuclear Power plants.

POWER FROM RENEWABLE ENERGY UNIT IV

Hydro Electric Power Plants - Classification, Typical Layout. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Biogas and Geo Thermal.

ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER UNIT V PLANTS

Power tariff types, Load distribution parameters, load curve, load duration curve, Capital & Operating Cost of different power plants. Comparison of site selection criteria, relative merits & demerits of power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

TOTAL: 45 Periods

The Chairman Board of Studies, Department of Electrical and Electronics Engineering Muthavammal Engineering College (Autonon.....) Residuram-637 408 Mamaki

пт

Sl.No	BOOKS: Author(s)	Title of the Book	Publisher	Year of Publication
1.	Nag	Power Plant Engineering	Tata Mc Graw Hill	2008
2.	Rajput	Book of Power Plant Engineering	Lakshmi publication	2008

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	M.M. El-Wakil	Power Plant Technology	Tata McGraw – Hill Publishing Company Ltd	2010
2.	Black & Veatch, Springer	Power Plant Engineering	Prentice Hall of India Pvt Ltd	1996
3.	Thomas C. Elliott, Kao Chen and Robert C. Swanekamp	Standard Handbook of Power Plant Engineering	Second Edition, McGraw – Hill	1998
4.	Godfrey Boyle	Renewable energy	Oxford University Press	2004
5.	Gupta M.K	Power Plant Engineering	Prentice Hall India Learning Private Limited	2012

WEB URLs

- UKLS
 www.youtube.com/watch?v=IdPTuwKEfmA
 www.sgipolytechnic.in/Notes/Electrical/SE_05.pdf
 www.energyeducation.ca/encyclopedia/CANDU_reactor
 www.youtube.com/watch?v=8hLtLvt6dY
 www.thegreenage.co.uk/effects-of-nuclear-power

The Chai mah

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakkal Dt.

16EED22

EMBEDDED SYSTEMS

COURSE OBJECTIVES

- To Introduce The Building Blocks Of Embedded System
 - To Educate In Various Embedded Development Strategies
 - To Introduce Bus Communication In Processors, Input/Output Interfacing.
- To Impart Knowledge In Various Processor Scheduling Algorithms.
- To Introduce Basics Of Real Time Operating System And Example Tutorials To Discuss On One Real-time Operating System Tool

COURSE OUTCOMES:

- 16EED22.CO1 Analyze the components of embedded systems.
- 16EED22.CO2 Explain the embedded systems networks.
- 16EED22.CO3 Discuss the embedded firmware development environment.
- 16EED22.CO4 Design of RTOS based embedded system.
- 16EED22.CO5 Develop the embedded system applications.

Course			PSOs												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EED22.CO1	x		x	-	x	-	-	-	-	x	-	x	÷	-	2
16EED22.CO2	x	x	x	x	x	-	-	-		x	-	x	x	x	x
16EED22.CO3	x	x	x	x	x	-	-	-	3	x	-	x	x	x	x
16EED22.CO4	x	x	x	x	x		-		-	x	-	x	x	х	x
16EED22.CO5	x	x	x	x	x	-	-	-		х	1	х	x	x	x

UNIT I INTRODUCTION TO EMBEDDED SYSTEMS

Introduction To Embedded Systems – The Build Process For Embedded Systems- Structural Units InEmbedded Processor, Selection Of Processor & Memory Devices- DMA – Memory Management Methods- Timer And Counting Devices, Watchdog Timer, Real Time Clock, Embedded System On Chip (SOC).

UNIT II EMBEDDED NETWORKING

Embedded Networking: Introduction, I/O Device Ports & Buses- Serial Bus Communication Protocols – RS232 Standard – RS422 – RS485 – CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I2C).

UNIT III EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT

Embedded Product Development Life Cycle- Objectives, Different Phases Of EDLC, Modelling Of EDLC; Issues In Hardware-Software Co-Design, Data Flow Graph, State Machine Model, Sequential Program Model, Concurrent Model, Object Oriented Model.

