

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

Curriculum/Syllabus

Programme Code

: MC

: 2023

Programme Name : M.E.-Computer Science and Engineering

Regulation

MUTHAYAMMAL ENGINEERING COLLEGE

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu. Ph. No.: 04287-220837 Email: info@mec.ac.in

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

Institution Vision & Mission

Institution Vision

• To be a Centre of Excellence in Engineering, Technology and Management on par with International Standards.

Institution Mission

- To prepare the students with high professional skills and ethical values.
- To impart knowledge through best practices.
- To instill a spirit of innovation through Training, Research and Development.
- To undertake continuous assessment and remedial measures.
- To achieve academic excellence through intellectual, emotional and social stimulation.

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

Department Vision & Mission

Department Vision

• To produce the Computer Science and Engineering graduates with the Innovative and Entrepreneur skills to face the challenges ahead.

Department Mission

- To impart knowledge in the state of art technologies in Computer Science and Engineering.
- To inculcate the analytical and logical skills in the field of Computer Science and Engineering.
- To prepare the graduates with Ethical values to become successful Entrepreneurs.

Program Educational Objectives

- **PEO1** : Graduates will be able to Practice as an IT Professional in Multinational Companies.
- **PEO2** : Graduates will be able to Gain necessary skills and to pursue higher education for career growth.
- **PEO3** : Graduates will be able to Exhibit the leadership skills and ethical values in the day to day life.

Program Specific Outcomes

- **PSO1** : Graduates should be able to design and analyze the algorithms to develop an Intelligent Systems.
- **PSO2** : Graduates should be able to apply the acquired skills to provide efficient solutions for real time problems.
- **PSO3** : Graduates should be able to exhibit an understanding of System Architecture, Networking and Information Security.

Program Outcomes

PO1 : Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

- **PO2** : **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and Engineering sciences.
- **PO3** : **Design/Development solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** : **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **P05** : Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** : The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **P07** : **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- **PO8** : Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** : Individual and team work: Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10 : Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 : Project management and finance:** Demonstrate knowledge and understanding of the engineering management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 : Lifelong learning:** Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

M.E. – Computer Science and Engineering Grouping of Courses

I. Foundation Courses (FC)

Sl.No.	Course	Course Title	Category	Contact	Instruction Hours/Week/ Credit					
Sintor	Code		cutogory	Hours	L	Т	Р	C		
1.	23CSA01	Advanced Numerical Methods	FC	5	3	2	0	4		
2.	23CSA02	Applied Mathematics	FC	5	3	2	0	4		
3.	23CSA03	Applied Probability And Statistics	FC	5	3	2	0	4		

II. Professional Core (PC)

4	2200001		DC	2	2	0	0	
1.	23CSB01	Advanced Data Structures and Algorithms	PC	3	3	0	0	3
2.	23CSB02	Advanced Data Structures and Algorithms Laboratory	РС	2	0	0	2	1
3.	23CSB03	Machine learning techniques	РС	3	3	0	0	3
4.	23CSB04	Machine learning techniques Laboratory	РС	2	0	0	2	1
5.	23CSB05	Cloud Computing	РС	3	3	0	0	3
6.	23CSB06	Cloud Computing Laboratory	PC	2	0	0	2	1
7.	23CSB07	Advanced operating systems	PC	3	3	0	0	3
8.	23CSB08	Image Processing and Analysis	PC	3	3	0	0	3
9.	23CSB09	Image Processing and Analysis Laboratory	PC	2	0	0	2	1
10.	23CSB10	Soft Computing	РС	3	3	0	0	3
11.	23CSB11	Research Methodology and IPR	РС	3	3	0	0	3
12.	23CSB12	Data Mining Techniques	РС	3	3	0	0	3
13.	23CSB13	Network Design and Technologies	РС	3	3	0	0	3
14.	23CSB14	Advanced Software Engineering	РС	3	3	0	0	3
15.	23CSB15	Advanced Database Technology	РС	3	3	0	0	3
16.	23CSB16	Advanced Database Technology Laboratory	РС	2	0	0	2	1
17.	23CSB17	Big Data Analytics	РС	3	3	0	0	3
18.	23CSB18	Foundations of Data Science	РС	3	3	0	0	3
19.	23CSB19	Cognitive Computing	РС	3	3	0	0	3
20.	23CSB20	Natural Language Processing	РС	3	3	0	0	3
21.	23CSB21	Compiler Design Techniques	РС	3	38	153/2	30	3
22.	23CSB22	Virtualization Techniques	РС	3	Ĉh.	aith	an	3
					Board	01 51	udies	e in and

Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

III.	Profession	nal Elective (PE)						
1.	23CSC01	Advanced Algorithms	PE	3	3	0	0	3
2.	23CSC02	Advanced Algorithm Laboratory	PE	2	0	0	2	1
3.	23CSC03	Web Data Mining	PE	3	3	0	0	3
4.	23CSC04	Web Analytics and Development	PE	3	3	0	0	3
5.	23CSC05	Data Storage Technologies and Networks	PE	3	3	0	0	3
6.	23CSC06	Pattern classification and Analysis	PE	3	3	0	0	3
7.	23CSC07	Mobile and Pervasive Computing	PE	3	3	0	0	3
8.	23CSC08	Ad Hoc and Wireless Sensor Networks	PE	3	3	0	0	3
9.	23CSC09	Internet of things	PE	3	3	0	0	3
10.	23CSC10	Internet of things Laborarory	PE	2	0	0	2	1
11.	23CSC11	Data Preparation and Analysis	PE	3	3	0	0	3
12.	23CSC12	Advanced Computer Architecture	PE	3	3	0	0	3
13.	23CSC13	Multicore Architecture	PE	3	3	0	0	3
14.	23CSC14	Wireless Sensor Networks	PE	3	3	0	0	3
15.	23CSC15	Computer Vision	PE	3	3	0	0	3
16.	23CSC16	Block Chain Technologies	PE	3	3	0	0	3
17.	23CSC17	Cyber Physical Systems	PE	3	3	0	0	3
18.	23CSC18	Full stack Development	PE	3	3	0	0	3
19.	23CSC19	Fog & Edge Computing	PE	3	3	0	0	3
20.	23CSC20	GPU computing	PE	3	3	0	0	3

IV. Employability Enhancement Courses (EEC)

1.	23CSD01	Technical Seminar	EEC	2	2	0	0	2
2.	23CSD02	Project Phase I	EEC	12	0	0	12	6
3.	23CSD03	Project Phase II	EEC	24	0	0	24	12
4.	23CSD04	Value Education	EEC	2	2	0	0	0
5.	23CSD05	Disaster Management	EEC	2	2	0	0	0
6.	23CSD06	English for Research Paper Writing	EEC	2	2	0	0	0
7.	23CSD07	Constitution of India	EEC	2	2	0	0	0

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

M.E. – Computer Science and Engineering Curriculum | PG - R2023

Semester -I

Sl.No.	Course	Course Title	Category	Contact	Hou	Instruction Hours/Week/ Cr				
	code			Hours	L	Т	Р	С		
Theo	ry									
1.	23CSA02	Applied Mathematics	FC	5	3	2	0	4		
2.	23CSB03	Machine Learning Techniques	3	0	0	3				
3.	23CSB05	Cloud Computing	3	0	0	3				
4.	23CSB11	Research Methodology and IPR	PC	3	3	0	0	3		
5.	23CSB12	Data Mining Techniques	PC	3	3	0	0	3		
6.	PE	Professional Elective - I	PE	3	3	0	0	3		
Pract	ical		-							
7.	23CSB04	Machine Learning Techniques Lab	PC	2	0	0	2	1		
8.	23CSB06	Cloud Computing Lab	2	0	0	2	1			
					Tot	tal Cr	edit	21		

MUTHAYAMMAL ENGINEERING COLLEGE An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

M.E. – Computer Science and Engineering

Curriculum | PG - R2023

Semester -II

Sl.No.	Course	Course Title	Category	Contact	Hou	Instru rs/We	iction ek/ Ci	redit	
	Code			Hours	L	Т	Р	С	
Theor	ry								
1.	23CSB08	Image Processing and Analysis	РС	3	3	0	0	3	
2.	23CSB13	Network Design and Technologies	3	3	0	0	3		
3.	23CSB17	Big Data Analytics	3	0	0	3			
4.	PE	Professional Elective - II	PE	3	3	0	0	3	
5.	PE	Professional Elective - III	PE	3	3	0	0	3	
Pract	ical								
6.	23CSB09	Image Processing and Analysis	РС	2	0	0	2	1	
7.	PE	Professional Elective - II Lab	2	0	0	2	1		
8.	23CSD01	Technical Seminar	EEC	2	0 0 2				
					Tot	tal Cr	edit	18	

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

M.E. – Computer Science and Engineering Curriculum | PG - R2023

Semester -III

Sl.No.	Course	Course Title	Category	Contact	Instruction Hours/Week/ Credit				
	Code		0.1	Hours	L	Т	Р	С	
Theory									
1.	PE	Professional Elective - IV	3	3	0	0	3		
2.	PE	Professional Elective - V	PE	3	3	0	0	3	
Pract	ical								
3.	23CSD02	Project Phase - I	0	0	12	6			
					Tot	tal Cr	edit	12	

MUTHAYAMMAL ENGINEERING COLLEGE

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

M.E. - Computer Science and Engineering

Curriculum | PG - R2023

Semester -IV

Sl.No.	Course	Course Title	Category	Contact	Hou	Instruction Hours/Week/ Credit				
Code			0,1	Hours	L	Т	Р	С		
Pract	Practical									
1.	23CSD03	Project Phase - II	EEC	24	0	0	24	12		
Total Credit 12										

Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

An Autonomous Institution

(Approved by AICTE | Accredited by NBA & NAAC | Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

M.E. – Computer Science and Engineering Curriculum | PG - R2023

Summary of Course Component

CLNo	Course Aree		Sem	esters		Total	% of	
51.NU.	Course Area	Ι	II	III	IV	Credits	Credits	
1.	FC	6	-	-	-	6	10	
2.	РС	12	10	-	-	22	35	
3.	PE	3	7	6	-	16	25	
4.	EEC	-	1	6	12	19	30	
	Total	21	18	12	12	63	100	

Board of Studies Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266404	ADVANCED NUMEDICAL METHODS	L	Т	Р	С
23CSA01	ADVANCED NUMERICAL METHODS	3	2	0	4

- To learn the algebraic equations this finds applications in many engineering branches
- To make the student acquire sound knowledge of computational techniques in solving ordinary differential equations that model engineering
- To solve Elliptic equations by using computational techniques
- To introduce numerical tools for the solutions of partial differential equations that model several physical processes
- To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise in engineering and technology

Course Outcomes:

0000101001	Demonstrate understanding and implementation of numerical solution algorithms applied to
23CSA01.C01	solve algebraic equations.
	Be familiar with numerical solutions of ordinary differential equation and partial differential
23CSA01.CO2	Equations.
2200404 002	Po compotent with finite difference method and finite element method

23CSA01.CO3 Be competent with finite difference method and finite element method.

Understanding the theoretical and practical aspects of the use of numerical methods. 23CSA01.CO4 Implementing numerical methods for a variety of multidisciplinary applications. Establishing the limitations, advantages, and disadvantages of numerical methods.

23CSA01.C05 The students will have a clear perception of the power of numerical Techniques. This will also Serve as a precursor for future research.

Course		Program Outcomes												Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSA01.CO1	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	-	-	
23CSA01.CO2	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	-	-	
23CSA01.CO3	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	-	-	
23CSA01.CO4	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	-	-	
23CSA01.CO5	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	-	-	

Unit-I ALGEBRAIC EQUATIONS

Systems of linear equations: Gauss Elimination method, pivoting techniques, Thomas algorithm for tridiagonal system – Jacobi, Gauss Seidel, SOR iteration methods - Systems of nonlinear equations: Fixed point iterations, Newton Method, Eigenvalue problems: power method, inverse power method, Faddeev – Leverrier Method

Unit-II ORDINARY DIFFERENTIAL EQUATIONS

Runge Kutta Methods for system of IVPs, numerical stability, Adams - Bashforth multistep method, solution of stiff ODEs, shooting method, BVP: Finite difference method, orthogonal collocation method, orthogonal collocation with finite element method, galerkin finite element method.

Unit-III FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

Parabolic equations: explicit and implicit finite difference methods, weighted average approximation - Dirichlet and Neumann conditions – Two dimensional parabolic equations – ADI method; First order hyperbolic equations – method of characteristics, different explicit and implicit methods; numerical stability analysis, method of lines – Wave equation: Explicit scheme - Stability of above schemes.

Unit-IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS

9+6

9+6

9+6

9+6

Laplace and Poisson's equations in a rectangular region: Five point finite difference schemes, Leibmann's iterative methods, Dirichlet and Neumann conditions – Laplace equation in polar coordinates: finite difference schemes – approximation of derivatives near a curved boundary while using a square mesh.

Unit-V FINITE ELEMENT METHOD

Partial differential equations – Finite element method – orthogonal collocation method, orthogonal Collocation with finite element method, Galerkin finite element method.

Total Periods: 75

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	M.K. Jain , S.R.K. Iyengar, R.K. Jain	Computational Methods for Partial Differential Equations, 2nd Edition	New Age Publishers	2016
2.	S. K. Gupta	Numerical Methods for Engineers, 3rd Edition	New Age International Pvt Ltd Publishers	2015
3.	Saumyen Guha and Rajesh Srivastava	Numerical methods for Engineering and Science	Oxford Higher Education, New Delhi	2010
4.	M.K. Jain	Numerical Methods for Scientific & Engineering	New Age International Publishers	2010
5.	Burden, R.L., and Faires, J.D.	Numerical Analysis –Theory and Applications	India Edition, New Delhi	2009

Chairman Board of Studies Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

9+6

23CSA02

APPLIED MATHEMATICS

Course Objective:

- To realize the use of matrix theory techniques in engineering applications and to develop for future applications
- To analyze and solve the fundamental problem with prescribed or free boundary conditions in simple cases
- Demonstrate knowledge of mathematics and mechanics to construct, analyze and interpret real world
- Problems
- Provide a foundation and motivation for exposure to statistical ideas subsequent to the course
- To formulate and construct a mathematical model for a linear programming problem in real life situation

Course Outcomes:

23CSA02.CO1	Explain geometrical concepts related to orthogonality and least squares solutions and perform calculations related to orthogonally.
23CSA02.CO2	The variational calculus makes access to mastering in a wide range of classical results of variational calculus. Students get up apply results in technical problem solutions.
23CSA02.CO3	The students will have a basic knowledge of the main fields of mathematics and mechanics, Including differential equations, elasticity theory, fluid mechanics.
23CSA02.CO4	The students will have an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable.
23CSA02.CO5	The knowledge gained on this course helps the students to do engineering optimization.

Course Outcomes		Program Outcomes										Program Specific Outcomes			
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSA02.C01	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	Х	-
23CSA02.CO2	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	Х	-
23CSA02.CO3	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	Х	-
23CSA02.CO4	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	Х	-
23CSA02.C05	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	Х	-

Unit-I MATRIX THEORY

The Cholesky decomposition - Generalized Eigen vectors, Canonical basis - QR factorization - Least squares method - Singular value decomposition.

Unit-II **CALCULUS OF VARIATIONS**

Concept of variation and its properties - Euler's equation - Functional dependant on first and higher order derivatives - Functionals dependent on functions of several independent variables - Variational problems with moving boundaries – problems with constraints - Direct methods: Ritz and Kantorovich methods.

ONE DIMENSIONAL RANDOM VARIABLES Unit-III

Random variables - Probability function - moments - moment generating functions and their properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Function of a Random Variable.

LINEAR PROGRAMMING Unit-IV

Formulation - Graphical solution - Simplex method - Two phase method - Transportation and Assignment Models, schemes – approximation of derivatives near a curved boundary while using a square mesh.

Unit-V FOURIER SERIES AND EIGEN VALUE PROBLEMS

Fourier Trigonometric series: Periodic function as power signals – Convergence of series – Even and odd function: cosine and sine series – Non-periodic function: Extension to other intervals - Power signals: Exponential Fourier

9+6

9+6

9+6

9+6

9+6

series – Parseval's theorem and power spectrum – Eigen value problems and orthogonal functions – Regular Sturm-Liouville systems – Generalized Fourier series.

Total Periods: 75

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Mital.K.V. Mohan and Chander	Optimization Methods in Operations Research and Systems Analysis, 4th Edition	New Age International Publishers	2016
2.	Stark. H., and Woods. J.W	Probability and Random Processes with Applications to Signal Processing, 4th Edition	Pearson Education, Asia	2014
3.	Hamdy ATaha	Operations Research, 9th Edition (Asia)	Pearson Education, Asia	2014
4.	Gupta A.S.	Calculus of Variations with Applications	Prentice Hall of India Pvt. Ltd., New Delhi	2011
5.	Richard Bronson	Matrix Operation, Schaum's outline series, 2nd Edition	McGraw Hill	2011

Reference Books:

26603/23

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

9+6

С

4

9+6

9+6

Program Specific

Outcomes

PSO2

Х

Х

Х

Х

Х

PSO3

-

-

-

_

9+6

TWO DIMENSIONAL RANDOM VARIABLES Unit-II

Joint distributions – Marginal and Conditional distributions – Functions of two dimensional random variables – Regression Curve - Correlation.

Random variables - Probability function - Moments - Moment generating functions and their properties -Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Functions of a Random

Unit-III ESTIMATION THEORY

Unbiased Estimators – Method of Moments – Maximum Likelihood Estimation - Curve fitting by Principle of least squares - Regression Lines.

Unit-IV **TESTING OF HYPOTHESES**

Sampling distributions - Type I and Type II errors - Tests based on Normal, t, Chi-Square and F distributions for testing of mean, variance and proportions - Tests for Independence of attributes and Goodness of fit.

Unit-V **MULTIVARIATE ANALYSIS**

course outcom	les:
23CSA03.CO1	Analyze random or unpredictable experiments and investigate important features of random Experiments. Construct probabilistic models for observed phenomena through distributions which play an important role in many engineering applications.
23CSA03.CO2	Associate random variables by designing joint distributions and correlate the random variables.
23CSA03.CO3	Perform and interpret correlation and regression analysis and develop correlation models to predict changes in processes and products for linear and non-linear relationships.
23CSA03.CO4	Be familiar with multivariate analysis.
23CSA03.CO5	The student will able to acquire the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems.

Program Outcomes

P07

_

_

_

_

P08

-

-

_

P09

-

-

_

_

P010

-

-

_

-

P011

Х

Х

Х

Х

Х

P012

Х

Х

Х

Х

Х

PSO1

_

_

_

-

P06

-

_

_

_

To enable the students to use the concepts of multivariate normal distribution and principle components

Cource Outcomes

Course

Outcomes

23CSA03.C01

23CSA03.CO2

23CSA03.CO3

23CSA03.CO4

23CSA03.C05

Unit-I

Variable.

