

(An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

Curriculum/Syllabus

Programme Code	: MC
Programme Name	M.E- COMPUTER SCIENCE AND ENGINEERING
Regulation	: R-2016

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, Accredited by NAAC & NBA, Affiliated to Anna

University) Rasipuram - 637 408, Namakkal Dt, Tamil Nadu. Ph. No.: 04287-220837 Email: principal@mec.edu.in

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

INSTITUTION VISION & MISSION

INSTITUTION VISION

To be a Centre of Excellence in Engineering, Technology and Management on par with International Standards.

INSTITUTION MISSION

- To prepare the students with high professional skills and ethical values
- To impart knowledge through best practices
- To instill a spirit of innovation through Training, Research and Development
- To undertake continuous assessment and remedial measures
- To achieve academic excellence through intellectual, emotional and social stimulation

INSTITUTION MOTTO

Rural upliftment through Technical Education.

(An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

DEPARTMENT VISION & MISSION

DEPARTMENT VISION

To produce the Computer Science and Engineering students with the Innovative and Entrepreneur skills to face the challenges ahead

DEPARTMENT MISSION

- To impart knowledge in the state of art technologies in Computer Science and Engineering
- To inculcate the analytical and logical skills in the field of Computer Science and Engineering
- To produce the graduates to examine the issues and propose solutions with Ethical values

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

DEPARTMENT PROGRAM EDUCATIONAL OBJECTIVES, PROGRAM OUTCOMES & PROGRAM SPECIFIC OUTCOMES

PROGRAM EDUCATIONAL OBJECTIVES

The Computer Science and Engineering Graduates should be able to **PEO1:** Graduates will be able to Practice as an IT Professional in Multinational Companies **PEO2:** Graduates will be able to Gain necessary skills and to pursue higher education for career growth

PEO3: Graduates will be able to Exhibit the leadership skills and ethical values in the day to day life

PROGRAM OUTCOMES

PO1 - **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 - **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 - **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 - **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 - **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 - **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 - **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 - Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 - Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 - Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 - **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO1: Graduates should be able to design and analyze the algorithms to develop an Intelligent Systems

PSO2: Graduates should be able to apply the acquired skills to provide efficient solutions for real time problems

PSO3: Graduates should be able to exhibit an understanding of System Architecture, Networking and Information Security

Estd, 2000

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

M.E. - COMPUTER SCIENCE AND ENGINEERING

GROUPING OF COURSES

FOUNDATION COURSE [FC]

			Catagory	Contact		truct irs/W		C
S. No.	Course Code	Course Title	Category	Hours	L	Т	Р	
1.	16MCA01	Advanced Numerical Methods	FC	5	3	2	0	4
2.	16MCA02	Applied Mathematics	FC	5	3	2	0	4
3.	16MCA03	Applied Probability And Statistics	FC	5	3	2	0	4

PROFESSIONAL CORE [PC]

		6MCB02Advanced operating systems6MCB03Multi core architectures6MCB04Data mining and Data Warehousing6MCB05Advanced Data base Technology6MCB06Advances in Computer Networks6MCB07Machine learning techniques	Category	Contact	Ins Ho	с		
S. No.		Course little	Category	Hours	L	Т	Р	
1.	16MCB01	Advanced Data structures and algorithms	PC	5	3	0	2	4
2.	16MCB02	Advanced operating systems	PC	5	3	0	2	4
3.	16MCB03	Multi core architectures	PC	3	3	0	0	3
4.	16MCB04	Data mining and Data Warehousing	PC	3	3	0	0	3
5.	16MCB05	Advanced Data base Technology	PC	5	3	0	2	4
6.	16MCB06	Advances in Computer Networks	PC	3	3	0	0	3
7.	16MCB07	Machine learning techniques	PC	3	3	0	0	3
8.	16MCB08	Cloud computing technologies	PC	5	3	0	2	4
9.	16MCB09	Advanced software Engineering	PC	3	3	0	0	3
10.	16MCB10	Multimedia Communications	PC	3	3	0	0	3
11.	16MCB11	Network security techniques	PC	3	3	0	0	3
12.	16MCB12	Parallel Algorithms	PC	3	3	0	0	3

				Contact	10.00	struct urs/W		
S. No.	Course Code	Course Title	Category	Hours	L	Т	Р	C
1.	16MCC01	Digital image processing	PE	3	3	0	0	3
2.	16MCC02	Computer vision and applications	PE	3	3	0	0	3
3.	16MCC03	Artificial Intelligence	PE	3	3	0	0	3
4.	16MCC04	Natural language processing	PE	3	3	0	0	
5.	16MCC05	Distributed computing	PE	3	3	0	0	3
6.	16MCC06	Service oriented architecture	PE	3	3	0	0	3
7.	16MCC07	Mobile application development	PE	3	3	0	0	3
8.	16MCC08	Internet of things	PE	3	3	0	0	6.1
9.	16MCC09	Big data analytics	PE	3	3	0	0	3
10.	16MCC10	Information Retrieval Techniques	PE	3	3	0	0	3
11.	16MCC11	Ad Hoc and Wireless Sensor Networks	PE	3	3	0	0	3
12.	16MCC12	Pattern classification and Analysis	PE	3	3	0	0	3

PROFESSIONAL ELECTIVES [PE]

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

s.	Course	Course Title	Category	Contact		structi urs/W		с
No.	Code	Course The	Category	Hours	L	Т	Р	
1	16MCD01	Project work - Phase I	EEC	12	0	0	12	6
2	16MCD02	Project work - Phase II	EEC	24	0	0	24	12

3/18 Cha

	2000	MUTHAYAMMAL ENGINEERING (Approved by AICTE & Affiliat RASIPURAM –	ed to Anna	E (Auton Universi	omous) ty),		RICULUN PG 2-2016
De	epartment	Computer Science and Engineering					
Pr	ogramme	M.E					
		SE	MESTER -	- I			
SI.	Course		H	ours/ We	ek	Credit	Contact
No.	Code	Course Name	L	Т	Р	С	Hours
THEC	DRY					1	
1.	16MCA02	Applied Mathematics	3	2	0	4	5
2.	16MCB01	Advanced data structures and algorithms	3	0	2	4	3
3.	16MCB02	Advanced Operating systems	3	0	2	4	3
4.	16MCB04	Data Mining and Data warehousing	3	0	0	3	3
5.	16MCB06	Advances in Computer networks	3	0	0	3	3
6.	The second	Machine Learning Techniques	3	0	0	3	3
0.	romebor	<u> </u>	T	otal Cred	its	21	

	MUTHAYAMMAL ENGINEERING COL (Approved by AICTE & Affiliated to RASIPURAM – 637		ted to Anna I	(Autonoi University	mous) '), .	1	CULUM PG 2016	
Depart		Computer Science and Engineering						
Program	mme	M.E						
			SEMESTER -	- 11				
SL.	Course		H	ours/ Wee	ek	Credit	Contact	
No.	Code	Course Name	L	Т	Р	С	Hours	
THEO	RY							
1.	16MCB03	Multi-core Architectures	3	0	0	3	3	
2.	16MCB05	Advanced Data base Technology	3	0	2	4	5	
3.	16MCB08	Cloud Computing Technologies	3	0	2	4	5	
4.	PE	Professional Elective – I	3	0	0	3	3	
5.	PE	Professional Elective – II	3	0	0	3	3	
6.	PE	Professional Elective – III	3	0	0	3	3	
			Tot	al Credit	s	20		

	End 200	MUTHAYAMMAL ENGINEERIN (Approved by AICTE & Affili RASIPURAM	ated to Anna	E (Auton Universi	omous) ty),		CURRICULUM PG R – 2016
Depart	ment	Computer Science and Engineering		ŝ			
Program	nme	M.E					
		SE	MESTER -	ш			
SI.	Course		Но	urs/ Wee	k	Credit	Contact Hours
No.	Code	Course Name	L	Т	Р	C	Contact mours
THEO	RY					1	
1.	PE	Professional Elective - IV	3	0	0	3	3
2.	PE	Professional Elective - V	3	0	0	3	3
3.	PE	Professional Elective - VI	3	0	0	3	3
4.	16MCD01	Project Work – Phase I	0	0	12	6	12
			Total C	redits		15	

*Students going for Industrial Project/Thesis will complete these courses through MOOCs

	Ftd 200	MUTHAYAMMAL ENGINEEF (Approved by AICTE & Af RASIPURA	RING COLLEGH ffiliated to Anna M – 637 408	E (Autono University	mous) y),		RICULUM PG - 2016
Ľ	Department	Computer Science and Engineering					
Pr	ogramme	M.E					
			SEMESTER - I	V			
SI.	Course		I	lours/wee	k	Credit	Contact
No.	Code	Course Name	L	T	Р	С	Hours
PRACT	TICAL						
1.	16MCD02	Project Work – Phase II	0	0	24	12	24
		Total C	Credits			12	

ADVANCED NUMERICAL METHODS

C Т Р L 3 2 0 4

COURSE OBJECTIVES

16MCA01

To learn the algebraic equations this finds applications in many engineering branches. 1.

To make the student acquire sound knowledge of computational techniques in solving ordinary differential 2. equations that model engineering.

- To solve Elliptic equations by using computational techniques 3.
- To introduce numerical tools for the solutions of partial differential equations that model several physical 4. processes
- To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise 5 in engineering and technology.

COURSE OUTCOMES

At the end of the course, the students will able to

Demonstrate understanding and implementation of numerical solution algorithms applied to solve 16MCA01.CO1 algebraic equations

16MCA01.CO2	Be familiar with numerical solutions of ordinary differential equation and partial differential equations.
16MCA01 CO3	Be competent with finite difference method and finite element method.
TOMCAULCOS	Understanding the theoretical and practical aspects of the use of numerical methods. Implementing
16MCA01.CO4	numerical methods for a variety of multidisciplinary applications. Establishing the limitations,

advantages, and disadvantages of numerical methods The students will have a clear perception of the power of numerical Techniques. This will also serve as 16MCA01.CO5 a precursor for future research.

Course					Pro	gram (Dutcor	nes						PSOs	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCA01.CO1	x	x	x	-	-	-	-	-	-	-	х	x	-	х	-
16MCA01.CO2	x	x	x	-	-	-	-	-	-	-	х	х	-	Х	-
16MCA01.CO3	x	X	X	-	-	_	-	-	-	-	Х	X	-	х	-
16MCA01.CO4	x	x	X	-	_	-	-	-	-	-	х	x	-	х	-
16MCA01.CO5	x	x	X	-	2.5	-	-	-	-	-	х	X	-	Х	-

UNIT I

UNIT III

ALGEBRAIC EQUATIONS

9+6

9+6

9+6

9+6

9+6

Systems of linear equations: Gauss Elimination method, pivoting techniques, Thomas algorithm for tridiagonal system - Jacobi, Gauss Seidel, SOR iteration methods - Systems of nonlinear equations: Fixed point iterations, Newton Method, Eigenvalue problems: power method, inverse power method, Faddeev - Leverrier Method

ORDINARY DIFFERENTIAL EQUATIONS UNIT II

Runge Kutta Meth ods for system of IVPs, numerical stability, Adams - Bashforth multistep method, solution of stiff ODEs, shooting method, BVP: Finite difference method, orthogonal collocation method, orthogonal collocation with finite element method, galerkin finite element method.

FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

Parabolic equations: explicit and implicit finite difference methods, weighted average approximation - Dirichlet and Neumann conditions - Two dimensional parabolic equations - ADI method; First order hyperbolic equations method of characteristics, different explicit and implicit methods; numerical stability analysis, method of lines - Wave equation: Explicit scheme - Stability of above schemes.

FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS UNIT IV

Laplace and Poisson's equations in a rectangular region: Five point finite difference schemes, Leibmann's iterative methods, Dirichlet and Neumann conditions - Laplace equation in polar coordinates: finite difference schemes approximation of derivatives near a curved boundary while using a square mesh.

UNIT V

FINITE ELEMENT METHOD

Partial differential equations - Finite element method - orthogonal collocation method, orthogonal collocation with finite element method, Galerkin finite element method.

TOTAL: L: 45 + T: 30 = 75

SI.No	FERENCE BOOKS: AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	M.K. Jain , S.R.K. Iyengar, R.K. Jain	Computational Methods for Partial Differential Equations, 2nd Edition	New Age Publishers	2016
2.	S. K. Gupta	Numerical Methods for Engineers, 3rd Edition	New Age International Pvt Ltd Publishers	2015
3.	Saumyen Guha and Rajesh Srivastava	Numerical methods for Engineering and Science	Oxford Higher Education, New Delhi	2010
4.	M.K. Jain	Numerical Methods for Scientific & Engineering Computation, 6th Edition	New Age International Publishers	2010
5.	Burden, R.L., and Faires, J.D.	Numerical Analysis – Theory and Applications	Cengage Learning, India Edition, New Delhi	2009

9/18

16MCA02

APPLIED MATHEMATICS

COURSE OBJECTIVES

To realize the use of matrix theory techniques in engineering applications and to develop for future applications. 1

- To analyze and solve the fundamental problem with prescribed or free boundary conditions in simple cases 2
- Demonstrate knowledge of mathematics and mechanics to construct, analyze and interpret real world problems 3.
- Provide a foundation and motivation for exposure to statistical ideas subsequent to the course. 4.
- To formulate and construct a mathematical model for a linear programming problem in real life situation 5.

COURSE OUTCOMES

At the end of the course, the students will able to

- Explain geometrical concepts related to orthogonality and least squares solutions and perform 16MCA02.CO1 calculations related to orthogonality.
- The variational calculus makes access to mastering in a wide range of classical results of variational calculus. Students get up apply results in technical problem solutions 16MCA02.CO2
- The students will have a basic knowledge of the main fields of mathematics and mechanics, including 16MCA02.CO3 differential equations, elasticity theory, fluid mechanics.
- The students will have an exposure of various distribution functions and help in acquiring skills in 16MCA02.CO4 handling situations involving more than one variable

The knowledge gained on this course helps the students to do engineering optimization. 16MCA02.CO5

Course		Program Outcomes											PSOs		
Course Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCA02.CO1	x	x	x	-	-	-	-	-	-	-	x	x	-	х	-
16MCA02.CO2	x	x	x	-	-	-	-	-	-	-	x	x	-	х	-
16MCA02.CO3	x	X	x	-	-	-	-	-	-	-	x	x	-	х	-
16MCA02.CO4	x	x	x	-	-	-	-	-	-	-	x	x	-	x	-
16MCA02.CO5	x	x	x	-	-	-	-	-	-	-	x	x	-	Х	-

UNIT I

MATRIX THEORY

The Cholesky decomposition - Generalized Eigen vectors, Canonical basis - QR factorization - Least squares method -Singular value decomposition.