UNIT IV RTOS BASED EMBEDDED SYSTEM DESIGN

Introduction To Basic Concepts Of RTOS- Task, Process & Threads, Interrupt Routines In RTOS, Multiprocessing And Multitasking, Preemptive And Non Preemptive Scheduling, Task Communicationshared Memory, Message Passing-, Inter Process Communication –Synchronization Between Processes-Semaphores, Mailbox, Pipes, Priority Inversion, Priority Inheritance,

UNIT V EMBEDDED SYSTEM APPLICATION DEVELOPMENT

Case Study Of Washing Machine- Automotive Application- Smart Card System Application, Tank Monitoring and Embedded Implementation.Real Time Examples

TOTAL: 45 Periods

nan The C

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus, Rasipuram 637 408, Namakka Pu

2

0

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Rajkamal, 'Design	Embedded System-Architecture, Programming,	Mc Graw Hill	2013
2.	Peckol	Embedded System Design	Wiley & Sons John	2010

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Shibu. K.V	Introduction To Embedded Systems	Tata Mcgraw Hill,	2009
2.	Elicia White	Making Embedded Systems	O' Reilly Series,SPD	2011
3.	Tammy Noergaard	Embedded Systems Architecture	Elsevier	2006
4.	Han-Way Huang	Embedded System Design Using C8051	Cengage Learning	2009
5.	Rajib Mall	Real-Time Systems Theory And Practice	Pearson Education	2007

WEB URLs

1. www.nptel.iitm.ac.in/COURSEs/WebCOURSE-contents/IIT-roorkee/industrial engineering/index.htm

2. www.statit.com/services/SPCOverview_mfg.pdf

3..www.3.ha.org.hk/qeh/wiser/doc/7bqt.pdf

4.www.directory.umm.ac.id/Data%20Elmu/pdf/TQMTools.pdf

5.www.pqm-online.com/assets/files/lib/books/holye2.pd

TheC urman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakke, Jt,

CONTROL OF ELECTRIC DRIVES WITH PLC-SCADA 16EEE23 CONTROLLERS

COURSE OBJECTIVES

• To impart the knowledge on BLDC control.

- To impart the knowledge on SRM control.
- Acquire the knowledge about PLC controller.
- Acquire the knowledge on control of power system using SCADA.
- · To impart the knowledge on application of power sectors.

COURSE OUTCOMES:

16EEE23.CO1	Able to implement controller for BLC machine
16EEE23.CO2	Able to analyze the importance of controller
16EEE23.CO3	Able to design PLC controller
16EEE23.CO4	Able to justify the different controller in SCADA
16EEE23.CO5	Able to implement for different application

Course				PSOs											
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEE23.CO1	-	~	x	-	x	-	-	-	-	x		x	-	-	
16EEE23.CO2	x	x	x	x	x	-			-	х	-	x	x	x	х
16EEE23.CO3	x	x	x	x	х	-		-	-	x	-	x	x	x	x
16EEE23.CO4	x	x	x	x	x	-	-	-	-	x	-	x	x	x	х
16EEE23.CO5	x	x	x	x	x	-	-	-	~	x	-	x	x	x	х

UNIT I CONTROL OF BLDC DRIVES

Introduction To Embedded Systems - The Build Process For Embedded Systems- Structural Units InEmbedded Processor, Selection Of Processor & Memory Devices- DMA -Memory Management Methods- Timer And Counting Devices, Watchdog Timer, Real Time Clock, Embedded System On Chip (SOC).

CONTROL OF SRM DRIVES UNIT II

Embedded Networking: Introduction, I/O Device Ports & Buses- Serial Bus Communication Protocols -RS232 Standard - RS422 - RS485 - CAN Bus -Serial Peripheral Interface (SPI) -Inter Integrated Circuits (I2C).

CONTROL OF POWER SYSTEMS USING PLC UNIT III

Embedded Product Development Life Cycle- Objectives, Different Phases Of EDLC, Modelling Of EDLC; Issues In Hardware-Software Co-Design, Data Flow Graph, State Machine Model, Sequential Program Model, Concurrent Model, Object Oriented Model.

CONTROL OF POWER SYSTEMS USING SCADA UNIT IV

Introduction To Basic Concepts Of RTOS- Task, Process & Threads, Interrupt Routines In RTOS, Multiprocessing And Multitasking, Preemptive And Non Preemptive Scheduling, Task Communicationshared Memory, Message Passing-, Inter Process Communication -Synchronization Between Processes-Semaphores, Mailbox, Pipes, Priority Inversion, Priority Inheritance,

APPLICATION UNIT V

Case Study Of Washing Machine- Automotive Application- Smart Card System Application, Tank Monitoring and Embedded Implementation.Real Time Examples

TOTAL: 45 Periods

The C Board of Studies,

Department of Electrical and Electronics Engineering Muthavammal Engineering College (Autonomus) E. Control and COB, Namakkal Dt.