P01

Х

Х

Х

Х

Х

P02

Х

Х

Х

Х

Х

P03

Х

Х

Х

Х

Х

P04

_

-

_

-

_

ONE DIMENSIONAL RANDOM VARIABLES

P05

_

-

_

_

_

analysis

Course Objective:

•

•

•

•

L Т Р 23CSA03 APPLIED PROBABILITY AND STATISTICS 3 2 0

To introduce the basic concepts of one dimensional and two dimensional Random Variables

Learn about maximum likelihood estimation, unbiased estimation and least square methods

To gain knowledge in the application of family of random variables in real life situations

To provide information about Correlation and Regression

Random Vectors and Matrices - Mean vectors and Covariance matrices - Multivariate Normal density and its properties - Principal components Population principal components – Principal components from standardized variables

Total Periods: 75

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Douglas C. Montgomery, George C. Runger	Applied Statistics and Probability for Engineers (International Student Version), 6th Edition	John Wiley & Sons, Inc.	2016
2.	Richard A. Johnson and Dean W. Wichern	Applied Multivariate Statistical Analysis, 6th Edition	Pearson Education, Asia	2015
3.	Gupta S.C. and Kapoor V.K	Fundamentals of Mathematical Statistics	Sultan Chand & Sons	2014
4.	HweiP.Hsu	Schaum"s Outline of Theory and Problems of Probability, Random Variables and Random Processes	Tata McGraw Hill Edition, New Delhi	2011
5.	Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K.	Probability and Statistics for Engineers and Scientists, 8th Edition	Pearson Education, Asia	2013

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

23CSB01 ADVANCED DATA STRUCTURES AND ALGORITHMS

L	Т	Р	C
3	0	0	3

Course Objective:

- To review the basic data structures such as list, stack & queue and introduce concurrency on them.
- To learn advanced search structures such as Splay tree, Red Black trees, Multi way search tree and Skip lists
- To study advanced heap structures such as Leftist Heaps, Binomial Heaps and Fibonacci Heaps
- To introduce various advanced concurrent structures
- To learn the various advanced algorithms

Course Outcomes:

23CSB01.C01	Implement and apply concurrency in linked lists, stacks and queues.
23CSB01.C02	Perform operations on advanced search trees.
23CSB01.C03	Design and implement various types of advanced heaps structures.
23CSB01.C04	Implement advanced concurrent structures such as hash table & priority queue.
23CSB01.C05	Solve applications using advanced algorithm such as Randomized, Approximation and Parallel algorithms

Course Outcomes					Рі	rograr	n Oute	comes	6				Program Specific Outcomes					
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3			
23CSB01.C01	Х	Х	Х	-	-	-	-	-	-	-	-	-	Х	Х	-			
23CSB01.CO2	Х	Х	Х	-	-	-	-	-	-	-	-	-	Х	Х	-			
23CSB01.CO3	-	Х	Х	-	Х	-	-	-	-	-	-	-	Х	Х	-			
23CSB01.CO4	-	Х	Х	-	Х	-	-	-	-	-	-	-	Х	Х	-			
23CSB01.C05	-	-	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-			

Unit-I DATA STRUCTURES AND CONCURRENCY

Review of elementary data structures – data structures and concurrency – locking linked lists – coarse-grained synchronization – fine-grained synchronization – lazy synchronization – non-blocking synchronization – concurrent queues – bounded partial queues – unbounded lock-free queues – dual data structures – concurrent stacks – elimination back off stack.

Unit-II ADVANCED SEARCH STRUCTURES

Binary Search tree - Splay tree - Red Black trees – Interval tree - 2-D tree – Digital Search tree – Multi way Tree - Skip lists.

Unit-III ADVANCED HEAP STRUCTURES

Min heap - Min-Max heap - Double ended heap – Leftist Heaps - Binomial Heaps – Fibonacci Heaps – Skew Heaps - Interval Heap.

Unit-IV ADVANCED CONCURRENT STRUCTURES

Concurrent hashing – closed-address hash sets – lock-free hash sets – open-addressed hash sets – lock-based concurrent skip lists – lock-free concurrent skip lists – concurrent priority queues – bounded priority queue – unbounded priority queue – concurrent heap – skip list based unbounded priority queues.

Unit-V ADVANCED ALGORITHMS

9

9

9

9

Introduction to Approximation algorithms: Vertex cover - Travelling Salesman Problem – knapsack problem. Introduction to Randomized algorithms – Randomized Searching and Sorting - Online hiring problem. Introduction to Parallel algorithms – parallel sorting algorithms - Odd-even transposition sort - Quick sort based parallel sort.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	S.K. Chang	Data Structures and Algorithms – Series of Software Engineering and Knowledge Engineering.	World Scientific Publishing	2003
2.	M. Herlihy and N. Shavit, Morgan Kaufmann	The Art of Multiprocessor Programming	Pearson education	2012
3.	E. Horowitz, S.Sahni and Dinesh Mehta	Fundamentals of Data structures in C++	Universities Press	2007
4.	Thomas H Cormen, Charles E Leiserson, Ronald L Rivest and Clifford Stein	Introduction to Algorithms	Prentice Hall of India, New Delhi	2007
5.	Michael J. Quinn	Parallel Computing: Theory & Practice	Tata McGraw Hill Edition.	2003

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

ADVANCED DATASTRUCTURES AND ALGORITHMS LABORATORY

L

0

Course Objective:

23CSB02

- Understand the concept of linear and nonlinear data structures
- Implement Various operations of tree concept
- Design and analyze and Concepts of different types of heap
- Analyze hashing , probing methods like linear probing and quadratic probing tree
- Identify suitable data structure to solve various computing problems

Course Outcomes:

23CSB02.CO1	Design and implement Stack operation and double ended Queue.
23CSB02.CO2	Implement Tree operations in Binary search tree and red black tree.
23CSB02.CO3	Perform the operations on Fibonacci tree and Binomial tree Operation.
23CSB02.CO4	Apply hashing function to implement hash Data Structure and Implement Binary search tree.
23CSB02.CO5	Analyze greedy algorithm and divide and conquer technique and implement quick sort and travelling sales man problem.

Course	Program Outcomes													Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSB02.C01	Х	Х	Х	-	-	-	-	-	-	-	I	-	Х	Х	-	
23CSB02.C02	Х	Х	Х	-	-	-	-	-	-	-	-	-	Х	Х	-	
23CSB02.CO3	-	Х	Х	-	Х	-	-	-	-	-	-	-	Х	Х	-	
23CSB02.CO4	Х	-	Х	-	Х	-	-	-	-	-	-	-	Х	Х	-	
23CSB02.CO5	-	-	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	

Sl.No.

3.

5.

6.

List of Experiments

- 1. Implement Stacks of size m with all the basic operations such as Is Empty(i),Push(i), Pop(i), IsFull(i) where i denotes the element in a stack
- Design and implement double ended Queue and its operations using Linked List
 Beginning with an empty binary search tree, Construct binary search tree by inserting the values in the order given. After constructing a binary tree
 - i. Insert new node
 - ii. Find number of nodes in longest path
 - iii. Minimum data value found in the tree
 - iv. Search a value
- 4. Implement a Red Black tree Operation

Implement Fibonacci tree Operation -

- i. Create Fibonacci tree
- ii. Insert new node in Fibonacci tree
 - iii. Get Minimum value
 - Implement Binomial tree Operation –
 - i. Create Binomial tree
- ii. Insert new node in Binomial tree
 - iii. Get Minimum value

- Write a program to store k keys into an array of size n at the location computed using a hash function, loc =key % n, where k<=n and k takes values from [1 to m], m>n.
 Beginning with an empty binary search tree, Construct min priority Queue by inserting the values in the order given. After constructing a priority tree
 - i. Insert new node

8.

- ii. Delete a given node
- iii. Find Min value node in a priority queue tree
- 9. Implement Program for Travelling Salesman Problem
- 10. Implement QuickSort on 1D array of Student structure(contains studentname, student_roll_no, total marks), with key as student_roll_no

Total Periods: 30

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266002	MACHINE LEADNING TECHNIQUES	L	Т	Р	С
23(3003	MACHINE LEARNING LECHNIQUES	3	0	0	3

- To learn the concept of how to learn patterns and concepts from data without being explicitly programmed in various IOT nodes
- To design and analyse various machine learning algorithms and techniques with a modern outlook focusing on recent advances
- Explore supervised and unsupervised learning paradigms of machine learning
- To explore Deep learning technique and various feature extraction strategies
- To learn the concept of how to learn patterns and concepts from data without being explicitlyprogrammed in various IOT nodes

Course Outcomes:

23CSB03.C01	Identify the perspectives of machine learning.
23CSB03.C02	Apply decision tree and Artificial neural networks for real world problems.
23CSB03.C03	Design a Bayesian classifier for solving a problem.
23CSB03.C04	Illustrate the principles of instance based learning and genetic algorithm.
23CSB03.C05	Describe the algorithms for rule and reinforcement learning.

Course					Pr	ogran	n Outo	comes					Program Specific Outcomes			
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	
23CSB03.C01	Х	Х	Х	Х	-	Х	-	-	Х	Х	-	Х	Х	-	Х	
23CSB03.C02	Х	Х	Х	Х	-	-	Х	-	-	-	Х	Х	-	Х	-	
23CSB03.CO3	Х	Х	Х	-	-	Х	-	I	I	-	Х	-	Х	-	Х	
23CSB03.CO4	Х	Х	Х	-	Х	-	-	-	Х		-	Х	-	Х	-	
23CSB03.C05	Х	Х	Х	-	-	Х	-	Х	-	Х	Х	-	Х	-	Х	

Unit-I INTRODUCTION

Learning Problems - Designing a Learning System - Perspectives and Issues in Machine Learning – Concept Learning – task – search – finding maximally specific Hypotheses – version spaces and candidate elimination algorithm-inductive bias.

Unit-II DECISION TREE LEARNING AND ARTIFICIAL NEURAL NETWORKS

Decision Tree Representation – Problems – basic decision tree learning algorithms – hypotheses search – Issues – Artificial Neural Networks: Introduction – Representations – Problems – Perceptrons – Multilayer networks and Back Propagation Algorithm – example.

Unit-III BAYESIAN LEARNING

Bayes Theorem – Concept Learning – Maximum Likelihood and Least-Squared Error Hypothesis - Maximum Likelihood Hypotheses for Predicting Probabilities - Bayes Optimal Classifier - Gibbs Algorithm - Naïve Bayes Classifier – Example.

Unit-IV INSTANCE BASED LEARNING AND GENETIC ALGORITHM

Introduction – k-Nearest Neighbour Learning – Locally Weighted Regression - Radial Basis Functions - Case- Based Reasoning. Genetic Algorithm – Example – Hypothesis Space Search – Genetic Programming- Models of Evolution and Learning – Parallelizing Genetic Algorithms.

Unit-V LEARNING SETS OF RULES

9

9

9

g

g

Learning sets of rules: Introduction – sequential covering algorithms – First order rules – FOIL – Induction as Inverted deduction – inverting resolution – Reinforcement learning – Introduction – Learning task – Q learning

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Tom M. Mitchell	Machine Learning	Indian Edition, McGraw-Hill Education (India)	2013
2.	Simon Rogeres and Mark Girolami	A First Course in Machine Learning	CRC Press	2015
3.	Ethem Alpaydin	Introduction to Machine Learning	3rd Edition, Prentice Hall India	2015
4.	Christopher Bishop	Pattern Recognition and Machine Learning	Springer	2007

Chairman Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

23CSB04 MACHINE LEARNING TECHNIQUES LABORATORY

L	Т	Р	C
0	0	2	1

L

Course Objective:

- To understand the concept of algorithms and illustrate the hypothesis using sets of trained data •
- To learn and understand the concept of building the decision tree and Artificial neural networks using sample data sets
- To evaluate and understand the concept of Bayesian classifier using sample trained data sets
- To understand the EM algorithm and k-mean algorithms using trained data set
- To understand the concept of Regression algorithm and nearest neighbor algorithm

Course Outcomes:

Identify the algorithms for trained data samples. 23CSB04.C01

23CSB04.C02 Understanding the concept of decision tree and Artificial neural networks.

23CSB04.CO3 Develop the sample data sets by calculating the accuracy, precision and recall.

23CSB04.CO4 Compare the results of two different algorithms based on ML library classes and API.

Implement the algorithm for data sets based on predictions using data graph in order to fit the 23CSB04.C05 data points.

Course					Pr	ogran	n Outo	comes					Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB04.C01	Х	Х	Х	-	Х	Х	-	Х	Х	Х	-	Х	Х	Х	Х
23CSB04.CO2	Х	Х	Х	Х	Х	Х	-	-	Х	-	-	Х	Х	Х	-
23CSB04.CO3	Х	Х	Х	-	Х	-	Х	-	-	Х	Х	Х	Х	-	Х
23CSB04.CO4	Х	Х	Х	Х	Х	-	-	Х	-	Х	Х	Х	-	Х	-
23CSB04.C05	Х	Х	Х	Х	Х	-	Х	-	Х	-	Х	Х	-	Х	Х

Sl.No.

List of Experiments

- Implement and demonstrate the FIND S algorithm for finding the most specific hypothesis based on a 1. given set of training data samples. Read the training data from a .CSV file.
- 2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate
- Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an 3. Appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- Build an Artificial Neural Network by implementing the Back propagation algorithm and test the same 4. using appropriate data sets
- Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a 5. .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, 6. precision, and recall for your data set.
- Write a program to construct a Bayesian network considering medical data. Use this model to Demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use 7. Java/Python ML library classes/API.
- Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering sing 8. k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

- 9. Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Total Periods: 30

Chairman Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2206005		L	Т	Р	С
23(3003	CLOOD COMPOTING	3	0	0	3

- To learn how to apply trust-based security model to real-world security problems •
- To study the concepts, processes and best practices needed to successfully secure information
- Within Cloud infrastructures
- To know the basic Cloud types and delivery models and develop an understanding of the risk and compliance responsibilities and challenges for each Cloud type and service delivery model

Course Outcomes:

23CSB05.C01 Identify security aspects of each cloud model.

- 23CSB05.C02 Develop a risk-management strategy for moving to the cloud.
- 23CSB05.CO3 Implement a public cloud instance using a public cloud service provider.

23CSB05.CO4 Apply trust based security model to different layer.

23CSB05.C05 Examine the concept of audit and compliance.

Course					Pr	ogran	n Outo	comes					Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB05.CO1	Х	Х	Х	Х	-	-	-	-	-	-	-	-	Х	-	-
23CSB05.CO2	Х	Х	Х	-	Х	-	-	-	-	-	Х	-	-	Х	-
23CSB05.CO3	Х	Х	Х	-	-	-	-	-	-	-	Х	-	Х	-	-
23CSB05.CO4	Х	Х	Х	-	Х	Х	-	-	-	-	-	Х	-	Х	-
23CSB05.C05	Х	-	-	-	Х	-	-	-	-	-	Х	Х	Х	-	-

Unit-I **BASICS OF CLOUD COMPUTING**

Online Social Networks and Applications - Cloud introduction and overview -Different clouds - Risks - Novel applications of cloud computing-Cloud Computing Architecture: Requirements - Introduction Cloud computing architecture -On Demand Computing Virtualization at the infrastructure level -Security in Cloud computing environments - CPU Virtualization -Hypervisors Storage Virtualization Cloud Computing Defined - SPI Framework for Cloud Computing – Traditional Software Model– Cloud Services Delivery Model.

CLOUD DEPLOYMENT MODELS AND SECURITY ISSUES Unit-II

Key Drivers to Adopting the Cloud – The Impact of Cloud Computing on Users –Governance in the Cloud – Barriers to Cloud Computing Adoption In the Enterprise. Infrastructure Security: The Network Level - The Host Level -The Application Level – Data Security and Storage – Aspects of Data Security – Data Security Mitigation Provider Data and Its Security.

Unit-III ACCESS AND SECURITY MANAGEMENT

Identity and Access Management: Trust Boundaries and IAM - IAM Challenges - Relevant IAM Standards and Protocols for Cloud Services - IAM Practices in the Cloud - Cloud Authorization Management. Security Management in the Cloud: Security Management Standards – Security Management in the Cloud – Availability Management: SaaS, PaaS, IaaS.

Unit-IV PRIVACY ISSUES

Privacy Issues – Data Life Cycle – Key Privacy Concerns in the Cloud – Protecting Privacy – Changes to Privacy Risk Management and Compliance in Relation to Cloud Computing - Legal and Regulatory Implications - U.S. Laws and Regulations - International Laws and Regulations.

Unit-V AUDIT AND COMPLIANCE

9

9

9

g

Internal Policy Compliance – Governance – Risk and Compliance (GRC) –Regulatory/External Compliance – Cloud Security Alliance – Auditing the Cloud for Compliance – Security-as-a-Cloud.

Total Periods: 45

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	John Rhoton	Cloud Computing Explained: Implementation Handbook forEnterprises	Amazon.com	2009
2.	Tim Mather	Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory in Practice)	O'Reilly Media	2009
3.	Rajkumar Buyya	Christian Vecchiola, and ThamaraiSelvi, "Mastering Cloud Computing"	Tata McGraw Hill Edition	2013
4.	Tom White	Hadoop: The Definitive Guide	Yahoo Press	2012

Reference Books:

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

		L	Т	Р	С
23CSB06	CLOUD COMPUTING LABORATORY	0	0	2	1

- To learn how to apply trust-based security model to real-world security problems
- To study the concepts, processes and best practices needed to successfully secure information within Cloud infrastructures
- To know the basic Cloud types and delivery models and develop an understanding of the risk and compliance responsibilities and challenges for each Cloud type and service delivery model

Course Outcomes:

23CSB06.C01	Identify security aspects of each cloud model.
23CSB06.CO2	Develop a risk-management strategy for moving to the cloud.
23CSB06.CO3	Implement a public cloud instance using a public cloud service provider
23CSB06.CO4	Apply trust based security model to different layer.
23CSB06.CO5	Examine the concept of audit and compliance.

Course					Pr	ogram	n Outc	omes					Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
23CSB06.C01	Х	Х	Х		-	Х	-	-	-	-	-	-	Х	-	-
23CSB06.CO2	Х	Х	Х	-	Х	-	-	-	-	-	Х	-	-	Х	-
23CSB06.CO3	Х	Х	Х	-	-	-	-	-	Х	-	Х	-	Х	-	-
23CSB06.CO4	Х	Х	-	Х	-	Х	-	-	-	-	-	Х	-	Х	-
23CSB06.C05	Х	-	-	-	Х	-	-	Х	-	-	Х	Х	X	-	-

Sl.No.

1.

List of Experiments

- a) Installation of various hypervisors and instantiation of VMs with image file using open source Hypervisors such as Virtual Box, VMWare Player, Xen and KVM.
- b) Client server communication between two virtual machine instances, execution of chat application
 Creation of simple network topology using open source network virtualization tools (like mini net and Others).
- 3. Implementation of simple network protocols using open source network controllers (like Open Daylight).
- 4. Implementation of various scheduling mechanisms using open source cloud simulator.
 - Familiarization and usage of the following cloud services with open source cloud tools(like Eucalyptus, Open stack, Open Nebula and others)
- 5. a) Scheduling mechanisms
 - b) Load balancing mechanisms
 - c) Hashing and encryption mechanisms
- 6. Familiarization and usage of collaborative applications (SaaS).
- 7. Implementing applications using Google App Engine (PaaS).
- 8. Develop Map Reduce application (example-URL Pattern count and others) using Hadoop cluster set up (Single node and multi node).