UNIT II

CALCULUS OF VARIATIONS

Concept of variation and its properties - Euler's equation - Functional dependant on first and higher order derivatives -Functionals dependant on functions of several independent variables - Variational problems with moving boundaries problems with constraints - Direct methods: Ritz and Kantorovich methods

UNIT III

ONE DIMENSIONAL RANDOM VARIABLES

Random variables - Probability function - moments - moment generating functions and their properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Function of a Random Variable.

UNIT IV

LINEAR PROGRAMMING

Formulation - Graphical solution - Simplex method - Two phase method - Transportation and Assignment Models

UNIT V

FOURIER SERIES AND EIGEN VALUE PROBLEMS

Fourier Trigonometric series: Periodic function as power signals - Convergence of series - Even and odd function: cosine and sine series - Non-periodic function: Extension to other intervals - Power signals: Exponential Fourier series Parseval's theorem and power spectrum - Eigen value problems and orthogonal functions - Regular Sturm-Liouville systems - Generalized Fourier series.

TOTAL: L: 45 + T: 30 = 75

9+6

9+6

9+6

9+6

9+6

Board of Studies Department of Computer Science and Engineerin MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 488, NAMAKKAL Dist.

TAMILNADU.

C L T 3 2 A 4

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION	
1.	Mital.K.V. Mohan and Chander	Optimization Methods in Operations Research and Systems Analysis, 4th Edition	New Age International Publishers	2016	
2. Stark. H., and Woods. J.W.		Probability and Random Processes with Applications to Signal Processing, 4th Edition	Pearson Education, Asia	2014	
3.	Hamdy ATaha	Operations Research, 9th Edition (Asia)	Pearson Education, Asia	2014	
4.	Gupta, A.S.	Calculus of Variations with Applications	Prentice Hall of India Pvt. Ltd., New Delhi	2011	
5.	Richard Bronson	Matrix Operation, Schaum's outline series, 2nd Edition	McGraw Hill	2011	

16MCA03

APPLIED PROBABILITY AND STATISTICS

L	Т	Р	С
3	2	0	4

COURSE OBJECTIVES

To introduce the basic concepts of one dimensional and two dimensional Random Variables.

- To gain knowledge in the application of family of random variables in real life situations 2.
- To provide information about Correlation and Regression 3.
- Learn about maximum likelihood estimation, unbiased estimation and least square methods. 4.
- To enable the students to use the concepts of multivariate normal distribution and principle components analysis. 5

COURSE OUTCOMES

At the end of the course, the students will able to

Analyze random or unpredictable experiments and investigate important features of random experiments. Construct probabilistic models for observed phenomena through distributions which play an important role 16MCA03.CO1 in many engineering applications.

Associate random variables by designing joint distributions and correlate the random variables 16MCA03.CO2

Perform and interpret correlation and regression analysis and develop correlation models to predict changes 16MCA03.CO3 in processes and products for linear and non-linear relationships

Be familiar with multivariate analysis. 16MCA03.CO4

The student will able to acquire the basic concepts of Probability and Statistical techniques for solving 16MCA03.CO5 mathematical problems which will be useful in solving Engineering problems

Course	Prog	Program Outcomes										PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POTI	PO12	PSO1	PSO2	PSO3
16MCA03.CO1	x	X	X	-	1 -	-	-	-	-	-	x	X	-	x	
16MCA03.CO2	x	X	x	-	-	-	-	-	-	-	x	x		х	-
16MCA03.CO3	x	x	x	-	-	-	-	-	-	-	X	x	-	Х	-
16MCA03.CO4	x	x	x	-	-	-		-	-	-	X	x	-	x	-
16MCA03.CO5	x	x	x	-	-	-	-	-	-	-	x	x	-	x	-

UNIT I

ONE DIMENSIONAL RANDOM VARIABLES

Random variables - Probability function - Moments - Moment generating functions and their properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Functions of a Random Variable.

UNIT II

TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions - Marginal and Conditional distributions - Functions of two dimensional random variables - Regression Curve - Correlation.

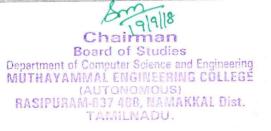
UNIT III

ESTIMATION THEORY

Unbiased Estimators - Method of Moments - Maximum Likelihood Estimation - Curve fitting by Principle of least squares - Regression Lines.

UNIT IV

TESTING OF HYPOTHESES


Sampling distributions - Type I and Type II errors - Tests based on Normal, t, Chi-Square and F distributions for testing of mean, variance and proportions - Tests for Independence of attributes and Goodness of fit.

UNIT V

MULTIVARIATE ANALYSIS

Random Vectors and Matrices - Mean vectors and Covariance matrices - Multivariate Normal density and its properties -Principal components Population principal components - Principal components from standardized variables

TOTAL: L: 45 + T: 30 = 75

9+6

9+6

9+6

9+6

9+6

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION	
1.	Douglas C. Montgomery, George C. Runger	Applied Statistics and Probability for Engineers (International Student Version), 6th Edition	John Wiley & Sons, Inc.	2016	
Richard A. Johnson and Dean W. Wichern		Applied Multivariate Statistical Analysis, 6th Edition	Pearson Education. Asia	2015	
3.	Gupta S.C. and Kapoor V.K	Fundamentals of Mathematical Statistics	Sultan Chand & Sons	2014	
4.	HweiP.Hsu,	Schaum"s Outline of Theory and Problems of Probability, Random Variables and Random Processes	Tata Mc Graw Hill Edition, New Delhi	2014	
5.	Walpole. R.E., Myers. R.H., Myers. S.L., and Ye. K., ,	Probability and Statistics for Engineers and Scientists, 8th Edition	Pearson Education, Asia	2013	

16MCB01

ADVANCED DATASTRUCTURES AND ALGORITHMS

L. Т P C 3 0 2 4

COURSE OBJECTIVES

To review the basic data structures such as list, stack & queue and introduce concurrency on them. 1

- To learn advanced search structures such as Splay tree, Red Black trees, Multi way search tree and Skip lists. 2
- To study advanced heap structures such as Leftist Heaps, Binomial Heaps and Fibonacci Heaps. 3
- To introduce various advanced concurrent structures . 4
- 5 To learn the various advanced algorithms.

COURSE OUTCOMES

At the end of the course, the students will able to

Implement and apply concurrency in linked lists, stacks and queues. 16MCB01.CO1

- Perform operations on advanced search trees. 16MCB01.CO2
- Design and implement various types of advanced heaps structures. 16MCB01.CO3
- Implement advanced concurrent structures such as hash table & priority queue. 16MCB01.CO4
- Solve applications using advanced algorithm such as Randomized, Approximation and Parallel 16MCB01.CO5 algorithms.

Course	Prog	Program Outcomes											PSOs		
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POTI	PO12	PSO1	PSO2	PSO3
16MCB01.CO1	x	x	x	x	- X	x	x	x	x	x	х	x	х	x	X
16MCB01.CO2	x	x	x	x	x	x	x	x	x	x	x	х	x	x	x
16MCB01.CO3	x	x	X	x	x	x	x	x	-	X	x	x	x	X	x
16MCB01.CO4	x	x	x	x	х	x	x	-	-	X	x	x	x	x	X
16MCB01.CO5	x	x	x	x	x	x	x	-	-	x	x	х	x	x	x

UNIT I

DATA STRUCTURES AND CONCURRENCY

Review of elementary data structures - data structures and concurrency - locking linked lists - coarse-grained synchroniza - fine-grained synchronization - lazy synchronization - non-blocking synchronization - concurrent queues - bounded par queues - unbounded lock-free queues - dual data structures - concurrent stacks - elimination back off stack.

UNIT II

ADVANCED SEARCH STRUCTURES

Binary Search tree - Splay tree - Red Black trees - Interval tree - 2-D tree - Digital Search tree - Multi way Trie - S lists.

UNIT III

ADVANCED HEAP STRUCTURES

Binary Search tree - Splay tree - Red Black trees - Interval tree - 2-D tree - Digital Search tree - Multi way Trie - S lists.

UNIT IV

ADVANCED CONCURRENT STRUCTURES

Concurrent hashing - closed-address hash sets - lock-free hash sets - open-addressed hash sets - lock-based concurrent s lists - lock-free concurrent skip lists - concurrent priority queues - bounded priority queue - unbounded priority queu concurrent heap - skip list based unbounded priority queues

UNIT V

ADVANCED ALGORITHMS

Introduction to Approximation algorithms: Vertex cover - Travelling Salesman Problem - knapsack problem. Introduction Randomized algorithms - Randomized Searching and Sorting - Online hiring problem. Introduction to Parallel algorithm parallel sorting algorithms - Odd-even transposition sort - Quick sort based parallel sort.

TOTAL: L:45

9

0

Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOU **BASIPURAM-637 408, NAMAKKAL Dist.** TAMILNADU.

List of Experiments:

REFERENCE BOOK

- 1. Implementation of Linked lists
- 2. Implementation of Multi stacks
- 3. Implementation of Double Ended Queue (De queues) & Circular Queues
- 4. Implementation of Min Heap
- 5. Implementation of AVL Tree
- 6. Implementation of BTree
- 7. Implementation of Quick Sort
- 8. Implementation of Greedy algorithm
- 9. Implementation of Knapsack using Dynamic Programming
- 10. Implementation of randomized algorithms
- 11. Implementation of recursive backtracking algorithms.
- 12. Implementation of Graph coloring using backtracking

TOTAL: P: 30

SI.No	Author(s)	athor(s) Title of the Book			
1.	S.K. Chang	Data Structures and Algorithms–Series Software Engineering and Knowledge Engineering.	WorldScientific Publishing	2003.	
2.	M. Herlihy and N. Shavit, Morgan Kaufmann	The Art of Multiprocessor Programming	Pearson education	2012	
3.	E. Horowitz, S.Sahni and Dinesh Mehta	Fundamentals of Data structures in C++	Universities Press	2007.	
4.	Thomas H Cormen, Charle Leiserson, Ronald L Rivest Clifford Stein		Prentice Hall of India, New Delhi	2007	
5.	Michael J. Quinn	Parallel Computing: Theory & Practice	Tata McGraw Edition	2003	

WEB URLs:

- 1 cs-fundamentals.com/data-structures/introduction-to-data-structures.
- 2 https://en.wikibooks.org/wiki/Advanced_Data_Structures_and_Algorithms
- 3 https://www.cambridge.org/9780521880374
- 4 https://www.coursera.org/specializations/data-structures-algorithms
- 5 https://www.cs.auckland.ac.nz/~jmor159/PLDS210/ds_ToC.html

man Chair Board of Studies Department of Computer Science and Engineering

16MCB02

ADVANCED OPERATING SYSTEMS

L	Т	Р	C
3	0	2	4

COURSE OBJECTIVES

To learn the fundamentals of Operating Systems 1

- To gain knowledge on Distributed operating system concepts that includes architecture, Mutual exclusion algorithms, Deadlock detection algorithms and agreement protocols 2
- To gain insight on to the distributed resource management components 3.
- To know the components of Real time, Mobile operating systems. 4
- To learn the fundamentals of Operating Systems 5

COURSE OUTCOMES

At the end of the course, the students will able to

Discuss the various synchronization, scheduling and memory management issues. 16MCB02.CO1

- Demonstrate the Mutual exclusion, Deadlock detection and agreement protocols of Distributed 16MCB02.CO2 Operating system.
- Discuss the various resource management techniques for distributed systems. 16MCB02.CO3

Identify the different features of real time and mobile operating systems. 16MCB02.CO4

Ability To Learn the management aspects of Mobile operating systems. 16MCB02.CO5

Course		Program Outcomes											PSOs		
Outcomes	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCB02.CO1		-	X	-	-	x	-		14	-	-	x	-	X	3
16MCB02.CO2	-	x	-	-	x	x	-	-	~	x	х	•	x	X	-
16MCB02.CO3	-		x	-	-	x	-	-	x	-	-	x	-	-	x
16MCB02.CO4	x	x	-	x	-	-	x		-	x	•	-	x	-	-
16MCB02.CO5	x	-	-	-	-	x	x	-	-	х		x	X	-	-

UNIT I

FUNDAMENTALS OF OPERATING SYSTEMS

Overview - Synchronization Mechanisms - Processes and Threads - Process Scheduling - Deadlocks: Detection, Preventi and Recovery - Models of Resources - Memory Management Techniques.

UNIT II

DISTRIBUTED OPERATING SYSTEMS

Binary Search tree - Splay tree - Red Black trees - Interval tree - 2-D tree - Digital Search tree - Multi way Trie - Skip lists. 9

UNIT III

DISTRIBUTED RESOURCE MANAGEMENT

Distributed File Systems - Design Issues - Distributed Shared Memory - Algorithms for Implementing Distributed Shared memory-Issues in Load Distributing - Scheduling Algorithms - Synchronous and Asynchronous Check Pointing and Recover - Fault Tolerance - Two-Phase Commit Protocol - Non blocking Commit Protocol - Security and Protection.

UNIT IV

REAL TIME AND MOBILE OPERATING SYSTEMS

Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems - Real Time Task Scheduling Handling Resource Sharing - Mobile Operating Systems -Micro Kernel Design - Client Server Resource Access - Process and Threads - Memory Management - File system.

UNIT V

CASE STUDIES

Linux System: Design Principles - Kernel Modules - Process Management Scheduling - Memory Management - Input-Out Management - File System - Inter process Communication. iOS and Android: Architecture and SDK Framework - Mer Layer - Services Layer - Core OS Layer - File System.