0

TEVT DOOVE

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	A.E. Fitzgerald, Charles Kingsley, Stephen. D.Umans,	Electric Machinery	Tata Mc Graw Hill publishing Company Ltd	2003
2.	W. Bolton	Programmable Logic Controllers	Elsevier India Private Limited, New Delhi	2008

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Gary Dunning	Introduction to Programmable Logic Controllers	ThomsonPress	2005
2.	Groover	ProgrammableLogicContro llers	VanNostrandReinfoldCo mpany	2008
3.	MikellP	Automation Production systems and Computer Integrated Manufacturing	Prentice Hall of India	2007
4.	krishna kant	computer based industrial control	Prentice Hall of India	2002
5.	John.W.Webb & Ronald A. Reis	Programmable logic controllers: Principles and Applications	Prentice Hall of India	2003

WEB URLs

1. www.nptel.ac.in/courses/108105062/

2. www.onlinecourses.nptel.ac.in/noc16_ee02/preview

www.youtube.com/embed/oxMdDsud5vg
 www.freevideolectures.com/Course/2345/Industrial-Automation-and-Control/22
 www.youtube.com/watch?v=FZh_FiLBOnY

The C

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autono....., Rasipuram-637 408. Namaki.....

16EEF01

PROJECT WORK - PHASE - I

L T P C 0 0 6 3

COURSE OBJECTIVES

- To develop knowledge to formulate a real world problem and project's goals.
 - To identify the various tasks of the project to determine standard procedures.
- To identify and learn new tools, algorithms and techniques.
- To understand the various procedures for validation of the product and analysis the cost effectiveness.
- To understand the guideline to Prepare report for oral demonstrations

COURSE OUTCOMES:

16EEF01.CO1 Formulate a real world problem, identify the requirement and develop the design solutions.

16EEF01.CO2 Express the technical ideas, strategies and methodologies.

16EEF01.CO3 Utilize the new tools, algorithms, techniques that contribute to obtain the solution of the project.

16EEF01.CO4 Test and validate through conformance of the developed prototype and analysis the cost effectiveness.

16EEF01.CO5 Prepare report and present the oral demonstrations.

Course			PSOs												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEF01.CO1	x	x	-	x	-	x	-	x	х		x	x	x	x	14
16EEF01.CO2	x	x	x	x		· •	-	x	x	-	х	х	х	x	-
16EEF01.CO3	x	x	x	x	x	x	-	x	x	2	x	x	x	x	x
16EEF01.CO4	x	x	x	x	x	x	-	X	х	-	x	x	х	x	x
16EEF01.CO5	-		-	-	-	-	-	x	x	x	х	х	x	x	-

TOTAL: 90 Periods

The Chairman

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408, Namakka, 20

PROJECT WORK -PHASE - II

С L P Т 15 0 30 0

16EEF02

Г

COURSE OBJECTIVES

- To develop knowledge to formulate a real world problem and project's goals.
- To identify the various tasks of the project to determine standard procedures.
- To identify and learn new tools, algorithms and techniques. •
- To understand the various procedures for validation of the product and analysis the cost . effectiveness.
- To understand the guideline to Prepare report for oral demonstrations

COURSE OUTCOMES:

Course	Program Outcomes	PSOs
16EEF02.CO5	Prepare report and present the oral demonstrations.	
16EEF02.CO4	Test and validate through conformance of the developed protot cost effectiveness.	ype and analysis the
16EEF02.CO3	Utilize the new tools, algorithms, techniques that contribute to o the project.	
16EEF02.CO2	Express the technical ideas, strategies and methodologies.	
16EEF02.CO1	Formulate a real world problem, identify the requirement and solutions.	develop the design
COURSE OUT	COMES:	

Course				1005											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEF02.CO1	x	x	-	x	- 1	х	-	x	x	-	x	x	x	x	-
16EEF02.CO2	x	x	x	x		-	-	-	х	-	x	x	x	x	-
16EEF02.CO3	x	x	x	x	x	x		-	x	8	x	x	x	x	x
16EEF02.CO4	x	x	x	x	х	х	-	÷	х	-	х	x	x	x	x
16EEF02.CO5	-	-	÷		-	-	-		x	x	x	x	19	-	-

TOTAL: 450 Periods

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomus) Rasipuram-637 408. Namakka.