Total Periods: 30

2266007	ADVANCED ODED ATING SVETEME	L	Т	Р	С
23C3B07	ADVANCED OPERATING SYSTEMS	3	0	0	3

- To learn the fundamentals of Operating Systems
- To gain knowledge on Distributed operating system concepts that includes architecture, Mutual exclusion algorithms, Deadlock detection algorithms and agreement protocols
- To gain insight on to the distributed resource management components
- To know the components of Real time, Mobile operating systems
- To learn the management aspects of Mobile operating systems

Course Outcomes:

23CSB07.C01	Discuss the various synchronization, scheduling and memory management issues.
23CSB07.CO2	Demonstrate the Mutual exclusion, Deadlock detection and agreement protocols of Distributed Operating system.
23CSB07.CO3	Discuss the various resource management techniques for distributed systems.
23CSB07.CO4	Identify the different features of real time and mobile operating systems.
23CSB07.C05	Ability To Learn the management aspects of Mobile operating systems.

Course					Pr	ogran	n Outc	omes					Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
23CSB07.C01	Х	Х	Х	-	-	-	-	-	Х	Х	-	Х	-	Х	-
23CSB07.C02	Х	Х	Х	-	Х	-	-	-	Х	-	Х	-	Х	-	Х
23CSB07.C03	Х	Х	Х	-	-	-	-	-	Х	Х	-	-	Х	Х	-
23CSB07.CO4	Х	Х	Х	-	-	-	-	-	-	-	Х	Х	-	Х	Х
23CSB07.C05	Х	Х	Х	-	Х	-	-	-	Х	Х	Х	-	Х	Х	Х

Unit-I FUNDAMENTALS OF OPERATING SYSTEMS

Overview – Synchronization Mechanisms – Processes and Threads - Process Scheduling – Deadlocks: Detection, Prevention and Recovery – Models of Resources – Memory Management Techniques

Unit-II DISTRIBUTED OPERATING SYSTEMS

Issues in Distributed Operating System – Architecture – Communication Primitives – Lamport's Logical clocks – Causal Ordering of Messages – Distributed Mutual Exclusion Algorithms – Centralized and Distributed Deadlock Detection Algorithms – Agreement Protocols

Unit-III DISTRIBUTED RESOURCE MANAGEMENT

Distributed File Systems – Design Issues - Distributed Shared Memory – Algorithms for Implementing Distributed Shared memory–Issues in Load Distributing – Scheduling Algorithms – Synchronous and Asynchronous Check Pointing and Recovery – Fault Tolerance – Two-Phase Commit Protocol – Non blocking Commit Protocol – Security and Protection.

Unit-IV REAL TIME AND MOBILE OPERATING SYSTEMS

Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems – Real Time Task Scheduling - Handling Resource Sharing - Mobile Operating Systems –Micro Kernel Design - Client Server Resource Access – Processes and Threads - Memory Management - File system.

Unit-V CASE STUDIES

9

9

9

9

Linux System: Design Principles - Kernel Modules - Process Management Scheduling - Memory Management - Input-Output Management - File System – Inter process Communication. iOS and Android: Architecture and SDK Framework - Media Layer - Services Layer - Core OS Layer - File System.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Mukesh Singhal and Niranjan G. Shivaratri	Advanced Concepts in OperatingSystems – Distributed, Database, and MultiprocessorOperating Systems	Tata McGraw-Hill	2001
2.	Abraham Silberschatz; Peter Baer Galvin; GregGagne	Operating System Concepts	John Wiley &Sons	2004
3.	Daniel P Bovet and MarcoCesati	Understanding the LinuxKernel	O'Reilly	2005
4.	Singhal	Advanced concepts in operating systems	Tata McGraw- Hill Education	2001
5.	Dang Van Duc	Operating System	Institute of Information Technology	2012

26/03/23

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

226000		L	Т	Р	C
23CSB08	IMAGE PROCESSING AND ANALYSIS	3	0	0	3

- Learn digital image fundamentals
- Be familiar with image enhancement techniques in spatial and frequency domain
- Be familiar with image compression and segmentation techniques and morphological image processing
- Understand the concept of image representation and description
- Learn to recognition image in form of features

Course Outcomes:

23CSB08.C01	Explain the fundamentals of Digital image and its Processing.
23CSB08.CO2	Perform Image Enhancement Techniques in spatial and frequency domain.
23CSB08.CO3	Apply the concept of image segmentation and Morphological Image processing.
23CSB08.CO4	Use various image Representation and Description techniques.
23CSB08.CO5	Describe Object detection and Recognition Techniques.

Course				Program Specific Outcomes											
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB08.C01	Х	-	-	-	Х	-	-	-	-	-	Х	Х	-	Х	-
23CSB08.CO2	Х	Х	Х	-	Х	-	-	-	-	-	Х	Х	-	Х	-
23CSB08.CO3	Х	Х	Х	-	Х	-	-	-	-	-	Х	Х	-	Х	-
23CSB08.CO4	Х	Х	Х	-	Х	-	-	-	-	-	Х	Х	-	Х	-
23CSB08.C05	Х	Х	Х	Х	Х	-	-	-	-	-	Х	Х	-	Х	-

Unit-I INTRODUCTION TO IMAGE PROCESSING AND COMPUTER

Introduction, Digital Image Fundamentals, image acquisition and display using digital devices - Human visual perception, properties–Image Formation-Image sampling and quantization - Basic relationship between pixels.

Unit-II IMAGE ENHANCEMENT

Image enhancement in the spatial domain: basic grey level transformation, Histogram Processing - Enhancement using arithmetic/Logic operations – Spatial filtering: smoothing and sharpening.

Image enhancement in the frequency domain: Introduction to two - dimensional transforms- Discrete Fourier Transform, Discrete Cosine Transform, Discrete Wavelet Transform – smoothing frequency domain filtering - sharpening frequency domain filtering

Unit-III MORPHOLOGICAL IMAGE PROCESSING AND IMAGE SEGMENTATION

Morphological Image Processing: Dilation and Erosion –Opening and Closing – Hit or Miss Transformation – Basic morphological algorithm Image Segmentation: Detection of discontinuities- Object Detection Methods, Edge Liking and Boundary Detection, Thresholding Methods, Region Oriented Methods.

Unit-IV REPRESENTATION AND DESCRIPTION

Chain codes, Polygonal approximation, Signature Boundary Segments, Skeletons, Boundary Descriptors, Regional Descriptors, Some Simple Descriptors Topological Descriptors Texture Moment Invariants Use of Principal Components for Description Relational Descriptors.

Unit-V OBJECT RECOGNITION

9

g

q

9

Patterns and Pattern Classes Recognition Based on Decision-Theoretic Methods Optimum Statistical Classifiers Neural Networks Matching Biological Neural Network, McCulloch Pitts Neuron, Thresholding Logic, Perceptron, Perceptron Learning Matching Shape Numbers String Matching Algorithm Feed forward Neural Network, Back propagation Neural Network

Total Periods: 45

Text Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Rafael C.Gonzalez , Richard E. Woods	Digital Image Processing	Pearson Education, Third Edition	2013
2.	A.K. Jain	Fundamentals of Digital Image Processing.	Prentice Hall India	1988

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	David A Forsyth Joan Ponco	Computer Vision : A	Prentice Hall ;	2011
	David A .Foi sydi , Jean Fonce	Modern Approach	Second edition	-
		Digital Image Processing		
2	Scott F Umbaugh	and Analysis: Human and	Second Edition,	2011
Δ.	Scott E offibaugh	Computer Vision	CRC Press	2011
		Application with CVIP tools		

36/03/23 Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU. Chairman

23CSB09	IMAGE PROCESSING AND ANALYSIS LABORATORY	L 0	Т 0	P 2	C 1
Course Objective:					

- Be exposed to simple image processing techniques
- Be familiar with image enhancement and segmentation techniques
- Be familiar with morphological and image transform

Course Outcomes:

23CSB09.C01 Perform the image enhancement and edge detection.

23CSB09.C02 Implement Morphological operation.

23CSB09.CO3 Demonstrate image transform and Color image processing.

Course Outcomes					Pro	ogram	Outc	omes					Program Specific Outcomes			
	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSB09.C01	Х	-	-	-	Х	-	-	-	-	-	Х	Х	-	Х	-	
23CSB09.C02	Х	Х	Х	-	Х	-	-	-	-	-	Х	Х	-	Х	-	
23CSB09.C03	Х	Х	Х	-	Х	-	-	-	-	-	Х	Х	-	Х	-	

Sl.No.

List of Experiments

1. Program to enhance image using image arithmetic and logical operations.

2. Program for image enhancement using histogram equalization.

3. Program for image enhancement using Image Negative and Gray level slicin

4. Program to filter an image using averaging low pass filter in spatial domain and median filter.

5. Program for smooth an image using low pass filter in frequency domain.(Butterworth lpf)

6. Program for smooth an image using high pass filter in frequency domain.(Butterworth hpf)

7. Program for morphological image operations-erosion, dilation, opening & closing.

- 8. Program for edge detection algorithm.
- 9. To fill the region of interest for the image.
- 10. Program of sharpen image using gradient mask.

Total Periods: 30

Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

23CSB10	COFT COMPUTINC	L	Т	Р	C
	SOFT COMPUTING	3	0	0	3

- Classify the various soft computing frame works •
- Be familiar with the design of neural networks, fuzzy logic and fuzzy systems
- Learn mathematical background for optimized genetic programming
- Be exposed to neuro-fuzzy hybrid systems and its applications

Course Outcomes:

23CSB10.CO1	Apply various soft computing concepts for practical applications.
23CSB10.CO2	Choose and design suitable neural network for real time problems.
23CSB10.CO3	Use fuzzy rules and reasoning to develop decision making and expert system.
23CSB10.CO4	Explain the importance of optimization techniques and genetic programming.
23CSB10.CO5	Review the various hybrid soft computing techniques and apply in real time problems.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB10.CO1	Х	-	Х	-	-	-	-	-	-	-	-	Х	Х	-	-
23CSB10.CO2	Х	Х	-	-	-	-	-	Х	-	-	-	Х	Х	Х	-
23CSB10.CO3	Х	Х	-	Х		-	-	-	-	-	-	Х	-	Х	Х
23CSB10.CO4	Х	Х	Х	Х	Х	-	-	-	Х	Х	Х	-	-	-	Х
23CSB10.CO5	Х	Х	Х	Х	Х	-	-	-	-	-	Х	Х	-	-	Х

INTRODUCTION TO SOFT COMPUTING Unit-I

Soft Computing Constituents-From Conventional AI to Computational Intelligence- Artificial neural network: Introduction, characteristics- learning methods - taxonomy - Evolution of neural networks - basic models - important technologies - applications. Fuzzy logic: Introduction - crisp sets - fuzzy sets - crisp relations and fuzzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts

NEURAL NETWORKS Unit-II

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: autoassociative memory network, hetero-associative memory network, BAM, hopfield networks, iterative auto associative memory network & iterative associative memory network –unsupervised learning networks: Kohonen self-organizing feature maps, LVQ – CP networks, ART network.

FUZZY LOGIC Unit-III

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

GENETIC ALGORITHM Unit-IV

9

9

Genetic algorithm- Introduction - biological background - traditional optimization and search techniques - Genetic basic concepts - operators – Encoding scheme – Fitness evaluation – crossover - mutation - genetic programming – multilevel optimization – real life problem- advances in GA.

Unit-V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers.

Total Periods: 45

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	J.S.R.Jang, C.T. Sun and E.Mizutani	Neuro-Fuzzy and SoftComputing	PHI / Pearson Eduaction	2004
2.	S.N.Sivanandam and S.N.Deepa	Principles of Soft Computing	Wiley India Pvt Ltd	2011
3.	S.Rajasekaran and G.A.Vijayalakshmi Pai	Neural Networks, Fuzzy Logic and Genetic Algorithm Synthesis and Applications	Prentice-Hall of IndiaPvt. Ltd.,	2006
4.	George J. Klir, Ute St. Clair, Bo Yuan,	Fuzzy Set Theory	Foundations and Applications Prentice Hall,	1997
5.	David E. Goldberg	Algorithm in Search Optimization and Machine Learning	Genetic Pearson Education India	2013
6.	James A. Freeman, David M. Skapura	Neural Networks Algorithms, Applications, and Programming Techniques	Pearson EducationIndia	1991
7.	Simon Haykin	Neural Networks	Comprehensive Foundation Second Edition Pearson Education	2005

Reference Books:

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2200011	RECEARCH METHODOLOCY AND IDD	L	Т	Р	C
2305811	RESEARCH METHODOLOGY AND IPR	3	0	0	3

- To learn the basics of research problem, effective technical writing and developing a research proposal
- To study about Nature of Intellectual Property and Patent Rights

Course Outcomes:

- 23CSB11.CO1 Understand research problem formulation.
- 23CSB11.CO2 Analyze research related information
- 23CSB11.CO3 Follow research ethics.
- Understand that today's world is controlled by Computer, Information Technology, but 23CSB11.CO4 tomorrow world will be ruled by ideas, concept, and creativity.
- Understanding that when IPR would take such important place in growth of individuals & 23CSB11.CO5 nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
23CSB11.CO1	Х	-	-	Х	-	-	Х	-	Х	-	Х	-	-	Х	-
23CSB11.CO2	-	Х	-	-	Х	-	-	Х	-	-	Х	-	Х	-	-
23CSB11.CO3	-	Х	-	Х	-	Х	Х	-	-	-	Х	-	-	-	-
23CSB11.CO4	-	Х	Х	-	Х	-	-	-	Х	-	-	Х	-	-	-
23CSB11.CO5	-	-	Х	-	X	-	-	-	Х	-	Х	-	-	Х	-

Unit-I **BASICS OF RESEARCH PROBLEM**

Meaning of research problem – Sources of research problem – Criteria Characteristics of a good research problem - Errors in selecting a research problem - Scope and objectives of research problem. Approaches of investigation of solutions for research problem – Data collection – Analysis – Interpretation – Necessary instrumentations

Unit-II **TECHNICAL WRITING AND PROPOSAL**

Effective literature studies approaches – Analysis Plagiarism – Research ethics – Effective technical writing – How to write Report - Paper - Developing Research Proposal - Format of research proposal - Presentation and Assessment by a review committee.

Unit-III **INTELLECTUAL PROPERTY**

Nature of Intellectual Property: Patents – Designs – Trade and Copyright. Process of Patenting and Development: Technological research – Innovation – Patenting – Development, International Scenario: International cooperation on Intellectual Property – Procedure for grants of patents – Patenting under PCT.

Unit-IV PATENT RIGHTS

Patent Rights: Scope of Patent Rights - Licensing and transfer of technology - Patent information and databases -Geographical Indications.

Unit-V **DEVELOPMENTS IN IPR**

New Developments in IPR: Administration of Patent System - New developments in IPR - IPR of Biological Systems – Computer Software – Traditional knowledge Case Studies – IPR and IITs.

9

9

g

9

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Wayne Goddard and Stuart Melville	Research methodology: an introduction for science & engineering students	Juta and Company Ltd,2nd Edition	2004
2.	Ranjit Kumar	Research Methodology: A Step by Step Guidefor beginners	2nd Edition	2004
3.	Halbert	Resisting Intellectual Property	Taylor & Francis Ltd	2007
4.	Mayal	Industrial Design	McGraw Hill	1992
5.	Niebel	Product Design	McGraw Hill	1974
6.	Asimov	Introduction to Design	Prentice Hall	1962
7.	Robert P. Merges, Peter S.Menell, Mark A. Lemley,	IntellectualProperty in New Technological Age	McGraw Hill	2016

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

23CSB12	DATA MINING TECHNIQUES	L 3	Т 0	Р 0	С 3
Course Objecti	ve:				
• To learn the	fundamentals of Data mining				
• To gain know	wledge on association rule concepts in real time systems				
• To gain insig	ght on various classification				
 Course Objective: To learn the fundamentals of Data mining To gain knowledge on association rule concepts in real time systems To gain insight on various classification To gain insight on different clustering methods To study the different types of tools for complex mining techniques Course Outcomes:					
• To study the	e different types of tools for complex mining techniques				
Course Outcom	ies:				
23CSB12.CO1	Apply the functionalities of data mining in real time applications.				
23CSB12.CO2	Do the preprocessing and apply association rule concepts in real time sys	stems.			

23CSB12.CO3 Implement the various classification.

23CSB12.CO4 Implement the different clustering methods.

23CSB12.CO5 Study the different tools for complex mining techniques.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB12.CO1	Х	Х	Х	-	-	-	-	-	Х	Х	Х	Х	Х	-	Х
23CSB12.CO2	Х	Х	Х	-	-	Х	-	-	Х	Х	Х	Х	-	-	-
23CSB12.CO3	Х	Х	Х	-	Х	-	-	-	Х	-	Х	Х	Х	Х	-
23CSB12.CO4	Х	Х	Х	-	Х	-	-	-	Х	-	Х	Х	Х	Х	-
23CSB12.CO5	Х	Х	Х	-	Х	-	-	-	Х	Х	Х	-	Х	-	Х

INTRODUCTION Unit-I

Data Mining-Steps in Knowledge Discovery Process- Kinds of Data and Patterns - Technologies used-Targeted applications - Major issues in Data Mining - Data objects and attribute types - Statistical descriptions of data - Data Visualization- Measuring data similarity and dissimilarity.

Unit-II DATA PREPROCESSING

Data Cleaning, Integration, Reduction, Transformation and Discretization, Mining Frequent Patterns – Frequent Item set Mining Methods

Unit-III **CLASSIFICATION**

Decision Tree Induction-Bayesian Classification - Rule based Classification - classification by Back Propagation -Support Vector Machines – Lazy Learners – Model Evaluation and Selection – Techniques to improve Classification Accuracy - k-Nearest Neighbor Classifier.

Unit-IV **CLUSTER ANALYSIS**

Clusters Analysis: Partitioning Methods - Hierarchical Methods - Density based Methods - Grid based Methods -Evaluation of Clustering - Outliers and Outlier analysis - Outlier detection Methods - Statistical Approaches

Unit-V **APPLICATIONS**

Rules - Knowledge Bases - Active And Deductive Databases - Parallel Databases - Multimedia Databases - Image Databases - Text Database Mining Complex data types - Statistical Data Mining - Data Mining foundations - Visual and Audio Data Mining - Applications - Ubiquitous and invisible Data Mining - Social impacts of Data Mining .

9

9

9

9
Reference Book

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Jiawei Han Micheline Kamber	Data Mining Concepts and Techniques	3rd Edition, Elsevier	2011
2.	Alex Berson, Stephen J. Smith	Data Warehousing, Data Mining & OLAP	Tata McGraw Hill	2007
3.	K.P. Soman, Shyam Diwakar	Insight into Data mining Theory and Practice	2 nd Edition, Prentice Hall of India	2006
4.	G. K. Gupta	Introduction to Data Mining with Case Study	Prentice Hall of India	2011
5.	Pang-Ning Tan, MichaelSteinbach Vipi Kumar	Introduction to Data Mining	2 nd Edition,Pearson	2007

2200012	NETWORK DECICALAND TECHNOLOCIEC	L	Т	Р	С
2303013	NET WORK DESIGN AND TECHNOLOGIES	3	0	0	3

- To understand the fundamental concepts of computer networks
- To understand the design of Network architectures
- To understand the working principles of different protocols in various layers
- To study the implementation concepts in congestion control
- To study the implementation concepts in error detections

Course Outcomes:

23CSB13.CO1	Familiar with the basics of Computer Networks.
23CSB13.CO2	Understand Network architectures.
23CSB13.CO3	Understand Concepts of fundamental protocols.
23CSB13.CO4	Understand the knowledge of internetworking concepts in various applications.
23CSB13.CO5	Ability to study the implementation concepts in error detections.