TOTAL : L : 45

Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

0

0

0

List of Experiments:

- 1. Development of a reasonably sized dynamically loadable kernel module for Linux kernel
- Study educational operating systems such as Minix (http://www.minix3.org/), Weenix (http://weenix.cs.brown.edu/mediawiki/index.php/Weenix) and develop reasonably sized interesting modules for them
- 3. Study the Android open source operating system for mobile devices (http://source.android.com/) and develop / modify some modules.
- 4. Study any embedded and real-time operating system such as eCos (http://ecos.sourceware.org/) and develop / modify some modules

TOTAL : P : 30

REFERENCE BOOKS:

Sl.No	Author(s)	Title of the Book	Publisher	Year of Publication
1.	Mukesh Singhal and Niranjan G. Shivaratri	Advanced Concepts in Operating Systems – Distributed, Database, and Multiprocessor Operating Systems	Tata McGraw-Hill	2001
2.	Abraham Silberschatz; Peter Baer Galvin; Greg Gagne	Operating System Concepts	John Wiley & Sons	2004
3.	Daniel P Bovet and Marco Cesati	Understanding the Linux Kernel	O'Reilly	2005
4.	Singhal	Advanced concepts in operating systems	TataMcGraw-Hill Education	2001
5.	Dang Van Duc	Operating System	Institute of Information Technology	2012

WEB URLs:

- 1 https://www.udacity.com/course/advanced-operating-systems--ud189
- 2 nptel.ac.in/syllabus/106106107/
- 3 www.cc.gatech.edu/classes/AY2010/cs4210_fall/
- 4 http://www.cs.toronto.edu/~demke/469F.06/
- 5 https://www.netcraft.com/

hairman

16MCB03

MULTICORE ARCHITECTURES

```
С
L
    T
        P
3
    0
           3
```

9

9

COURSE OBJECTIVES

- To understand the recent trends in the field of Computer Architecture and identify performance related parameters. 1.
- To appreciate the need for parallel processing and understand the different types of multi core architectures 2.
- To learn about the architecture and programming with Vector, SIMD and Graphical Processing Units. 3.
- To expose the students to warehouse-scale architectures. 4
- To understand the embedded architectures 5

COURSE OUTCOMES

At the end of the course, the students will able to

- Identify the performance parameters in computer architecture 16MCB03.CO1
- Identify the limitations of ILP and the explore the different multi core architectures. 16MCB03.CO2
- Compare vector, SIMD and GPU architectures 16MCB03.CO3
- Analyze the different types of inter connection networks. 16MCB03.CO4

Ability to understand the embedded architectures 16MCB03.CO5

Course	Program Outcomes												PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCB03.CO1	x		-	-	x	-	-	х	-	-	-	-	-	-	X
16MCB03.CO2	x	-	-	x	x	x	-	-	-	-	х		-	x	-
16MCB03.CO3	1	x	x	1 8	x	-	x	-		-	-	÷	-	x	
16MCB03.CO4	-	۱	x	x	x	-	x		-	-	-	-	x	-	-
16MCB03.CO5		-	x	-	x	-	x	-	-	-	х	-	-	х	-

FUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS UNIT I OF COMPUTER ARCHITECTURE

Classes of Computers - Trends in Technology, Power, Energy and Cost - Dependability - Measuring, Reporting and Summarizing Performance - Quantitative Principles of Computer Design - Classes of Parallelism - Instruction Level Parallelism (TLP), Data Level Parallelism (DLP), Thread Level Parallelism (TLP) and Request Level Parallelism (RLP) - Multithreading - SMT and CMP Architectures - Limitations of Single Core Processors - The Multi core era -Case Studies of Multi core Architectures - Network On Chip Routing Algorithms.

DLP IN VECTOR, SIMD AND GPU ARCHITECTURES UNIT II

Vector Architecture - SIMD Instruction Set Extensions for Multimedia - Graphics Processing Units (GPU) - Detecting and Enhancing Loop Level Parallelism - Case Studies

UNIT III

TLP AND MULTIPROCESSORS

Symmetric and Distributed Shared Memory Architectures - Cache Coherence Issues - Performance Issues Synchronization Issues-Models of Memory Consistency - Interconnection Networks - Buses, Crossbar and Multi-stage Interconnection Networks.

9 RLP AND DLP IN WAREHOUSE-SCALE ARCHITECTURES UNIT IV Programming Models and Workloads for Warehouse-Scale Computers - Architectures for Warehouse-Scale Computing - Physical Infrastructure and Costs - Cloud Computing - Case Studies.

ARCHITECTURES FOR EMBEDDED SYSTEMS UNIT V Features and Requirements of Embedded Systems - Signal Processing and Embedded Applications - The Digital Signal Processor - Embedded Multiprocessors - Case Studies.

REFERENCE BOOKS

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	John L. Hennessey and David Patterson	Computer Architecture – A Quantitative Approach	Morgan Kaufmann Elsevier, 5th edition	2012.
2.	Kai Hwang	Advanced Computer Architecture	Tata McGraw-Hill Education	2003
3.	Richard Y. Kain	Advanced Computer Architecture a Systems Design Approach	Prentice Hall	2011.
4.	David E. Culler, Jaswinder Pa Singh	Parallel Computing Architecture : A Hardware/ Software Approach	Morgan Kaufmann / Elsevier	1997.
5.	Yon Salihon	Fundamentals of Multicore architectures	Prentice Hall	2015

WEB URLs:

- http://www.it.abo.fi/crest/publications/public/2006/TR779.pdf http://www.cs.cmu.edu/~fp/courses/15213-s07/lectures/27multicore.pdf http://rolfed.com/nehalem/nehalemPaper.pdf http://accel.cs.vt.edu/files/lecture2.pdf http://web.njit.edu/~rlopes/12.1.0%20-%20Cellproc-PS3.pdf 2 3
- 4
- 5

DATA MINING AND DATA WAREHOUSING

COURSE OBJECTIVES

16MCB04

- To learn the fundamentals of Data mining 1.
- To gain knowledge on association rule concepts in real time systems 2.
- To gain insight on various classification 3.
- To gain insight on different clustering methods 4.
- To study the different types of tools for complex mining techniques 5

COURSE OUTCOMES

At the end of the course, the students will able to

Apply the functionalities of data warehousing and data mining in real time applications. 16MCB04.CO1

Do the preprocessing and apply association rule concepts in real time systems 16MCB04.CO2

Implement the various classification 16MCB04.CO3

Implement the different clustering methods 16MCB04.CO4

Study the different tools for complex mining techniques 16MCB04.CO5

Course	Prog	Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16MCB04.CO1	x	-	-	x	x	-	x	-	x	-	-	-	x	-	-		
16MCB04.CO2	x	-	-	-		x	-	x	x	x	-	-	x		-		
16MCB04.CO3	x	x	x	-	-	x	-	x	x	x	-	-	-	x	-		
16MCB04.CO4	x	x	x	x	x	-	-	-	x	x	x	x	-	x	x		
16MCB04.CO5	x	x	x	x	x	-	x	-	x	x	x	x	-	x	x		

UNIT I

INTRODUCTION

Fundamentals of data mining - Data Mining Functionalities - Classification - Major issues in Data Mining Data Warehouse and OLAP Technology for Data Mining and Data Warehouse. Multidimensional Data Mode Architecture, Implementation.

DATA PREPROCESSING AND ASSOCIATION RULE MINING UNIT II

Need of preprocessing the data - Data cleaning - Data integration and transformation - Data reduction - Da discretization and Concept hierarchy generation. Efficient and Scalable Frequent Item set mining methods Mining various kinds of Association rules - Association Mining to correlation analysis - Constraint base association mining

UNIT III

CLASSIFICATION AND PREDICTION

Classification and Prediction - Classification by Decision Tree Induction - Bayesian Classification - Rule base classification - Classification by back propagation - Support vector machines - Lazy learners - Other classification methods - Prediction - Accuracy and error measures - Evaluating the accuracy of a classifier or predictor - Ensemb methods - Model section.

UNIT IV

CLUSTER ANALYSIS

9

0

Types of data in cluster analysis - Categories clustering methods - Partitioning methods - Hierarchical methods - Densi based Methods - Grid based Methods - Model based clustering methods - Clustering high dimensional data - Constrai based cluster analysis - Outlier analysis.

UNIT V

MININGCOMPLEXOBJECTSAND TOOLS

Multidimensional analysis - Descriptive mining of complex data objects - Spatial data mining - Multimedia data minin - Text mining - Mining the World Wide Web - Tools: Weka Tool and R Tool.

TOTAL : L : 45

oard of Studies Department of ence and Engineering MUTHAYAMMAL RASIPURAM-637 468, NAMANIAL Dist.

0

C P

3

0 0

3

Sl. No	ERENCE BOOKS: AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION	
1.	Jiawei Han, Micheline Kamber	Data Mining Concepts and Techniques	3rd Edition, Elsevier	2011.	
2.	Alex Berson, Stephen J. Smith	"Data Warehousing, Data Mining & OLAP	Tata McGraw Hill	2007.	
3.	K.P. Soman, Shyam Diwakar and V. Ajay				
4.	G. K. Gupta	Introduction to Data Mining with Case Study	Prentice Hall of India	2011	
5.	Pang-Ning Tan, Michael Steinbach Vi Kumar	Introduction to Data Mining	2 nd Edition,Pearson Education	2007	

WEB URLs:

- 1 http://nptel.ac.in/courses/106405066
- 2 http://nptel.ac.in/courses/106105068
- 3 http://nptel.ac.in/courses/1061050875489
- 4 http://nptel.ac.in/courses/106105087/956
- 5 https://books.google.co.in/books?isbn=3540343504

16MCB05

ADVANCED DATA BASE TECHNOLOGY

L	Т	Р	C
3	0	0	3

COURSE OBJECTIVES

- To understand database systems, data models, database languages. 1
- To be able to design a database system by understanding the concepts of functional dependencies and 2. normalization.
- To acquire the knowledge on its query processing. 3.
- To understand the principles of object oriented databases. 4.
- To gain knowledge about the emerging database technologies

COURSE OUTCOMES

At the end of the course, the students will able to

Study the database systems, data models, database languages. 16MCB05.CO1

- Able to design a database system by understanding the concepts of functional 16MCB05.CO2 dependencies and normalization.
- Apply the knowledge on its query processing. 16MCB05.CO3
- Analyze the principles of object oriented databases. 16MCB05.CO4
- Study about the different emerging database technologies. 16MCB05.CO5

0		Program Outcomes													PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16MCB05.CO1	x		x	x	x	-	-	-	-	-	-	-	х	x	-		
16MCB05.CO2	x	x	-	x	x	-		-	-	-	-	-	-	X	-		
16MCB05.CO3	-	x	x	x	x	-	-	-	-	-	x	-	х	-	-		
16MCB05.CO4	-	х	х	-	x	-	-	-	-	-	x	x	-	X	-		
16MCB05.CO5	-	x	×	×	x	-	-	-	-	-	-	-	х	-	-		

UNIT I

DISTRIBUTED DATABASES

9

9

9

9

0

Distributed Databases Vs Conventional Databases - Architecture - Fragmentation - Query Processing - Transaction Processing - Concurrency Control - Recovery.

UNIT II

OBJECT ORIENTED DATABASES

Introduction to Object Oriented Data Bases - Approaches - Modeling and Design - Persistence - Query Languages -Transaction - Concurrency - Multi Version Locks - Recovery.

UNIT III

EMERGING SYSTEMS

Enhanced Data Models - Client/Server Model - Data Warehousing and Data Mining - Web Databases - Mobile Databases.

UNIT IV

DATABASE DESIGN ISSUES

ER Model - Normalization - Security - Integrity - Consistency - Database Tuning - Optimization and Research Issues -Design of Temporal Databases - Spatial Databases.

UNIT V

CURRENT ISSUES

Rules - Knowledge Bases - Active And Deductive Databases - Parallel Databases - Multimedia Databases -Image Databases - Text Database **TOTAL: L: 45**

List of Experiments:

- 1. Implement parallel sorting and aggregates
- 2. Implement parallel joins and Hash joins
- 3. Implement semi join and bloom join in distributed DBMS
- 4. Implement two phase commit in distributed DBMS
- 5. Implementation of cube operator in OLAP queries in data warehousing and decision support system
- 6. Implement decision tree of data mining problem
- 7. Implement a priori algorithm in data mining
- 8. Simulation of a search engine
- Implement view modification and materialization in data warehousing and decision support systems
- 10. Implementation of data log queries for deductive databases (Negation, Aggregate, Recursive etc.)
- 11. Implementation of spatial database queries

Minimum 8 to 10 experiments based on the syllabus and above experiment list should be implemented using ORACLE / MSSQL SERVER / JAVA.

TOTAL : P : 30

REFERENCE BOOKS:

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Elisa Bertino, Barbara Catania, Gian Piero Zarri	Intelligent Database Systems	Addison-Wesley	2001
2.	Carlo Zaniolo, Stefano Ceri, Christos Faloustsos,R.T.Snodgrass, V.S.Subrahmanian,	Advanced Database Systems	Pearson Publication	
3.	Morgan Kaufman N.Tame Ozsu Patrick Valduriez	Principles Of Distributed Database Systems	Prentice Hall International Inc	1999.
4.	Abdullah Uz Tansel Et Al	Temporal Databases: Theory, Design And Principles	Benjamin Cummings Publishers	1993.
5.	Raghu Ramakrishnan, Johannes Gehrke	Database Management Systems	Mcgraw Hill, Third Edition	2004.

WEB URLs:

- 1 http://rolfed.com/nehalem/nehalemPaper.pdf
- 2 http://accel.cs.vt.edu/files/lecture2.pdf
- 3 http://web.njit.edu/~rlopes/12.1.0%20-%20Cellproc-PS3.pdf
- 4 http://www.it.abo.fi/crest/publications/public/2006/TR779.pdf
- 5 http://www.cs.cmu.edu/~fp/courses/15213-s07/lectures/27DATABASE.pdf

16MCB06

ADVANCES IN COMPUTER NETWORKS

COURSE OBJECTIVES

- To understand the fundamental concepts of computer networks. 1.
- To understand the design of Network architectures. 2
- To understand the working principles of different protocols in various layers. 3.
- To study the implementation concepts in congestion control 4
- To study the implementation concepts in error detections. 5.

COURSE OUTCOMES

At the end of the course, the students will able to

16MCB06.CO1 Familiar with the basics of Computer Networks.

- 16MCB06.CO2 Understand Network architectures.
- 16MCB06.CO3 Understand Concepts of fundamental protocols.

16MCB06.CO4 Understand the knowledge of internetworking concepts in various applications.

16MCB06.CO5 Ability to study the implementation concepts in error detections

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16MCB06.CO1	x	÷	x	-	-	x	-	-	-	-	-	x	-	x	-		
16MCB06.CO2		x	-	-	x	x	-	-	-	х	x	-	x	x	-		
16MCB06.CO3	-	-	x	-		x	-		x		-	x	-	-	X		
16MCB06.CO4	x	x	÷	x	- 1	-	x	-	-	x	-	-	x	-			
16MCB06.CO5	x	-	-	-		x	x	-	-	x	÷.,	х	х	-	-		

UNIT I

FOUNDATION

uilding a Network, Requirements, Perspectives, Scalable Connectivity, Cost-Effective Resource sharing, Support for ommon Services, Manageability, Protocol layering, Performance, Bandwidth and Latency, Delay X Bandwidth Product, rspectives on Connecting, Classes of Links, Reliable Transmission, Stop-and-Wait , Sliding Window

UNIT II

INTERNETWORKING-1

vitching and Bridging, Data grams, Virtual Circuit Switching, Source Routing, Bridges and LAN Switches, Basic ternetworking (IP), What is an Internetwork ?, Service Model, Global Addresses, Datagram Forwarding in IP, sub tting and classless addressing, Address Translation(ARP), Host Configuration(DHCP), Error Reporting(ICMP)

UNIT III

INTERNETWORKING-II

etwork as a Graph, Distance Vector(RIP), Link State(OSPF), Metrics, The Global Internet, Routing Areas, Routing ' nong Autonomous systems(BGP), IP Version 6(IPv6), Mobility

UNIT IV

END-TO-END PROTOCOLS

mple De-multiplexer (UDP), Reliable Byte Stream(TCP), End-to-End Issues, Segment Format, Connecting stablishment and Termination, Sliding Window Revisited, Triggering Transmission, Adaptive Retransmission, Record oundaries, SLC:TCP Extensions

CONGESTION CONTROL AND RESOURCE ALLOCATION UNIT V

ongestion-Avoidance Mechanisms, DEC bit, Random Early Detection (RED), Source-Based Congestion Avoidance. The omain Name System (DNS), Electronic Mail(SMTP, POP, IMAP, MIME), World Wide Web(HTTP)

TOTAL:45

9

9

C P T L

> 0 0 3

3

Computer Science and Engineering Department of MUTHAYAMAAAL BASIPURAM 637 406, NAMANNAL Dist.

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	James F. Kurose, Keith W. Ross	Computer Networking: A Top- Down Approach Featuring the Internet	Third Edition, Pearson Education	2007
2.	Larry Peterson and Bruce S Davis	Computer Networks: A System Approach	Elsevier	2014
3.	Nader F. Mir	Computer and Communication Networks	Pearson Education	2007
4.	Behrouz A. Forouzan	Data Communications and Networking	Fourth Edition, Tata McGraw Hill	2007
5.	Uyless Black	Computer Networks, Protocols, Standards and Interfaces	2ndEdition ,PHI	2009

WEB REFERENCE(s)

- 1. http://www.csc.ncsu.edu/faculty/efg/506/f07/docs/lecture_notes/lec_24.pdf
- 2. http://www.ece.eng.wayne.edu/~czxu/ece7660_f05/network.pdf
- 3. http://accel.cs.vt.edu/files/lecture2.pdf
- 4. http://web.njit.edu/~rlopes/12.1.0%20-%20Cellproc-PS3.pdf
- 5. http://web.njit.edu/~rlopes/12.1.0%20-%20Cellproc-PS3.pdf

19/18

16MCB07

MACHINE LEARNING TECHNIQUES

COURSE OBJECTIVES

- To understand the machine learning theory 1
- To implement linear and non-linear learning models 2
- To implement distance-based clustering techniques 3.
- To build the rule based models 4.
- To apply reinforcement learning techniques 5.

COURSE OUTCOMES

At the end of the course, the students will able to

- Apply the machine learning theory 16MCB07.CO1
- Implement linear and non-linear learning models 16MCB07.CO2
- Understand distance-based clustering techniques 16MCB07.CO3
- Build tree based models 16MCB07.CO4
- Gain the knowledge reinforcement learning techniques 16MCB07.CO5

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16MCB07.CO1	x	x	x	x	-	x	-	-	x	x	-	x	x	-	×		
16MCB07.CO2	x	×	×	x	-	-	x	-	-	-	x	×	-	x	-		
16MCB07.CO3	×	x	x		-	x	-	-	-	-	×		x	-	X		
16MCB07.CO4	x	x	x	-	x	-	-	-	×		-	х	-	×	-		
16MCB07.CO5	x	×	x	-	-	x	-	x	-	x	X	-	x		X		

UNIT I

FOUNDATIONS OF LEARNING

Components of learning - learning models - geometric models - probabilistic models - logic models - grouping and grading - learning versus design - types of learning - supervised - unsupervised - reinforcement - theory of learning - feasibility of learning - error and noise - training versus testing - theory of generalization - generalization bound approximation generalization tradeoff - bias and variance - learning curve.

UNIT II

LINEAR MODELS

Linear classification - univariate linear regression - multivariate linear regression - regularized regression - Logistic regression - perceptrons - multilayer neural networks - learning neural networks structures - support vector machines - soft margin SVM - going beyond linearity - generalization and over fitting - regularization - validation

UNIT III

DISTANCE-BASED MODELS

Nearest neighbor models - K-means - clustering around medoids - silhouttes - hierarchical clustering - k-d trees locality sensitive hashing - non-parametric regression - ensemble learning - bagging and random forests - boosting - meta learning.

UNIT IV

TREE AND RULE MODELS

9

9

9

0

Decision trees - learning decision trees - ranking and probability estimation trees - regression trees clustering trees - learning ordered rule lists - learning unordered rule lists - descriptive rule learning - association rule mining first-order rule learning

UNIT V

REINFORCEMENT LEARNING

Passive reinforcement learning - direct utility estimation - adaptive dynamic programming - temporal-difference learning - active reinforcement learning - exploration - learning an action utility function - Generalization in reinforcement learning - policy search - applications in game playing - applications in robot control.

TOTAL : L : 45

Sl.No	AUTHOR(s)	AUTHOR(s) TITLE OF THE BOOK				
۱.	P. Flach	Machine Learning: The art and science of algorithms that make sense of data	Cambridge University Press	2012		
2.	D. Barber	Bayesian Reasoning and Machine Learning	Cambridge University Press	2012		
3.	S.Russel and P. Norvig	Artificial Intelligence: A Modern Approach	Third Edition, Prentice Hall	2009		
4.	S.Russel and P. Norvig	Artificial Intelligence: A Modern Approach	Third Edition, Prentice Hall	2009		
5.	C. M. Bishop	Pattern Recognition and Machine Learning	Springer	2007		

WEB REFERENCE(s)

- 1. W1:http://www.geeksforgeeks.org/ machine learning-8-suffixtree-introduction/
- 2. W2:http://iamwww.unibe.ch/~wenger/DA/SkipList/
- 3. W3:http://www.cs.au.dk/~gerth/slides/soda98.pdf
- 4. W4:http://www.cs.sunysb.edu/~algorith/files/suffix-trees.shtml
- 5. W5:http://pages.cs.wisc.edu/~shuchi/courses/880-S07/scribenotes/lecture20.pdf

16MCB08

CLOUD COMPUTING TECHNOLOGIES

COURSE OBJECTIVES

To familiarize with the types of virtualization.

- To understand the concept of cloud 2
- To understand the concept of utility computing. 3.
- To understand the various system models and issues in cloud computing. 4
- To familiarize with the cloud programming model. 5

COURSE OUTCOMES

At the end of the course, the students will able to

16MCB08.CO1 Apply virtualization for efficient resource utilization.

Explore cloud computing models and services. 16MCB08.CO2

16MCB08.CO3 Apply cloud platforms for different applications.

16MCB08.CO4 Implement various services using cloud programming models.

16MCB08.CO5 Interpret the security and resource allocation issues of cloud computing.

Course		Program Outcomes													PSOs		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16MCB08.CO1	x	x	x	x	-	-	-	-	-	-	-	-	х	-			
16MCB08.CO2	x	x	x	-	x	-	-	-	-	-	x	-	-	x	-		
16MCB08.CO3	x	x	x	-	-	-	-	-	-	-	x	-	x	-	-		
16MCB08.CO4	x	x	x	-	x	x	-	-	-	-	-	x	-	x	-		
16MCB08.CO5	x	-	-	-	x.	-	-	- 1	-	-	x	x	x	-	-		

UNIT I

VIRTUALIZATION STRUCTURES

Implementation Levels of Virtualization - Virtualization Structures - Tools and Mechanisms - Virtualization of CPU, Memory, I/O Devices - Virtual Clusters and Resource Management - Virtualization for Data-Center Automation.

UNIT II

CLOUD INFRASTRUCTURE

Scalable Computing over the Internet - Technologies for Network based Systems - System Models for Distributed and Cloud Computing - Service Oriented Architecture - NIST Cloud Computing Reference Architecture. Cloud Computing and Services Model - Public, Private and Hybrid Clouds - Cloud Eco System - IaaS - PaaS - SaaS.

UNIT III

CLOUD SYSTEM MODEL

Architectural Design of Compute and Storage Clouds - Layered Cloud Architecture Development - Design Challenges -Public Cloud Platforms- GAE, AWS, and Azure- Inter Cloud Resource Management - VM Management - Resource Provisioning and Platform Deployment - Global Exchange of Cloud Resources - Cloud Security and Trust Management. Case Study: Amazon Web Service reference, GoGrid, Rackspace.

UNIT IV

PROGRAMMING MODEL

Parallel and Distributed Programming Paradigms - Map Reduce, Twister and Iterative Map Reduce - Hadoop Library from Apache - Mapping Applications - Programming Support - Google App Engine, Amazon AWS - Cloud Software Environments - Eucalyptus, Open Nebula, Open Stack. Cloud Sim - Architecture - Cloudlets - VM creation - Broker -VM allocation - Hosts - Data Center.

UNIT V

SECURITY IN THE CLOUD AND RESOURCE MANAGEMENT

0

9

9

9

9

Cloud Computing Risk Issues - Cloud Computing Security Challenges - Cloud Computing Security Architecture -Trusted cloud Computing - Identity Management and Access Control - Autonomic Security. Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment.

TOTAL : L : 45

List of Experiments
Usage of Google Apps.
Installation of Guest OS using virtual box.
Implement PaaS using Amazon AWS.
Simulate VM allocation algorithm using CloudSim.
Simulate Task Scheduling algorithm using CloudSim.
Simulate Energy-conscious model using CloudSim.
Simulate Datacenter Network topologies using CloudSim.
Analyze Cloud Computing Environments or Applications using Cloud Analyst.
Setup a Private Cloud Using Eucalyptus / Open stack
Solve applications using Map Reduce Concept

TOTAL : P : 30

REFERENCE BOOKS:

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	John W.Rittinghouse, James F.Ransome	Cloud Computing: Implementation, Management, and Security	CRC Press	2010
2.	Kai Hwang, Geoffrey C Fox, Jack G Dongarra	Distributed and Cloud Computing, From Parallel Processing to the Internet of Things	Morgan Kaufmann Publishers	2012
3.	Ronald L. Krutz, Russell Dean Vines	Cloud Computing, Cloud Whey man		2010
4.	Rodrigo N.Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Rajkumar Buyya,	A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms	Cloud Computing and Distributed Systems(CLOUDS) Laboratory	2006
5.	Rajkumar Buyya Christian Vecchiola, S.Tamarai Selvi	Mastering Cloud Computing	TMGH	2013

WEB REFERENCE(s)
1. http://www.buyya.com/papers/CloudSim2010.pdf

www.explainthatstuff.com/cloud-computing-introduction.html www.cloudcomputingtechnologies.com/ www.wikinvest.com/concept/Cloud_Computing 2.

- 3.
- 4.
- citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.4191 5.

16MCB09

ADVANCED SOFTWARE ENGINEERING

C Т P L 3 0 0 3

COURSE OBJECTIVES

- To realize the relationship between UML diagrams 1.
- To design and test software project 2.
- To understand the concept of system design 3.
- To understand the concept of object design. 4.
- To understand the concepts of testing 5.

COURSE OUTCOMES

At the end of the course, the students will able to

- 16MCB09.CO1 Execute the software project using software engineering methodologies
- Design various UML diagrams and inter relate them 16MCB09.CO2
- 16MCB09.CO3 Design, test and manage the software project using various tools
- Analyze the concept of system design 16MCB09.CO4
- Analyze the concept of object design 16MCB09.CO5

Course Outcomes		Program Outcomes													PSOs			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
16MCB09.CO1	x	x	-	-	-	-	-	-	-	-	-	-	х	x	-			
16MCB09.CO2	x	-	x	-	-	-	-	-	-	-	-	x	-	-	-			
16MCB09.CO3	х	-	-	x	x	-	-	-	-	-	-	-	-	x	-			
16MCB09.CO4	x	-	x	x	-	-	-	-	x	-	-	x	-	x	X			
16MCB09.CO5	-	-	x	x	х	-	-	-	х	-		Х	x	-	X			

UNIT I

INTRODUCTION SOFTWARE ENGINEERING

Software engineering concepts -Software engineering development activities - Managing software development -Introduction to UML- Modeling concepts - UML diagrams - Project organizations - Project communication concepts-Organizational activities

UNIT II

REQUIREMENTS ELICITATION AND ANALYSIS

An overview of requirements elicitation - Requirements elicitation concepts - Requirements elicitation activities -Managing requirements elicitation - Analysis overview - Concepts of analysis - Activities: from use cases to objects-Managing analysis

UNIT III

SYSTEM DESIGN AND OBJECT DESIGN

Decomposing the system- An overview of system design - System design concepts - System design activities - From objects to subsystems - Addressing design goals - Managing system design - Object design - Reusing pattern solutions -Reuse concepts - Solution objects - Inheritance - Design patterns - Reuse activities - Managing reuse.

UNIT IV

TESTING AND MANAGING CHANGES

Testing concepts - Testing activities - Component inspection- Managing testing - Rationale management - Rationale concepts - Rationale activities - From issues to decisions - Managing rationale heuristics for communicating about rationale - Issue modeling and negotiation - Conflict resolution strategies.

UNIT V

management activities

CONFIGURATION MANAGEMENT AND PROJECT

MANAGEMENT

Configuration management concepts - Configuration management activities - Managing configuration management-Project management - Project management concepts - Classical project management activities - Agile project

TOTAL : L : 45

9

9

9

9

9

Sl.No	ENCE BOOKS: AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1.	Sommer ville	Software Engineering	Pearson Education	2009		
2.	Roger S. Pressman	Software Engineering - A Practitionar's Approach	McGraw-Hill International Edition,	2012		
3.	Robert N. Britcher	The Limits of Software: People, Projects, and Perspectives	Addison-Wesley Pub Co; 1st edition	2007		
4.	Frederick P. Brooks	Essays on Software Engineering,	Addison-Wesley Pub Co; 1st edition	2005		
5.	Richard H. Thayer	Requirements Engineering: A Good Practice Guide	Software Requirements Engineering.	2007		

WEB REFERENCE(s)

- 1. http://nptel.ac.in/courses/106105087/9
- 2. http://nptel.ac.in/courses/106105087/26
- 3. http://nptel.ac.in/courses/106105087/1
- 4. http://nptel.ac.in/courses/106105087/6
- 5. https://www.shu.ac.uk//beng-honours-software-engineering-

16MCB10	MULTIMEDIA COMMUNICATIONS	L 3	-	Р 0	C 3	
COURSE OBJECTIVE	S					
1. To gain experience a	bout Multimedia					
2 To understand the co	ncept of representation					

- 3. To understand the concept of compression
- 4. To help students to understand information networks
- 5. To understand the concepts of transport protocol

COURSE OUTCOMES

At the end of the course, the students will able to

16MCB10.CO1 Understand algorithmic thinking and apply it to programming.

- 16MCB10.CO2 Implementation of representation techniques
- 16MCB10.CO3 Implementation of compression techniques.
- 16MCB10.CO4 Understand the features of transport protocol

16MCB10.CO5 Analyze the concept of broadband ATM networks

Course Outcomes		Program Outcomes													PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16MCB10.CO1	x	x	x	-	-	-	-	-	-	-	-	-	х	x	-		
16MCB10.CO2	x	x	x	-	-	-	-	-	-	-	-	-	х	x	-		
16MCB10.CO3	-	x	x	-	x	-	-	-	-	-	-		х	x	-		
16MCB10.CO4	-	X	x	-	x	-	-	-	-	-	-	x	-	х	-		
16MCB10.CO5	-	-	x	x	x	-	-	-	-	-	-	-	х	х	-		

UNIT I

MULTIMEDIACOMMUNICATIONS

9

0

9

9

0

Introduction, multimedia information representation, multimedia networks, multimedia applications, media types, communication modes, network types, multipoint conferencing, network QoS application QoS

UNIT II

INFORMATION REPRESENTATION AND COMPRESSION

Representation Introduction, digital principles, text, images, audio, video. Compression: Introduction, compression principles, text compression, image compression. proportional selection and fitness scaling – Ranking methods – Tournament selection.

UNIT III

AUDIO AND VIDEO COMPRESSION

Introduction, audio compression, DPCM, ADPCM, APC, LPC, video compression, video compression principles, H.261, H.263, MPEG, MPEG-1, MPEG-2, and MPEG-4.

UNIT IV

MULTIMEDIA INFORMATION NETWORKS

Introduction, LANs, Ethernet, Token ring, Bridges, FDDI High-speed LANs, LAN protocol . The Internet- Introduction, IP Datagrams, Fragmentation, IP Address, ARP and RARP, QoS Support, IPv8.

UNIT V

BROADBAND ATM NETWORKS AND TRANSPORT PROTOCOL

Introduction, Cell format, Switfh and Protocol Architecture ATM LANs. Transport Protocol: Introduction, TCP/IP, TCP, UDP, RTP and RTCP.

TOTAL : L : 45

Board of Studies Department of Computer RASIPURAM-537 408, NAMAKKAL Dist

REFERENCE BOOKS:

Sl.No Author(s)		Title of the Book	Publisher	Year of Publication	
1.	Fred Halsall	Multimedia Communications: Applications, Networks, Protocols and Standards	Pearson Education, Asia, Second Indian reprint	2002	
2.	Nalin K. Sharda,	Multimedia Information Networking	рні	2003	
3.	Ralf Steinmetz, Klara Narstedt,	Multimedia Fundamentals: Vol 1 - Media Coding and Content Processing,	Pearson Education	2004	
4	Prabhat K. Andleigh, Kiran Thakrar	Multimedia Systems Design	РНІ	2004	
5.	Mario Marques da Silva	Multimedia Communications and Networking	CRC	2012	

WEB REFERENCE(s)

- 1. http://www.academyart.edu/academics/communications-media-technologies
- 2. http://www.academia.edu/9171517/Data_Compression_in_Multimedia_Text_Image_Audio_and_Video_
- 3. https://www.w3.org/AudioVideo/9610_Workshop/paper11/paper11.html
- 4. http://dl.acm.org/citation.cfm?id=560578
- 5. http://wikieducator.org/Multimedia_Systems/Broadband,_ATM_%26_FDDI_Networks

an

16MCB11

NETWORK SECURITY TECHNIQUES

L	Т	Р	C
3	0	0	3

COURSE OBJECTIVES

- 1. To understand the fundamentals of Cryptography.
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity anauthenticity. 2.
- 3. To understand the various key distribution and management schemes.
- 4. To secure data in transit across data networks.
- 5. To design security applications in the field of Information technology.

COURSE OUTCOMES

At the end of the course, the students will able to

16MCB11.CO1 Understand the fundamentals of Cryptography.

Easily acquire knowledge on standard algorithms used to provide confidentiality, integrity 16MCB11.CO2 and authenticity.

16MCB11.CO3 Easily understand how to deploy encryption techniques

16MCB11.CO4 Easily understand the various key distribution and management schemes

16MCB11.CO5 Analyze the security applications in the field of Information technology.

Course Outcomes	Program Outcomes													PSOs			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
16MCB11.CO1	x	-	-	х	x	-	х	-	x	-	-	-	X	-	-		
16MCB11.CO2	x	-	-			x	-	х	x	X	-	-	х		-		
16MCB11.CO3	х	x	x	-	i i	x	-	x	x	x	-			x	-		
16MCB11.CO4	x	x	x	x	x		-	-	x	x	X	x	-	x	X		
16MCB11.CO5	x	x	x	x	x	-	x	-	x	x	x	x	-	х	X		

UNIT I

INTRODUCTION

Attacks - Services - Mechanisms - Conventional Encryption - Classical and Modern Techniques - Encryption Algorithms -Confidentiality.

PUBLIC KEY ENCRYPTION		9
bhy - Number Theory Concepts		
MESSAGE AUTHENTICATION		9
	hy - Number Theory Concepts	hy - Number Theory Concepts

NETWORK SECURITY PRACTICES

SYSTEM SECURITY

Hash Functions - Digest Functions - Digital Signatures - Authentication Protocols.

UNIT IV

Authentications, Applications - Electronic Mail Security - IP Security - Web Security.

UNIT V

Intruders - Viruses - Worms - Firewalls Design Principles - Trusted Systems.

TOTAL : L : 45

9

9

9

Board of Studies Department of Computer Science and Engineering ING COLLEGE MUTHAYAMMAL ENGIN RASIPURAM-637 408, MAMAKKAL Dist.

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Stallings	Cryptography & Network Security	Principles & Practice, Prentice Hall, 3rd Edition	2002.
2.	Bruce, Schneier	Applied Cryptography	2nd Edition, Toha Wiley & Sons	1996.
3.	Man Young Rhee	Internet Security	Wiley	2003.
4.	Pfleeger & Pfleeger	Security in Computing	Pearson Education, 3rd Edition	2003
5.	Carmit Hazay, Yehuda Lindell	Efficient Secure Two Party Protocols: Techniques and Constructions	Springer-Verlag	2010

WEB REFERENCE(s) 1. https://www.sans.org/network-security/

2. https://en.wikipedia.org/wiki/Network_security

3. www.interhack.net/pubs/network-security

4. https://onlinecourses.nptel.ac.in/noc16_cs21

5. https://msdn.microsoft.com/en-us/library/ff648457.aspx

9/18 Chairman Department of Computer Science and Engineering MUTHAY AMMAL ENGINEERING COLLEGE

16MCB12

PARALLEL ALGORITHMS

COUPSE	OBJECTIVES
COURSE	ODJECTIVES

- 1. Understand the scope, design and model of parallelism
- 2. Know the parallel computing architecture.
- 3. Know the Characteristics, model and design of parallel algorithms.
- 4. Solve a complex problem with message passing model
- 5. Solve a complex problem and programming with MPI.

COURSE OUTCOMES

At the end of the course, the students will able to

- 16MCB12.CO1 Recall fundamental concepts of parallelism.
- 16MCB12.CO2 Develop message-passing parallel programs with MPI
- 16MCB12.CO3 Apply shared memory parallel program concepts with Java threads and Open MP.
- 16MCB12.CO4 Illustrate multi-threaded and message passing parallel algorithms.

16MCB12.CO5 Implement them on available parallel computer systems.

Course					Pro	gram (Outcon	ies					PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16MCB12.CO1	x	x	x	-	-	-	-	-	-	-	-	-	х	х	-	
16MCB12.CO2	x	x	x	-	-	-	-	-	-	-	-	-	X	Х	-	
16MCB12.CO3	-	x	x	-	х	-	-	-	-	-	-	-	X	х	-	
16MCB12.CO4	-	x	x	-	х	-	-		-	-	-	х	-	x	-	
16MCB12.CO5	-	-	x	x	х	-	-	-	-	-	-	-	X	x	-	

UNIT I

INTRODUCTION

Sequential model, need of alternative model, parallel computational 8 models such as PRAM, LMCC, Hypercube, Cube Connected Cycle, Butterfly, Perfect Shuffle Computers, Tree model, Pyramid model, Fully Connected model, PRAM-CREW, EREW models, simulation of one model from another one.

UNIT II

PERFORMANCE MEASURES

Performance Measures of Parallel Algorithms, speed-up and 8 efficiency of PA, Cost- optimality, An example of illustrate Cost- optimal algorithms- such as summation, Min/Max on various models.

UNIT III

PARALLEL MERGING ALGORITMS

Parallel Sorting Networks, Parallel Merging Algorithms on 8 CREW/EREW/MCC, Parallel Sorting Networks CREW/EREW/MCC/, linear array.

UNIT IV

PARALLEL SEARCHING ALGORITHMS

Parallel Searching Algorithm, Kth element, Kth element in X+Y on 8 PRAM, Parallel Matrix Transportation and Multiplication Algorithm on PRAM, MCC, Vector-Matrix Multiplication, Solution of Linear Equation, Root finding.

UNIT V

GRAPH ALGORITHMS

Graph Algorithms - Connected Graphs, search and traversal, 8 Combinatorial Algorithms-Permutation, Combinations, Rearrangements.

TOTAL: L: 45

Т Р

0

L

3 0

C

3

9

9

9

9

408, NAMAKIAL Dist. RIUTHAVAMMAR MILNADU.

REFERENCE BOOKS

Sl. No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	M.J. Quinn	Designing Efficient Algorithms for Parallel Computer	Mc Graw Hill	2009
2.	S.G. Akl	Design and Analysis of Parallel Algorithms	Academic Press	2011
3.	T. Lewis	Foundations of parallel Programming	IEEE Computer Society Press	2010
4.	Chandy and Misra	Parallel Program Design	Addison Wesley	2009
5.	Lester	The Art of Parallel Programming	Prentice-Hall	2008

WEB REFERENCE(s)

- www.umiacs.umd.edu/users/vishkin/TEACHING/enee651-s14.html www.math.cmu.edu/~florin/M21-765/ 1.
- 2.
- eecs.oregonstate.edu/sites/eecs.oregonstate.edu/files/cs475.pdf 3.
- https://ais.ku.edu.tr/etc/Syllabus/19547.pdf 4.
- www.cs.fsu.edu/~asriniva/courses/parco07/ 5.

Board of Studies Department of Computer Science and Engineering AUTHAYAMMAL ENGINEERING CULLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

16MCC01

DIGITAL IMAGE PROCESSING

C Т L 0 3 3 0

COURSE OBJECTIVES

- Students will understand the digital image processing covering all the sub branches of this subject. 1.
- Students will know the basics of MATLAB Image Processing Toolbox. 2.
- To understand the concepts of preprocessing techniques 3.
- To analyze the compression techniques 4.
- Students will know the concepts of segmentation techniques 5.

COURSE OUTCOMES

At the end of the course, the students will able to

- Students will understand the digital image processing covering all the sub branches of 16MCC01.CO1 this subject.
- Students will know the basics of MATLAB Image Processing Toolbox. 16MCC01.CO2
- Students will be able to do projects in digital image processing. 16MCC01.CO3
- Easily understand the concepts of filtering techniques 16MCC01.CO4

Understand the concepts of Image morphology techniques 16MCC01.CO5

		Program Outcomes												PSOs			
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12	PSO1	PSO2	PSO3		
16MCC01.CO1	x	- 1	-	-	x	-	-	-		-	x	х	-	x	-		
16MCC01.CO2	x	x	x	-	х	-	-	-	-	-	х	х	-	х	-		
16MCC01.CO3	x	x	x	-	x	-	-	-	=	-	X	x	-	Х	-		
16MCC01.CO4	x	X	X	-	x	-	-	-	-	-	х	х	-	Х	-		
16MCC01.CO5	x	x	x	x	x	-	-	-	-	-	х	X	-	Х	-		

UNIT I

FUNDAMENTALS OF DIGITAL IMAGES

Graphics/Image data type, Fundamental steps in digital image processing, Components of an image processing system, Light and electromagnetic spectrum, Simple image formation model, Image sampling and quantization, Relationship between pixels, Mathematical tools used in digital image processing.

UNIT II-

HISTOGRAMS, SPATIAL FILTERS AND FREQUENCY DOMAIN FILTERS

Histogram processing, Histogram equalization, Fundamentals of spatial filtering, Smoothing spatial filters, Sharpening spatial filters, Frequency domain filtering - Preliminary concepts, Sampling theorem, 1D DFT, 2D DFT, Ideal low pass filter for smoothing under frequency domain, Ideal high pass filter for sharpening under frequency domain.

UNIT III

IMAGE RESTORATION, COLOR MODELS AND WAVELETS

Image restoration - Restoration process model, Noise model, Restoration in the presence of noise only spatial filtering, Mean filters, Order-statistic filters, Periodic noise reduction by frequency domain filtering - Band reject filters, Band pass filters. Color image processing - Fundamentals and Models. Wavelets - Image pyramids and Sub band coding.

UNIT IV

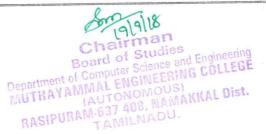

IMAGE COMPRESSION AND MORPHOLOGY

Image compression - Fundamentals, Redundancy, Measuring image information, Fidelity criteria, Compression models, Compression methods, Huffman coding, LZW coding, Block transform coding. Morphology - Preliminaries, Erosion, Dilation and Duality.

UNIT V

SEGMENTATION, REPRESENTATION, DESCRIPTION AND MATLAB IMAGE PROCESSING TOOLBOX

9

9

9

segmentation – Fundamentals of Point, Line and Edge detection, Line detection, Edge models, Basic edge detection. Thresholding – Foundation and Basic global thresholding. Representation and Description – Boundary following, Chain codes, Simple boundary descriptors and shape numbers. Introduction to MATLAB Image Processing Toolbox – Digital image representation, Reading images, Displaying images and Data classes of images.

TOTAL : L : 45

REFERENCE BOOKS:

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Rafael C. Gonzalez, Richard E. Woods	Digital Image Processing	Third Edition, Pearson Education	2009.
2.	Ze-Nian Li, Mark S. Drew	Fundamentals of Multimedia	Fundamentals of Multimedia	2004.
3.	Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins	Digital Image Processing using MATLAB	Fifth impression, Pearson Education	2009.
4. John C. Russ		The Image Processing Handbook	Sixth Edition, CRC Press	2011.
5.	William K.Pratt	Digital Image Processing	John Wiley, New York	2002.

WEB REFERENCE(s)

- 1. https://en.wikipedia.org/wiki/Digital_image_processing
- 2. www.nist.gov/lispix/imlab/improc_ref.html
- 3. www.comp.dit.ie/bmacnamee/materials/dip/.../ImageProcessing1-Introduction.ppt
- 4. library.wolfram.com > ... > Digital Image Processing
- 5. https://zara4.com/docs/image-processing/image-url

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

COMPUTER VISION AND APPLICATIONS

L T P C 3 0 0 3

COURSE OBJECTIVES

16MCC02

1.

- Students will understand the basics of machine vision
- 2. Students will understand the design for a specific application.
- 3. Students will be able to analyze the basic mathematical elements used in vision algorithms.
- 4. Easily study the concepts of 3D techniques.
- 5. To able to Identify the applications of Vision Processing

COURSE OUTCOMES

16MCC02.CO1 Identify security aspects of each cloud model.

16MCC02.CO2 Develop a risk-management strategy for moving to the cloud.

16MCC02.CO3 Implement a public cloud instance using a public cloud service provider.

16MCC02.CO4 Apply trust based security model to different layer.

16MCC02.CO5 Examine the concept of audit and compliance.

	Program Outcomes											PSOs			
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCC02.CO1	x	x	x	x	-	-	-	-	-	-	-	-	x	-	-
16MCC02.CO2	x	x	x	-	x	-	-	-	-	-	x	-	-	x	
16MCC02.CO3	x	x	x	-	-	-	-	-	-	-	x	-	x	-	-
16MCC02.CO4	x	x	х	-	х	x	-	-	-	-	-	x	-	x	-
16MCC02.CO5	x	-	-	-	x	1.0	-	-	-	-	x	x	х	-	-

UNIT I

INTRODUCTION AND BINARY IMAGE PROCESSING

Machine vision, Relationship to other fields, Role of knowledge, Image geometry, Sampling and quantization, Image definitions, Levels of computation - Binary image processing: Thresholding, Geometric properties, Projections, Run-length encoding, Binary algorithms, Morphological operators, Optical character recognition.

UNIT II IMAGE ANALYSIS BASICS, REGIONS AND IMAGE FILTERING

Data structures for image analysis: Levels of image data representation, Traditional image data structures and Hierarchical data structures - Regions: Regions and edges, Region segmentation, Region representation, Split and merge - Image filtering: Histogram modification, Linear systems, Linear filter and Median filter.

UNIT III

OBJECT RECOGNITION

Knowledge representation, Statistical pattern recognition: Classification principles, Classifier setting, Classifier learning, Cluster analysis. Neural nets: Feed-forward networks, unsupervised learning, Hopfield neural nets. Syntactic pattern recognition: Grammars and languages, Syntactic analysis and classifier, Syntactic classifier learning & grammar inference - Recognition as graph matching: Isomorphism of graphs and sub-graphs, Similarity of graphs.

UNIT IV

COMPUTER VISION

Basics of 3D vision, Edge detection: Gradient, Steps in edge detection. Contours: Geometry of curves, Digital curves. Textures: Texture and statistical texture description. Mathematical Morphology – Concepts, Principles, Binary dilation and erosion.

UNIT V

APPLICATIONS

Motion analysis – Differential motion analysis methods, Optical flow. Case study: Optical music recognition system, Automated image analysis in cardiology, Automated identification of airway trees, Passive surveillance.

TOTAL : L : 45

0

9

SI.No	ENCE BOOK AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1.	E. R. Davies	Computer & Machine Vision	Computer & Machine Vision	2012.		
2.	Milan Sonka, Vaclav Hlavac, Roger Boyle	Image Processing, Analysis, and Machine Vision	Thomson Learning Inc	2001		
3.	Mark Nixon and Alberto S. Aquado	Feature Extraction & Image Processing for Computer Vision	Third Edition, Academic Press	2012.		
4.	D. L. Baggio	Mastering OpenCV with Practical Computer Vision Projects	Packt Publishing	2012.		
5.	Milan Sonka, Vaclav Hlavac, Roger Boyle	Digital Image Processing and Computer Vision	Cengage Learning	2008		

- WEB REFERENCE(s)
 1. <u>https://en.wikipedia.org/wiki/Computer_vision</u>
 - https://en.wikipedia.org/wiki/Category:Applications_of_computer_vision 2.
 - https://ipsjcva.springeropen.com/ 3.
 - www.springer.com > Home > Computer Science > Image Processing 4.
 - 5. www.cs.ubc.ca/~lowe/vision.html

2[2][9]18 Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING CULLEGE (AUTONOMOUS) RASIPURAM-637 498, NAMAKKAL Bist. TAMILNADU.

16MCC03

ARTIFICIAL INTELLIGENCE

COURSE OBJECTIVES

- To have basic knowledge in the fundamental concepts of Artificial Intelligence, applications of Artificial 1. Intelligence.
- To have a thorough understanding about the agent design. 2.
- To be able to apply and design an intelligent system or any applications 3.
- To be able to understanding the concepts of knowledge representation, reasoning, planning and learning 4. methods in solving engineering and computational problems.
- To develop an interest in the field sufficient to take more advanced subjects. 5.

COURSE OUTCOMES

- Ability to understand the problem solving in AI. 16MCC03.CO1
- Ability to apply problem solving methods to solve engineering problems 16MCC03.CO2
- Ability to design an intelligent system by using knowledge representation techniques. 16MCC03.CO3
- Ability to design the reasoning, planning and learning methods. 16MCC03.CO4
- Ability to develop interest in learning advanced application oriented subjects of Artificial 16MCC03.CO5 Intelligence

		Program Outcomes											PSOs			
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSOI	PSO2	PSO3	
16MCC03.CO1	x	x	x	x	-	-	-	-	-	- 1	-	x	x	x		
16MCC03.CO2	x	x	x	x	x	-	-	x	-	x	x	-	x	x	-	
16MCC03.CO3	x	x	x	x	-	x	x	-	-	-	-	x		x	х	
16MCC03.CO4	x	x	-9	x		-	-	-	-	-	x	x	x	x	-	
16MCC03.CO5	x	x	x	1	x	x	-	x	x	-	x	-	x	x	х	

UNIT I

INTRODUCTION AND PROBLEM SOLVING

Definition of AI-Intelligent Agents- Problem Solving-Searching-Uninformed and Informed Search Strategies-Heuristic Search-Constraint Satisfaction Problems-Game Playing.

UNIT II

KNOWLEDGE REPRESENTATION AND REASONING

First order logic- Syntax and Semantics of FOL- Using FOL - Inference in FOL- Reasoning: Unification and Lifting -Forward Chaining - Backward Chaining- Resolution.

UNIT III

PLANNING

Planning- Representation for planning-Partial order planning-Conditional planning- Execution monitoring and Re planning - Continuous Planning - Multi-Agent Planning.

UNIT IV

Learning from Observations: Forms of Learning - Inductive Learning - Learning Decision Trees - Ensemble Learning - Knowledge in Learning - Logical Formulation of Learning - Explanation based Learning - Relevance based Learning - Reinforcement learning: Passive & Active Reinforcement learning.

LEARNING

UNIT V

APPLICATIONS

Natural Language Processing for communication - Probabilistic Language Processing - Information Retrieval -Information Extraction - Machine Translation. STATE OF ART (Not for Exam) Ambient Intelligence- Semantic Web - Challenges in Semantic Web

TOTAL : L : 45

0

0

9

Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE AUTONOMOUS) RASIPURAM-637 408, NAMAN AL Cist. TAMILNADU.

REFERENCE BOOK

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1.	Stuart Russel and Peter Norvig	Artificial Intelligence-A Modern Approach	Second Edition Prentice Hall International	2010.		
2.	Elain Rich and Kevin Knight	Artificial Intelligence	Tata McGraw Hill - Second Edition	2003.		
3.	Nils J.Nilsson	Artificial Intelligence - A New Synthesis	Harcourt Asia PTE Ltd, Morgan Kaufmann	2003.		
4.	Patrick Henry Winston	rick Henry Winston Artificial Intelligence Third Edition, ISE Wesley				
5. Alan Mackworth David Poole				2010		

WEB REFERENCE(s)

- https://en.wikipedia.org/wiki/Artificial_intelligence https://en.wikipedia.org/wiki/Artificial_intelligence www.journals.elsevier.com > Journals 1.
- 2.
- 3.
- www.cbinsights.com/blog/artificial-intelligence-startup-hype-ai-suffix/ 4.
- www.hutterl.net/ai/uaibook.html 5.

Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

16MCC04

NATURAL LANGUAGE PROCESSING

L	Т	P	C
3	0	0	3

COURSE OBJECTIVES

To gain knowledge about the fundamentals and applications of natural language processing. 1.

- To have a thorough understanding about Computational framework for natural language. 2.
- To understand and analyze the syntax of natural language processing. 3.
- To understand and analyze the semantics of natural language processing. 4
- To learn the tool for various applications of NLP. 5

COURSE OUTCOMES

Ability to understand the fundamentals and applications of NLP. 16MCC04.CO1

- Ability to understand the applications of NLP. 16MCC04.CO2
- Ability to apply natural language techniques to solve engineering problems. 16MCC04.CO3
- Ability to apply natural language techniques to solve computational problems 16MCC04 CO4

Ability to design an NLP system for various applications by using the tools for NLP. 16MCC04.CO5

Course					Pr	ogram O	utcome	5					PSOs			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16MCC04.CO1	x	x	x	x		-	-	-	-		-	x	x	х	-	
16MCC04.CO2	x	x	x	x	x		-	x	-	x	x	-	x	x	-	
16MCC04.CO3	x	х	x	x	+	x	x	-	-	-	-	x	-	x	x	
16MCC04.CO4	x	x	-	x	-	-	-	-	-	-	х	x	x	x	-	
16MCC04.CO5	x	x	x .	-	x	x	-	х	x	-	х	-	x	х	x	

UNIT I

INTRODUCTION

9

Introduction: Knowledge in speech and language processing - Ambiguity - Models and Algorithms - Language, Thought and Understanding. Regular Expressions and automata: Regular expressions - Finite-State automata.

SYNTAX

UNIT II

Word classes and part-of-speech tagging: English word classes - Tag sets for English - Part-of-speech tagging - Rulebased part-of-speech tagging - Stochastic part-of-speech tagging - Transformation-based tagging -Context-Free Grammars for English: Constituency - Context-Free rules and trees - Sentence level constructions - The noun phrase -The verb phase and sub categorization- Spoken language syntax - Grammars equivalence and normal form - Finite-State and Context-Free grammars - Grammars and human processing. Parsing with Context-Free Grammars: Parsing as search - A Basic Top-Down parser - Problems with the basic Top-Down parser - The early algorithm - Finite-State parsing methods.

UNIT III

ADVANCED FEATURES AND SYNTAX

Features and Unification: Feature structures - Unification of feature structures - Features structures in the grammar -Implementing unification - Parsing with unification constraints - Types and Inheritance. Lexicalized and Probabilistic Parsing: Probabilistic context-free grammar - problems with PCFGs - Probabilistic lexicalized CFGs - Dependency Grammars - Human parsing.

UNIT IV

SEMANTICS

Representing Meaning: Computational desiderata for representations - Meaning structure of language - First order predicate calculus - Related representational approaches - Alternative approaches to meaning. Semantic Analysis: Syntax-Driven semantic analysis - Attachments for a fragment of English - Integrating semantic analysis into the early parser - Idioms and compositionality - Robust semantic analysis. Lexical semantics: relational among lexemes and their senses - WordNet: A database of lexical relations - The Internal structure of words - Creativity and the lexicon.

Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Gist. TAMILNADU.

UNIT V

APPLICATIONS AND TOOLS

Information Retrieval -Summarization -Question Answering -Case Study of NLTK Toolkit.

TOTAL : L : 45

9

REFERENCE BOOK

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION	
1.	Daniel Jurafsky & James H.Martin	Speech and Language Processing	Pearson Education (Singapore) Pte. Ltd	2008.	
2.	James Allen	Natural Language Understanding	Pearson Education	2003	
3.	Lucja M Iwanska	Natural Language Processing and Knowledge Representation: Language For Knowledge And Knowledge For Language	University Press	2008	
4.	Daniel Bikel and Imed Zitouni	Multilingual Natural Language Processing Applications	Theory to Practice, IBM Press	2012	
5.	Steven Bird, Ewan Klein	Edward Loper, Natural Language Processing with Python	O'Reilly Media	2009	

WEB REFERENCE(s)

- https://en.wikipedia.org/wiki/Natural_language_processing https://www.coursera.org/course/nlp 1.
- 2.
- www.mind.ilstu.edu/curriculum/protothinker/natural_language_processing.php 3.
- www.nltk.org/book/ 4.
- https://karczmarczuk.users.greyc.fr/.../Handbook%20Of%20Natural%20. 5.

Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

16MCC05

DISTRIBUTED COMPUTING

```
C
    T
         P
L
3
    0
         0
             3
```

COURSE OBJECTIVES

- To list the principles underlying the functioning of distributed systems, describe the problems and challenges 1 associated with these principles
- To evaluate the effectiveness and shortcomings of their solutions.
- To recognize how the principles are applied in contemporary distributed systems, explain how they affect the 3 software design, and be able to identify features and design decisions that may cause problems.
- To design a distributed system that will be able to recognize when this is not possible, and explain why.
- To build distributed system software using basic OS mechanisms as well as higher-level middleware and 5
- languages

COURSE OUTCOMES

Identify models of distributed computing.' 16MCC05.CO1

- Evaluate the effectiveness and shortcomings of their solutions. 16MCC05.CO2
- Analyze algorithms for coordination, communication, security and synchronization in distributed 16MCC05.CO3 evetems

	by been in the second
16MCC05.CO4	Classify distributed shared memory models.
	Design distributed algorithms for deadlocks.

Course		Program Outcomes													PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3		
16MCC05.CO1		-	x	-		x	-	-		-	-	x	-	x	-		
16MCC05.CO2	-	x	-	-	x	x	-	-	-	x	x	-	x	x	-		
16MCC05.CO3	-	-	x	-	-	x		-	x	- 2	-	x	-	-	x		
16MCC05.CO4	x	x	-	x	-	-	x	-	-	x	-	-	x	-	-		
16MCC05.C05	x		-	-	-	x	x	-	-	- x	-	x	х	-	-		

UNIT I

INTRODUCTION TO DISTRIBUTED SYSTEMS

Characterization of Distributed Systems- Introduction, Examples of Distributed systems, Resource sharing and web, challenges, System models- Introduction, Architectural and Fundamental models, Networking and Internetworking, Inter process Communication. Distributed objects and Remote Invocation-Introduction, Communication between distributed objects, RPC, Events and notifications, Case study-Java RMI.

UNIT II

OPERATING SYSTEM SUPPORT AND DISTRIBUTED FILE

SYSTEMS

Operating System Support- Introduction, OS layer, Protection, Processes and Threads, Communication and Invocation, Operating system architecture, Distributed File Systems-Introduction, File Service architecture, case study- SUN network file systems. Name Services-Introduction; Name Services and the Domain Name System, Case study of the Global Name Service, Case study of the X.500 Directory Service.

UNIT III

TIME AND GLOBAL STATES

Peer to Peer Systems-Introduction, Napster and its legacy, Peer to Peer middleware, Routing overlays, Overlay case studies-Pastry, Tapestry, Application case studies-Squirrel, Ocean Store. Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging. Coordination and Agreement - Introduction, Distributed mutual exclusion, Elections, Multicast communication, consensus and related problems.

UNIT IV

DISTRIBUTED TRANSACTIONS

Transactions and Concurrency control - Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for concurrency controls. Distributed Transactions -Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery, Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data.

> **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

UNIT V

SECURITY TECHNIQUES

Security - Introduction, Overview of Security techniques, Cryptographic algorithms, Digital signatures, Case studies-Kerberos, TLS, 802.11 WiFi. Distributed shared memory, Design and Implementation issues, Sequential consistency and Ivy case study, Release consistency and Munin case study, other consistency models, CORBA case study-Introduction, CORBA RMI, CORBA Services.

TOTAL : L : 45

REFERENCE BOOKS

SI.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1.	S.Mahajan and S.Shah	Distributed Computing	Oxford University Press	2006		
2.	Pradeep K.Sinha	Distributed Operating Systems Concepts and Design	PHI	2007		
3.	R.Chow, T.Johnson,	Distributed Operating Systems and Algorithm Analysis	Pearson	2009		
4.	S.Ghosh, Chapman & Hall/CRC	Distributed System	Taylor & Francis Group	2010.		
5.	Carlos A. Varela	Programming Distributed Computing Systems	MIT Press	2012		

WEB REFERENCE(s)

https://en.wikipedia.org/wiki/Grid_computing 1.

www.springer.com > Home > Computer Science > Communication Networks 2.

cpsc.yale.edu/research/distributed-computing 3.

https://azmuri.files.wordpress.com///george-coulouris-distributed-syste. 4.

https://www.amazon.com/Elements-Distributed-Computing ... /047103600. 5.

Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

16MCC06

SERVICE ORIENTED ARCHITECTURE

COURSE OBJECTIVES

To gain understanding of the basic principles of service orientation. 1.

- To learn service oriented analysis techniques.
- To learn technology underlying the service design. 3
- To learn the concepts SOA platforms 4.
- To know about various WS specification standards 5.

COURSE OUTCOMES

- Know the SOA concepts and architecture. 16MCC06.CO1
- Analyze the service oriented analysis techniques. 16MCC06.CO2
- Understand principles of Web services and SOA. 16MCC06.CO3
- 16MCC06.CO4 Steps in Service oriented Analysis.
- Analyze the WS standard extensions. 16MCC06.CO5

					P	rogram (outcomes						PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCC06.CO1		-	x	x	x	-	-	х	-	-	x	-	x		-
16MCC06.CO2	x	-	x	x	x	-	x	-	-	~	x	-	-	-	x -
16MCC06.CO3	-	. X	x	÷	x	-	x	-	-	-	-	-	-	x	-
16MCC06.CO4	-	-	x	x	x	-	x	-		-	-	-	х	-	-
16MCC06.CO5	-		x	-	x		x	-	Ŧ	5e	x	-		x	-

UNIT I

SOA EVOLUTION - ARCHITECTURE

Roots of SOA - Characteristics of SOA - Comparing SOA to client-server and distributed internet architectures -Anatomy of SOA- How components in an SOA interrelate - Principles of service orientation

UNIT II

WEB SERVICES AND PRIMITIVE SOA

Web services - Service descriptions - Messaging with SOAP - Message exchange Patterns - Coordination - Atomic Transactions - Business activities - Orchestration - Choreography - Service layer abstraction - Application Service Layer - Business Service Layer - Orchestration Service Layer.

UNIT III

SERVICE ORIENTED ANALYSIS

Service oriented analysis - Business-centric SOA - Deriving business services- service modeling - Service Oriented Design - WSDL basics - SOAP basics - SOA composition guidelines - Entity-centric business service design -Application service design - Task centric business service design

UNIT IV

SOA PLATFORMS

SOA platform basics - SOA support in J2EE - Java API for XML-based web services (JAX-WS) - Java architecture for XML binding (JAXB) - Java API for XML Registries (JAXR) - Java API for XML based RPC (JAX-RPC)- Web Services Interoperability Technologies (WSIT) - SOA support in .NET - Common Language Runtime - ASP.NET web forms - ASP.NET web services - Web Services Enhancements (WSE).

WS EXTENSIONS

UNIT V

WS-BPEL basics - WS-Coordination overview - WS-Choreography, WS-Policy, WS Security

TOTAL : L : 45

Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAI Di-TAMILNADU.

Т 0 0 3 3

P C

L

0

9

0

9

Programme Code & Name:	MC & M.E-Computer Science and Engineering
------------------------	---

REFER SI.No	ENCE BOOKS AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION	
1.	Thomas Erl	Service-Oriented Architecture: Concepts, Technology, and Design	Pearson Education	2005	
2.	Thomas Erl	SOA Principles of Service Design	The Prentice Hall Service-Oriented Computing Series from Thomas Erl	2005	
3.	Newcomer, Lomow	Understanding SOA with Web Services	Pearson Education	2005	
4.	Sandeep Chatterjee, James Webber	Developing Enterprise Web Services, An Architect''s Guide	Pearson Education	2005	
5.	Dan Woods and Enterprise SOA Designing IT for Thomas Mattern Business Innovation O''REILLY		First Edition	2006	

WEB REFERENCE(s)

1. https://www.ibm.com/software/solutions/soa/

2. www.oracle.com > Products and Services > Oracle Fusion Middleware /SOA

3. https://www.opengroup.org/soa/source-book/soa/soa.htm

4. https://www.safaribooksonline.com/.../service-oriented-architecture.../01

5. https://www.packtpub.com/application.../service-oriented-architecture-java.

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

16MCC07

MOBILE APPLICATION DEVELOPEMENT

C T L Р 3 0 3

0

9

COURSE OBJECTIVES

Understand system requirements for mobile applications. 1

- To learn the basics of embedded system design 2.
- Generate suitable design using specific mobile development frameworks. 3
- Implement the design using specific mobile development frameworks. 4
- Deploy the mobile applications in marketplace for distribution.

COURSE OUTCOMES

- Describe the requirements for mobile applications. 16MCC07.CO1
- Explain the challenges in mobile application design and development. 16MCC07.CO2
- Develop design for mobile applications for specific requirements 16MCC07.CO3
- Deploy mobile applications in android and ipone marketplace for distribution 16MCC07.CO4

Analyze the Generate mobile application design 16MCC07.CO5

					P	rogram (Jutcomes						PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCC07.CO1	-	-	x	-	-	x	-	-	- 1	-	-	x	-	x	-
16MCC07.CO2		x	-	-	x	x	-	-	- 1	x	x	-	x	x	l
16MCC07.CO3	-	-	x	-		x		-	х	r.	-	x	-	-	X
16MCC07.CO4	х	x	-	x	-	-	x	-	-	х		-	x	-	-
16MCC07.CO5	x	-	-	-	-	x	x	-	- 1	х	-	x	x	-	

UNIT I

INTRODUCTION

Introduction to mobile applications - Embedded systems - Market and business drivers for mobile applications -Publishing and delivery of mobile applications - Requirements gathering and validation for mobile applications.

UNIT II

BASIC DESIGN

Introduction - Basics of embedded systems design - Embedded OS - Design constraints for mobile applications, both hardware and software related - Architecting mobile applications - User interfaces for mobile applications - touch events and gestures - Achieving quality constraints - performance, usability, security, availability and modifiability.

UNIT III

ADVANCED DESIGN

Designing applications with multimedia and web access capabilities - Integration with GPS and social media networking applications - Accessing applications hosted in a cloud computing environment - Design patterns for mobile applications - Applications of Community Mining Algorithms - Node Classification in Social Networks.

UNIT IV

TECHNOLOGY I - ANDROID

Introduction - Establishing the development environment - Android architecture- Activities and views - Interacting with UI - Persisting data using SQLite - Packaging and deployment - Interaction with server side applications - Using Google Maps, GPS and Wifi - Integration with social media applications.

UNIT V

TECHNOLOGY II - IOS

Introduction - Establishing the development environment - Android architecture- Activities and views - Interacting with UI - Persisting data using SQLite - Packaging and deployment - Interaction with server side applications - Using Google Maps, GPS and Wifi - Integration with social media applications.

TOTAL : L : 45

Sl.No	RENCE BOOKS AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1.	Jeff McWherter and Scott Gowell	Professional Mobile Application Development	Wrox	2012.		
2.	Charlie Collins	Michael Galpin and Matthias Kappler Android in Practice	DreamTech	2012.		
3.	James Dovey and Ash Furrow	Beginning Objective C	A press	2012.		
4.	David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson	Beginning iOS 6 Development: Exploring the iOS SDK	A press	2013.		
5.	<u>Jayavardhana Gubbi,</u> <u>Rajkumar Buyya^b</u>	Internet of Things (IoT): A vision, architectural elements, and future directions	Elsevier	2013		

WEB REFERENCE(s)

1.

https://en.wikipedia.org/wiki/Mobile_application_development www.informationweek.com/mobile/mobile-applications/...mobile-development/.../132 2.

3.

https://www.netsolutionsindia.com/mobile-development-india www.cs.cmu.edu/~./bam/.../BFeiginMobileApplicationDevelopment.pdf https://www.ibm.com/developerworks 4.

5.

Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

16MCC08

INTERNET OF THINGS

LT P C 3 3 0 0

COURSE OBJECTIVES

To get acquainted with the building blocks of Internet of Things (IoTs), characteristics and taxonomy of IoT levels. 1

- To learn a generic design methodology 2.
- To learn a programming aspects of IoT. 3
- To know about various packages, frameworks and cloud services. 4
- To get acquainted with data analytics for IoT. 5

COURSE OUTCOMES

Identify and design the new models for market strategic interaction. 16MCC08.CO1

- Design business intelligence and information security for WoB. 16MCC08.CO2
- Analyze various protocols for IoT. 16MCC08.CO3
- Analyze programming aspects of IoT. 16MCC08.CO4
- To know about various packages, frameworks and cloud services. 16MCC08.C05

					Р	rogram C	outcomes						PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCC08.CO1	x	-	x		x	-		x	-	x	-	x	x	x	-
16MCC08.CO2	x	х	-		x			x	x	X	-	-	x	*	-
16MCC08.CO3	x	x	х	x		х		Ξ.	x	x	x	x	18	x	-
16MCC08.CO4	x	x	x	x	-	x	-	-	x	x	x	-	x	-	X
16MCC08.CO5	x	х	x	х	-	x	-	-	х	x	X	X	X	Х	~

UNIT I

INTRODUCTION TO IoT

Definition and Characteristics - Physical Design Things - Protocols - Logical Design - Functional Blocks -Communication Models - Communication APIs - Introduction to measure the physical quantities - IoT Enabling Technologies - Wireless Sensor Networks - Cloud Computing - Big Data Analytics - Communication Protocols -Embedded Systems - IoT Levels and Deployment Templates

UNIT II

DEVELOPING INTERNET OF THINGS Introduction to Smart Systems using IoT - IoT Design Methodology - Case Study: Weather Monitoring - Logical Design using Python - Data types & Data Structures - Control Flow - Functions - Modules - Packages - File Handling - Date/Time Operations - Classes - Python Packages of Interest for IoT

UNIT III

DOMAIN SPECIFIC IoTs

Home Automation - Cities - Environment - Energy - Retail - Logistics - Agriculture - Industry - Health and Lifestyle - IoT and M2M

10T PHYSICAL DEVICES, ENDPOINTS AND CLOUD OFFERINGS UNIT IV

IoT Device - Raspberry Pi - Interfaces - Programming Raspberry Pi with Python - Other IoT Devices - IoT Physical Servers and Cloud Offerings - Cloud Storage Models and communication APIs - WAMP - Xively Cloud - Django -Amazon Web Services for IoT - SkyNet IoT Messaging Platform - Basics of Secure IoT Programming - Case Study: Home Automation.

UNIT V

DATA ANLYTICS FOR IoT

Introduction - Apache Hadoop - Using Hadoop MapReduce for Batch Data Analysis - Apache Oozie - Apache Spark -Apache Strom - Using Apache Strom for Real-time Data Analysis - Case Study: Structural Health Monitoring.

TOTAL : L : 45

Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

SI. No	ERENCE BOOKS AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1.	Arshadeep Bahga, Vijay Madisetti	Internet of Things: A Hands-On Approach	Published by Arshdeep Bahga & Vijay Madisetti	2014		
2.	Mike Kuniavsky	Smart Things: Ubiquitous Computing User Experience Design	Morgan Kaufmann Publishers	2010		
3.	Wimer Hazenberg	Meta Products: Building the Internet of Things. Sara Cordoba	Menno Huisman BIS Publishers	2011		
4.	Massimo Banzi	Getting Started with Arduino (Make: Projects).	O'Reilly Media	2008		
5.	Barnaghi	Semantics for the Internet of things	Addison Wesley	2012		

WEB REFERENCE(s)

- 1. www.internetsociety.org/Internet-Things
- 2. www.theguardian.com > Technology > Internet of things
- 3. www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things
- 4. https://mitpress.mit.edu/books/internet-things
- 5. www.apress.com/us/book/9781484212943

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

16MCC09

2

BIG DATA ANALYTICS

0

0

0

0

COURSE OBJECTIVES

- To understand the fundamental concepts of big data analytics. 1
 - To learn to use various techniques for mining data stream.
- To explore the technologies associated with big data analytics such as NoSQL, 3
- To understand the technique like distributed file system 4.
- To learn the overview of Hadoop 5.

COURSE OUTCOMES

- Ability to understand the concepts of big data analytics. 16MCC09C01
- Ability to understand the stream data model 16MCC09.CO2
- 16MCC09.CO3 Ability to mine data streams
- Ability to design schema less database 16MCC09.CO4
- Ability to perform map reduce using Hadoop 16MCC09.CO5

					P	rogram C	Jutcomes						PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCC09C01	X	-	-	-	-	-	x	x	-	x	-	х	x	÷	
16MCC09.CO2			x		x	x	-	x	x	x	-	-	x	1.1	x
16MCC09.CO3	-	x	-	-	-	x	x	-		-	x	x	-	x	-
16MCC09.CO4	х	-	x	x	x	-	-	-	x	-	x	-	x	-	x
16MCC09.CO5	x	x	x	x	-		-	-	х	-	-	x	х	х	-

UNIT I

INTRODUCTION

Big data overview - State of the Practice in Analytics - Key Roles - Data Analytics Lifecycle - Discovery - Data Preparation - Model Planning - Model Building - Communicate Results - Operationalize.

UNIT II

MINING DATA

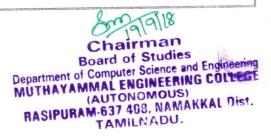
Stream Data Model - Sampling Data in a Stream-Filtering Streams-Counting Distinct Elements in a Stream-Estimating Moments-Counting Ones in a Window-Decaying Window

LARGE -SCALE FILE SYSTEMS AND MAP-REDUCE UNIT III

Distributed File Systems - MapReduce - Algorithms Using MapReduce - Extensions to MapReduce - Communication Cost Model - Complexity Theory for MapReduce

UNIT IV

NoSQL DATA MANAGEMENT


Introduction to NoSQL - aggregate data models - aggregates - key-value and document data models - relationships graph databases - schemaless databases - materialized views - distribution models - sharding - master-slave replication - peer-peer replication - sharding and replication - consistency - relaxing consistency

UNIT V

OVERVIEW OF HADOOP

Hadoop Introduction - Data format - Analyzing data with Hadoop - Scaling out - Hadoop streaming - Hadoop pipes -Hadoop Distributed File System (HDFS) - HDFS Design - HDFS Concepts - Hadoop I/O - Data integrity compression - serialization - sequence file - map file

TOTAL : L : 45

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATI ON	
1.	Anand Rajaraman and Jeffrey David Ullman	Mining of Massive Datasets	Cambridge University Press	2012.	
2.	Tom White	Hadoop: The Definitive Guide	Third Edition, O'Reilly	2012	
3.	P.J.Sadalage and M.Flower	Sadalage and M.Flower NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence			
4.	Leonidas Guibas	Data science and Big data analytics	EMC Education services	2015	
5.	Thomas Krag	Information and Stroage Management	EMC Education services	2015	

WEB REFERENCE(s)

1. www.sisense.com/

- 2. www.sas.com/en_us/insights/analytics/big-data-analytics.html
- 3. https://en.wikipedia.org/wiki/Big_data
- 4. www.sciencedirect.com/science/book/9780124173194
- 5. https://www.crcpress.com/Big-Data-Analytics.../book/9781482234510

8 Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMAL ENGINEERING COLLECE (AUTONOMIOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMIL DU.

16MCC10

5

INFORMATION RETRIEVAL TECHNIQUES

Т Р C L 3 0 0 3

COURSE OBJECTIVES

- To understand the basics of Information Retrieval with pertinence to modeling,
- To learn the query operations and indexing. 2
- To understand the machine learning techniques for text classification 3.
- To understand the various applications of Information Retrieval giving emphasis to Multimedia IR, Web 4 Search.
 - To understand the concepts of digital libraries.

COURSE OUTCOMES

Upon completion of the course, the students will be able to Build an Information Retrieval system 16MCC10.CO1 using the available tools.

Analyze the query operations and indexing. 16MCC10.CO2

- Identify and design the various components of an Information Retrieval system. 16MCC10.CO3
- Analyze the concepts of digital libraries. 16MCC10.CO4

Design an efficient search engine. 16MCC10.CO5

	Program Outcomes													PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
16MCC10.CO1	-	-	- 1	-	x		-	x	-	-	-	-	-	-	x	
16MCC10.CO2	x	-	۰.	x	x	x		-	-	-	x	-	-	x	-	
16MCC10.CO3	-	x	x	-	x	-	x		-	-	-	-	=	x	-	
16MCC10.CO4	-	~	x	x	x	1.4	x	-	-	-	-	-	x	-	-	
16MCC10.CO5	-	-	x	-	x	-	x	-	-	-	х	-	-	X	-	

UNIT I

INTRODUCTION

Motivation - Basic Concepts - Practical Issues - Retrieval Process - Architecture - Boolean Retrieval -Retrieval Evaluation - Open Source IR Systems-History of Web Search - Web Characteristics-The impact of the web on IR IR Versus Web Search-Components of a Search engine

UNIT II

Taxonomy and Characterization of IR Models - Boolean Model - Vector Model - Term Weighting - Scoring and Ranking -Language Models - Set Theoretic Models - Probabilistic Models - Algebraic Models - Structured Text Retrieval Models - Models for Browsing

INDEXING

MODELING

UNIT III Static and Dynamic Inverted Indices - Index Construction and Index Compression Searching - Sequential Searching

and Pattern Matching. Query Operations -Query Languages-Query Processing - Relevance Feedback and Query

Expansion - Automatic Local and Global Analysis - Measuring Effectiveness and Efficiency. 0 CLASSIFICATION AND CLUSTERING UNIT IV

Text Classification and Naïve Bayes - Vector Space Classification - Support vector machines and Machine learning on documents. Flat Clustering - Hierarchical Clustering - Matrix decompositions and latent semantic indexing - Fusion and Meta learning

UNIT V

SEARCHING AND RANKING

Searching the Web -Structure of the Web -IR and web search - Static and Dynamic Ranking - Web Crawling and Indexing - Link Analysis - XML Retrieval Multimedia IR: Models and Languages - Indexing and Searching Parallel and Distributed IR - Digital Libraries.

TOTAL: L: 45

Chai **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist." TAMILNADU.

9

0

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION
1.	Christopher D. Manning Prabhakar Raghavan Hinrich Schütze	Introduction to Information Retrieval	The MIT Press, Cambridge,	2009
2.	Ricardo Baeza – Yates, Berthier Ribeiro – Neto, Modern Information Retrieval	The concepts and Technology behind Search (ACM Press Books)	Second Edition	2011.
3.	Christopher D. Manning, Prabhakar Raghavan, HinrichSchutze	Introduction to Information Retrieval Cambridge University Press	First South Asian Edition	2012.
4.	Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack	Information Retrieval Implementing and Evaluating Search Engines	The MIT Press, Cambridge, Massachusetts London, England	2010
5.	Paul S. Jacobs	Text-Based Intelligent Systems: Current Research and Practice in Information Extraction and Retrieval	Lawrence Erlbaum Associates,	2012

WEB REFERENCE(s)

1. https://en.wikipedia.org/wiki/information_retrieval

2. www.doc.ic.ac.uk/~nd/surprise_97/journal/vol2/hks/infor_ret.html

3. www.seas.upenn.edu/~zives/03s/cis650/ir.pdf

4. nlp.stanford.edu/IR-book/pdf/19web.pdf

5. https://web.fe.up.pt/~mgi00005/paginas/2.../ari/search_engines.html

16MCC11

AD-HOC AND WIRELESS SENSOR NETWORS

COURSE OBJECTIVES

- To learn the basics of sensor networks. 1
- To impart knowledge on the design and development of the data link and network layers in the WSN protocol 2. stack.
- To understand the working of protocols in different layers of sensor networks. 3.
- To learn the establishment of wireless sensor networks. 4
- To familiarize the students with the hardware and software platforms used in the design of WSN. 5

COURSE OUTCOMES

- Ability to learn the basics of sensor networks. 16MCC11.CO1
- To impart knowledge on the design and development of the data link and network layers in the WSN 16MCC11.CO2 protocol stack.
- Analyze the working of protocols in different layers of sensor networks. 16MCC11.CO3
- To learn the establishment of wireless sensor networks. 16MCC11.CO4
- Analyze to understand the hardware 16MCC11.CO5
- Design the software platforms used in the design of WSN 16MCC11.CO6

		Program Outcomes											PSOs		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
16MCC11.CO1	-	-	-	-	x	- 1	-	x	-	-	-	-	-	-	x
16MCC11.CO2	x	-		x	x	x	-		-	-	x	-	-	x	-
16MCC11.CO3	-	x	x	-	x	-	x	e l	_	-	-	-	-	x	-
16MCC11.CO4	-	-	x	x	x	-	x	-	-	1.00	-	1 e	x	-	-
16MCC11.CO5	-	-	x	5.	x	-	x		π	-	x	-	-	x	
16MCC11.CO6															

UNIT I

AD-HOC MAC

Introduction - Issues in Ad-Hoc Wireless Networks. MAC Protocols - Issues, Classifications of MAC protocols, Multi channel MAC & Power control MAC protocol.

UNIT II

AD-HOC NETWORK ROUTING & TCP

Issues - Classifications of routing protocols - Hierarchical and Power aware. Multicast routing - Classifications, Tree based, Mesh based. Ad Hoc Transport Layer Issues. TCP Over Ad Hoc - Feedback based, TCP with explicit link, TCP-BuS, Ad Hoc TCP, and Split TCP.

UNIT III

WSN-MAC

Introduction - Sensor Network Architecture, Data dissemination, Gathering. MAC Protocols - self-organizing, Hybrid TDMA/FDMA and CSMA based MAC.

UNIT IV

WSN ROUTING, LOCALIZATION & QOS

Issues in WSN routing - OLSR, AODV. Localization - Indoor and Sensor Network Localization. QoS in WSN.

UNIT V

MESH NETWORKS

Necessity for Mesh Networks - MAC enhancements- IEEE802.11s Architecture- Opportunistic routing - Self configuration and Auto configuration - Capacity Models - Fairness - Heterogeneous Mesh Networks - Vehicular Mesh Networks.

TOTAL: L: 45

0

Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) RASIPURAM-637 408, NAMAKKAL Dist. TAMILNADU.

Sl.No	AUTHOR(s)	TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
1. C.Siva Ram Murthy and B.Smanoj		Ad Hoc Wireless Networks - Architectures and Protocols	Pearson Education	2004.		
2.	Feng Zhao and Leonidas Guibas	Wireless Sensor Networks	Morgan Kaufman Publishers	2004.		
3.	C.K.Toh	Ad Hoc Mobile Wireless Networks	Pearson Education	2002.		
4.	Thomas Krag and Sebastin Buettrich	Wireless Mesh Networking	O"Reilly Publishers	2007.		
5.	H Karl, A Willig	Protocols and architectures for wireless sensor networks	Pearson Education	2007		

WEB REFERENCE(s)

- 1. www.journals.elsevier.com/ad-hoc-networks
- 2. https://en.wikipedia.org/wiki/Mobile_ad_hoc_network
- 3. www.sciencedirect.com/science/journal/15708705
- 4. https://www.scribd.com/doc/.../Adhoc-and-Wireless-Networks-D-P-Agar
- 5. https://www.safaribooksonline.com/library/.../ad-hoc-wireless/01314702.

919118 Chairman **Board of Studies** Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) BASIPURAM-637 408, NAMAKKAL Dires, TAMILNADU.

16MCC12 PATTERN CLASSIFICATION AND ANALYSIS

COURSE OBJECTIVES

1. Study the fundamental algorithms for pattern recognition.

- 2. To instigate the various Pattern classification techniques.
- 3. To originate the various structural pattern recognition and feature extraction techniques
- 4. To understand the clustering concepts
- 5. To learn the recent advances in neural networks.

COURSE OUTCOMES

16MCC12.CO1 Understand performance related parameters and the concepts of Instruction Set architectures16MCC12.CO2 Describe Instruction Level parallelism and identify the limitations of ILP

16MCC12.CO3 Discuss the approaches of exposing and exploiting ILP

16MCC12.CO4 Design hierarchical memory System

16MCC12.CO5 Analyze the types of multiprocessor architecture and storage devices

Course Outcomes	Program Outcomes												PSOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO12	PSO1	PSO2	PSO3
16MCC12.CO1	x	x	x	x		-	-	-	-	-	-	-	х	-	x
16MCC12.CO2	x	x	x	x	-	-	-	-	-	-	x	-	-	x	-
16MCC12.CO3	x	x	x			-	-	-	-	-	x	-	x	-	-
16MCC12.CO4	x	x	x	x	х	-	-	-	-	-	-	х	-	-	х
16MCC12.CO5	x	x	x	-	-	-	-	-	-	-	-	х	х	-	-

UNIT I

PATTERN CLASSIFIER

9

9

0

0

9

Т

P

L

3 0 0 3

С

Overview of pattern recognition - Discriminant functions - Supervised learning - Parametric estimation Maximum likelihood estimation - Bayesian parameter estimation - Perceptron algorithm - LMSE algorithm - Problems with Bayes approach - Pattern classification by distance functions - Minimum distance pattern classifier.

UNIT II

UNSUPERVISED CLASSIFICATION

Clustering for unsupervised learning and classification - Clustering concept - C-means algorithm - Hierarchical clustering procedures - Graph theoretic approach to pattern clustering - Validity of clustering solutions.

UNIT III

STRUCTURAL PATTERN RECOGNITION

Elements of formal grammars - String generation as pattern description - Recognition of syntactic description - Parsing - Stochastic grammars and applications - Graph based structural representation

UNIT IV

FEATURE EXTRACTION AND SELECTION

Entropy minimization - Karhunen - Loeve transformation - Feature selection through functions approximation -Binary feature selection.

UNIT V

RECENT ADVANCES

Neural network structures for pattern recognition - Neural network based pattern associators – Unsupervised learning in neural pattern recognition - Self organizing networks - Fuzzy logic - Fuzzy pattern classifiers –Pattern classification using Genetic Algorithms. STATE OF ART (Not for Exam) Image Transforms: DFT, DCT, Haar, SVD and KL-Introduction to Matlab Toolbox.

TOTAL : L : 45

Sl.No AUTHOR(s) 1. Robert J.Schalkoff, Pattern Recognition		TITLE OF THE BOOK	PUBLISHER	YEAR OF PUBLICATION		
		Statistical, Structural and Neural	John Wiley &Sons Inc., New York	2007.		
2.	Tou and Gonzales	Pattern Recognition Principles	Wesley Publication Company, London	2008		
3.	Duda R.O., and Hart.P.E	Pattern Classification and Scene Analysis	Wiley, New York	2009		
ŀ.	Morton Nadier and Eric Smith P	Pattern Recognition Engineering	John Wiley & Sons, New York	2009		
5.	LFD Costa, RM Cesar Jr	Shape analysis and classification: theory and practice	ACM Digital Library	2011		

WEB REFERENCE(s)

1. https://en.wikipedia.org/wiki/Pattern_recognition

- 2. www.springer.com > Home > Computer Science > Image Processing
- 3. www.amazon.in/Pattern-Classification-Scene-Analysis-Richard/dp/0471223611
- 4. homepages.inf.ed.ac.uk/rbf/BOOKS/NEVATIA/Chap002.pdf
- 5. samples.sainsburysebooks.co.uk/9780471725282_sample_385871.p

Chairman Board of Studies Department of Computer Science and Engineering MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS) BASIPURAM-637 408, NAMAKKAL Dist TAMILNADU.