FTOgramme cour & manic, i is a ball-diced for this entertained ingineering

16EEF03	COMPREHENSION	L 0	Т 0	Р 4	C 2
COURSE OBJE					
 To develop 	p their communication skills through technical presentation				
programm		raduat	e	deg	ree
 To develop 	p their domain skills to meet the competitive examination				
	ve their performance for attending personal interviews				
 To compi 	le their converse knowledge to design innovative projects.				
COURSE OUTC	OMES:				
16EEF03.CO1	Develop their communication skills through technical presentation				
1/55562 002	Evaluate their intellectuals acquired from first to sixth semester	of und	ler g	radu	ate
16EEF03.CO2	degree programme.				
16EEF03.CO3	Develop their domain skills to meet the competitive examination				
16EEF03.CO4	Improve their performance for attending personal interviews				
16EEF03.CO5	Compile their converse knowledge to design innovative projects.				

Course		Program Outcomes													PSOs -			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
16EEF03.CO1	-			-		-	-	x	x	x	-	x	-		-			
16EEF03.CO2	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x			
16EEF03.CO3	x	x	x	x	x	x	-	x	x	x	x	x	x	x	x			
16EEF03.CO4	x	x	x	x	x	x	-	x	x	x	-	x	х	x	x			
16EEF03.CO5	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x			

TOTAL: 60 Periods

The Chairman Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomics) Rasipuram-637 408. Namakkai Dr.

DESIGN PROJECT

COURSE OBJECTIVES

- · To identify the real world problem, requirementand develop the design
 - To estimate the cost, human and physical resources required to obtain the necessary work
- To utilize the new tools, algorithms, techniques that contribute to obtain the result of the project
- To evaluate the prototype under required test condition and cost effectiveness

To discuss the project report in the oral presentation

COURSE OUTCOMES:

	Program Outcomes	PSOs
16EEF04.CO5	Discuss the project report in the oral presentation	
16EEF04.CO4		
VEFEALCOA	project Evaluate the prototype under required test condition and cost effe	ctiveness
16EEF04.CO3		
	Utilize the new tools, algorithms, techniques that contribute to ob	otain the result of the
16EEF04.CO2	work	
	Estimate the cost, human and physical resources required to o	obtain the necessary
16EEF04.CO1	Identify the real world problem, requirementand develop the desi	gn
coorder of a		~ **

Course				PSOs											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEF04.CO1	x	x	1	x		x	-	x	х	-	x	X	х	X	-
16EEF04.CO2	x	x	x	x	÷.,	-	-		x	2	x	x	х	X	
16EEF04.CO3	x	x	x	x	x	х	-	-	х	*	x	x	x	x	x
16EEF04.CO4	x	x	x	x	x	x	•	-	x	-	x	x	x	x	x
16EEF04.CO5	-	-	-	-	-	-	-	-	x	3	x	x		-	-

METHOD OF EVALUATION

The students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics.

The students maybe groupedinto2to4andworkunderaprojectsupervisor.Thedevice/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 60 Periods

Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College Automotion Rasipuram-637 408. Namakka, Ju.

16EEF05 PRESENTATION SKILL AND TECHNICAL SEMINAR

L T P C 0 0 2 1

COURSE OBJECTIVES

- To encourage the students to study advanced engineering developments
- To prepare and present technical reports.
- To encourage the students to use various teaching aids such as overhead projectors, power point
 presentation and demonstrative models.

COURSE OUTCOMES:

16EEF05.CO1 Useofdesignprinciplesanddevelopconceptualandengineeringdesignofanycomponents.16EEF05.CO2 Ability to fabricate any components using different manufacturing tools.

METHOD OF EVALUATION

During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for duration of about 8 to 10 minutes. In a session of three periods per week, 15 students are expected to present the seminar. Each student is expected to present atleast twice during the semester and the student is evaluated based on that. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also. Evaluation is 100% internal.