Course Outcomes			Program Specific Outcomes												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
23CSB13.CO1	Х	Х	-	-	Х	-	Х	-	-	-	-	Х	Х	-	Х
23CSB13.CO2	-	-	Х	Х	-	Х	-	-	Х	-	-	-	-	-	Х
23CSB13.CO3	Х	-	Х	-	Х	-	-	-	-	Х	-	-	Х	-	-
23CSB13.CO4	-	Х	-	Х	Х	-	-	Х	-	-	-	Х	-	Х	-
23CSB13.CO5	-	-	X	Х	Х	-	-	-	Х	-	-	-	-	-	Х

Unit-I NETWORK DESIGN FUNDAMENTALS

Introduction - Cooperative communications -The OSI model -The TCP/IP model -The Internet protocols-Networking hardware-Physical connectivity-Virtual connectivity.

Unit-II NETWORK MONITORING AND ANALYSIS

Network monitoring and Analysis: An effective network monitoring LAN and WAN - Monitoring your network -The dedicated monitoring server – monitoring various network parameters - characteristics of monitoring tools - Types of monitoring tools-Spot check tools-Log analyzers-Trending tools-Real time tools- Benchmarking-Interpret the traffic graph - Monitoring RAM and CPU usage.

Unit-III WIRELESS NETWORKS

IEEE802.16 and WiMAX – Security – Advanced 802.16 Functionalities – Mobile WiMAX - 802.16e – Network Infrastructure – WLAN – Configuration – Management Operation – Security – IEEE 802.11e and WMM – QoS – Comparison of WLAN and UMTS.

Unit-IV 4G AND 5G NETWORKS

4G and 5G Networks : LTE – Network Architecture and Interfaces – FDD Air Interface and Radio Networks – Scheduling – Mobility Management and Power Optimization – LTE Security Architecture – Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10)- 4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Introduction to 5G.

Unit-V SOFTWARE DEFINED NETWORKS

9

q

9

9

Software Defined Networks: Introduction – Centralized and Distributed Control and Data Planes – Open Flow – SDN Controllers.

Total Periods: 45

Reference Book

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Martin Sauter	From GSM to LTE, An Introduciton to Mobile Networks and Mobile Broadband	1st Edition,Wiley	2014
2.	Thoman D. Nadeau, andKen Gray	SDN - Software Defined Networks	1st Edition, O"Reilly Publishers	2013

59/03 Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2	3CSB14	ADVANCED SOFTWARE ENGINEERING	L 3	Т 0	Р 0	С 3
Cou	rse Objective:					
•	To realize the relationship betw	ween UML diagrams				
•	To design and test software pr	oject				

- To understand the concept of system design
- To understand the concept of object design
- To understand the concepts of testing

Course Outcomes:

23CSB14.CO1	Execute the software project using software engineering methodologies.
23CSB14.CO2	Design various UML diagrams and inter relate them.
23CSB14.CO3	Design, test and manage the software project using various tools.
23CSB14.CO4	Analyze the concept of system design.
23CSB14.CO5	Analyze the concept of object design.

Course					Program Specific Outcomes										
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB14.CO1	Х	Х	-	-	-	-	-	-	-	-	-	-	Х	Х	-
23CSB14.CO2	Х	-	Х	-	-	-	-	-	-	-	-	Х	-	-	-
23CSB14.CO3	Х	-	-	Х	Х	-	-	-	-	-	-	-	-	Х	-
23CSB14.CO4	Х	-	Х	Х	-	-	-	-	Х	-	-	Х	-	Х	Х
23CSB14.CO5	-	-	Х	Х	Х	-	-	-	Х	-	-	Х	Х	-	Х

Unit-I INTRODUCTION SOFTWARE ENGINEERING

Software engineering concepts -Software engineering development activities - Managing software development - Introduction to UML- Modeling concepts – UML diagrams - Project organizations - Project communication concepts-Organizational activities

Unit-II REQUIREMENTS ELICITATION AND ANALYSIS

An overview of requirements elicitation – Requirements elicitation concepts - Requirements elicitation activities -Managing requirements elicitation - Analysis overview – Concepts of analysis - Activities: from use cases to objects-Managing analysis

Unit-III SYSTEM DESIGN AND OBJECT DESIGN

Decomposing the system- An overview of system design - System design concepts - System design activities – From objects to subsystems - Addressing design goals - Managing system design - Object design - Reusing pattern solutions - Reuse concepts - Solution objects – Inheritance - Design patterns - Reuse activities - Managing reuse

Unit-IV TESTING AND MANAGING CHANGES

Testing concepts - Testing activities - Component inspection- Managing testing - Rationale management – Rationale concepts - Rationale activities - From issues to decisions - Managing rationale heuristics for communicating about rationale - Issue modeling and negotiation - Conflict resolution strategies.

Unit-V CONFIGURATION MANAGEMENT AND PROJECT MANAGEMENT

9

9

9

g

Configuration management concepts - Configuration management activities - Managing configuration management-Project management - Project management concepts - Classical project management activities - Agile project management activities.

Reference Books:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication	
1.	Sommer ville	Software Engineering	Pearson Education	2009	
2.	Roger S. Pressman	Software Engineering - A Practitionar's Approach	McGraw-Hill International Edition,	2012	
3.	Robert N.Britcher	The Limits of Software: People, Projects, and Perspectives	Addison-Wesley Pub Co;1st edition	2007	
4.	Frederick P.Brooks	Essays on Software Engineering,	Addison-Wesley Pub Co;1st edition	2005	
5.	Richard H. Thayer	Requirements Engineering: A GoodPractice Guid <i>e</i>	Software Requirement Engineering.	2007	

56/03 Chairman

22CCD1 F	Α ΣΥΑΝζΈΣ ΣΑΤΑΒΑΣΕ ΤΕΣΙΝΟΙ Ο ΣΥ		L	Т	Р	С				
2305815	ADVANCED DATABASE TECHNOLOGY		3	0	0	3				
Course Objectiv	7 e :									
• To understa	nd database systems, data models, database languages									
• To be able to	design a database system by understanding the concepts of fund	ctional depend	lencies	and no	ormaliz	ation				
• To acquire t	To acquire the knowledge on its query processing									
• To understa	nd the principles of object oriented databases									
• To gain know	wledge about the emerging database technologies									
Course Outcom	es:									
23CSB15.CO1	Study the database systems, data models, database languages.									
23CSB15.CO2	Able to design a database system by understanding the connormalization.	ncepts of func	ctional	depen	dencie	s and				
23CSB15.CO3	23CSB15.CO3 Apply the knowledge on its query processing.									
23CSB15.CO4	Analyze the principles of object oriented databases.									
23CSB15.C05	Study about the different emerging database technologies.									

Course Outcomes			Program Specific Outcomes												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PS03
23CSB15.CO1	Х	Х	-	-	-	-	-	-	-	-	-	-	Х	Х	-
23CSB15.CO2	Х	-	Х	-	-	-	-	-	-	-	-	Х	-	-	-
23CSB15.CO3	Х	-	-	Х	Х	-	-	-	-	-	-	-	-	Х	-
23CSB15.CO4	X	-	Х	Х	-	-	-	-	Х	-	-	Х	-	Х	Х
23CSB15.CO5	-	-	Х	X	Х	-	-	-	X	-	-	X	X	-	X

Unit-I DISTRIBUTED DATABASES

Distributed Databases Vs Conventional Databases - Architecture - Fragmentation - Query Processing - Transaction Processing - Concurrency Control - Recovery.

Unit-II OBJECT ORIENTED DATABASES

Introduction to Object Oriented Data Bases - Approaches - Modeling and Design - Persistence - Query Languages - Transaction - Concurrency - Multi Version Locks – Recovery

Unit-III EMERGING SYSTEMS

Enhanced Data Models - Client/Server Model - Data Warehousing and Data Mining - Web Databases - Mobile Databases.

Unit-IV DESIGN DATABASE ISSUES

ER Model - Normalization - Security - Integrity - Consistency - Database Tuning - Optimization and Research Issues - Design of Temporal Databases - Spatial Databases.

Unit-V CURRENT ISSUES

Rules - Knowledge Bases - Active And Deductive Databases - Parallel Databases - Multimedia Databases - Image Databases - Text Database

9

9

9

9

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Elisa Bertino, Barbara Catania, Gian Piero Zarri	Intelligent Database Systems	Addison-Wesley	2001
2	Carlo Zaniolo, Stefano Ceri, Christos Faloustsos, R.T.Snodgrass, V.S.Subrahmanian	Advanced Database Systems	Pearson Publication	1997
3	Morgan KaufmanN.Tame Ozsu, Patrick Valduriez	Principles Of Distributed Database Systems	Prentice Hall International Inc	1999
4	Abdullah Uz Tansel Et Al	Temporal Databases: Theory, Design and Principles	Benjamin Cummings Publishers	1993
5	Raghu Ramakrishnan, Johannes Gehrke	Database Management Systems	McGraw Hill, Third Edition	2004

23CSB16 ADVANCED DATABASE TECHNOLOGY LABORATORY

Т	Р	C
0	2	1

L

0

Course Objective:

- To understand database systems, data models, database languages
- To be able to design a database system by understanding the concepts of functional dependencies and Normalization
- To acquire the knowledge on its query processing
- To understand the principles of object oriented databases
- To gain knowledge about the emerging database technologies

Course Outcomes:

23CSB16.CO1	Study the database systems, data models, database languages.
23CSB16.CO2	Able to design a database system by understanding the concepts of functional dependencies and normalization.
23CSB16.CO3	Apply the knowledge on its query processing.
23CSB16.CO4	Analyze the principles of object oriented databases.
23CSB16.CO5	Study about the different emerging database technologies.

Course					Pr	ogran	n Outo	comes					Program Specific Outcomes			
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSB16.CO1	-	Х	Х	Х	Х	-	-	-	Х	-	Х	-	-	-	Х	
23CSB16.CO2	-	-	Х	Х	Х	-	-	-	Х	-	Х	-	-	-	Х	
23CSB16.CO3	-	-	Х	Х	Х	-	-	-	Х	-	Х	-	-	-	Х	
23CSB16.CO4	-	-	Х	Х	Х	-	-	-	Х	-	Х	-	-	-	Х	
23CSB16.CO5	-	-	Х	X	X	-	-	-	Х	-	X	-	-	-	Х	

Sl.No.

List of Experiments

- 1. Implement parallel sorting and aggregates
- 2. Implement parallel joins and Hash joins
- 3. Implement semi join and bloom join in distributed DBMS
- 4. Implement two phase commit in distributed DBMS
- 5. Implementation of cube operator in OLAP queries in data warehousing and decision support system
- 6. Implement decision tree of data mining problem
- 7. Implement a priori algorithm in data mining
- 8. Simulation of a search engine
- 9. Implement view modification and materialization in data warehousing and decision support systems
- 10. Implementation of data log queries for deductive databases (Negation, Aggregate, Recursive etc.)

Total Periods: 30

า	9CCD17 D		L	Т	Р	C
2	.3U3B17 BI	IG DATA ANALY TICS	3	0	0	3
Cou	irse Objective:					
٠	To understand the various algorithm	ns for handling big data				
٠	To understand the techniques for ha	andling big data				
٠	To learn No SQL database system					
٠	To learn concepts for Data stream m	nining				

• To analyse the stream computing

Course Outcomes:

- 23CSB17.CO1 Understand how to leverage the insights from big data analytics through various algorithms.
- 23CSB17.CO2 Analyze data by utilizing various statistical and data mining approaches.
- 23CSB17.CO3 Perform analytics on real time data using Hadoop related tools.
- 23CSB17.CO4 Comprehend the various methods for mining the data.
- 23CSB17.CO5 Analyze the concepts of real time data streaming.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB17.CO1	Х	Х	Х	Х	-	-	-	Х	-	Х	-	Х	Х	-	-
23CSB17.CO2	-	-	Х	Х	Х	-	Х	-	Х	-	Х	-	-	Х	Х
23CSB17.CO3	Х	Х		-	-	-	Х	-		Х			-	Х	-
23CSB17.CO4	Х	-	Х	-	-	Х		Х		-	-	Х	Х	Х	-
23CSB17.CO5	X	Х	-	Х	-	Х	Х	-	X	-	Х	-	-	-	Х

Unit-I BIG DATA

Big Data: Definition – Wholeness of big data: Understanding – Capturing –Benefits and management – Organizing and analyzing – Challenges – Big data architecture – Big data sources and applications: Big data sources – Machine to machine Communications- Big data Applications.

Unit-II MAPREDUCE FRAMEWORK

Introducing Hadoop – Starting Hadoop – Components of Hadoop: Working with files in HDFS - Anatomy of a MapReduce program – Reading and writing - Writing basic MapReduce programs: Getting the patent data set-Constructing the basic template of a MapReduce program-Counting things-Adapting for Hadoop"sAPI changes-Streaming in Hadoop- Improving performance with combiners – Hadoop Ecosystem

Unit-III NOSQL DATABASE SYSTEMS

Introduction to NoSQL – CAP theorem - MongoDB : Data types – MongoDB Query Language – Cassandra: Features of Cassandra- Data types – CRUD- Collections Alter Commands – Import and EXport- Querying system tables.

Unit-IV MINING DATA STREAMS

Stream Data Model - Sampling Data in a Stream–Filtering Streams–Counting Distinct Elements in a Stream–Estimating Moments–Counting Ones in a Window–Decaying Window - Stream processing with SPARK and Kafka.

Unit-V CASE STUDIES

Implement using open source frameworks/tools : Time Series Analysis - Text analysis - Social Network Analysis - Data streams

Total Periods: 45

9

9

g

9

g

Referer	nce Books:			
Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Anil Maheshwari	Big Data	1 st Edition, McGrawHill Education	2017
2	Chuck Lam	Hadoop in Action	2 nd Edition, Manning Publications	2011
3	Seema Acharya and Subhashini Chellappan	Big Data and Analytics	1st Edition, Wiley	2015
4	Pfleeger & Pfleeger	Security in Computing	Pearson Education,3rd Edition	2003
5	Carmit Hazay, Yehuda Lindell	Efficient Secure TwoParty Protocols: Techniques andConstructions	Springer-Verlag	2010

2266040	EQUINDATIONS OF DATA SCIENCE	L	Т	Р	С
23(3818	FOUNDATIONS OF DATA SCIENCE	3	0	0	3

- To apply fundamental algorithms to process data
- Learn to apply hypotheses and data into actionable predictions
- Document and transfer the results and effectively communicate the findings using
- visualization techniques
- To learn statistical methods and machine learning algorithms required for Data Science
- To develop the fundamental knowledge and understand concepts to become a data science professional

Course Outcomes:

23CSB18.CO1 Obtain, clean/process and transform data.

23CSB18.CO2 Analyze and interpret data using an ethically responsible approach.

23CSB18.CO3 Use appropriate models of analysis, assess the quality of input, derive insight from results, and investigate potential issues.

Apply computing theory, languages and algorithms, as well as mathematical and statistical models, and the principles of optimization to appropriately formulate and use data analyses.

23CSB18.C05 Formulate and use appropriate models of data analysis to solve business-related challenges.

Course					Pr	ogran	n Outo	comes					Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB18.CO1	Х	Х	Х	Х	-	-	-	Х	-	Х	-	Х	Х	-	-
23CSB18.CO2	-	-	Х	Х	Х	-	Х	-	Х	-	Х	-	-	Х	Х
23CSB18.CO3	Х	Х		-	-	-	Х	-		Х			-	Х	-
23CSB18.CO4	Х	-	Х	-	-	Х		Х		-	-	Х	Х	Х	-
23CSB18.CO5	Х	Х	-	Х	-	Х	Х	-	Х	-	Х	-	-	-	Х

Unit-I INTRODUCTION TO DATA SCIENCE

Data science process – roles, stages in data science project – working with data from files – working with relational databases – exploring data – managing data – cleaning and sampling for modeling and validation – introduction to NoSQL.

Unit-II MODELING METHODS

Choosing and evaluating models – mapping problems to machine learning, evaluating clustering models, validating models – cluster analysis – K-means algorithm, Naïve Bayes – Memorization Methods – Linear and logistic regression – unsupervised methods

Unit-III INTRODUCTION TO R

Reading and getting data into R – ordered and unordered factors – arrays and matrices – lists and data frames – reading data from files – probability distributions – statistical models in R - manipulating objects – data distribution.

Unit-IV MAPREDUCE

Introduction – distributed file system – algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce – Hadoop - Understanding the Map Reduce architecture - Writing Hadoop MapReduce Programs - Loading data into HDFS - Executing the Map phase - Shuffling and sorting - Reducing phase execution.

Unit-V DATA VISUALIZATION

9

q

9

9

q

Documentation and deployment – producing effective presentations – Introduction to graphical analysis – plot() function – displaying multivariate data – matrix plots – multiple plots in one window - exporting graph using graphics parameters - Case studies.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Nina Zumel, John Mount	Practical Data Science with R	Manning Publications	2014
2.	Mark Gardener	Beginning R - The Statistical Programming Language	John Wiley & Sons, Inc.	2012
3.	W. N. Venables, D. M. Smith and the R Core Team	An Introduction to R	-	2013
4.	Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta	Practical Data Science Cookbook	Packt Publishing Ltd	2014
5.	Nathan Yau	Visualize This: The Flowing Data Guide to Design, Visualization, and Statistics	Wiley	2011

56/03

23CSB10	COGNITIVE COMPUTING	L	Т	Р	С
2363017		3	0	0	3
Course Objective.					

- To familiarize Use the Innovation Canvas to justify potentially successful products
- To learn various ways in which to develop a product idea
- To understand about how Big Data can play vital role in Cognitive Computing
- To know about the business applications of Cognitive Computing
- To get into all applications of Cognitive Computing

Course Outcomes:

23CSB19.CO1	Explain applications in Cognitive Computing.
23CSB19.CO2	Describe Natural language processor role in Cognitive computing
23CSB19.CO3	Explain future directions of Cognitive Computing.
23CSB19.CO4	Evaluate the process of taking a product to market.
23CSB19.CO5	Comprehend the applications involved in this domain.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB19.CO1	Х	Х	Х	Х	-	-	-	Х	-	Х	-	Х	Х	-	-
23CSB19.CO2	-	-	Х	Х	Х	-	Х	-	Х	-	Х	-	-	Х	Х
23CSB19.CO3	Х	Х		-	-	-	Х	-		Х			-	Х	-
23CSB19.CO4	Х	-	Х	-	-	Х		Х		-	-	Х	Х	Х	-
23CSB19.CO5	Х	Х	-	Х	-	Х	Х	-	Х	-	Х	-	-	-	Х

Unit-I FOUNDATION OF COGNITIVE COMPUTING

Foundation of Cognitive Computing: cognitive computing as a new generation, the uses of cognitive systems, system cognitive, gaining insights from data, Artificial Intelligence as the foundation of cognitive computing, understanding cognition Design Principles for Cognitive Systems: Components of a cognitive system, building the corpus, bringing data into cognitive system, machine learning, hypotheses generation and scoring, presentation, and visualization services

Unit-II NATURAL LANGUAGE PROCESSING IN COGNITIVE SYSTEMS

Natural Language Processing in support of a Cognitive System: Role of NLP in a cognitive system, semantic web, Applying Natural language technologies to Business problems Representing knowledge in Taxonomies and Ontologies: Representing knowledge, Defining Taxonomies and Ontologies, knowledge representation, models for knowledge representation, implementation considerations

Unit-III BIG DATA AND COGNITIVE COMPUTING

Relationship between Big Data and Cognitive Computing: Dealing with human-generated data, defining big data, architectural foundation, analytical data warehouses, Hadoop, data in motion and streaming data, integration of big data with traditional data Applying Advanced Analytics to cognitive computing: Advanced analytics is on a path to cognitive computing, Key capabilities in advanced analytics, using advanced analytics to create value, Impact of open source tools on advanced analytics

Unit-IV BUSINESS IMPLICATIONS OF COGNITIVE COMPUTING

9

9

9

Preparing for change ,advantages of new disruptive models , knowledge meaning to business, difference with a cognitive systems approach , meshing data together differently, using business knowledge to plan for the future , answering business questions in new ways , building business specific solutions , making cognitive computing a reality , cognitive application changing the market The process of building a cognitive application: Emerging cognitive platform, defining the objective, defining the domain, understanding the intended users and their attributes, questions and exploring insights, training and testing

Unit-V APPLICATION OF COGNITIVE COMPUTING

Building a cognitive health care application: Foundations of cognitive computing for healthcare, constituents in healthcare ecosystem, learning from patterns in healthcare Data, Building on a foundation of big data analytics, cognitive applications across the health care eco system, starting with a cognitive application for healthcare, using cognitive applications to improve health and wellness, using a cognitive application to enhance the electronic medical record Using cognitive application to improve clinical teaching

Total Periods: 45

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Judith H Hurwitz, Marcia Kaufman, Adrian Bowles	Cognitive computing and Big Data Analytics	Wiley	2015
2.	Noah D. Goodman, Joshua B. Tenenbaum	Probabilistic Models of Cognition	The ProbMods Contributors, Second Edition	2016

Reference Books:

hairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2205820	NATUDAL LANCHACE DDOCESSING	L	Т	Р	C
2303020	NATORAL LANGOAGE PROCESSING	3	0	0	3
Course Objective:					

- To understand basics of linguistics, probability and statistics
- To study statistical approaches to NLP and understand sequence labeling
- To outline different parsing techniques associated with NLP
- To explore semantics of words and semantic role labeling of sentences
- To understand discourse analysis, question answering and chat bots

Course Outcomes:

23CSB20.CO1	Understand basics of linguistics, probability and statistics associated with NLP.
23CSB20.CO2	Implement a Part-of-Speech Tagger.
23CSB20.CO3	Design and implement a sequence labeling problem for a given domain.
23CSB20.CO4	Implement semantic processing tasks and simple document indexing and searching system using the concepts of NLP.
23CSB20.CO5	Implement a simple chat bot using dialogue system concepts.

Course Outcomes			Program Specific Outcomes												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB20.CO1	Х	Х	Х	Х	-	-	-	Х	-	Х	-	Х	Х	-	-
23CSB20.CO2	-	-	Х	Х	Х	-	Х	-	Х	-	Х	-	-	Х	Х
23CSB20.CO3	Х	Х		-	-	-	Х	-		Х			-	Х	-
23CSB20.CO4	X	-	Х	-	-	Х		Х		-	-	Х	Х	Х	-
23CSB20.CO5	X	Х	-	Х	-	Х	Х	-	Х	-	Х	-	-	-	X

Unit-I INTRODUCTION

Natural Language Processing – Components - Basics of Linguistics and Probability and Statistics – Words-Tokenization-Morphology-Finite State Automata

Unit-II STATISTICAL NLP AND SEQUENCE LABELING

N-grams and Language models –Smoothing -Text classification- Naïve Bayes classifier – Evaluation - Vector Semantics – TF-IDF - Word2Vec- Evaluating Vector Models –Sequence Labeling – Part of Speech – Part of Speech Tagging -Named Entities –Named Entity Tagging

Unit-III CONTEXTUAL EMBEDDING

Constituency –Context Free Grammar –Lexicalized Grammars- CKY Parsing – Earley's algorithm-Evaluating Parsers -Partial Parsing – Dependency Relations- Dependency Parsing -Transition Based - Graph Based

Unit-IV COMPUTATIONAL SEMANTICS

Word Senses and WordNet – Word Sense Disambiguation – Semantic Role Labeling – Proposition Bank- FrameNet-Selectional Restrictions - Information Extraction - Template Filling

Unit-V DISCOURSE ANALYSIS AND SPEECH PROCESSING

9

9

g

9

Discourse Coherence – Discourse Structure Parsing – Centering and Entity Based Coherence –Question Answering – Factoid Question Answering – Classical QA Models – Chat bots and Dialogue systems – Frame-based Dialogue Systems – Dialogue–State Architecture.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Daniel Jurafsky and James H.Martin	Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition	Prentice Hall Series in Artificial Intelligence	2009
2.	Jacob Eisenstein	Natural Language Processing	MIT Press	2019
3.	Christopher Manning	Foundations of Statistical Natural Language Processing	MIT Press	2009
4.	Deepti Chopra, Nisheeth Joshi	Mastering Natural Language Processing with Python	Packt Publishing Limited	2016
5.	Mohamed Zakaria Kurdi	Natural Language Processing and Computational Linguistics: Speech, Morphology and Syntax (Cognitive Science)	ISTE Ltd	2016
6.	Atefeh Farzindar,Diana Inkpen	Natural Language Processing for Social Media(Synthesis Lectures on Human Language Technologies)	Morgan and Claypool Life Sciences	2015

26/03/

7266021	COMDUED ODTIMIZATION TECHNIQUES	L	Т	Р	С
2303021	COMPILER OPTIMIZATION TECHNIQUES	3	0	0	3

- To understand the optimization techniques used in compiler design
- To be aware of the various computer architectures that support parallelism
- To become familiar with the theoretical background needed for code optimization
- To understand the techniques used for identifying parallelism in a sequential
- program
- To learn the various optimization algorithms

Course Outcomes:

23CSB21.CO1	Design and implement techniques used for optimization by a compiler.
23CSB21.CO2	Modify the existing architecture that supports parallelism.
23CSB21.CO3	Modify the existing data structures of an open source optimising compiler.
23CSB21.CO4	Design and implement new data structures and algorithms for code optimization.
23CSB21.CO5	Critically analyze different data structures and algorithms used in the building of an optimising compiler.

Course				Program Specific Outcomes											
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB21.CO1	Х	Х	Х	Х	-	-	-	Х	-	Х	-	Х	Х	-	-
23CSB21.CO2	-	-	Х	Х	Х	-	Х	-	Х	-	Х	-	-	Х	X
23CSB21.CO3	X	Х		-	-	-	Х	-		Х			-	Х	-
23CSB21.CO4	X	-	Х	-	-	Х		Х		-	-	Х	Х	Х	-
23CSB21.CO5	Х	Х	-	Х	-	Х	Х	-	Х	-	Х	-	-	-	Х

Unit-I INTRODUCTION

Language Processors - The Structure of a Compiler – The Evolution of Programming Languages-The Science of Building a Compiler – Applications of Compiler Technology Programming Language Basics - The Lexical Analyzer Generator - Parser Generator - Overview of Basic Blocks and Flow Graphs - Optimization of Basic Blocks - Principle Sources of Optimization.

Unit-II INSTRUCTION-LEVEL PARALLELISM

Processor Architectures – Code-Scheduling Constraints – Basic-Block Scheduling –Global Code Scheduling – Advanced code motion techniques – Interaction with Dynamic Schedulers- Software Pipelining

Unit-III OPTIMISING FOR PARALLELISM AND LOCALITY-THEORY

Basic Concepts – Matrix-Multiply: An Example - Iteration Spaces - Affine Array Indexes – Data Reuse- Array data dependence Analysis

Unit-IV OPTIMISING FOR PARALLELISM AND LOCALITY – APPLICATION

Finding Synchronisation - Free Parallelism – Synchronisation Between Parallel Loops – Pipelining – Locality Optimizations – Other Uses of Affine Transforms

Unit-V INTERPROCEDURAL ANALYSIS

9

9

9

9

Basic Concepts – Need for Interprocedural Analysis – A Logical Representation of Data Flow – A Simple Pointer-Analysis Algorithm – Context Insensitive Interprocedural Analysis - Context- Sensitive Pointer-Analysis - Datalog Implementation by Binary Decision Diagrams.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Alfred V. Aho, Monica S.Lam, Ravi Sethi, Jeffrey D.Ullman	Compilers: Principles, Techniques and Tools	Second Edition, Pearson Education	2008
2.	Randy Allen, Ken Kennedy	Optimizing Compilers for Modern Architectures: A dependence-based Approach	Morgan Kaufmann Publishers	2002
3.	Steven S. Muchnick	Advanced Compiler Design and Implementation	Morgan Kaufmann Publishers – Elsevier Science, India	2007
4.	John Hopcroft, Rajeev Motwani, Jeffrey Ullman	Introduction To Automata Theory Languages, and Computation	Third Edition, Pearson Education	2007
5.	Torbengidius Mogensen	Basics of Compiler Design	Springer	2011
6.	Charles N, Ron K Cytron, Richard J LeBlanc Jr	Crafting a Compiler	Pearson Education	2010

2200022	ΓΑΤΑ ΜΟΠΑΙΙΖΑΤΙΟΝ ΤΕΟΙΝΙΟΠΕς	L	Т	Р	С
2303822	DATA VISUALIZATION TECHNIQUES	3	0	0	3

- To develop skills to both design and critique visualizations
- To introduce visual perception and core skills for visual analysis
- To understand technological advancements of data visualization
- To understand various data visualization techniques
- To understand the methodologies used to visualize large data sets

Course Outcomes:

23CSB22.CO1	Visualize the objects in different dimensions.
23CSB22.CO2	Design and process the data for Visualization.
23CSB22.CO3	Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical sciences.
23CSB22.CO4	Apply the virtualization techniques for research projects.
23CSB22.CO5	Identify appropriate data visualization techniques given particular requirements imposed by the data.

Course Outcomes			Program Specific Outcomes												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSB22.CO1	Х	Х	Х	Х	-	-	-	Х	-	Х	-	Х	Х	-	-
23CSB22.CO2	-	-	Х	Х	Х	-	Х	-	Х	-	Х	-	-	Х	Х
23CSB22.CO3	Х	Х		-	-	-	Х	-		Х			-	Х	-
23CSB22.CO4	Х	-	Х	-	-	Х		Х		-	-	Х	Х	Х	-
23CSB22.CO5	X	Х	-	X	-	Х	Х	-	Х	-	Х	-	-	-	Х

Unit-I INTRODUCTION AND DATA FOUNDATION

Basics - Relationship between Visualization and Other Fields - The Visualization Process – Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Preprocessing -Data Sets.

Unit-II FOUNDATIONS FOR VISUALIZATION

Visualization stages - Semiology of Graphical Symbols - The Eight Visual Variables – Historical Perspective - Taxonomies - Experimental Semiotics based on Perception Gibson's Affordance theory – A Model of Perceptual Processing.

Unit-III VISUALIZATION TECHNIQUES

Spatial Data: One-Dimensional Data - Two-Dimensional Data – Three Dimensional Data – Dynamic Data - Combining Techniques. Geospatial Data : Visualizing Spatial Data - Visualization of Point Data - Visualization of Line Data -Visualization of Area Data – Other Issues in Geospatial Data Visualization Multivariate Data : Point-Based Techniques - Line Based Techniques - Region-Based Techniques - Combinations of Techniques – Trees Displaying Hierarchical Structures – Graphics and Networks- Displaying Arbitrary Graphs/Networks

Unit-IV INTERACTION CONCEPTS AND TECHNIQUES

Text and Document Visualization: Introduction - Levels of Text Representations - The Vector Space Model - Single Document Visualizations -Document Collection Visualizations – Extended Text Visualizations Interaction Concepts: Interaction Operators - Interaction Operands and Spaces - A Unified Framework. Interaction Techniques: Screen

9

9

9

q

Space - Object-Space – Data Space - Attribute Space- Data Structure Space - Visualization Structure – Animating Transformations - Interaction Control

Unit-V RESEARCH DIRECTIONS IN VISUALIZATIONS

Steps in designing Visualizations – Problems in designing effective Visualizations- Issues of Data. Issues of Cognition, Perception, and Reasoning. Issues of System Design Evaluation , Hardware and Applications

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Matthew Ward, Georges Grinstein and Daniel Keim	Interactive Data Visualization Foundations, Techniques, Applications	CRC Press	2010
2.	Colin Ware	Information Visualization Perception for Design	4th edition, Morgan Kaufmann Publishers	2021
3.	Robert Spence	Information visualization – Design for interaction	Pearson Education, 2 nd Edition	2007
4.	Alexandru C. Telea	Data Visualization: Principles and Practice	A. K. Peters Ltd	2008

23CSC0	1
--------	---

- Introduce students to the advanced methods of designing and analyzing algorithms
- The student should be able to choose appropriate algorithms and use it for a specific problem
- To familiarize students with basic paradigms and data structures used to solve advanced algorithmic problems
- Students should be able to understand different classes of problems concerning their computation difficulties
- To introduce the students to recent developments in the area of algorithmic design

Course Outcomes

- 23CSC01.C01 Analyze the complexity/performance of different algorithms.
- 23CSC01.CO2 Determine the appropriate data structure for solving a particular set of problems.

23CSC01.CO3 Categorize the different problems in various classes according to their complexity.

23CSC01.CO4 Students should have an insight of recent activities in the field of the advanced data structure.

23CSC01.CO5 Evaluate the linear programming of different algorithms.

Course		Program Outcomes											Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
23CSC01.C01	Х	X	-	-	Х	-	-	-	Х	-	Х	Х	X	-	-
23CSC01.CO2	Х	X	-	-	Х	-	-	-	Х	-	Х	Х	X	-	-
23CSC01.CO3	-	X	-	Х	-	-	-	-	Х	-	Х	-	Х	-	-
23CSC01.CO4	-	X	Х	Х	-	-	-	-	Х	-	Х	-	Х	-	-
23CSC01.C05	-	Х	Х	Х	-	-	-	-	Х	-	Х	-	Х	-	-

UNIT I SORTING AND GRAPHING

Sorting: Review of various sorting algorithms, topological sorting Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkastra's), depth-first search and computation of strongly connected components, Emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.

UNIT II MATROIDS AND GRAPH MATCHING

Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.

UNIT III FLOW-NETWORKS AND MATRIX COMPUTATIONS

Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond- Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition.

UNIT IV GRAPHS, POLYNOMIALS AND DISCRETE FOURIER TRANSFORM

9

9

Shortest Path in Graphs: Floyd-Warshall algorithm and dynamic programming paradigm. More Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem, Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm.

UNIT V LINEAR PROGRAMMING

Linear Programming: Geometry of the feasibility region and Simplex algorithm NP-completeness: Examples, proof of NP-hardness and NP-completeness-Approximation algorithms - Randomized Algorithms.

Total Periods: 45

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Cormen, Leiserson, Rivest, Stein	Introduction to Algorithms	MIT Press, 3rd Edition,	2009
2	Aho, Hopcroft, Ullman	Addison-Wesley Longman	1985	
3	EthemAlpaydin	Introduction to Machine Learning	Data <i>Kleinberg,</i> Jon	2005
4	Hari Mohan Pandy	Design analysis and Algorithms	University SciencePress	2009
5	Kleinberg and Tardos	Algorithm Design	Pearson	2006

Reference Books:

hairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266602	ADVANCED ALCODITUME LADODATODY	L	Т	Р	С
2313102	ADVANCED ALGORI I HIMS LADORA I OR I	0	0	2	1

- To understand the concept of sorting and searching algorithms
- Analyze various algorithm to find minimum spanning tree
- To Study the Euclidean algorithm
- To implement modular exponentiation techniques
- To apply matrix for various algorithms

Course Outcomes

23CSC02.C01	Understand the concept of sorting and searching algorithms.
23CSC02.CO2	Implement Prim's algorithm to find minimum spanning tree.
23CSC02.CO3	Apply Dijkstra's algorithm to find shortest path.
23CSC02.C04	Implement warshall's algorithm to find all pair shortest path.
23CSC02.C05	Perform matrix calculation for various applications.

Course		Program Outcomes											Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC02.C01	Х	Х	Х	-	Х	-	-	-	-	-	Х	-	Х	-	-
23CSC02.CO2	-	Х	Х	-	Х	-	-	-	-	-	Х	-	Х	-	-
23CSC02.CO3	-	Х	Х	-	Х	-	-	-	-	-	Х	-	-	Х	-
23CSC02.CO4	-	Х	Х	-	Х	-	-	-	-	-	Х	-	-	Х	-
23CSC02.C05	-	Х	Х	-	Х	-	-	-	-	-	Х	-	-	-	-

Sl.No.

List of Experiments

- 1. Write a menu based program for sorting algorithms.
- 2. Write a menu based program for searching algorithms.
- 3. Write a menu driven program to perform DFS and BFS.
- 4. Implementation of Prim's algorithm to find minimum cost spanning tree
- 5. Implementation of Dijkstra's algorithm.
- 6. Implementation of Warshall's Algorithm.
- 7. Implementation of the extended Euclidean algorithm.
- 8. Implementation of the Modular exponentiation technique on an input data set.
- 9. Implementation of matrix multiplication Algorithm.
- 10. Implementation of Matrix Chain Multiplication.

Total Periods: 30

hair **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2205002		L	Т	Р	C
2303003	WED DATA MINING	3	0	0	3

- Introduces basic concepts, tasks, methods, and techniques in web mining
- Develop an understanding of the web mining process and issues, learn various techniques for data mining
- Learn the techniques in solving data mining problems using tools
- Understand classification and prediction algorithms for web data mining
- Apply the techniques in solving data mining problems using data mining tools and systems

Course Outcomes

23CSC03.C01 Gain the knowledge of basic concepts data mining and its functionalities.

23CSC03.CO2 Familiar with data mining and knowledge discovery process.

23CSC03.CO3 Learn various techniques for web usage mining process and techniques.

23CSC03.CO4 Learn classification and prediction algorithms for web data mining.

23CSC03.C05 Apply the techniques in solving data mining problems using data mining tools and systems.

Course	Program Outcomes											Program Specific Outcomes			
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
23CSC03.C01	Х	Х	Х	-	-	-	-	-	-	-	-	Х	Х	-	-
23CSC03.CO2	Х	Х	Х	-	Х	-	-	-	-	-	Х	-	-	X	-
23CSC03.CO3	X	Х	-	-	-	-	-	-	X	-	Х	-	Х	-	-
23CSC03.CO4	Х	Х	-	-	Х	-	-	-	-	Х	-	Х	-	X	-
23CSC03.C05	Х	Х	-	-	Х	-	-	-	Х	-	-	-	-	-	Х

UNIT I INTRODUCTION

What is Data Mining - Relational Databases - Data Warehouses - Transactional Databases - Advanced Database Systems - Data Mining Functionalities - Interestingness of a pattern Classification of Data Mining Systems - Major issues in Data Mining.

UNIT II DATA MINING AND KNOWLEDGE DISCOVERY

The KDD process and methodology - Data preparation for knowledge discovery - Overview of data mining techniques - Market basket analysis - Classification and prediction – Clustering - Memory-based reasoning - Evaluation and Interpretation.

UNIT III WEB USAGE MINING PROCESS AND TECHNIQUES

Data collection and sources of data- Data preparation for usage mining - Mining navigational patterns - Integrating e-commerce data - Leveraging site content and structure - User tracking and profiling - E- Metrics: measuring success in e-commerce Privacy issues.

UNIT IV CLASSIFICATION AND PREDICTION

Concepts and Issues regarding Classification and Prediction – Classification by Decision Tree Induction – Bayesian Classification - Classification by Back-propagation - Classification Based on Concepts from Association Rule Mining.

UNIT V WEB MINING APPLICATIONS AND OTHER TOPICS

Data integration for e-commerce - Web personalization and recommender systems - Web content and structure mining - Web data warehousing - Review of tools, applications, and systems.

9

9

9

9

g

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Michael Berry and GordonLinoff, John Wiley	Data Mining Techniques for Marketing, Sales, and Customer Relationship Management	Second Edition	2004
2.	Ralph Kimball and RichardMerz,	The Data Web house Toolkit	John Wiley	2000
3.	RajkumarBuyya,	Mining the Web: Transforming Customer Data into Customer Value	Tata McGrawHill Edition	2013
4.	Gordon Linoff and MichaelBerry	Hadoop: The Definitive Guide	John Wiley &Sons	2001

		L	Т	Р	С
23CSC04	WEB ANALYTICS AND DEVELOPMENT				
		3	0	0	3

- The course explores use of social network analysis
- To understand growing connectivity and complexity in the world ranging from small groups to WWW
- Apply various web search Techniques in Real time problems
- Analyze the Random Graphs and Network evolution
- Implement the Robustness Social involvements

Course Outcomes

23CSC04.C01	Gain the knowledge of Social network and Web data.
23CSC04.C02	Familiar with web analytics tools and development.
23CSC04.CO3	Illustrate Web Search and Retrieval techniques.
23CSC04.C04	Identify the Affiliation and identity of social connects.
23CSC04.C05	Aware the robustness in social involvements and diffusion of innovation.

Course		Program Outcomes												Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSC04.C01	Х	Х	Х	-	-	-	-	-	Х	-	-	-	Х	-	-	
23CSC04.CO2	Х	Х	Х	-	Х	-	-	-	-	-	Х	-	-	Х	-	
23CSC04.CO3	Х	Х	-	-	Х	-	-	-	-	-	Х	-	Х	-	-	
23CSC04.C04	Х	Х	-	Х	-	-	Х	-	-	-	-	Х	-	Х	-	
23CSC04.C05	Х	Х	-	-	Х	-	-	-	Х	-	-	-	-	-	Х	

UNIT I	INTRODUCTION	9
Social network networks, Infor	and Web data and methods, Graph and Matrices, Basic measures for individuals and mation Visualization .	
UNIT II	WEB ANALYTICS TOOLS	9
Click Stream Ar	nalysis, A/B testing, Online Surveys.	
UNIT III	WEB SEARCH AND RETRIEVAL	9
Click Stream Ar	nalysis, A/B testing, Online Surveys.	
UNIT IV	MAKING CONNECTION	9
Link Analysis, F	Random Graphs and Network evolution, Social Connects: Affiliation and identity.	
UNIT V	CONNECTION	9
Connection Sea	rch, Collapse, Robustness Social involvements and diffusion of innovation.	

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Hansen, Derek, Ben Sheiderman, Marc Smith	Data Mining Techniques for Marketing, Sales, and Customer Relationship Management	Second Edition	2004
2.	Avinash Kaushik	The Data Web house Toolkit	John Wiley	2000
3.	Easley, D. & Kleinberg, J.	Mining the Web: Transforming Customer Data into Customer Value	Tata McGrawHill Edition	2013
4.	Wasserman, S. & Faust, K.	Hadoop: The Definitive Guide	John Wiley & Sons	2001
5.	P. R. & Contractor,N. S.	Theories of communication networks	New York: Oxford University Press.	2003

23CSC05	DATA STORAGE TECHNOLOGIES AND NETWORKS

L	Т	Р	C
3	0	0	3

- To provide learners with a basic understanding of Enterprise Data Storage and Management Technologies
- To explain the design of a data center and storage requirements
- To discuss the various types of storage and their properties
- To explain physical and virtualization of storage
- To explain the backup, archiving with regard to recovery and business continuity

Course Outcomes

23CSC05.C01	Learn Storage System Architecture.
23CSC05.CO2	Overview of Virtualization Technologies, Storage Area Network.
23CSC05.CO3	Analyze different aspects of data storage.
23CSC05.CO4	Apply many transformations in terms of techniques and hardware used for the same.
23CSC05.C05	Describe Storage Area Networks And Storage QOS.

Course		Program Outcomes												Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSC05.C01	-	Х	-	-	Х	-	-	-	-	-	-	Х	-	Х	-	
23CSC05.C02		-	Х	Х	-	Х	-	Х	-	-	Х	-	-	-	Х	
23CSC05.C03	Х	-	-	-	-	-	Х	-	-	-	Х	-	Х	-	Х	
23CSC05.CO4		Х		Х	-	-	-	-	-	-	-	Х		-	-	
23CSC05.C05	Х	Х	Х	-	-	-	-	-	Х	Х	-	-	Х	-	-	

UNIT I STORAGE MEDIA AND TECHNOLOGIES

Storage Media and Technologies -Magnetic, Optical and Semiconductor Media, Techniques for read/write Operations, Issues and Limitations

UNIT II WEB ANALYTICS TOOLS

Usage and Access -Positioning in the Memory Hierarchy, Hardware and Software Design for Access, Performance issues.

UNIT III WEB SEARCH AND RETRIEVAL

Large Storages -Hard Disks, Networked Attached Storage, Scalability issues, Networking issues.

UNIT IV MAKING CONNECTION

Storage Architecture - Storage Partitioning, Storage System Design, Caching, Legacy Systems.

UNIT V CONNECTION

Connection Search, Collapse, Robustness Social involvements and diffusion of innovation. Storage Area Networks – Hardware and Software Components, Storage Clusters/Grids. Storage QoS – Performance, Reliability, and Security issues.

9 rit

9

9

9

g

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Franklyn E. Dailey	Data Mining Techniques for Marketing, Sales, and Customer Relationship Management	Second Edition	2004
2.	Nigel Poulton	Data Storage Networking : RealWorld Skills for the CompTIA Storage	Sybex	2014

56/03/23

23CSCO6 PATTERN CLASSIFICATION AND ANALVSIS	C
$\frac{2505000}{3} \qquad \qquad 1 \text{ ATTERN CLASSIFICATION AND ANALISIS} \qquad \qquad 3 \qquad 0 \qquad 3$	3

- To Study the fundamental algorithms for pattern recognition
- To instigate the various Pattern classification techniques
- To originate the various structural pattern recognition and feature extraction techniques
- To understand the clustering concepts
- To learn the recent advances in neural networks

Course Outcomes

23CSC06.C01	Understand and apply various algorithms for pattern recognition.
23CSC06.CO2	Realize the clustering concepts and algorithms.
23CSC06.CO3	Bring out feature extraction techniques.
23CSC06.CO4	Easily understand the concept of fundamental algorithms for pattern recognition.
22000000000	

23CSC06.C05 Analyze the recent advances in neural networks.

Course		Program Outcomes												Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSC06.C01	Х	Х	Х	Х	-	-	-	-	-	-	-	-	Х	-	Х	
23CSC06.CO2	Х	Х	Х	Х	-	-	-	-	-	-	Х	-	-	Х	-	
23CSC06.CO3	Х	Х	Х	-	-	-	-	-	-	-	Х	-	Х	-	-	
23CSC06.CO4	Х	Х	Х	Х	Х	-	-	-	-	-	-	Х	-	-	Х	
23CSC06.C05	Х	Х	Х	-	-	-	-	-	-	-	-	Х	Х	-	-	

UNIT I PATTERN CLASSIFIER

Overview of pattern recognition - Discriminant functions - Supervised learning - Parametric estimation Maximum likelihood estimation - Bayesian parameter estimation - Perceptron algorithm - LMSE algorithm - Problems with Bayes approach - Pattern classification by distance functions - Minimum distance pattern classifier

UNIT II UNSUPERVISED CLASSIFICATION

Clustering for unsupervised learning and classification - Clustering concept - C-means algorithm – Hierarchical clustering procedures - Graph theoretic approach to pattern clustering - Validity of clustering solutions.

UNIT III STRUCTURAL PATTERN RECOGNITION

Elements of formal grammars - String generation as pattern description - Recognition of syntactic description - Parsing - Stochastic grammars and applications - Graph based structural representation.

UNIT IV FEATURE EXTRACTION AND SELECTION

Entropy minimization - Karhunen - Loeve transformation - Feature selection through functions approximation - Binary feature selection.

UNIT V RECENT ADVANCES

9

q

g

9

Neural network structures for pattern recognition - Neural network based pattern associators – Unsupervised learning in neural pattern recognition - Self organizing networks - Fuzzy logic - Fuzzy pattern classifiers – Pattern classification using Genetic Algorithms. STATE OF ART (Not for Exam) Image Transforms: DFT, DCT, Haar,SVD and KL- Introduction to Matlab Toolbox.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Robert J.Schalkoff, Pattern Recognition	Statistical, Structural and Neural	John Wiley &Sons Inc., New York	2007
2	Tou and Gonzales	Pattern Recognition Principles	Wesley Publication Company, London	2008
3	Duda R.O., and Hart.P.E	Pattern Classification and Scene Analysis	Wiley, New York	2009
4	Morton Nadier and Eric Smith P	Pattern Recognition Engineering Shape analysis and	John Wiley & Sons, New York	2009
5	LFD Costa, RM Cesar Jr	classification: theory and practice	ACM Digital Library	2011

2265607	MODILE AND DEDVASIVE COMDUTING	L	Т	Р	С
2363607	MODILE AND FERVASIVE COMPOTING	3	0	0	3

- To learn the basic architecture and concepts till Third Generation Communication systems
- To understand the latest 4G Telecommunication System Principles
- To introduce the broad perspective of pervasive concepts and management
- To explore the HCI concepts in Pervasive environment
- To apply the pervasive concepts in mobile environment

Course Outcomes

23CSC07.CO1	Obtain a thorough understanding of basic architecture and concepts of till Third Generation Communication systems.
23CSC07.CO2	Explain the latest 4G Telecommunication System Principles.
23CSC07.CO3	Incorporate the pervasive concepts.
23CSC07.CO4	Implement the HCI in Pervasive environment.

23CSC07.C05 Work on the pervasive concepts in mobile environment.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC07.C01	Х	-	Х	Х	-	-	-	-	Х	-	-	-	Х	-	-
23CSC07.CO2	-	-	Х	Х	-	-	-	-	-	-	Х	Х	-	Х	-
23CSC07.CO3	-	Х	-	Х	-	-	Х	-	-	-	-	-	Х	-	Х
23CSC07.CO4	Х	Х	-	-	Х	-	-	-	-	-	Х	-	-	Х	-
23CSC07.C05	Х	-	Х	-	-	-	Х	-	-	-	-	-	Х	-	Х

UNIT I INTRODUCTION

History – Wireless communications: GSM – DECT – TETRA – UMTS – IMT – 2000 – Blue tooth, WiFi, WiMAX, 3G, WATM.- Mobile IP protocols -WAP push architecture-Wml scripts and applications. Data networks – SMS – GPRS – EDGE – Hybrid Wireless100 Networks – ATM – Wireless ATM.

UNIT II DATA MINING AND KNOWLEDGE DISCOVERY

Introduction. LTE-A System Architecture. LTE RAN. OFDM Air Interface. Evolved Packet Core. LTE Requirements. LTE-Advanced. LTE-A in Release. OFDMA – Introduction. OFDM Principles. LTE Uplink— SC-FDMA. Summary of OFDMA.

UNIT III WEB USAGE MINING PROCESS AND TECHNIQUES

Technology Trend Overview - Pervasive Computing: Concepts - Challenges - Middleware - Context Awareness - Resource Management - Human–Computer Interaction - Pervasive Transaction Processing - Infrastructure and Devices - Wireless Networks - Middleware for Pervasive Computing Systems - Resource Management - User Tracking- Context Management - Service Management - Data Management - Security Management - Pervasive Computing Environments - Smart Car Space - Intelligent Campus.

UNIT IV CLASSIFICATION AND PREDICTION

9

9

Prototype for Application Migration - Prototype for Multimodalities - Human-Computer Interface in Pervasive Environments - HCI Service and Interaction Migration - Context-Driven HCI Service Selection - Interaction Service Selection Overview - User Devices - Service-Oriented Middleware Support - User History and Preference - Context Manager - Local Service Matching - Global Combination - Effective Region - User Active Scope - Service Combination Selection Algorithm.

UNIT V WEB MINING APPLICATIONS AND OTHER TOPICS

Pervasive Mobile Transactions - Introduction to Pervasive Transactions - Mobile Transaction Framework -Unavailable Transaction Service - Pervasive Transaction Processing Framework - Context-Aware Pervasive Transaction Model - Context Model for Pervasive Transaction Processing - Context-Aware Pervasive Transaction Model - A Case of Pervasive Transactions - Dynamic Transaction Management - Context-Aware Transaction Coordination Mechanism - Coordination Algorithm for Pervasive Transactions - Participant Discovery - Formal Transaction Verification - Petri Net with Selective Transition.

Total Periods: 45

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Michael Berry and Gordon Linoff, John Wiley	Data Mining Techniques for Marketing, Sales, and Customer Relationship Management	Second Edition	2004
2.	Ralph Kimball and RichardMerz,	The Data Web house Toolkit	John Wiley	2000
3.	RajkumarBuyya,	Mining the Web: Transforming Customer Data into Customer Value	Tata McGrawHill Edition	2013
4.	Gordon Linoff and MichaelBerry	Hadoop: The Definitive Guide	John Wiley & Sons	2001

Reference Books:

Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

AD HOC AND WIRELESS SENSOR NETWO	RKS
----------------------------------	-----

23CSC08

- To learn the basics of sensor networks
- To impart knowledge on the design and development of the data link and network layers in the WSN protocol stack
- To understand the working of protocols in different layers of sensor networks
- To learn the establishment of wireless sensor networks
- To familiarize the students with the hardware and software platforms used in the design of WSN

Course Outcomes

23CSC08.CO1 Ability to learn the basics of sensor networks.

23CSC08.CO2 To impart knowledge on the design and development of the data link and network layers in the WSN protocol stack.

23CSC08.CO3 Analyze the working of protocols in different layers of sensor networks.

23CSC08.CO4 To learn the establishment of wireless sensor networks.

23CSC08.CO5 Analyze to understand the hardware

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC08.C01	Х	-	Х	-	-	Х	-	Х	Х	-	Х	-	-	Х	-
23CSC08.CO2	-	-	Х	Х	-	-	-	-		-	Х	-	Х	Х	Х
23CSC08.CO3	Х	Х	-	-	Х	-	Х	-	Х	Х	-	-	-	Х	-
23CSC08.CO4	Х	Х	-	Х	-	-		-	Х	-	Х	Х	Х	Х	Х
23CSC08.C05	Х	-	Х	-	-	Х	-	Х	-	Х	-	Х	-	-	Х

UNIT I AD-HOC MAC

Introduction - Issues in Ad-Hoc Wireless Networks. MAC Protocols - Issues, Classifications of MAC protocols, Multi channel MAC & Power control MAC protocol.

UNIT II AD-HOC NETWORK ROUTING & TCP

Issues - Classifications of routing protocols - Hierarchical and Power aware. Multicast routing - Classifications, Tree based, Mesh based. Ad Hoc Transport Layer Issues. TCP Over Ad Hoc - Feedback based, TCP with explicit link, TCP-BuS, Ad Hoc TCP, and Split TCP.

UNIT III WSN - MAC

Introduction - Sensor Network Architecture, Data dissemination, Gathering. MAC Protocols - self-organizing, Hybrid TDMA/FDMA and CSMA based MAC.

UNIT IV WSN ROUTING, LOCALIZATION & QOS

Issues in WSN routing - OLSR, AODV. Localization - Indoor and Sensor Network Localization. QoS in WSN.

UNIT V WEB MINING APPLICATIONS AND OTHER TOPICS

Necessity for Mesh Networks - MAC enhancements- IEEE802.11s Architecture- Opportunistic routing -

9

9

9

9

Self configuration and Auto configuration - Capacity Models - Fairness - Heterogeneous Mesh Networks - Vehicular Mesh Networks.

Total Periods: 45

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2205000	INTEDNET OF THINGS	L	Т	Р	С
2303009	INTERNET OF THINGS	3	0	0	3

- To get acquainted with the building blocks of Internet of Things (IoTs), characteristics and taxonomy of • IoT levels
- To learn a generic design methodology
- To learn a programming aspects of IoT •
- To know about various packages, frameworks and cloud services •
- To get acquainted with data analytics for IoT

Course Outcomes:

23CSC09.C01 Identify and design the new models for market strategic interaction.

23CSC09.C02 Design business intelligence and information security for WoB.

23CSC09.C03 Analyze various protocols for IoT.

23CSC09.CO4 Analyze programming aspects of IoT.

23CSC09.C05 To know about various packages, frameworks and cloud services.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC09.C01	Х	-	Х	-	Х	-	-	Х	-	Х	-	Х	Х	Х	-
23CSC09.CO2	Х	Х	-	-	Х	-	-	Х	Х	Х	-	-	Х	-	-
23CSC09.CO3	Х	Х	Х	Х	-	Х	-	-	Х	Х	Х	Х	-	Х	-
23CSC09.CO4	Х	Х	Х	Х	-	Х	-	-	Х	Х	Х	-	Х	-	Х
23CSC09.C05	Х	Х	Х	Х	-	Х	-	-	Х	Х	Х	Х	Х	Х	-

UNIT-I **INTRODUCTION TO IOT**

Definition and Characteristics - Physical Design Things - Protocols - Logical Design - Functional Blocks -Communication Models - Communication APIs - Introduction to measure the physical quantities - IoT Enabling Technologies – Wireless Sensor Networks - Cloud Computing – Big Data Analytics – CommunicationProtocols – Embedded Systems – IoT Levels and Deployment Templates.

UNIT-II **DEVELOPING INTERNET OF THINGS**

Introduction to Smart Systems using IoT - IoT Design Methodology - Case Study: Weather Monitoring -Logical Design using Python - Data types & Data Structures - Control Flow - Functions - Modules - Packages - File Handling – Date/Time Operations – Classes – Python Packages of Interest for IoT.

UNIT-III **DOMAIN SPECIFIC IoTs**

Home Automation - Cities - Environment - Energy - Retail - Logistics - Agriculture - Industry - Health and Lifestyle – IoT and M2M.

UNIT-IV IOT PHYSICAL DEVICES, ENDPOINTS AND CLOUD OFFERINGS

IoT Device - Raspberry Pi - Interfaces - Programming Raspberry Pi with Python - Other IoT Devices - IoT Physical Servers and Cloud Offerings - Cloud Storage Models and communication APIs - WAMP - Xively Cloud - Django - Amazon Web Services for IoT - SkyNet IoT Messaging Platform - Basics of Secure IoT Programming - Case Study: Home Automation.

UNIT-V DATA ANLYTICS FOR IOT

9

9

9

9

g
Data integration for e-commerce - Web personalization and recommender systems - Web content and structure mining - Web data warehousing - Review of tools, applications, and systems.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Arshadeep Bahga,Vijay Madisetti	Internet of Things: A Hands-On Approach	Published by Arshdeep Bahga & Vijay Madisetti	2014
2.	Mike Kuniavsky	Smart Things: UbiquitousComputing User ExperienceDesign	Morgan Kaufmann Publishers	2010
3.	Wimer Hazenberg	Meta Products: Building the Internet of Things. Sara Cordoba	Menno Huisman BIS Publishers	2011
4.	Massimo Banzi	Getting Started with Arduino(Make: Projects)	O'Reilly Media	2008
5.	Barnaghi	Semantics for the Internet of things	Addison Wesley	2012

103/23

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266610	ΙΝΤΕΡΝΕΤ ΟΕ ΤΗΙΝΟΣΙ ΑΡΟΒΑΤΟΡΥ	L	Т	Р	С
2303010	INTERNET OF THINGS LABORATORY	0	0	2	1
Course Objective:					
• To study the ass	embly language using simulator and kit				

- To implement ALU operations
- To implement ALU operations
- To generate waveforms and test timers
- To develop applications using Embedded C language
- To design IoT applications using Arduino, Raspberry Pi, and Bluemix

Course Outcomes:

23CSC10.CO1	Execute Assembly Language experiments using simulator.
23CSC10.CO2	Implement ALU operations.
23CSC10.CO3	Design waveforms and test timers.
23CSC10.CO4	Develop real time applications and explore ARM/PIC using Embedded C.
23CSC10.CO5	Demonstrate real time applications using Arduino, Raspberry Pi, and Bluemix.

Course		Program Outcomes											Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC10.CO1	Х	-	Х	Х	-	-	Х	-	-	Х	-	Х	Х	Х	-
23CSC10.CO2	Х	X	-	-	Х	-	Х	Х	Х	Х	-	-	Х	-	-
23CSC10.CO3	Х	X	Х	Х	-	X	-	-	Х	Х	Х	Х	Х	-	-
23CSC10.CO4	Х	Х	Х	-	Х	Х	-	Х	Х	Х	Х	-	-	-	Х
23CSC10.CO5	Х	Х	Х	Х	-	Х	-	-	Х	Х	Х	Х	Х	Х	-

Sl.No.

List of Experiments

- 1 Write Basic and arithmetic Programs Using Embedded C.
- 2 Write Embedded C program to test interrupt and timers.
- 3 Develop Real time applications clock generation, wave form generation, counter using embedded C.
- 4 Explore ARM/PIC based controllers using Embedded C.
- 5 Explore different communication methods with IoT devices
- 6 Develop simple application testing infrared sensor IoT Applications using Arduino.
- 7 Develop simple application testing temperature, light sensor IOT Application using open Platform /Raspberry Pi.
- 8 Deploy IOT applications using platforms such as Bluemix.

Total Periods: 30

2266611	ΠΑΤΆ ΠΠΕΠΑΠΑΤΙΩΝ ΑΝΠ ΑΝΑΙ ΥΣΙς	L	Т	Р	С
2363611	DATA FREFARATION AND ANALISIS	3	0	0	3

- To prepare the data for analysis
- To develop meaningful Data
- Learn the different ways of Data Analysis
- Be familiar with data streams
- Be familiar with the visualization

Course Outcomes:

23CSC11.CO1	Work in a business environment in which data preparation occurs.
23CSC11.CO2	Apply data cleaning techniques on real world data and prepare data for analysis.
23CSC11.CO3	Perform exploratory analysis on data, such as calculating descriptive and comparative Statistics.
23CSC11.CO4	Experiment visualization techniques for various data analysis tasks.
23CSC11.CO5	Illustrate Clustering and association techniques.

Course Outcomes		Program Outcomes											Program Specific Outcomes		
outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC11.CO1	Х	-	-	Х	-	-	Х	-	-	-	Х	-	Х	-	-
23CSC11.CO1	-	-	Х	Х	Х	-	-	-	-	-	-	Х	-	Х	-
23CSC11.CO1	-	Х	-	-	-	-	-	-	-	-	Х	Х	Х	-	Х
23CSC11.CO1	Х	Х	-	-	Х	-	-	-	-	Х	-	-	-	Х	-
23CSC11.CO5	Х	-	Х	-	-	Х	-	-	-	-	Х	-	Х	-	-

UNIT-I DATA GATHERING AND PREPARATION

Defining Data analysis problems: Knowing the client-understanding the questions- Data Gathering and Preparation: Data formats-parsing and transformation-Scalability and real-time issues

UNIT-II DATA CLEANING

Data Cleaning: Consistency checking-Heterogeneous and missing data- Data Transformation and segmentation.

UNIT-III EXPLORATORY ANALYSIS

Exploratory Analysis: Descriptive and comparative statistics- Clustering and association-HypothesisGeneration

UNIT-IV VISUALIZATION

Visualization: Designing visualizations- Time series-Geolocated data- Correlations and connections-Hierarchies and networks- interactivity.

UNIT-V STATISTICS

Descriptive statistics-Inferential statistics-Comparative statistics

9

9

9

9

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	GlennJ. Myatt	Making sense of Data : A practical Guide to Exploratory Data Analysis and Data Mining	John Wiley & Sons, Inc Second edition	2014
2.	Michael Berthold,David J. Hand	Intelligent Data Analysis	Springer	2007
3.	Donald J. Wheeler	Making Sense of Data	SPC Press	2003
4.	Dorian Pyle	Data Preparation for Data Mining	Morgan Kaufmann	1999
5.	Gerhard Svolba	Data Preparation for Analytics Using SAS	SAS Institute	2006

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2365612	ADVANCED COMPUTER ARCHITECTURE	L	Т	Р	С
2000012		3	0	0	3

- To analyze various performance related parameters in computer architecture and understand instruction set architectures
- To understand Instruction Level Parallelism(ILP) with its limitations
- To utilize the ILP concept for memory design
- To review various issues in multiprocessor
- To understand the design of the memory hierarchy and analyze the types of multiprocessors

Course Outcomes:

23CSC12.CO1 Understand performance related parameters and the concepts of Instruction Set Architectures.

23CSC12.CO2 Describe Instruction Level parallelism and identify the limitations of ILP.

23CSC12.CO3 Discuss the approaches of exposing and exploiting ILP.

23CSC12.CO4 Design hierarchical memory System.

23CSC12.CO5 Analyze the types of multiprocessor architecture and storage devices.

Course Outcomes		Program Outcomes											Program Specific Outcomes		
outcomes	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC12.CO1	Х	-	Х	-	Х	-	-	-	Х	-	-	-	Х	-	-
23CSC12.CO2	Х	Х	-	-	-	Х	Х	-	-	-	-	-	-	Х	-
23CSC12.CO3	-	-	Х	-	Х	-	-	Х	-	Х	-	-	Х	-	-
23CSC12.CO4	-	-	Х	Х	-	-	-	-	-	-	Х	Х	-	Х	-
23CSC12.CO5	-	Х	Х	-	Х	-	-	-	Х	-	-	-	-	-	Х

UNIT-I FUNDAMENTALS OF COMPUTER DESIGN

Introduction-measuring and reporting performance- Quantitative principles of computer design- Instructionset principles and examples- classifying instructions- set architectures-memory addressing- addressingmodes for signal processing-type and size of operands.

UNIT-II INSTRUCTION LEVEL PARALLELISM

Concepts and challenges – overcoming data hazards with dynamic scheduling – examples- reducing branch costs with dynamic hardware prediction- high performance instruction delivery- taking advantages of ILP with multiple issues-limitations of ILP.

UNIT-III ILP WITH SOFTWARE APPROACHES

Basic compiler techniques for exposing ILP- static branch prediction- static multiple issues: VLIW approach-Advanced compiler support for exposing and exploiting ILP-Hardware support-cross cutting issues- Intel IA64 architecture.

UNIT-IV MEMORY HIERARCHY DESIGN

Introduction- review of caches- cache performance- reducing cache miss penalty-reducing miss ratemissrate via parallelism –reducing hit time – main memory and organizations for improving performance-memory technology- virtual memory.

9

q

9

UNIT-V MULTIPROCESSORS AND THREAD LEVEL PARALLELISM

Symmetric shared memory architectures-performance of symmetric shared memory multiprocessors – Distributed shared memory architectures-synchronization- storage systems – types of storage devices- buses-reliability-availability and dependability- RAID – errors and failures in real systems- I/O performance measures-Introduction to queuing theory.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	John L. Hennessy and David A. Patterson	Computer Architecture: AQuantitative Approach	Morgan Kaufmann,3rd Edition	2003
2	Sima D. FountainT. And Kacsuk P	Advanced Computer Architectures: A Design Space Approach	Addison Wesley	2000
3	Kai Hwang	Advanced Computer Architecture: Parallelism, Scalability, Programmability	Tata McGraw HillEdition	2001

15/03/23

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2365613	MULTICORF ARCHITECTURE	L	Т	Р	С
2505015		3	0	0	3

- To understand the recent trends in the field of Computer Architecture and identify performance related parameters
- To appreciate the need for parallel processing
- To expose the students to the problems related to multiprocessing
- To understand the different types of multicore architectures
- To expose the students to warehouse-scale and embedded architectures

Course Outcomes:

23CSC13.C01 Identify the limitations of ILP and the need for multicore architectures.
23CSC13.C02 Point out the salient features of different multicore architectures and how they exploit parallelism.
23CSC13.C03 Expose the different multiprocessor issues.
23CSC13.C04 Discuss the warehouse-scale computers architectures.
23CSC13.C05 Build the Requirements of Embedded Systems.

Course Outcomes					Pr	ogran	n Outo	comes						Program Specific Outcomes		
outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	
23CSC13.CO1	Х	Х	Х	Х	-	-	-	-	-	-	-	-	Х	-	-	
23CSC13.CO2	Х	-	Х	Х	-	-	-	Х	-	-	Х	-	-	Х	-	
23CSC13.CO3	Х	Х	Х	-	-	-	Х	-	-	-	Х	-	Х	-	Х	
23CSC13.CO4	Х	Х	Х	-	Х	-	-	-	-	-	-	Х	-	Х	-	
23CSC13.CO5	Х	Х	Х	-	-	-	-	-	Х	Х	-	-	Х	-	-	

UNIT-I FUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS

Classes of Computers – Trends in Technology, Power, Energy and Cost – Dependability – Measuring, Reporting and Summarizing Performance – Quantitative Principles of Computer Design – Classes of Parallelism - ILP, DLP, TLP and RLP.

UNIT-II DLP IN VECTOR, SIMD AND GPU ARCHITECTURES

Vector Architecture - SIMD Instruction Set Extensions for Multimedia – Graphics ProcessingUnits - Detecting and Enhancing Loop Level Parallelism.

UNIT-III TLP AND MULTIPROCESSORS

Symmetric and Distributed Shared Memory Architectures – Cache Coherence Issues - Performance Issues – Synchronization Issues – Models of Memory Consistency - Interconnection Networks – Buses, Crossbar and Multi-stage Interconnection Networks.

UNIT-IV WAREHOUSE-SCALE ARCHITECTURES

Programming Models and Workloads for Warehouse-Scale Computers – Architectures for Warehouse-Scale Computing – Physical Infrastructure and Costs – Cloud Computing – Case Studies.

9 tin

9

9

UNIT-V ARCHITECTURES FOR EMBEDDED SYSTEMS

Features and Requirements of Embedded Systems – Signal Processing and Embedded Applications – The Digital Signal Processor – Embedded Multiprocessors.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	John L. Hennessey and David A. Patterson	"Computer Architecture – A Quantitative Approach"	Morgan Kaufmann / Elsevier, 5th edition	2012
2	Darryl Gove	"Multicore Application Programming for Windows, Linux, and Oracle Solaris"	Pearson	2011
3	Richard Y. Kain,	"Advanced Computer Architecture a Systems Design Approach"	Prentice Hall	2011

Chairman

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266614	WIDELESS SENSOD NETWODVS	L	Т	Р	С
2303014	WIRELESS SENSOR NET WORKS	3	0	0	3

- To understand the working of protocols in different layers of sensor networks
- To learn the establishment of wireless sensor networks
- To familiarize the students with the hardware and software platforms used in the design of WSN
- To learn the establishment of wireless sensor networks
- To Analysis of various critical parameters in deploying a WSN

Course Outcomes:

23CSC14.CO1	Ability to learn the basics of sensor networks.
23CSC14.CO2	To impart knowledge on the design and development of the data link and network layers in the WSN protocol stack.
23CSC14.CO3	Analyze the working of protocols in different layers of sensor networks.
23CSC14.CO4	Technical knowhow in building a WSN network.
23CSC14.CO5	Analyze to understand the hardware.

Course					Pr	ogran	n Outo	comes					Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3
23CSC14.CO1	-	Х	Х	-	Х	-	-	-	-	-	-	Х	-	Х	-
23CSC14.CO2	-	-	Х	Х	-	Х	-	Х	-	-	Х	-	-	Х	-
23CSC14.CO3	Х			-	-	-	Х	-	-	-	Х	-	Х	-	Х
23CSC14.CO4		Х	Х	Х	-	-	-	-	-	-	-	-		-	-
23CSC14.CO5	X	X	X	-	-	-	-	-	X	Х	-	-	X	-	-

Unit-I Introduction

Fundamentals of wireless communication technology, the electromagnetic spectrum radio propagation, characteristics of wireless channels, modulation techniques, multiple access techniques, wireless LANs, PANs, WANs, and MANs, Wireless Internet.

Unit-II Wireless Sensor Networks

Introduction - Sensor Network Architecture, Data dissemination, Gathering. MAC Protocols - self- organizing, Hybrid TDMA/FDMA and CSMA based MAC.

Unit-III WSN-Routing

MAC Protocols : Issues in designing MAC protocols for adhoc wireless networks, design goals, classification of MAC protocols, MAC protocols for sensor network, location discovery, quality, other issues, S-MAC, IEEE 802.15.4.

Unit-IV QoS and Energy Management

Issues and Challenges in providing QoS, classifications, MAC, network layer solutions, QoS frameworks, need for energy management, classification, battery, transmission power, and system power management schemes.

Unit-V WSN Localization & QoS

Issues in WSN routing - OLSR, AODV. Localization - Indoor and Sensor Network Localization. QoS in WSN.

Total Periods: 45

9

9

9

9

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Feng Zhao and Leonidas Guibas	Wireless Sensor Networks	Morgan Kaufman Publishers	2004
2	William Stallings	Wireless Communications and Networks	Pearson Education	2004
3	C.Siva Ram Murthy and B.Smanoj	Ad Hoc Wireless Networks -	Pearson Education	2004

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

23CSC15	COMPUTER VISION	L 3	Т 0	Р 0	С 3
Course Objectiv	e:				
• To review in	nage processing techniques for computer vision				
• To understa	nd shape and region analysis				
• To understa	nd Hough Transform and its applications to detect lines				
• To understa	nd motion analysis				
• To study so	me applications of computer vision algorithms				
Course Outcome	25:				
23CSC15.CO1	Implement fundamental image processing techniques required for co	mpute	er visior	۱.	
23CSC15.CO2	Perform shape analysis.				

23CSC15.CO3 Apply Hough Transform for line, circle, and ellipse detections.

23CSC15.CO4 Implement motion related techniques.

23CSC15.CO5 Develop applications using computer vision techniques.

Course			Program Specific Outcomes												
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC15.CO1	Х	Х	Х	-	Х	-	-	-	-	I	I	Х	-	Х	-
23CSC15.CO2	Х	-	Х	Х	-	Х	-	Х	-	-	Х	-	-	Х	-
23CSC15.CO3	Х	Х	Х	-	-	-	Х	-	-	-	Х	-	Х	-	Х
23CSC15.CO4	Х	Х	Х	Х	-	-	-	-	-	-	-	-	Х	-	-
23CSC15.CO5	Х	Х	Х	-	-	-	-	-	Х	Х	-	-	Х	-	-

Unit-I Image Processing Foundations

Review of image processing techniques – classical filtering operations – thresholding techniques – edge detection techniques – corner and interest point detection – mathematical morphology – texture

Unit-II Shapes and Regions

Binary shape analysis – connectedness – object labeling and counting – size filtering – distance functions – skeletons and thinning – deformable shape analysis – boundary tracking procedures – active contours – shape models and shape recognition – centroidal profiles – handling occlusion – boundary length measures – boundary descriptors – chain codes – Fourier descriptors – region descriptors – moments.

Unit-III Hough Transform

Line detection – Hough Transform (HT) for line detection – foot-of-normal method – line localization – line fitting – RANSAC for straight line detection – HT based circular object detection – accurate center location – speed problem – ellipse detection – Case study: Human Iris location – hole detection – generalized Hough Transform (GHT).

Unit-IV 3D Vision and Motion

from texture – shape from focus – active range finding – surface representations – point-based representation – Volumetric representations – 3D object recognition – 3D reconstruction – introduction to motion- – layered motion.

Unit-V Applications

Application: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape

9

g

9

9

g

models faces - Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians- Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	D. L. Baggio et al	Mastering OpenCV with Practical Computer VisionProjects	Packt Publishing,	2012
2.	Mark Nixon and Alberto S. Aquado	Feature Extraction & Image Processing for Computer Vision	Third Edition, Academic Press	2012
3.	R. Szeliski	Computer Vision: Algorithms andApplications	Springer	2011

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

23CSC16	BLOCKCHAIN TECHNOLOGIES	L 3	Т 0	Р 0	С 3
Course Objective:					
• Introduce the basi	ics of Blockchain technology				
• Explore various as	spects of Blockchain technology like application in variou	s domains			
• Explain the privat	e and public Blockchain, and smart contract				

- Develop apps using Ethereum
- To develop an applications using Blockchain

Course Outcomes:

23CSC16.CO1	Understand and explore the working of Blockchain technology.
23CSC16.CO2	Analyze the working of Smart Contracts.
23CSC16.CO3	Understand and analyze the working of Hyperledger.
23CSC16.CO4	Apply the learning of solidity to build de-centralized apps on Ethereum.
23CSC16.CO5	Develop applications on Blockchain.

Course Outcomes					Pr	ogran	n Outo	comes					Program Specific Outcomes			
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSC16.CO1	Х	Х	-	-	Х	-	-	-	Х	-	Х	Х	Х	-	-	
23CSC16.CO2	Х	Х	-	-	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC16.CO3	-	Х	-	Х	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC16.CO4	-	Х	Х	-	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC16.CO5	-	Х	-	Х	-	-	-	-	Х	-	Х	-	Х	-	-	

Unit-I Introduction of Cryptography and Blockchain

Introduction to Blockchain, Blockchain Technology Mechanisms & Networks, Blockchain Origins, Objective of Blockchain, Blockchain Challenges, Transactions and Blocks, P2P Systems, Keys as Identity, Digital Signatures, Hashing, and public key cryptosystems, private vs. public Blockchain.

Unit-II Bitcoin and Cryptocurrency

Introduction to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining Developments, Bitcoin Wallets, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM), Merkle Tree, Double-Spend Problem, Blockchain and Digital Currency, Transactional Blocks, Impact of Blockchain Technology on Cryptocurrency

Unit-III Introduction to Ethereum

Introduction to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Accounts, Transactions, Receiving Ethers, Smart Contracts.

Unit-IV Introduction to Hyperledger and Solidity Programming

Introduction to Hyperledger, Distributed Ledger Technology & its Challenges, Hyperledger & Distributed Ledger Technology, Hyperledger Fabric, Hyperledger Composer. Solidity - Language of Smart Contracts, Installing Solidity & Ethereum Wallet, Basics of Solidity, Layout of a Solidity Source File & Structure of Smart Contracts, General Value Types.

Unit-V Blockchain Applications

9

9

q

g

Internet of Things, Medical Record Management System, Domain Name Service and Future of Blockchain, Alt Coins.

Total Periods: 45

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Imran Bashir	Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained	Second Edition, Packt Publishing	2018
2.	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder	Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction	Princeton University Press	2016
3.	Antonopoulos	Mastering Bitcoin	O'Reilly Publishing	2014
4.	Antonopoulos and G. Wood	Mastering Ethereum: Building Smart Contracts and Dapps	O'Reilly Publishing	2018
5.	D. Drescher	Blockchain Basics	Apress	2017

86/03/23 Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266617	266617	CVDED DUVCICAL CVCTEMC	L	Т	Р	C		
Z	3(3(1)	CIDER PHISICAL SISTEMS	3	0	0	3		
Cou	rse Objective:							
٠	• To learn about the principles of cyber-physical systems.							
•	• To familiarize with the basic requirements of CPS.							

- To explore the applications and platforms.
- To provide introduction to practical aspects of cyber physical systems.
- To implement CPS tools.

Course Outcomes:

23CSC17.CO1	Explain the core principles behind CPS.
23CSC17.CO2	Discuss the requirements of CPS.
23CSC17.CO3	Explain the various models of CPS.
23CSC17.CO4	Describe the foundations of CPS.
23CSC17.CO5	Use the various platforms to implement the CPS.

Course	Program Outcomes												Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC17.CO1	Х	Х	-	-	Х	-	-	-	Х	-	Х	Х	Х	-	-
23CSC17.CO2	Х	Х	-	-	-	-	-	-	Х	-	Х	-	Х	-	·
23CSC17.CO3	-	Х	-	Х	-	-	-	-	Х	-	Х	-	Х	-	•
23CSC17.CO4	-	Х	Х	-	-	-	-	-	Х	-	Х	-	Х	-	-
23CSC17.CO5	-	Х	-	Х	-	-	-	-	Х	-	X	-	X	-	-

Unit-I Introduction to Cyber-Physical Systems

Cyber-Physical Systems(CPS)-Emergence of CPS, Key Features of Cyber-Physical Systems, CPS Drivers-Synchronous Model : Reactive Components, Properties of Components, Composing Components, Designs-Asynchronous Model of CPS: Processes, Design Primitives, Coordination Protocols.

Unit-II CPS - Requirements

Safety Specifications: Specifications, Verifying Invariants, Enumerative Search, Symbolic Search-Liveness Requirements: Temporal Logic, Model Checking, Proving Liveness.

Unit-III CPS Models

Dynamical Systems: Continuous, Linear Systems-Time Models, Linear Systems, Designing Controllers, Analysis Techniques-Timed Model: Processes, Protocols, Automata-Hybrid Dynamical Models.

Unit-IV CPS Foundations

Symbolic Synthesis for CPS- Security in CPS-Synchronization of CPS-Real-Time Scheduling for CPS.

Unit-V Applications and Platforms

Medical CPS- CPS Built on Wireless Sensor Networks- CyberSim User Interface- iClebo Kobuki - iRobot CreatemyRIO- Cybersim- Matlab toolboxes - Simulink.

Total Periods: 45

9

9

q

9

q

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Raj Rajkumar, Dionisio De Niz , and Mark Klein	Cyber-Physical Systems	Addison-Wesley Professional	2016
2	Rajeev Alur	Principles of Cyber-Physical Systems	MIT Press	2015
3	Lee, Edward Ashford, and Sanjit Arunkumar Seshia	Introduction to embedded systems: A cyber physical systems approach	-	2017
4	Jean J. Labrosse	Embedded Systems Building Blocks: Complete and Ready- To-Use Modules in C	The publisher, Paul Temme	2011
5	Jensen, Jeff, Lee, Edward, A Seshia, Sanjit	An Introductory Lab in Embedded and Cyber- Physical Systems	-	2014

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266610	EILL CTACK WED ADDLICATION DEVELODMENT	L	Т	Р
2313118	FULL STACK WEB APPLICATION DEVELOPMENT	3	0	0

- Develop TypeScript Application
- Develop Single Page Application (SPA)
- Able to communicate with a server over the HTTP protocol
- Learning all the tools need to start building applications with Node.js
- Implement the Full Stack Development using MEAN Stack

Course Outcomes:

23CSC18.CO1	Develop basic programming skills using Javascript.
23CSC18.CO2	Implement a front-end web application using Angular.
23CSC18.CO3	Will be able to create modules to organise the server.
23CSC18.CO4	Build RESTful APIs with Node, Express and MongoDB with confidence.
23CSC18.CO5	Will learn to Store complex, relational data in MongoDB using Mongoose.

Course	Program Outcomes												Program Specific Outcomes		
Outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSC18.CO1	Х	Х	-	-	Х	-	-	-	Х	-	Х	Х	Х	-	-
23CSC18.CO2	Х	Х	-	-	-	-	-	-	Х	-	Х	-	Х	-	ŀ
23CSC18.CO3	-	Х	-	Х	-	-	-	-	Х	-	Х	-	Х	-	ŀ
23CSC18.CO4	-	х	Х	-	-	-	-	-	Х	-	Х	-	Х	-	-
23CSC18.C05	-	Х	-	Х	-	-	-	-	Х	-	X	-	Х	-	-

Unit-I Fundamentals & Typescript Language

Server-Side Web Applications. Client-Side Web Applications. Single Page Application. About TypeScript. Creating TypeScript Projects. TypeScript Data Types. Variables. Expression and Operators. Functions. OOP in Typescript. Interfaces. Generics. Modules. Enums. Decorators. Enums. Iterators. Generators.

Unit-II Angular

About Angular. Angular CLI. Creating an Angular Project. Components. Components Interaction. Dynamic Components. Angular Elements. Angular Forms. Template Driven Forms. Property, Style, Class and Event Binding. Two way Bindings. Reactive Forms. Form Group. Form Controls. About Angular Router. Router Configuration. Router State. Navigation Pages. Router Link. Query Parameters. URL matching. Matching Strategies. Services. Dependency Injection. HttpClient. Read Data from the Server. CRUD Operations. Http Header Operations. Intercepting requests and responses

Unit-III NODE.js

About Node.js. Configuring Node.js environment. Node Package Manager NPM. Modules. Asynchronous Programming. Call Stack and Event Loop. Callback functions. Callback errors. Abstracting callbacks. Chaining callbacks. File System. Synchronous vs. asynchronous I/O. Path and directory operations. File Handle. File Synchronous API. File Asynchronous API. File Callback API. Timers. Scheduling Timers. Timers Promises API. Node.js Events. Event Emitter. Event Target and Event API. Buffers. Buffers and TypedArrays. Buffers and iteration. Using buffers for binary data. Flowing vs. non-flowing streams. JSON.

Unit-IV Express.js

9

9

Q

9

С

Express.js. How Express.js Works. Configuring Express.js App Settings. Defining Routes. Starting the App. Express.js Application Structure. Configuration, Settings. Middleware. body-parser. cookie-parser. expresssession. response-time. Template Engine. Jade. EJS. Parameters. Routing. router.route(path). Router Class. Request Object. Response Object. Error Handling. RESTful.

Unit-V MongoDB

Introduction to MongoDB. Documents. Collections. Subcollections. Database. Data Types. Dates. Arrays. Embedded Documents. CRUD Operations. Batch Insert. Insert Validation. Querying The Documents. Cursors. Indexing. Unique Indexes. Sparse Indexes. Special Index and CollectionTypes. Full-Text Indexes. Geospatial Indexing. Aggregation framework.

Total Periods: 45

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Adam Freeman	Essential TypeScript	Apress	2019
2	Mark Clow	Angular Projects	Apress	2018
3	Alex R. Young, Marc Harter	Node.js in Practice	Manning Publication	2014
4	Azat Mardan	Pro Express.js	Apress	2015
5	Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett, Tim Hawkins	MongoDB in Action	Manning Publication, Second edition	2016

Reference Books:

Chairman **Board of Studies** Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

2266610	EQC & EDCE COMDUTINC	L	Т	Р	С
2303019	FOG & EDGE COMPOTING	3	0	0	3

- To understand the students about edge computing, an important branch of distributed computing and IoT with significant applications in Data Science
- To implement the concepts of fog and cloud computing and exposes students to modern tools and API to deploy relevant infrastructures
- Explore the real time applications of Fog
- To understand the concept of Edge computing
- To design the model of IoT and edge architecture

Course Outcomes:

23CSC19.CO1	Explore the need for new computing paradigms.
23CSC19.CO2	Explain the major components of fog and edge computing architectures.
23CSC19.CO3	Identify potential technical challenges of the transition process and suggest solutions.
23CSC19.CO4	Analyze data and application requirements and pertaining issues.
23CSC19.CO5	Design and model infrastructures.

Course Outcomes		Program Outcomes												Program Specific Outcomes		
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	
23CSC19.CO1	Х	Х	-	-	Х	-	-	-	Х	-	Х	Х	Х	-	-	
23CSC19.CO2	Х	Х	-	-	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC19.CO3	-	Х	-	Х	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC19.CO4	-	Х	Х	-	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC19.CO5	-	Х	-	Х	-	-	-	-	Х	-	Х	-	Х	-	-	

Unit-I Edge Computing

Fog computing requirements when applied to IoT: Scalability, Interoperability, Fog-IoT architectural model, Challenges on IoT Stack Model via TCP/IP Architecture, Data Management, filtering, Event Management, Device Management, cloudification, virtualization, security and privacy issues. Integrating IoT, Fog, Cloud Infrastructures: Methodology, Integrated C2F2T Literature by Modelling Technique re by Use-Case Scenarios, Integrated C2F2T Literature by Metrics.

Unit-II Fog Computing in Health Monitoring

Exploiting Fog Computing in Health Monitoring : An Architecture of a Health Monitoring IoT- Based System with Fog Computing, Fog Computing Services in Smart E-Health Gateways, Discussion of Connected Components. Fog Computing Model for Evolving Smart Transportation Applications: Introduction , Data-Driven Intelligent Transportation Systems , Fog Computing for Smart Transportation Applications Case Study: Intelligent Traffic Lights Management (ITLM) System.

Unit-III Fog Computing Application

Software Defined Networking and application in Fog Computing: Open Flow Protocol, Open Flow Switch, SDN in Fog Computing, Home Network using SDN. Security and Privacy issues: Trust and privacy issues in IoT Network, web Semantics and trust Management for Fog Computing, Machine Learning based security in Fog Computing, Cyber- Physical Energy Systems over Fog Computing.

9

9

Unit-IV Introduction to Edge Computing

Introduction to Edge Computing Scenarios and Use cases - Edge computing purpose and definition, Edge computing use cases, Edge computing hardware architectures, Edge platforms, Edge vs Fog Computing, Communication Models - Edge, Fog, and M2M.

Unit-V IoT Architecture and Core IoT Modules

IoT Architecture and Core IoT Modules-A connected ecosystem, IoT versus machine-to-machine versus, SCADA, The value of a network and Metcalfe's and Beckstrom's laws, IoT and edge architecture, Role of an architect, Understanding Implementations with the examples- Edge computing with RaspberryPi, Industrial, and Commercial IoT and Edge, and Edge computing and solutions.

Total Periods: 45

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Perry Lea	IoT and Edge Computing for Architects	Packt Publishing	2020
2.	Rajkumar Buyya and Satish Narayana Srirama	Fog and Edge Computing: Principles and Paradigms	Wiley Series	-

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM.637 408, NAMAKKAL Dist. TAMILNADU.

9

2265620	CDU COMDUTINC	L	Т	Р	C	
2303020	GFU COMFUTING	3	0	0	3	
Course Objective:						
• To understand the basics	s of GPU architectures					

- To understand CPU GPU Program Partitioning
- To write programs for massively parallel processors
- To understand the issues in mapping algorithms for GPUs
- To introduce different GPU programming models

Course Outcomes:

23CSC20.CO1	Describe GPU Architecture.
23CSC20.CO2	Write programs using CUDA, identify issues and debug them.
23CSC20.CO3	Implement efficient algorithms in GPUs for common application kernels, such as Matrix multiplication.
23CSC20.CO4	Write simple programs using OpenCL.
23CSC20.CO5	Create an Algorithms on GPU and evaluation.

Course Outcomes		Program Outcomes												Program Specific Outcomes		
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	
23CSC20.CO1	Х	Х	-	-	Х	-	-	-	Х	-	Х	Х	Х	-	-	
23CSC20.CO2	Х	X	-	-	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC20.CO3	-	Х	-	Х	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC20.CO4	-	Х	Х	-	-	-	-	-	Х	-	Х	-	Х	-	-	
23CSC20.CO5	-	X	-	Х	-	-	-	-	Х	-	Х	-	Х	-	-	

Unit-I GPU Architecture

Evolution of GPU architectures - Understanding Parallelism with GPU – Typical GPU Architecture - CUDA Hardware Overview - Threads, Blocks, Grids, Warps, Scheduling - Memory Handling with CUDA: Shared Memory, Global Memory, Constant Memory and Texture Memory.

Unit-II CUDA Programming

Using CUDA - Multi GPU - Multi GPU Solutions - Optimizing CUDA Applications: Problem Decomposition, Memory Considerations, Transfers, Thread Usage, Resource Contentions.

Unit-III Programming Issues

Common Problems: CUDA Error Handling, Parallel Programming Issues, Synchronization, Algorithmic Issues, Finding and Avoiding Errors.

Unit-IV OpenCL Basics

OpenCL Standard – Kernels – Host Device Interaction – Execution Environment – Memory Model – Basic OpenCL Examples

Unit-V Algorithms on GPU

Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix - Matrix Multiplication – Programming Heterogeneous Cluster.

Total Periods: 45

9

9

9

9

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Shane Cook	CUDA Programming: "A Developer's Guide to Parallel Computing with GPUs (Applications of GPU Computing)	First Edition, Morgan Kaufmann	2012
2.	David R. Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang	Heterogeneous computing with OpenCL, 3rd Edition	Morgan Kauffman	2015
3.	Nicholas Wilt	CUDA Handbook: A Comprehensive Guide to GPU Programming	Addison - Wesley	2013
4.	Jason Sanders, Edward Kandrot	CUDA by Example: An Introduction to General Purpose GPU Programming	Addison - Wesley	2010
5.	David B. Kirk, Wen-mei W. Hwu	Programming Massively Parallel Processors - A Hands-on Approach, Third Edition	Morgan Kaufmann	2016

23

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

23CSD04	VALUE EDUCATION	L 2	Т 0	Р 0	С 2		
Course Objective	e: value of education and self- development						
 Imbibe good values in students 							
Let the shouTo teach and	Ild know about the importance of character d inculcate the importance of value based living						
• To give stud	lents a deeper understanding about the purpose of life						
Course Outcomes:							
23CSD04.C01 Knowledge of self-development.							

20000001001	into the age of sen acterophiena
23CSD04.C02	Learn the importance of Human values.
23CSD04.C03	Developing the overall personality.
23CSD04.C04	Infer the importance of behavior development.
23CSD04.C05	Know the self-management and good health.

Course Outcomes		Program Outcomes									Program Specific Outcomes				
outcomes	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSD04.C01	-	-	-	-	-	Х	Х	Х	-	Х	-	Х	-	-	-
23CSD04.CO2	-	-	-	-	-	Х	X	Х	-	Х	Х	-	-	Х	-
23CSD04.CO3	-	-	-	-	-	Х	X	Х	Х	Х	Х	-	-	-	-
23CSD04.CO4	-	-	-	-	-	Х	X	Х	-	Х	-	Х	-	-	-
23CSD04.C05	-	-	-	-	-	Х	Х	Х	-	Х	-	Х	-	-	-

Unit-I Values and Self-Development

Social Values And Individual Attitudes -Work ethics, Indian vision of humanism- Moral and non- moral valuation-Standards and principles- Value judgments.

Unit-II Cultivation of Values

Importance of cultivation of values – Sense of duty – Devotion – Self-reliance – Confidence – Concentration – Truthfulness – Cleanliness – Honesty – Humanity – Power of faith – National Unity –Patriotism – Love for nature –Discipline.

Unit-III Personality

Personality and Behavior Development – Soul and Scientific attitude – Positive Thinking – Integrity and discipline – Punctuality – Love and Kindness – Avoid fault Thinking – Free from anger – Dignity of labour.

Unit-IV Behavior Development

Universal brotherhood and religious tolerance – True friendship – Happiness Vs suffering – Love for truth – Aware of self-destructive habits – Association and Cooperation – Doing best for saving nature.

Unit-V Character and Competence

Character and Competence – Holy books Vs Blind faith – Self-management and Good health – Science of reincarnation – Equality – Nonviolence – Humility – Role of Women – All religions and same message – Mind your Mind – Self-control Honesty – Studying effectively.

5

5

5 lin

5

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Y.K. Singh	Value Education	APH Publishing, New Delhi	2008
2.	R. P. Shukla,	Value education and human rights	Sarup & Sons, New Delhi, 1st edition	2004
3.	Chakroborty, S.K.	Values and Ethics for organizations Theory and practice Dxford University Press, New Delhi		1998

Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM.637 408, NAMAKKAL Dist. TAMILNADU.

23CSD05

DISASTER MANAGEMENT

Course Objective:

- Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and Humanitarian response
- Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives
- Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations
- Critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country

Course Outcomes:

23CSD05.C01	Demonstrate a critical understanding of key concepts in disaster risk reduction and							
23CSD05.CO2	Realize critically evaluate disaster risk reduction and humanitarian response policy and practice							
	from multiple perspectives. Develop an understanding of standards of humanitarian response and practical relevance in							
2365005.603	specific types of disasters and conflict situations.							
23CSD05.CO4	Programming in different countries, particularly their home country.							

23CSD05.C05 Gain Knowledge in emerging trend mitigation of disasters.

Course Outcomes	Program Outcomes												Program Specific Outcomes		
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
23CSD05.C01	Х	-	Х	Х	Х	-	Х	-	-	Х	-	-	Х	-	-
23CSD05.CO2	X	Х	Х	Х	-	Х	-	Х	-	-	Х	-	-	Х	-
23CSD05.CO3	X	Х	-	-	-	Х	-	Х	-	Х	Х	-	Х	-	-
23CSD05.CO4	X	-	Х	-	Х	-	-	-	-	-	-	Х	-	Х	-
23CSD05.C05	Х	Х	Х	-	Х	-	Х	Х	-	-	-	-	Х	-	-

Unit-I Introduction

Disaster: Definition, Factors and Significance; Difference Between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit-II Repercussions of Disasters and Hazards

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease And Epidemics, War And Conflicts.

Unit-III Disaster Prone Areas in India

Study of Seismic Zones; Areas Prone To Floods And Droughts, Landslides and Avalanches; Areas Prone to Cyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases and Epidemics.

Unit-IV Disaster Preparedness and Management

Preparedness: Monitoring of Phenomena Triggering A Disaster Or Hazard; Evaluation of Risk: Application of Remote Sensing.

Unit-V Risk Assessment

5

5

5

5

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.

Total Periods: 25

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1.	R. Nishith, Singh AK	Disaster Management in India:Perspectives, issues and strategies	New Royal book Company	-
2.	Sahni, Pardeep et.al.(Eds.)	Disaster Mitigation ExperiencesAnd Reflections	Prentice Hall of India, New Delhi	-
3.	Goel S. L	Disaster Administration And Management Text And Case Studies	Deep & Deep Publication Pvt. Ltd,New Delhi	-

56/03 Chairman Board of Studies Department of Computer Science' and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.