The students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics

The students maybe groupedinto2to4andworkunderaprojectsupervisor.Thedevice/ system/component(s)to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 30 Periods

The Chair

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering College (Auto:.. Rasipuram-637 408, Namakana and Programme code a maine: EE & B.E-Elecuricat and Electromics Engineering

16EEC14 DIGITAL PRINCIPLES SYSTEM AND DESIGN

COURSE OBJECTIVES

- To analysis the Boolean algebra and logic gates.
- To design the combinational logic circuits.
- To develop the synchronous sequential logic circuits.
- To construct the asynchronous sequential logic circuits.
- To discuss the memory and programmable logic circuits.

COURSE OUTCOMES:

16EEC14.CO1	Analysis the Boolean algebra and logic gates.
16EEC14.CO2	Design the combinational logic circuits.
16EEC14.CO3	Develop the synchronous sequential logic circuits.
16EEC14.CO4	Construct the asynchronous sequential logic circuits.
16EEC14.CO5	Discuss the memory and programmable logic circuits.

Course	Program Outcomes									PSOs					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16EEC14.CO1	x	x	x	-	-			-	-	x	-	х	x	•	3
16EEC14.CO2	x	x	x	x	-		-	-	-	x	-	х	х	x	-
16EEC14.CO3	x	x	x	x	-	-	-	-	-	х	-	x	х	x	
16EEC14.CO4	x	x	x	x	-	-	1 e j			x	-	x	x	x	-
16EEC14.CO5	-	x	x	-	-	-	-	-		x	-	x	x	-	-

Unit I Boolean Algebra and Logic Gates

Review of Number Systems –Arithmetic Operations -Binary Codes–Boolean Algebra and Theorems – Boolean Functions–Simplification of Boolean Functions using Karnaugh Map and \Tabulation Methods – Logic Gates–NAND and NOR Implementations.

Unit II Combinational Logic

Combinational Circuits –Analysis and Design Procedures–Circuits for Arithmetic Operations, Code Conversion –Decoders and Encoders –Multiplexers and Demultiplexers –Introduction to HDL –HDL Models of Combinational circuits.

Unit III Synchronous Sequential Logic

Sequential Circuits –Latches and Flip Flops –Analysis and Design Procedures –State Reduction and State Assignment –Shift Registers–Counters –HDL for Sequential Logic Circuits.

Unit IV Asynchronous Sequential Logic

Analysis and Design of Asynchronous Sequential Circuits-Reduction of State and Flow Tables -Racefree State Assignment-Hazards.

Unit V Memory and Programmable Logic

Addressing model, IP Switching types -flow driven and topology driven solutions, IP over ATM address and next hop resolution, multicasting, Ipv6 over ATM. Switching Concepts, switch forwarding techniques, switch path control, LAN Switching, cut through forwarding, store and forward, virtual LANs.

TOTAL: 30 Periods

T

L

3 0 2 4

C

Board of Studies, Department of Electrical and Electronics Engineering Muthayammal Engineering

6

6

6

6

LIST OF EXPERIMENTS:

1. Verification of Boolean theorems using digital logic gates

- 2. Design and implementation of combinational circuits using basic gates
- 3. Design and implementation of 4-bit binary adder using basic gates and MSI devices
- 4. Design and implementation of 4-bit binary Subtractor using basic gates and MSI devices
- 5. Design and implementation of parity generator/checker using basic gates and MSI devices
- 6. Design and implementation of magnitude comparator
- 7. Design and implementation of application using multiplexer/de multiplexer
- 8. Design and implementation of shift registers
- 9. Design and implementation of synchronous and asynchronous counters

10. Design and implementation of coding combinational/ sequential circuits using HDL

TOTAL: 60 Periods

TEXT BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Morris Mano M. and Michael D. Ciletti	Digital Design	Pearson Education	IV Edition, 2008.	
2.	John F. Wakerly,	Digital Design Principles and Practices	Pearson Education	IV Edition, 2007	

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication Fifth Edition–, Mumbai, 2003	
1.	Charles H. Roth Jr,	Fundamentals of Logic Design	Jaico Publishing House		
2.	Donald D. Givone	Digital Principles and Design	Tata Megraw Hill	2003	
3.	Kharate G. K	Kharate G. K Digital Electronics		2010	
4.	Thomas L. Floyd	Digital Fundamentals	Pearson Education Inc	10th Edition, 2011	
5.	Donald D.Givone	Digital Principles and Design	ТМН	2003	

The Char man Board of Studies,

Department of Electrical and Electronics Engineering Muthayammal Engineering College (Autonomica) R: