

## (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

# Curriculum/Syllabus

**Programme Code : EC** 

**Programme Name:** B.E.-Electronics and Communication Engineering

**Regulation**: R-2016



# **MUTHAYAMMAL ENGINEERING COLLEGE**

(An Autonomous Institution)

(Approved by AICTE, Accredited by NAAC & NBA, Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dt, Tamil Nadu.

Ph. No.: 04287-220837

Email: principal@mec.edu.in.



## (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

#### **INSTUTION VISION & MISSION**

### **INSTUTION VISION**

To be a Centre of Excellence in Engineering, Technology and Management on par with International Standards

#### **INSTUTION MISSION**

- To prepare the students with high professional skills and ethical values
- To impart knowledge through best practices
- To instill a spirit of innovation through Training, Research and Development
- To undertake continuous assessment and remedial measures
- To achieve academic excellence through intellectual, emotional and social stimulation

#### **INSTUTIONMOTTO**

Rural upliftment through Technical Education



(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

#### **DEPARTMENT VISION & MISSION**

#### **DEPARTMENT VISION**

To empower the electronics and communication engineering students on basics and advanced technologies in both theoretical and experimental practices with research attitude and ethics

#### **DEPARTMENT MISSION**

- To impart need based education in electronics and communication engineering to meet the requirements of academic, industry and society
- To establish the state-of-art laboratories to prepare the students for facing the challenges ahead
- To prepare the students for employment, higher education and research oriented activities



## (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC, NBA & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

# <u>DEPARTMENT PROGRAM EDUCATIONAL OBJECTIVES, PROGRAM OUTCOMES</u> & PROGRAM SPECIFIC OUTCOMES

### PROGRAM EDUCATIONAL OBJECTIVES

The Electronics and Communication Engineering Graduates should be able to

- **PEO1:** Pursue as an engineer with necessary conceptual, analytical and theoretical knowledge in the domain of electronics and communication engineering
- **PEO2:** Acquire the practical knowledge through basics and advanced laboratories in the field of electronics and communication engineering
- **PEO3:** Demonstrate the leadership skills through entrepreneurship, employment and higher studies and to practice ethical values for the benefit of society and environment

#### PROGRAM OUTCOMES

- 1. **Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- Design/Development solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Lifelong learning:** Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

### **PROGRAM SPECIFIC OUTCOMES**

- **PSO1:** Design and analyze electronic circuits and systems for various applications
- **PSO2:** Apply the acquired knowledge and analytical skills for modeling and simulation of advanced communication systems
- **PSO3:** Ascertain the use of software and hardware tools for developing variety of electronics and communication systems

# MUTHAYAMMAL ENGINEERING COLLEGE (AUTONOMOUS)

# RASIPURAM-637408.

# **GROUPING OF COURSES**

# B.E. -ELECTRONICS AND COMMUNICATION ENGINEERING

## Regulation-2016

# 1. Humanities and Social Sciences (HS)

|        |                |                                                 |          | Contact |   | struc<br>urs/V | tion<br>Veek | 6 11   |
|--------|----------------|-------------------------------------------------|----------|---------|---|----------------|--------------|--------|
| S. No. | Course<br>Code | Course Title                                    | Category | Hours   | L | Т              | P            | Credit |
| 1.     | 16SHA01        | Technical English                               | HS       | 5       | 3 | 2              | 0            | 4      |
| 2.     | 16SHA02        | Communicative English                           | HS       | 7       | 3 | 0              | 4            | 5      |
| 3.     | 16SHA03        | Business English                                | HS       | 5       | 3 | 2              | 0            | 4      |
| 4.     | 16SHA04        | Basics of Japanese                              | HS       | 5       | 3 | 2              | 0            | 4      |
| 5.     | 16SHA05        | Functional Japanese                             | HS       | 5       | 3 | 2              | 0            | 4      |
| 6.     | 16SHA06        | Basics of German                                | HS       | 5       | 3 | 2              | 0            | 4      |
| 7.     | 16SHA07        | Functional German                               | HS       | 5       | 3 | 2              | 0            | 4      |
| 8.     | 16SHA08        | Principles of Management and Engineering Ethics | HS       | 3       | 3 | 0              | 0            | 3      |

### 2. Basic Sciences (BS)

|        | Course  |                                                               |          | Contact | Instr<br>Hour | uctio<br>s/Wee |   | Credit |
|--------|---------|---------------------------------------------------------------|----------|---------|---------------|----------------|---|--------|
| S. No. | Code    | Course Title                                                  | Category | Hours   | L             | Т              | P | Crean  |
| 1.     | 16SHB01 | Matrices, Calculus& Ordinary<br>Differential Equations        | BS       | 5       | 3             | 2              | 0 | 4      |
| 2.     | 16SHB02 | Complex Variables ,Laplace<br>Transforms & Vector<br>Calculus | BS       | 5       | 3             | 2              | 0 | 4      |
| 3.     | 16SHB03 | Transforms & Partial<br>Differential Equations                | BS       | 5       | 3             | 2              | 0 | 4      |
| 4.     | 16SHB04 | Probability & Random<br>Processes                             | BS       | 5       | 3             | 2              | 0 | 4      |
| 5.     | 16SHB05 | Probability and Queuing Theory                                | BS       | 5       | - 3           | 2              | 0 | 4      |
| 6.     | 16SHB06 | Numerical Methods                                             | BS       | 5       | 3             | 2              | 0 | 4      |
| 7.     | 16SHB07 | Statistics and Numerical<br>Methods                           | BS       | 5       | 3             | 2              | 0 | 4      |
| 8.     | 16SHB08 | Discrete Mathematics                                          | BS       | 5       | 3             | 2              | 0 | 4      |
| 9.     | 16SHB09 | Operations Research                                           | BS       | 5       | 3             | 2              | 0 | 4      |

CHAIRMAN **Board of Studies** 

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 404. Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

|     |         |                                       | D.C. | T | 1 | 0   | 4  | 4 |
|-----|---------|---------------------------------------|------|---|---|-----|----|---|
| 10. | 16SHB21 | Engineering Physics                   | BS   | 6 | 2 | - 0 | -4 |   |
| 11. | 16SHB22 | Material Science                      | BS   | 3 | 3 | 0   | 0  | 3 |
| 12. | 16SHB23 | Physics for Electrical<br>Engineering | BS   | 3 | 3 | 0   | 0  | 3 |
| 13. | 16SHB24 | Physics for Mechanical<br>Engineering | BS   | 3 | 3 | 0   | 0  | 3 |
| 14. | 16SHB31 | Engineering Chemistry                 | BS   | 6 | 2 | 0   | 4  | 4 |
| 15. | 16SHB32 | Environmental Science and Engineering | BS   | 3 | 3 | 0   | 0  | 3 |

# 3. Engineering Sciences (ES)

| S.No. | Course  | Course Title                                     | Category | Contact<br>Hours |    | truct<br>urs/w |   | Credit |
|-------|---------|--------------------------------------------------|----------|------------------|----|----------------|---|--------|
|       | Code    | *                                                |          |                  | L  | T              | P |        |
| 1.    | 16ECC01 | Fundamentals of Computing and Programming        | ES       | 6                | 2  | 0              | 4 | 4      |
| 2.    | 16ECC02 | Advanced C Programming                           | ES       | 6                | 2  | 0              | 4 | - 4    |
| 3.    | 16ECC03 | Basics of Civil and<br>Mechanical Engineering    | ES       | 4                | 4  | 0              | 0 | 4      |
| 4.    | 16ECC04 | Basics Electrical and<br>Electronics Engineering | ES       | 3                | 3  | 0              | 0 | 3      |
| 5.    | 16ECC05 | Engineering Graphics                             | ES       | 4                | 0  | 0              | 4 | 2      |
| 6.    | 16ECC06 | Engineering Practices for Electrical Sciences    | ES       | 4                | 0  | 0              | 4 | 2      |
| 7.    | 16ECC07 | Electrical Drives and Control                    | ES       | 5                | 3  | 0              | 2 | 4      |
| 8.    | 16ECC08 | Engineering Mechanics                            | ES       | 5                | 3  | 2              | 0 | 4      |
| 9.    | 16ECC09 | Microprocessor and<br>Microcontrollers           | ES       | 5                | 3  | 0              | 2 | 4      |
| 10.   | 16ECC10 | Object Oriented Programming                      | ES       | 6                | 2  | 0              | 4 | 4      |
| 11.   | 16ECC11 | Data Structures                                  | ES       | 6                | 2  | 0              | 4 | 4      |
| 12.   | 16ECC12 | Electron Devices                                 | ES       | 6                | ,2 | 0              | 4 | 4      |
| 13.   | 16ECC13 | Circuit Theory                                   | ES       | 6                | 2  | 0              | 4 | 4      |
| 14.   | 16ECC14 | Digital Principles and System<br>Design          | ES       | 6                | 2  | 0              | 4 | 4      |
| 15.   | 16ECC15 | Fundamentals of Nano Technology                  | ES       | 3                | 3  | 0              | 0 | 3      |

# 4. Professional Core (PC)

| S.No. | Course<br>Code | Course Title        | Category | Contact<br>Hours |   | truct<br>urs/w |   | Credit |
|-------|----------------|---------------------|----------|------------------|---|----------------|---|--------|
|       |                |                     |          |                  | L | T              | P | C      |
| 1     | 16ECD01        | Signals and Systems | PC       | 5                | 3 | 2              | 0 | 4      |

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering

Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 637 400.

| 2  | 16ECD02 | Digital Electronics                            | PC | 5 | 3 | 0 | 2 | 4 |
|----|---------|------------------------------------------------|----|---|---|---|---|---|
| 3  | 16ECD03 | Electromagnetic Fields                         | PC | 3 | 3 | 0 | 0 | 3 |
| 4  | 16ECD04 | Analog Electronics - I                         | PC | 5 | 3 | 0 | 2 | 4 |
| 5  | 16ECD05 | Analog Electronics -II                         | PC | 5 | 3 | 0 | 2 | 4 |
| 6  | 16ECD06 | Linear Integrated Circuits                     | PC | 5 | 3 | 0 | 2 | 4 |
| 7  | 16ECD07 | Communication Theory                           | PC | 3 | 3 | 0 | 0 | 3 |
| 8  | 16ECD08 | Transmission Line and Waveguides               | PC | 5 | 3 | 2 | 0 | 4 |
| 9  | 16ECD09 | Digital Signal Processing                      | PC | 5 | 3 | 0 | 2 | 4 |
| 10 | 16ECD10 | Digital Communication                          | PC | 5 | 3 | 0 | 2 | 4 |
| 11 | 16ECD11 | Computer Architecture and organization         | PC | 3 | 3 | 0 | 0 | 3 |
| 12 | 16ECD12 | Embedded System                                | PC | 5 | 3 | 0 | 2 | 4 |
| 13 | 16ECD13 | Antennas and Wave<br>Propagation               | PC | 3 | 3 | 0 | 0 | 3 |
| 14 | 16ECD14 | VLSI Design                                    | PC | 5 | 3 | 0 | 2 | 4 |
| 15 | 16ECD15 | Computer Networks                              | PC | 3 | 3 | 0 | 2 | 4 |
| 16 | 16ECD16 | Digital Image Processing                       | PC | 3 | 3 | 0 | 0 | 3 |
| 17 | 16ECD17 | RF and Microwave<br>Engineering                | PC | 5 | 3 | 0 | 2 | 4 |
| 18 | 16ECD18 | Optical Fiber Communication                    | PC | 5 | 3 | 0 | 2 | 4 |
| 19 | 16ECD19 | Electromagnetic Interference And Compatibility | PE | 3 | 3 | 0 | 0 | 3 |
| 20 | 16ECD20 | Cellular Mobile<br>Communication               | PC | 3 | 3 | 0 | 0 | 3 |
| 21 | 16ECD21 | Control Systems                                | PC | 5 | 3 | 0 | 2 | 4 |

# 5. Professional Electives (PE)

| S.No. | Course<br>Code | Course Title                           | Category Contact<br>Hours |   | struct<br>urs/w | Credit |   |   |
|-------|----------------|----------------------------------------|---------------------------|---|-----------------|--------|---|---|
|       |                |                                        |                           |   | L               | T      | P | С |
| 1.    | 16ECE01        | Radar and Navigational Aids            | PE                        | 3 | 3               | 0      | 0 | 3 |
| 2.    | 16ECE02        | High Speed Networks                    | PE                        | 3 | 3               | 0      | 0 | 3 |
| 3.    | 16ECE03        | Wireless Sensor Networks               | PE                        | 3 | 3               | 0      | 0 | 3 |
| 4.    | 16ECE04        | Biomedical Engineering                 | PE                        | 3 | 3               | 0      | 0 | 3 |
| 5.    | 16ECE05        | Bio Signal and Image<br>Processing     | PE                        | 3 | 3               | 0      | 0 | 3 |
| 6.    | 16ECE06        | Telecommunication Switching<br>Systems | PE                        | 3 | 3               | 0      | 0 | 3 |

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayemmal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 40%.

Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

| 7.   | 16ECE07 | Cognitive Radio Networks                 | PE | 3 | 3 | 0  | 0 | 3   |
|------|---------|------------------------------------------|----|---|---|----|---|-----|
| 8.   | 16ECE08 | RF MEMS                                  | PE | 3 | 3 | 0  | 0 | 3   |
| 9.   | 16ECE09 | Soft Computing                           | PE | 3 | 3 | 0  | 0 | 3   |
| 10.  | 16ECE10 | Nano Electronics                         | PE | 3 | 3 | 0  | 0 | 3   |
| -11. | 16ECE11 | Wireless Communication                   | PE | 3 | 3 | 0  | 0 | 3   |
| 12.  | 16ECE12 | Satellite Communication                  | PE | 3 | 3 | 0  | 0 | 3   |
| 13.  | 16ECE13 | Television and Video<br>Engineering      | PE | 3 | 3 | 0  | 0 | 3   |
| 14.  | 16ECE14 | Optoelectronic Devices                   | PE | 3 | 3 | 0. | 0 | 3   |
| 15.  | 16ECE15 | Mobile Ad-Hoc Networks                   | PE | 3 | 3 | 0  | 0 | . 3 |
| 16.  | 16ECE16 | Internet and JAVA Programming            | PE | 3 | 3 | 0  | 0 | 3   |
| 17.  | 16ECE17 | Architecture and<br>Programming          | PE | 3 | 3 | 0  | 0 | 3   |
| 18.  | 16ECE18 | Pattern Recognition and AI<br>Techniques | PE | 3 | 3 | 0  | 0 | 3   |
| 19.  | 16ECE19 | Biometrics                               | PE | 3 | 3 | 0  | 0 | 3   |
| 20.  | 16ECE20 | Embedded Solutions<br>Engineering        | PE | 3 | 3 | 0  | 0 | 3   |

# 6. Employability Enhancement Courses (EEC)

| S.No. | Course<br>Code | Course Title           | Category | Contact<br>Hours |   | tructurs/w |    | Credit |
|-------|----------------|------------------------|----------|------------------|---|------------|----|--------|
|       | 20.            |                        |          |                  | L | T          | P  | С      |
| 1.    | 16ECF01        | Project Work Phase - I | EEC      | 6                | 0 | 0          | 6  | 3      |
| 2.    | 16ECF02        | Project Work Phase -II | EEC      | 30               | 0 | 0          | 30 | 15     |
| 3.    | 16ECF03        | Comprehension          | EEC      | 4                | 0 | 0          | 4  | 2      |
| 4.    | 16ECF04        | Design Project         | EEC      | 4                | 0 | 0          | 4  | 2      |
| 5.    | 16ECF05        | Technical Seminar      | EEC      | 4                | 0 | 4          | 0  | 2      |

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 Aug.



# MUTHAYAMMAL ENGINEERING COLLEGE (Autonomous)

CURRICULUM

(Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408

UG R - 2016

| Depa  | rtment  |                      | E        | CE                         |    |        |     |        |                  |
|-------|---------|----------------------|----------|----------------------------|----|--------|-----|--------|------------------|
| Progr | amme    |                      | BI       |                            |    |        |     |        |                  |
|       |         |                      |          | SEMESTER - I               |    |        |     |        |                  |
| SI.   | Course  |                      |          | Course Name                | Но | urs/ W | eek | Credit | Contact<br>Hours |
| No.   | Code    |                      |          |                            | L  | Т      | Р   | С      |                  |
| THEO  | RY      |                      |          |                            |    | ,      |     |        |                  |
| 1.    | 16SHA02 | Commu                | nicative | English                    | 3  | 0      | 4   | 5      | 7                |
| 2.    | 16SHB01 | Matrices<br>Equation |          | lus& Ordinary Differential | 3  | 2      | 0   | 4      | 5                |
| 3.    | 16SHB21 | Enginee              | ring Ph  | ysics                      | 2  | 0      | 4   | 4      | 6                |
| 4.    | 16SHB32 | Environr             | mental S | Science and Engineering    | 3  | 0      | 0   | 3      | 3                |
| 5.    | 16ECC01 | Fundam<br>Program    |          | f Computing and            | 2  | 0      | 4   | 4      | 6                |
| 6.    | 16ECC13 | Circuit 7            | Theory   |                            | 2  | 0      | 4   | 4      | 6                |
| 7.    | 16ECC06 | Engine 6<br>Science  | _        | actices for Electrical     | 0  | 0      | 4   | 2      | 4                |
|       |         |                      | TC       | TAL Credits                |    |        |     | 26     |                  |

| 13100 3 |         |            | (Autonomous)                              |    |        |     |        | CURRICULUM<br>UG<br>R - 2016 |  |
|---------|---------|------------|-------------------------------------------|----|--------|-----|--------|------------------------------|--|
| Depar   | rtment  |            | ECE                                       |    |        |     |        |                              |  |
| Progra  | amme    |            | B.E                                       |    |        |     |        |                              |  |
|         |         |            | SEMESTER -II                              |    |        |     |        |                              |  |
| SI.     | Course  |            | Course Name                               | Но | urs/ W | eek | Credit | Contact<br>Hours             |  |
| No.     | Code    |            | Sourse Nume                               | L  | T      | Р   | С      |                              |  |
| THEO    | RY      |            |                                           |    |        |     | 1      |                              |  |
| 1.      | 16SHA01 | Technical  | English                                   | 3  | 2      | 0   | 4      | 5                            |  |
| 2.      | 16SHB02 | Complex '  | Variables ,Laplace Transforms<br>Calculus | 3  | 2      | 0   | 4      | 5                            |  |
| 3.      | 16SHB22 | Material S | cience                                    | 3  | 0      | 0   | 3      | 3                            |  |
| 4.      | 16SHB31 | Engineerin | ng Chemistry                              | 2  | 0      | 4   | 4      | 6                            |  |
| 5       | 16ECC02 | Advanced   | C Programming                             | 2  | 0      | 4   | 4      | 6                            |  |
| 6       | 16ECC12 | Electron D | )evices                                   | 2  | 0      | 4   | 4      | 6                            |  |
| 7       | 16ECC05 | Engineeri  | ng Graphics                               | 0  | 0      | 4   | 2      | 4                            |  |
|         | L.      |            | TOTAL Credits                             |    |        |     | 25     |                              |  |

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipurani, Namakkal - 637 408.

| ľ  |     | ۹, | 2    | 1   |
|----|-----|----|------|-----|
| -  | ć   | 8  | Š    |     |
| -  | S   | 8  | ×    | i   |
| 10 |     | mi | -    | 100 |
| 1  | St3 | 10 | e ga | Ħ   |

# MUTHAYAMMAL ENGINEERING COLLEGE (Autonomous)

CURRICULUM UG R - 2016

(Approved by AICTE & Affiliated to Anna University), RASIPURAM - 637 408

| Department | ECE |
|------------|-----|
| Programme  | BE  |

| SEM | ESTE | R-III |
|-----|------|-------|
|-----|------|-------|

| SI. Course | Course Name | Но                                | urs/ W | Credit | Contact<br>Hours |    |   |
|------------|-------------|-----------------------------------|--------|--------|------------------|----|---|
| No.        | Code        |                                   | L      | T      | Р                | С  |   |
| THEC       | DRY         |                                   |        |        |                  |    |   |
|            | 10011002    | Transforms & Partial Differential | 3      | 2      | 0                | 4  | 5 |
| 1.         | 16SHB03     | Equations                         |        |        |                  |    |   |
| 2.         | 16ECD01     | Signals and Systems               | 3      | 2      | 0                | 4  | 5 |
| 3.         | 16ECC11     | Data Structure                    | 2      | 0      | 4                | 4  | 6 |
| 4.         | 16ECD02     | Digital Electronics               | 3      | 0      | 2                | 4  | 5 |
| 5.         | 16ECD03     | Electromagnetic Fields            | 3      | 0      | 0                | 3  | 3 |
| 6.         | 16ECD04     | Analog Electronics – I            | 3      | 0      | 2                | 4  | 5 |
| <u>J.</u>  | 1.02000     | TOTAL Credits                     |        |        |                  | 23 |   |

| T'S | ۹. | 2        | 1 |
|-----|----|----------|---|
|     | 8  | ઠ        | 1 |
| 15  | ≫  | প্র      | 1 |
|     | S. | <b>X</b> |   |

# **MUTHAYAMMAL ENGINEERING COLLEGE** (Autonomous)

CURRICULUM UG

(Approved by AICTE & Affiliated to Anna University), RASIPURAM - 637 408

R - 2016

| Department | ECE |  |
|------------|-----|--|
| Programme  | BE  |  |

| SI.  | Course  | Course Name                         | Ног | ırs/ We | Credit | Contact<br>Hours |   |
|------|---------|-------------------------------------|-----|---------|--------|------------------|---|
| No.  | Code    | 004,00 (14111)                      | L   | Т       | Р      | С                |   |
| THEC | ORY     |                                     |     |         |        | , ,              |   |
| 1.   | 16SHB04 | Probability &Random Processes       | 3   | 2       | .0     | 4                | 5 |
| 2.   | 16ECD05 | Analog Electronics –II              | 3   | 0       | 2      | 4                | 5 |
| 3.   | 16ECC09 | Microprocessor and Microcontrollers | 3   | 0       | 2      | 4                | 5 |
| 4.   | 16ECD06 | Linear Integrated Circuits          | 3   | 0       | 2      | 4                | 5 |
| 5.   | 16ECD07 | Communication Theory                | 3   | 0       | 0      | 3                | 3 |
| 6.   | 16ECD21 | Control Systems                     | 3   | 0       | 2      | 4                | 5 |
|      |         | TOTAL Credits                       |     |         |        | 23               |   |

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

| 1    | 1      | >     | 7   |
|------|--------|-------|-----|
| -    | $\sim$ | κ     | Н   |
|      | æ      | Ş۶    | П   |
| 1    | 28     | ×     | •   |
| 1000 | PROOF. | becat | 100 |

SI.

No.

THEORY

# MUTHAYAMMAL ENGINEERING COLLEGE (Autonomous)

CURRICULUM UG R - 2016

(Approved by AICTE & Affiliated to Anna University), RASIPURAM - 637 408

Department **ECE** BE Programme

Course

Code

| SEMESTER - V        |     |        |     |        |                  |
|---------------------|-----|--------|-----|--------|------------------|
| Course Name         | Hot | urs/ W | eek | Credit | Contact<br>Hours |
|                     | L   | T      | Р   | С      |                  |
| Line and Waveguides | 3   | 1      | 0   | 4      | 5                |
| Processing          | 3   | 0      | 2   | 4      | 5                |
|                     |     | -      | 0   | 4      | E                |

|    |         | TOTAL Credits                                   |   |   |   | 24 |   |
|----|---------|-------------------------------------------------|---|---|---|----|---|
| 7. | 16ECE04 | Elective –II ( Biomedical Engineering)          | 3 | 0 | 0 | 3  | 3 |
| 6. | 16ECE16 | Elective –I (Internet and JAVA programming)     | 3 | 0 | 0 | 3  | 3 |
| 5. | 16SHA08 | Principles of Management and Engineering Ethics | 3 | 0 | 0 | 3  | 3 |
| 4. | 16ECD11 | Computer Architecture and organization          | 3 | 0 | 0 | 3  | 3 |
| 3. | 16ECD10 | Digital Communication                           | 3 | 0 | 2 | 4  | 5 |
| 2. | 16ECD09 | Digital Signal Processing                       | 3 | 0 | 2 | 4  | 5 |
| 1. | 16ECD08 | Transmission Line and vvaveguides               | 3 | 1 | 0 |    |   |

|       | MUTHAYAMMAL ENGINEERING COLLEGE  (Autonomous)  (Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408 |                             |         |    |        |     |        |                  |
|-------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|----|--------|-----|--------|------------------|
| Depa  | rtment                                                                                                                  | ECE                         |         |    |        |     |        |                  |
| Progr | amme                                                                                                                    | BE                          |         |    |        |     |        |                  |
|       |                                                                                                                         | SEMES                       | TER -VI |    |        |     |        |                  |
| SI.   | Course                                                                                                                  | Course Name                 |         | Но | urs/ W | eek | Credit | Contact<br>Hours |
| No.   | Code                                                                                                                    |                             |         | L  | Т      | Р   | С      |                  |
| THEC  | RY                                                                                                                      |                             |         |    |        |     |        |                  |
| 1.    | 16ECD12                                                                                                                 | Embedded Systems            |         | 3  | 0      | 2   | 4      | 5                |
| 2.    | 16ECD13                                                                                                                 | Antennas and Wave Propag    | ation   | 3  | 0      | 0   | 3      | 3                |
| 3.    | 16ECD14                                                                                                                 | VLSI Design                 |         | 3  | 0      | 2   | 4      | 5                |
| 4.    | 16ECD15                                                                                                                 | Computer Networks           |         | 3  | 0      | 2   | 4      | 5                |
| 5.    | 16ECE12                                                                                                                 | PE –III (Satellite Communic | ation)  | 3  | 0      | 0   | 3      | 3                |
| 6.    | 16 ECE14                                                                                                                | PE-IV (Opto Electronic Devi | ces)    | 3  | 0      | 0   | 3      | 3                |
|       |                                                                                                                         | TOTAL Credits               |         |    |        |     | 21     |                  |

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

|       |          | JTHAYAMMAL ENGINEERING COLLEGE  (Autonomous)  ved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408 |                                   |    |        |      |        | CURRICULUM<br>UG<br>R – 2016 |  |
|-------|----------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|----|--------|------|--------|------------------------------|--|
| Depai | rtment   |                                                                                                                  | ECE                               |    |        |      |        |                              |  |
|       | amme     |                                                                                                                  | BE                                |    |        |      |        |                              |  |
|       |          |                                                                                                                  | SEMESTER - VII                    | *1 |        |      |        |                              |  |
| SI.   | Course   |                                                                                                                  | Course Name                       | Но | urs/ W | leek | Credit | Contact<br>Hours             |  |
| No.   | Code     |                                                                                                                  | Course Name                       |    | T      | Р    | С      |                              |  |
| THEO  | RY       |                                                                                                                  |                                   |    |        |      |        |                              |  |
| 1.    | 16ECD17  | RF and M                                                                                                         | RF and Microwave Engineering      |    | 0      | 2    | 4      | 5                            |  |
| 2.    | 16ECD18  | Optical Fil                                                                                                      | per Communication                 | 3  | 0      | 2    | 4      | 5                            |  |
| 3.    | 16ECE02  | Elective V                                                                                                       | ( High speed Networks)            | 3  | 0      | 0    | 3      | 3                            |  |
| 4.    | 16ECE11  | Elective V                                                                                                       | I (Wireless Communication)        | 3  | 0      | 0    | 3      | 3                            |  |
| 5.    | 16CSE09  | Open Elec                                                                                                        | ctive I (Advanced Computer        | 3  | 0      | 0    | 3      | 3                            |  |
| 6.    | 16EED01  |                                                                                                                  | ctive II (Measurement and         | 3  | 0      | 0    | 3      | 3                            |  |
| 7.    | 16MEE023 |                                                                                                                  | Open Elective III ( TOTAL Quality |    | 0      | 0    | 3      | 3                            |  |
| 8.    | 16ECF01  | Project W                                                                                                        |                                   | 0  | 0      | 6    | 3      | 6                            |  |
| 0.    | 1.520.01 | 1                                                                                                                | TOTAL Credits                     |    |        |      | 26     |                              |  |

| (STE: 2000) |                                  | MUTHAYAMMAL ENGINEERING COLLEGE (Autonomous)  (Approved by AICTE & Affiliated to Anna University), RASIPURAM – 637 408 |     |             |   |    |                  |  |
|-------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|-----|-------------|---|----|------------------|--|
| Departr     |                                  | ECE                                                                                                                    |     |             |   |    |                  |  |
| Prograr     | nme                              | BE                                                                                                                     |     |             |   |    |                  |  |
|             |                                  | SEMESTER - V                                                                                                           | III |             |   |    |                  |  |
| SI.         | Course                           | Course Name                                                                                                            | Но  | Hours/ Week |   |    | Contact<br>Hours |  |
| No.         | Code                             | Course Name                                                                                                            | L   | Т           | Р | С  |                  |  |
| THEOR       | Y                                |                                                                                                                        |     |             |   |    |                  |  |
| 3.          | 3. Project Work Phase -II 0 0 30 |                                                                                                                        |     |             |   |    | 30               |  |
|             |                                  | TOTAL Credits                                                                                                          |     |             |   | 15 |                  |  |

TOTAL Credits to be earned for the Award of Degree: 183

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

16ECC12

#### **ELECTRON DEVICES**

L T P C 2 0 4 4

#### COURSE OBJECTIVES

- · To know about the basics of PN junction and semiconductor diodes
- To know about the basics and characteristics of BJT.
- To know about the basics and characteristics of FET.
- To know about the biasing of BJT and FET.
- Be familiar with the theory, construction, and operation of Display Devices and Special diodes.

### COURSE OUTCOMES

16ECC12.CO1 Explain the construction and operation of semiconductor diodes
16ECC12.CO2 Analyze the characteristics of BJT
16ECC12.CO3 Analyze the characteristics of FET
16ECC12.CO4 Explain the biasing techniques of BJT and FET
16ECC12.CO5 Explain the construction and principle of special purpose diodes

| Course      |     | Program Outcomes |     |     |     |     |     |     |     |      |      | PSOs |      |      |      |
|-------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Outcomes    | POI | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECD01.CO1 | X   | X                | X   | X   | X   | х   |     |     | х   |      | X    | х    | X    | X    | X    |
| 16ECD01.CO2 | X   | x                | x   | X   | X   | х   |     |     | х   |      | X    | X    | х    | x    | X    |
| 16ECD01.CO3 | X   | x                | х   | x   | X   | х   |     |     | X   |      | X    | X    | X    | X    | X    |
| 16ECD01.CO4 | X   | x                | x   | X   | X   | х   |     |     | Х   |      | X    | X    | X    | x    | X    |
| 16ECD01.CO5 | X   | X                | X   | X   | X   | X   |     |     | Х   |      | X    | X    | X    | X    | X    |

### UNIT 1 PN JUNCTION AND SEMICONDUCTOR DIODES

6

Energy band structure of conductors, semiconductors and Insulators-Classification of semiconductors-conductivity of semiconductors-Drift and diffusion currents-Continuity Equation-Energy band structure of PN junction diode-Diode current equation-Transition or space charge capacitance-Diffusion capacitance-Effect of temperature on PN junction diodes-Diode switching characteristics-PN diode and Zener diode applications.

# UNIT II BIPOLAR JUNCTION TRANSISTORS

6

Transistor current components-Ebermoll's model of transistor-Transistor as an amplifier-CE, CB and CC configurations: Analysis of cut-off and saturation regions- Transistor switching times-maximum voltage rating.

# UNIT III FIELD EFFECT TRANSISTORS

6

Operation and Characteristics of JFET,FET as a Voltage variable resistor, Metal oxide semiconductor field effect transistor(MOSFET)-Enhancement and Depletion mode MOSFET-Characteristics of n-MOS and p-MOS- CMOS characteristics-Inverted TFET-Operation and Characteristics.

#### UNIT IV BIASING OF BJT AND FET

-

DC operating point and Load line-Q point-Bias Stability, Transistor biasing methods: Fixed bias-Collector to base bias-Self biasing, Bias compensation methods, Thermistor and sensistor compensation techniques, thermal runaway,thermal stability, FET biasing methods: Self bias-Source bias-Voltage divider bias-Biasing enhancement and depletion MOSFET.

## UNIT V DISPLAY DEVICES AND SPECIAL DIODES

6

Photo emissitivity and photo-conductivity-Construction and characteristics of LCD, LED, Photoconductive cell, photo voltaic cell, photo diode, solar cell, photo transistors, plasma display numeric displays, opto couplers and LASER diodes-Theory and Characteristics of Schottky diode, Tunnel diode and Varactor diode, SCR,TRIAC,LDR.

TOTAL: 30

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous)

Rasipuratty Namakkal - 537 Ava

# LIST OF EXPERIMENTS:

- 1. Characteristics of PN and Zener diode
- 2. Design of rectifiers
- 3. Characteristics of CE configuration
- 4. Characteristics of CB configuration
- 5. Characteristics of JFET6. Design of BJT amplifier
- 7. Characteristics of LED and LDR
- 8. Characteristics of SCR

TOTAL: 60

30

### TEXT BOOKS:

| Sl.No | Author(s)                                                         | Title of the Book                     | Publisher         | Year of<br>Publication |
|-------|-------------------------------------------------------------------|---------------------------------------|-------------------|------------------------|
| 1.    | Jacob Millman, Christos<br>Halkias & Satyabrata Jit,<br>Millman's | Electronic Devices and Circuits       | McGraw Hill       | 2008                   |
| 2.    | Robert L.Boylestad,<br>Louis Nashelsky                            | Electronic Devices and Circuit Theory | Pearson education | 2006                   |

#### REFERENCE BOOKS:

| Sl.No | Author(s)                                           | Title of the Book                                   | Publisher                 | Year of<br>Publication |  |
|-------|-----------------------------------------------------|-----------------------------------------------------|---------------------------|------------------------|--|
| 1.    | Allen Mottershead                                   | Electronic Devices and<br>Circuits                  | Prentice Hall of India    | 2008                   |  |
| 2.    | Douglas.A.Pucknell,<br>Kamran Eshraghian            | Basic VLSI Design,<br>Principles and<br>Application | РНІ                       | 2009                   |  |
| 3.    | S.Salivahanan,<br>N.Sureshkumar and<br>A.Vallavaraj | Electronic Devices and<br>Circuits                  | Tata McGraw Hill          | 2008                   |  |
| 4.    | Donald A. Neamen                                    | Semiconductor Physics and Devices                   | McGraw Hill<br>Educatioin | 2017                   |  |
| 5.    | S. M. Sze                                           | Semiconductor Devices: Physics and Technology       | Wiley                     | 2016                   |  |

#### WEB URLs:

- 1. nptel.ac.in/courses/108105066/PDF/L-2(DK)(PE)%20((EE)NPTEL).pdf
- 2. nptel.ac.in/courses/.../IIT%20Kharagpur/.../PDF/L-3(DK)(PE)%20((EE)NPTEL).pdf
- 3. textofvideo.nptel.iitm.ac.in/117106091/lec19.pdf
- 4. http://www.radio-electronics.com
- 5. http://textofvideo.nptel.iitm.ac.in/122106025/

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 627 408.

16ECC13

#### CIRCUIT THEORY

LTPC

2 0 4 4

#### COURSE OBJECTIVES

- To introduce DC and AC electric circuits and its analysis.
- To impart knowledge on solving circuits using network theorems.
- To introduce the concept of resonance circuits and transient response.
- To introduce concept of Phasor diagrams
- To analysis of three phase circuits.

### COURSE OUTCOMES

| 16ECC13.CO1 | Explain circuits behavior using Ohms law and Kirchhoff's laws                  |
|-------------|--------------------------------------------------------------------------------|
| 16ECC13.CO2 | Explain AC circuits using phasor techniques under steady state conditions      |
| 16ECC13.CO3 | Utilize the concepts of network theorem to improve the stability of the system |
| 16ECC13.CO4 | Develop circuit representations quantitatively in Laplace domain               |
| 16ECC13.CO5 | Elaborate the circuit concepts to Three Phase Circuits                         |

| Course<br>Outcomes | Program Outcomes |     |     |     |     |     |     |     |     |      |      | PSOs |      |      |      |
|--------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
|                    | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECC13.CO1        | X                | X   | X   | x   | X   | x   |     |     | X   |      | х    |      | X    | X    | X    |
| 16ECC13.CO2        | X                | x   | X   | X   | X   | X   |     |     | X   |      |      |      | X    |      |      |
| 16ECC13.CO3        | X                | х   | Х   | X   | X   | х   |     |     | X   |      |      |      | X    |      |      |
| 16ECC13.CO4        | X                | X   | X   | x   | X   | x   |     |     | Х   |      |      |      | Х    |      |      |
| 16ECC13.CO5        | X                | X   | X   | X   | x   | x   |     |     | X   | l l  |      |      | X    |      |      |

DC CIRCUITS UNIT I

Basic circuit elements - Ohm's law - Resistors in series and parallel circuits - Voltage division and current division - Kirchhoff's laws - Source transformation - Star-Delta conversion - Mesh and nodal analysis.

#### AC CIRCUITS UNIT II

Introduction to AC circuits- Form Factor - Phase and phase difference - Sinusoidal Voltage and Current - Single phase AC circuits - Series RL, RC and RLC circuits - Power - Power factor

#### NETWORK THEOREMS FOR DC AND AC CIRCUITS UNIT III

Superposition theorem - Thevenin's theorem - Norton's theorem - Maximum power transfer theorem -Reciprocity theorem- Compensation theorem-Millman's Theorem.

# RESONANCE CIRCUITS AND TRANSIENT RESPONSE

Series and parallel resonance - Quality factor and bandwidth - Transient response of RL, RC and RLC Circuits using Laplace transform for DC input.

#### THREE PHASE CIRCUITS

Three phase balanced / unbalanced voltage sources - Analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced loads - Phasor diagram of voltages and currents - Power and Power factor measurements in three phase circuits.

TOTAL: 30 Hrs

#### LIST OF EXPERIMENTS:

30

- Verification of Kirchhoff's voltage and current laws.
- Verification of Superposition theorem
- 3. Verification of Thevenin's theorem

CHAIRMAN **Board of Studies** 

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

- Verification of Norton's theorem
- 5. Verification of Maximum Power Transfer Theorem.
- Study of CRO and measurement of sinusoidal voltage and frequency.
- 7. Determination of time constant of series R-C electric circuits.
- 8. Determination of frequency response of series RLC circuits.
- 9. Determination of frequency response of parallel RLC circuits.
- 10. Calibration of single phase energy meter.
- 11. Determination of power in three phase circuits by two-watt meter method.

TOTAL: 60 Hrs

#### **TEXT BOOKS:**

| Sl.No         | Author(s) | Title of the Book             | Publisher                   | Year of Publication |  |
|---------------|-----------|-------------------------------|-----------------------------|---------------------|--|
| 1. William H. |           | Engineering Circuits Analysis | Tata McGraw Hill publishers | 2003.               |  |
| 2.            | Joseph A  | Electric circuits             | Tata McGraw-Hill            | 2001.               |  |

#### REFERENCE BOOKS:

| Sl.No | Author(s)                        | Title of the Book                              | Publisher                    | Year of<br>Publication |
|-------|----------------------------------|------------------------------------------------|------------------------------|------------------------|
| 1.    | Paranjothi SR                    | Electric Circuits Analysis                     | New Age<br>International Ltd | 1996.                  |
| 2.    | Sudhakar A and<br>Shyam Mohan SP | Circuits and Network<br>Analysis and Synthesis | Tata McGraw<br>Hill          | 2007.                  |
| 3.    | Chakrabati A                     | Circuits Theory (Analysis and synthesis)       | Dhanpath Rai &<br>Sons       | 1999.                  |
| 4.    | Charles K.                       | Fundamentals of Electric<br>Circuits           | McGraw Hill                  | 2003.                  |

#### WEB URLs

- 1. http://nptel.ac.in/courses/108108076/
- 2. http://nptel.ac.in/courses/108105053/12
- 3. http://nptel.ac.in/courses/108102042/9
- 4. http://nptel.ac.in/courses/108105053/10,11
- 5. http://nptel.ac.in/courses/108105053/18

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

16ECD01

## SIGNALS AND SYSTEMS

LTPC 3 2 0 4

#### COURSE OBJECTIVES

- To understand the basic properties of signal & systems and the various methods of classification.
- To learn Laplace Transform & Fourier transform and their properties.
- To Learn Continuous Time LTI System.
- To know Z transform & DTFT and their properties.
- To characterize LTI systems in the Time domain and various Transform domains.

#### COURSE OUTCOMES

| 16ECD01.CO1 | Classify the given system is linear/causal/statics                       |
|-------------|--------------------------------------------------------------------------|
| 16ECD01.CO2 | Interpret to represent the CT signal in Fourier series and transformers  |
| 16ECD01.CO3 | Analyze the capability of LTI system in time domain and frequency domain |
| 16ECD01.CO4 | Estimate frequency components present in a deterministic DT signal       |
| 16ECD01.CO5 | Analyze the magnitude and phase response of LTI system                   |

| Course<br>Outcomes | Program Outcomes |     |     |     |     |     |     |     |     |      |      | PSOs |      |      |      |
|--------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
|                    | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PS01 | PSO2 | PSO3 |
| 16ECD01.CO1        | X                | X   | X   | X   | х   | X   |     |     | N   |      | N    | N    | X    | X    | X    |
| 16ECD01.CO2        | X                | X   | X   | x   | X   | x   |     |     | X   |      | X    | X    | X    | X    | X    |
| 16ECD01.CO3        | X                | X   | X   | X   | X   | x   |     |     | X   |      | X    | X    | X    | X    | X    |
| 16ECD01.CO4        | X                | X   | x   | X   | x   | X   |     |     | X   |      | X    | X    | X    | x    | X    |
| 16ECD01.CO5        | X                | x   | X   | X   | X   | x   |     |     | X   |      | х    | х    | х    | X    | X    |

UNIT I SIGNALS AND SYSTEMS

9

Signals-Classification of signals- Continuous –time and Discrete time signals, Deterministic and random signal, even and odd signals, periodic and periodic signals, energy and power signals, Basic Continuous –time and Discrete time signals- Unit step, Unit impulse, Unit Ramp, Exponential, sinusoidal ,Exponentially damped sinusoidal signals, Pulse signals, Transformation of independent variables, Basic operations on signals-amplitude scaling ,addition, multiplication, differentiation and integration, Representation of signals in terms of impulses, Systems- Classification of systems - Static & Dynamic, Linear & Nonlinear, Time-variant & Time-invariant, Causal & Non causal, Stable & Unstable.

# UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

9

The Laplace Transform: The region of convergence for Laplace Transforms, The Inverse Laplace Transform, Properties of the Laplace Transform, Fourier series analysis-spectrum of Continuous -Time (CT) signals, Continuous - time Fourier Transform: Representation of A periodic signal, The Fourier transform for periodic signals, Properties of the continuous - time Fourier transform, The convolution property, The multiplication property, Application of Fourier Transform, the relationship between Laplace transform and Fourier transform.

# UNIT III LINEAR TIME INVARIANT SYSTEMS

9

Continuous –time LTI systems: Block diagram representation-impulse response, Convolution integrals, Properties of Linear Time Invariant Systems, Casual LTI systems Described by differential equations, Fourier and Laplace transforms in Analysis of CT systems

# UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS

9

DTFT- Properties of DTFT, Application of DTFT, Discrete Time Fourier series – Definition, properties ,Sampling theorem, Z Transform- The region of convergence for Z transform, The inverse Z transform, Properties of Z Transform, the unilateral Z transform, Geometric evaluation of the Fourier transform from the pole zero plot, The relationship between Z transform and DTFT.

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Narnakkal - 627 408.

#### LINEAR TIME INVARIANT- DISCRETE TIME SYSTEMS **UNIT V**

Casual LTI system described by difference equation, solving differential equation using Z transform, Block diagram representation-Impulse response - Convolution sum, Discrete Fourier and Z Transform Analysis of Recursive & Non-Recursive systems

TOTAL: 45+30 Hrs

### TEXT BOOKS

| Sl.No | Author(s)                             | Title of the Book   | Publisher            | Year of<br>Publication |
|-------|---------------------------------------|---------------------|----------------------|------------------------|
| 1.    | Alan V. Oppenheim, Alan S.<br>Willsky | Signals and Systems | Pearson<br>Education | 2015.                  |
| 2.    | P. Ramakrishna Rao                    | Signals and Systems | McGraw Hill          | 2013                   |

#### REFERENCES

| Sl.No | Author(s)                                        | Title of the Book   | Publisher                     | Year of<br>Publication |
|-------|--------------------------------------------------|---------------------|-------------------------------|------------------------|
| 1.    | B P Lathi                                        | Signals and Systems | B S Publisher                 | 2001                   |
| 2.    | Nagrath ,Sharan                                  | Signals and Systems | McGraw Hill                   | 2009                   |
| 3.    | S.Salivahanan, N.Sureshkumar<br>and A.Vallavaraj | Signals and Systems | Tata McGraw Hill              | 2011                   |
| 4.    | D.GaneshRao,SathishTunga                         | Signals and Systems | Pearson                       | 2011                   |
| 5.    | S.Haykin, B.Van Veen                             | Signals and Systems | John Willey<br>&Sons,New York | 1999                   |

#### WEB URLs

- 1. www.youtube.com/watch?v=oJpUbfwvzKA
- 2. www.youtube.com/watch?v=oJpUbfwvzKA
- 3. www.youtube.com/watch?v=ghz\_puTV168
- 4. www.youtube.com/watch?v=wG6VUnkrO90
- 5. www.youtube.com/watch?v=AkBaDKYmQQI

**Board of Studies** 

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408. 16ECD02

#### DIGITAL ELECTRONICS

LTPC 3 0 2 4

#### COURSE OBJECTIVES

- To introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions
- To outline the formal procedures for the analysis and design of combinational circuits
- To outline the formal procedures for the analysis and design of sequential circuits
- To illustrate the concept of synchronous and asynchronous sequential circuits
- To introduce the concept of Different Logic Families and programmable logic devices.

#### COURSE OUTCOMES

| 16ECD02.CO1 | Demonstrate method for simplification of Boolean expressions                      |
|-------------|-----------------------------------------------------------------------------------|
| 16ECD02.CO2 | Design combinational logic circuits                                               |
| 16ECD02.CO3 | Design Sequential logic circuits                                                  |
| 16ECD02.CO4 | Analyze state machines for the given specifications                               |
| 16ECD02.CO5 | Design logic families and Implement digital circuit in programmable logic devices |

| Course      | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |  |
|-------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
| Outcomes    | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECD02.CO1 | X                | X   | X   | х   | х   | х   |     |     | X   |      | X    | х    | X    | Х    | X    |  |  |
| 16ECD02.CO2 | x                | X   | X   | X   | X   | X   |     |     | X   |      | X    | x    | X    |      |      |  |  |
| 16ECD02.CO3 | х                | х   | х   | х   | x   | х   |     |     | х   |      | X    | X    | X    |      | - 6  |  |  |
| 16ECD02.CO4 | x                | х   | X   | х   | x   | х   |     |     | x   |      | X    | х    | X    |      |      |  |  |
| 16ECD02.CO5 | х                | x   | x   | x   | x   | x   |     |     | х   |      | X    | x    | х    |      |      |  |  |

## BASIC CONCEPTS OF DIGITAL SYSTEMS

Review of Number systems, Number Representation, Boolean algebra, Boolean postulates and laws - De-Morgan's Theorem - Principle of Duality, Simplification using Boolean algebra, Canonical forms - Sum of product and Product of sum - Minimization using Karnaugh map and Tabulation method.

#### COMBINATIONAL CIRCUITS UNIT II

Realization of combinational logic using gates, Design of combinational circuits: Adder, Subtractor, Parallel adder Subtractor, Carry look ahead adder, Magnitude Comparator, Parity generator and checker, Encoder, Decoder, Multiplexer, Demultiplexer - Function realization using Multiplexer, Decoder - Code converters.

# SEQUENTIAL CIRCUITS

Flip-flops - SR, JK, D and T- Master-Slave - Triggering - Characteristic table and equation - Application table - Asynchronous and synchronous counters - Shift registers - Types - Universal shift registers - Ring counter -Johnson Counters- Serial adder / Subtractor.

# SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS

Mealy and Moore models - State diagram - State table - State minimization - State assignment - Excitation table - Design of Synchronous sequential circuits: Counters and Sequence generators- Circuit implementation -Asynchronous sequential circuits - Hazards and Races, Hazard free combinational circuits

#### LOGIC FAMILIES AND PROGRAMMABLE DEVICES UNIT V

Introduction to Logic families - TTL & CMOS Logic and their characteristics - Tristate gates -Programmable Logic Devices - Programmable Logic Array (PLA) - Programmable Array Logic (PAL) ,Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using PLA,PAL.

TOTAL: 45 Hrs

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipurem, Namakkal - 637 408.

# LIST OF EXPERIMENTS:

- 1. Design and implementation of Combinational logic functions
- 2. Design and implementation of Adders and Subtractors
- 3. Design and implementation of Code Converters
- 4. Design and implementation of Parity Generator and Checker
- 5. Design and implementation of Magnitude Comparator
- 6. Design and implementation of Multiplexer and De-multiplexer
- 7. Design and implementation of Encoders and Decoders
- 8. Design and implementation of Asynchronous Counters
- 9. Design and implementation of Synchronous Counters
- 10. Design and implementation of Shift registers

TOTAL: 60 Hrs

#### TEXT BOOKS

| Sl.No | Author(s)                                   | Title of the Book             | Publisher                                               | Year of<br>Publication |
|-------|---------------------------------------------|-------------------------------|---------------------------------------------------------|------------------------|
| 1.    | Morris Mano M.<br>and<br>Michael D. Ciletti | Digital Design                | Pearson Education                                       | 2013.                  |
| 2.    | Donald D.Givone,                            | Digital Principles and Design | Tata Mc-Graw Hill Publishing company limited, New Delhi | 2002                   |

#### REFERENCE BOOKS

| Sl.No | Author(s)                     | Title of the Book                          | Publisher                              | Year of<br>Publication |
|-------|-------------------------------|--------------------------------------------|----------------------------------------|------------------------|
| 1.    | Thomas L. Floyd               | Digital Fundamentals                       | Pearson Education Inc                  | 2011                   |
| 2.    | Charles H. Roth Jr,           | Fundamentals of Logic Design               | Jaico Publishing House                 | 2003                   |
| 3.    | Leach D, Malvino A<br>P &Saha | Digital Principles and<br>Applications     | Tata McGraw-Hill Publishing<br>Company | ,2014                  |
| 4.    | John F. Wakerly,              | Digital Design Principles and<br>Practices | Pearson Education                      | 2007                   |
| 5.    | John.M Yarbrough              | Digital Logic Applications and Design      | Thomson – Vikas Publishing<br>House    | 2002                   |

### WEB URLs

- 1. www.nptel.ac.in/courses/117105080/7
- 2. www.nptel.ac.in/video.php?subjectId=117105080
- 3. www.nptelvideos.in/2012/12/digital-systems-design.html
- 4. www.allabout circuits.com
- 5. www.electronicsforu.com

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 40e.

I6ECD03

## ELECTROMAGNETIC FIELDS

LTPC 3003

#### COURSE OBJECTIVES

- To understand the fundamentals of coordinate systems.
- To evaluate static electric fields.
- To evaluate static magnetic fields.
- To understand the relation between the fields under time varying situations.
- To understand the principles of propagation of electromagnetic waves.

#### COURSE OUTCOMES

| I6ECD03.CO1 | Translate one coordinate system in to another coordinate system |
|-------------|-----------------------------------------------------------------|
| I6ECD03.CO2 | Calculate static electric field intensity at any point          |
| 16ECD03.CO3 | Explain the concepts of Magnetostatics                          |
| 16ECD03.CO4 | Apply Maxwell's equations for time varying conditions           |
| I6ECD03.CO5 | Interpret the waves propagation through different medium        |
|             |                                                                 |

|                    | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |  |
|--------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
| Course<br>Outcomes | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO. |  |  |
| 16ECD03.CO1        | x                | x   | х   | х   | x   | x   |     | х   |     |      | X    | х    |      | X    | Х    |  |  |
| 16ECD03.CO2        | x                | X   | х   | х   | х   | х   |     | х   |     |      | X    | х    |      | х    | X    |  |  |
| 16ECD03.CO3        | x                | X   | х   | x   | х   | X   |     | х   |     |      | x    | х    |      | х    | Х    |  |  |
| 16ECD03.CO4        | x                | x   | x   | x   | x   | x   |     | x   |     |      | x    | х    |      | x    | х    |  |  |
| 16ECD03.CO5        | x                | x   | x   | х   | х   | x   |     | x   |     |      | x    | х    |      | Х    | х    |  |  |

VECTOR ANALYSIS UNIT I

Introduction to Co-ordinate System - Rectangular - Cylindrical and Spherical Coordinate System -Relation between Cartesian and cylindrical coordinate system, Cartesian and spherical coordinate system-Transformation of vectors from Cartesian to cylinder, Cartesian to sphere, sphere to cylinder and vice versa and problems- Definition of Curl, Divergence and Gradient - Definition of Divergence theorem and Stokes theorem

## STATIC ELECTRIC FIELDS

Coulomb's Law - Definition of Electric Field Intensity - Electric Field due to discrete charges - Electric field due to continuous charge distribution - Electric Field due to charges distributed uniformly on an infinite and finite line -Electric Scalar Potential - Relationship between potential and electric field -Electric Flux Density -Gauss Law - Proof of Gauss Law. Poisson's and Laplace's equation - Capacitance - Capacitance of parallel plate capacitor, Boundary conditions for electric fields.

#### STATIC MAGNETIC FIELD **UNIT-III**

Biot-Savart Law- Magnetic Field intensity due to infinite and finite wire carrying current- Ampere's circuital law. Magnetic flux density -Lorentz force equation - Force on a wire carrying a current placed in a magnetic field - Torque on a loop carrying a current - Magnetic moment - Magnetic Vector Potential- Inductance of loops and solenoids - Magnetic boundary conditions.

# TIME VARYING ELECTRIC AND MAGNETIC FIELDS

Faraday's law - Transformer and Motional electromotive forces - Displacement current - Maxwell's equations in integral form and differential form -Maxwell's equation in phasor form - Poynting Vector and the flow of power - Poynting theorem.

#### ELECTROMAGNETIC WAVES **UNIT-V**

Uniform Plane Waves - Wave equations for conducting and non-conducting media - Wave equations in phasor form - Plane waves in good conductors, Plane waves in lossy dielectrics- Skin effect-Reflection of plane waves by a perfect conductor-Normal and oblique incidence-Reflection of plane waves by a perfect dielectricnormal and oblique incidence.

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

### TEXT BOOKS

| Sl.No | Author(s)                     | Title of the Book                           | Publisher                 | Year of Publication |
|-------|-------------------------------|---------------------------------------------|---------------------------|---------------------|
| 1.    | William H.Hayt, J A<br>Buck   | Engineering Electromagnetics                | Tata McGraw-Hill          | 2016                |
| 2.    | E.C. Jordan & K.G.<br>Balmain | Electromagnetic Waves and Radiating Systems | Prentice Hall of<br>India | 2011                |

#### REFERENCES

| Sl.No | Author(s)                                          | Title of the Book                                      | Publisher                        | Year of Publication |
|-------|----------------------------------------------------|--------------------------------------------------------|----------------------------------|---------------------|
| 1.    | D. Ganesh Rao, C. K.<br>Narayanappa                | Engineering Electromagnetics                           | Cengage India<br>Private Limited | 2016                |
| 2.    | M.N.O.Sadiku                                       | Elements of Engineering Electromagnetics               | Oxford University<br>Press       | 2007                |
| 3.    | Clayton.R.Paul, Keith<br>W.Whites,<br>Syed.A.Nasar | Introduction to Electro Magnetic<br>Fieldsl            | WCB/McGraw-<br>Hill              | 2012                |
| 4.    | Carlo G. Someda                                    | Electromagnetic Waves                                  | CRC Press                        | 2010                |
| 5.    | Gottapu Sasibhushana<br>Rao                        | Electromagnetic Field Theory and<br>Transmission Lines | Wiley Publishers                 | 2012                |

#### WEB URLs

- 1. www.nptel.ac.in/courses/108106073/3
- 2. www.nptel.ac.in/courses/108106073/5
- 3. www.nptel.ac.in/courses/108106073/18
- 4. www.nptel.ac.in/courses/108106073/32
- 5. www.nptel.ac.in/courses/108106073/41

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering

Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 637 408.

16ECD04

#### ANALOG ELECTRONICS - I

LTPC 3 0 2 4

#### COURSE OBJECTIVES

- Design and construct amplifiers
- Construct amplifiers with active loads
- Study frequency response of all amplifiers
- Learn about Rectifiers and Power supplies
- Learn about IC MOSFET Amplifiers

#### COURSE OUTCOMES

Design simple amplifier circuits 16ECD04.CO1

Analyze the small signal equivalent circuits of JFET and MOSFET 16ECD04.CO2

Compute the frequency response of amplifier 16ECD04.CO3

Construct IC MOSFET amplifiers 16ECD04.CO4

Demonstrate Rectifiers and Power Supplies 16ECD04.CO5

| Course      |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      | PSOs |  |  |  |
|-------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|--|
| Outcomes    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |  |
| 16ECD04.CO1 | X   | X                | X   | x   | X   | x   |     |     | X   |      | X    |      | X    | X    | X    |  |  |  |
| 16ECD04.CO2 | X   | X                | X   | x   | X   | X   |     |     | X   |      | X    |      | X    | X    | X    |  |  |  |
| 16ECD04.CO3 | x   | X                | X   | x   | X   | x   |     |     | X   |      | X    |      | x    | X    | х    |  |  |  |
| 16ECD04.CO4 | x   | X                | х   | х   | х   | x   |     |     | x   |      | X    |      | X    | x    | х    |  |  |  |
| 16ECD04.CO5 | X   | x                | X   | x   | x   | х   |     |     | х   |      | x    |      | X    | X    | х    |  |  |  |

#### BJT AMPLIFIERS UNIT I

CE, CB and CC amplifiers - Method of drawing small-signal equivalent circuit- Analysis of transistor amplifier Configurations-current and voltage gain, input and output impedance -Differential amplifiers- CMRR-Darlington Amplifier- Bootstrap technique - Multistage amplifiers -Cascaded stages - Cascode Amplifier.Large signal Amplifiers - Class A, Class B and Class C Power Amplifiers

#### JEET AND MOSFET AMPLIFIERS

Small signal analysis of JFET amplifiers- Small signal Analysis of MOSFET and JFET, Common source amplifier, Voltage swing limitations, Small signal analysis of MOSFET and JFET Source follower and Common Gate amplifiers, - BiCMOS, Cascode amplifier.

# FREQUENCY RESPONSE OF BJT AND MOSFET AMPLIFIERS

Low frequency and Miller effect, High frequency analysis of CE and MOSFET CS amplifier, Short circuit current gain, cut off frequency –  $f\alpha$  and  $f\beta$  unity gain and Determination of bandwidth of single stage and multistage amplifiers

#### IC MOSFET AMPLIFIERS UNIT IV

IC Amplifiers- IC biasing Current steering circuit using MOSFET- MOSFET current sources- PMOS and NMOS current sources. Amplifier with active loads - enhancement load, Depletion load and PMOS and NMOS current sources load- CMOS common source and source follower- CMOS differential amplifier- CMRR.

# RECTIFIERS AND POWER SUPPLIES

Rectifiers - Half-wave, full-wave and bridge rectifiers - Rectifiers with filters- C, L, and CLC filters Voltage regulators - Zener diode regulator- regulator with current limiting, Over voltage protection, Switched mode power supply (SMPS).

TOTAL: 45 Hrs

### LIST OF EXPERIMENTS:

- 1. Frequency Response of CE amplifier
- 2. Frequency Response of CS amplifier

CHAIRMAN Beard of Studies Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 406.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

3. Darlington Amplifier using BJT.

4. Frequency Response of Multistage amplifier

5. Power Supply circuit - Half wave rectifier and Full wave rectifier with simple capacitor filter

6. Mini Project

TOTAL: 30 Hrs

#### TEXT BOOKS

| Sl.No | Author(s)         | Title of the Book                      | Publisher                        | Year of<br>Publication |
|-------|-------------------|----------------------------------------|----------------------------------|------------------------|
| 1.    | Donald .A. Neamen | Electronic Circuit Analysis and Design | Tata Mc Graw Hill                | 2009                   |
| 2.    | David A.Bell      | Electronic Devices and<br>Circuits     | Oxford Higher<br>Education Press | 2010                   |

#### REFERENCE BOOKS

| Sl.No | Author(s)                                               | Title of the Book                                    | Publisher                  | Year of<br>Publication |  |
|-------|---------------------------------------------------------|------------------------------------------------------|----------------------------|------------------------|--|
| 1.    | Adel .S. Sedra, Kenneth<br>C. Smith                     | Micro Electronic Circuits                            | Oxford University<br>Press | 2010                   |  |
| 2.    | BehzadRazavi                                            | Design of Analog CMOS<br>Integrated Circuits         | Tata Mc Graw Hill,         | 2007                   |  |
| 3.    | Paul Gray, Hurst,<br>Lewis, Meyer                       | Analysis and Design of<br>Analog Integrated Circuits | John Willey & Sons         | 2005                   |  |
| 4.    | bbert L. Boylestad and<br>Louis Nasheresky              | Electronic Devices and Circuit<br>Theory             | Pearson Education /<br>PHI | 2008                   |  |
| 5.    | S. Salivahanan, N.<br>Suresh Kumar and A.<br>Vallavaraj | Electronic Devices and<br>Circuits                   | ТМН                        | 2007                   |  |

### WEB URLs

- 1. www.nptel.ac.in/courses/117101106/7
- 2. www.nptel.ac.in/courses/117101106/9
- 3 .www.nptel.ac.in/courses/117101106/8
- 4. www.nptel.ac.in/courses/117101106/14
- 5 .www.nptel.ac.in/courses/117101106/11

CHAIRMAN

Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasiguram, Namakkal - 637 4(vs.

16ECD05

### ANALOG ELECTRONICS - II

LTPC 3 0 2 4

### COURSE OBJECTIVES

To understand the advantages and method of analysis of feedback amplifiers.

To understand the analysis and design of LC and RC oscillators, amplifiers, multivibrators, and time base generators.

To understand the analysis and design of Tuned amplifier

To understand and design of wave shaping circuits

To understand the concepts of oscillators and time based generators

#### COURSE OUTCOMES

| 16ECD05.CO1 | Design the feedback amplifiers                           |
|-------------|----------------------------------------------------------|
| 16ECD05.CO2 | Describe the LC and RC oscillators                       |
| 16ECD05.CO3 | Explain the performance of tuned amplifiers              |
| 16ECD05.CO4 | Describe the wave shaping and multivibrator circuits     |
| 16ECD05.CO5 | Design the blocking oscillators and time base generators |
| 101000.000  | D cong                                                   |

|                    |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      | PSOs |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECD05.CO1        | X   | X                | x   | X   | X   | x   |     |     | х   |      | X    |      | x    | X    | X    |  |  |
| 16ECD05.CO2        | X   | X                | X   | Х   | X   | X   |     |     | х   |      | X    |      | X    | X    | X    |  |  |
| 16ECD05.CO3        | X   | X                | X   | х   | х   | À   |     |     | х   |      | X    |      | X    | Х    | x    |  |  |
| 16ECD05.CO4        | X   | x                | X   | x   | X   | x   |     |     | X   |      | X    |      | х    | X    | X    |  |  |
| 16ECD05.CO5        | X   | X                | X   | x   | X   | X   |     |     | X   |      | X    |      | X    | X    | X    |  |  |

## FEEDBACK AMPLIFIERS

General Feedback Structure - Properties of negative feedback - Basic Feedback Topologies - Feedback amplifiers - Series - Shunt, Series - Series, Shunt - Shunt and Shunt - Series Feedback - Determining the Loop Gain - Stability Problem.

#### **OSCILLATORS UNIT II**

Classification, Barkhausen Criterion - Mechanism for start of oscillation and stabilization of amplitude, General form of an Oscillator, Analysis of LC oscillators - Hartley, Colpitts, Clapp, Tuned collector oscillators, RC oscillators - phase shift -Wienbridge - Twin-T Oscillators, Frequency range of RC and LC Oscillators, Quartz Crystal Construction, Electrical equivalent circuit of Crystal, Miller and Pierce Crystal Oscillators, frequency stability of oscillators.

#### **TUNED AMPLIFIERS** UNIT III

Coil losses, unloaded and loaded Q of tank circuits, small signal tuned amplifiers - Analysis of capacitor coupled single tuned amplifier - double tuned amplifier - effect of cascading single tuned and double tuned amplifiers on bandwidth - Stagger tuned amplifiers - large signal tuned amplifiers - Class C tuned amplifier -Efficiency and applications of Class C tuned amplifier - Stability of tuned amplifiers - Neutralization - Hazeltine neutralization method.

# WAVE SHAPING AND MULTIVIBRATOR CIRCUITS

Diode clippers, Diode comparator - Clampers, Collector coupled and Emitter coupled Astable multivibrator - Monostable multivibrator - Bistable multivibrators - Triggering methods for Bistable multivibrators - Schmitt trigger circuit

#### BLOCKING OSCILLATORS AND TIMEBASE GENERATORS UNIT V

UJT saw tooth waveform generator, Pulse transformers - equivalent circuit - response - applications, Blocking Oscillator - Free running blocking oscillator - Astable Blocking Oscillators with base timing - Push-pull Astable blocking oscillator with emitter timing, Frequency control using core saturation, Triggered blocking

> CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

oscillator – Monostable blocking oscillator with base timing – Monostable blocking oscillator with emitter timing, Time base circuits - Voltage-Time base circuit, Current-Time base circuit – Linearization through adjustment of driving waveform.

TOTAL: 45 Hrs

#### LIST OF EXPERIMENTS:

- 1. Frequency response of feedback amplifier circuit-current series
- 2. Frequency response of feedback amplifier circuit- voltage shunt
- 3. Transistor based design of RC phase Shift Oscillator circuit
- 4. Transistor based design of Wein Bridge Oscillator circuit
- 5. Design of Astable and Monostable Multivibrators
- 6. Design of Clippers and Clampers
- 7. Spice Simulation of single tuned and Double Tuned Amplifier
- 8. Spice Simulation of Schmitt Trigger circuit with Predictable hysteresis
- 9. Spice Simulation of Monostable Multivibrator with emitter timing and base timing
- 10. Spice Simulation of Voltage and Current Time base circuits

TOTAL: 30 Hrs

#### TEXT BOOKS

| Sl.No           | Author(s)                                   | Title of the Book                        | Publisher               | Year of Publication |
|-----------------|---------------------------------------------|------------------------------------------|-------------------------|---------------------|
| Sedra and Smith |                                             | Micro Electronic Circuits                | Oxford University Press | 2011                |
| 2.              | Robert L. Boylestad<br>and Louis Nasheresky | Electronic Devices and<br>Circuit Theory | Pearson Education / PHI | 2008                |

#### REFERENCE BOOKS

| Sl.No | Author(s)                                               | Title of the Book                        | Publisher               | Year of<br>Publication |  |
|-------|---------------------------------------------------------|------------------------------------------|-------------------------|------------------------|--|
| 1.    | David A. Bell                                           | Electronic Devices and<br>Circuits       | Oxford University Press | 2008                   |  |
| 2.    | Millman J. and Taub H                                   | Pulse Digital and<br>Switching Waveforms | ТМН                     | 2000                   |  |
| 3.    | Millman and Halkias. C                                  | Integrated Electronics                   | TMH                     | 2007                   |  |
| 4.    | Floyd                                                   | Electronic Devices                       | Pearson Education       | 2002                   |  |
| 5.    | S. Salivahanan, N.<br>Suresh Kumar and A.<br>Vallayarai | Electronic Devices and<br>Circuits       | ТМН                     | 2007                   |  |

### WEB URLs

- 1. www.nptel.ac.in/courses/117106088/1
- 2. www.nptel.ac.in/courses/117106088/14
- 3. www.nptel.ac.in/courses/117106088/17
- 4. www.nptel.ac.in/courses/117101106/23
- 5. www.nptel.ac.in/courses/117101106/24

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 637 406.

16ECC09

# MICROPROCESSORS AND MICROCONTROLLERS

LTPC 3024

# COURSE OBJECTIVES

To study the basic concept of 8085 microprocessor

- To study the basic concept of 8051 microcontroller
- To Introduce PIC microcontroller and Programming in 8085 and 8051
- · To understand the basic concept of interfacing
- To Study the Applications of Processors and Controllers

#### COURSE OUTCOMES

| 16ECC09.CO1  | Explain the architecture of 8085 microprocessor  |
|--------------|--------------------------------------------------|
| 16ECC09.CO2  | Identify the ports of 8081 microcontroller       |
| 16ECC09.CO3  | Explain the architecture of PIC Microcontroller. |
| 16ECC09.CO4  | Examine the interfacing of peripheral devices    |
| 16ECC09 .CO5 | Design controlling circuits for home appliances  |

| Course<br>Outcomes |     | Program Outcomes                      |     |     |     |     |     |     |     |      |      |      |      |      | PSOs |  |  |  |
|--------------------|-----|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|--|
|                    | PO1 | PO2                                   | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO. |  |  |  |
| 16ECD09.CO1        | X   | X                                     | X   | X   | X   | X   |     |     | X   |      | X    | X    | X    | X    | X    |  |  |  |
|                    |     | X                                     | X   | X   | X   | X   |     |     | X   |      | X    | X    | X    | X    | X    |  |  |  |
| 16ECD09.CO2        | X   | · ·                                   | X   | X   | X   | X   |     |     | X   |      | X    | X    | X    | X    | X    |  |  |  |
| 16ECD09.CO3        | X   | X                                     | X   | X   | X   | X   |     |     | X   |      | X    | X    | X    | X    | X    |  |  |  |
| 16ECD09.CO4        | X   | , , , , , , , , , , , , , , , , , , , |     | X   | X   | X   |     |     | X   |      | X    | X    | X    | X    | X    |  |  |  |

8085 PROCESSOR UNIT I

Basics of Microprocessor - Architecture of 8085 - Pin Diagram - Instruction Set - Addressing Modes -Interrupts of 8085 - Timing diagram - Memory Organization.

8051 CONTROLLER

Basics of Microcontroller - Architecture of 8051 - I/O Ports of 8051 - Pin Diagram - Instruction Set -Addressing Modes of 8051 - Timing Diagram.

#### PROGRAMMING AND ADVANCED CONTROLLERS **UNIT III**

Basic programing (ALP) of 8085 and 8051 - Loop Structures, counting and Indexing with programing concepts - Subroutine and its programing - PIC microcontroller Concepts - 16C6X Architecture - 16C7X Architecture.

#### PROGRAMMING AND INTERFACING OF 8085 & 8051 UNIT IV

Interfacing: Architecture, configuration and interfacing, with ICs: Programmable Peripheral Interface (PPI) 8255 - programmable interrupt controller (PIC) 8259 - Programmable Interval Timer (PIT) 8254 - DMA Controller 8237 - USART 8251 - keyboard display controller 8279.

# APPLICATIONS OF PROCESSORS AND CONTROLLERS

Key board and display interface - stepper motor control - Washing Machine Control - LED Control, servo motor Control with 8085 & 8051.

TOTAL: 45 Hrs

### LIST OF EXPERIMENTS:

- Programming with 8085 –Addition and Subtraction.
- Calculate the sum of series of numbers.
- 3. Programming with 8085- Multiplication and Division.
- 4. Programming with 8085-Ascending and Descending Order.
- 5. Programming with 8085- Maximum and Minimum Number in A Group of Data.
- 6. Code Conversion ASCII/Binary/BCD.
- 7. Interfacing A/D with 8085 Microprocessor.

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namaldal - 637 406.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

8. 8-Bit Addition and Subtraction Using 8051.

9. 8-Bit Multiplication and Division Using 8051.

10. Parallel Port Programming With 8051-Stepper Motor Control.

11. Keil C Programming

TOTAL: 30 Hrs

#### TEXT BOOKS:

| Sl.No | Autho                    | or(s) | Title of the Book                                                                                   | Publisher                                    | Year of Publication |  |
|-------|--------------------------|-------|-----------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|--|
| 1.    | Soumitra Kumar<br>Mandal |       | Microprocessor & Microcontroller<br>Architecture, Programming &<br>Interfacing using 8085,8086,8051 | McGraw Hill<br>Education                     | 2013                |  |
| 2.    | Furber,S,                |       | ARM System on Chip Architecture                                                                     | Addison Wesley trade<br>Computer Publication | 2000                |  |

## REFERENCE BOOKS:

| Sl.No | Author(s)                                                     | Title of the Book                                          | Publisher                | Year of<br>Publication |  |
|-------|---------------------------------------------------------------|------------------------------------------------------------|--------------------------|------------------------|--|
| 1.    | Muhammad Ali<br>Mazidi & Janice<br>GilliMazidi,<br>R.D.Kinely | The 8051 Micro Controller and Embedded Systems             | PHI Pearson<br>Education | 2003                   |  |
| 2.    | N.Senthil Kumar,<br>M.Saravanan,<br>S.Jeevananthan            | aravanan, Microcontrollers Oxford                          |                          | 2013                   |  |
| 3.    | M. Rafiquzzaman                                               | Microprocessors Theory and Applications                    | Prentice Hall            | 2001                   |  |
| 4.    | R.S. Gaonkar                                                  | Microprocessor Architecture<br>Programming and Application | New Delhi                | 2013                   |  |
| 5.    | Michael McRoberts                                             | Beginning Arduino                                          | Apress Publications      | 2013                   |  |

#### Web URLs

- 1. www.nptel.ac.in/courses/106108100/
- 2. www.youtube.com/watch?v=liRPtvj7bFU&noredirect=1
- 3. www.vssut.ac.in/lecture\_notes/lecture1423813120.pdf
- 4. www.freevideolectures.com/Course/3018/Microprocessors-and-Microcontrollers/2
- 5. www.youtube.com/watch?v=pA6K5NgWTow

CHAIRMAN

Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 468.

16ECD06

## LINEAR INTEGRATED CIRCUITS

LTPC 3 0 2 4

#### COURSE OBJECTIVES

- To Demonstrate the IC fabrication steps and basic building blocks of linear integrated circuits.
- To Design and analyze the linear and non-linear applications of operational amplifiers.
- To Illustrate the operating principle of PLL, Data Converters and various special function ICs.
- To design waveform generating circuits
- To design simple filter circuits for particular application and to gain knowledge in designing a stable voltage regulators

#### COURSE OUTCOMES

| 16ECD06.CO1 | Explain the Circuit Fabrication Process and internal structure of operational ampilliers |
|-------------|------------------------------------------------------------------------------------------|
| 16FCD06 CO2 | Design real time operational amplifiers applications                                     |
| 16ECD06.CO3 | Design comparator and waveform generators using operational amplifier                    |
| 16ECD06 CO4 | Classify the functioning of PLL and Data converters                                      |
| 16ECD06.CO5 | · · · · · · · · · · · · · · · · · · ·                                                    |

| Course<br>Outcomes | 7   | Program Outcomes |     |     |     |     |              |     |     |      |      |      |      |      | PSOs |  |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|--------------|-----|-----|------|------|------|------|------|------|--|--|--|
|                    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7          | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |  |
| 16ECD06.CO1        | ×   | ×                | X   | ×   | ×   | ×   |              |     | 1   |      | ×    |      | ×    | ×    | X    |  |  |  |
| 16ECD06.CO2        | ×   | ×                | ×   | х   | ×   | x   |              |     | ×   |      | X    |      | ×    | X    | ×    |  |  |  |
| 16ECD06.CO3        | X   | ×                | ×   | ×   | ×   | ×   |              |     | Х   |      | ×    |      | ×    | X    | ×    |  |  |  |
| 16ECD06.CO4        | ×   | ×                | X   | ×   | x   | ×   |              |     | x   |      | ×    |      | ×    | х    | ×    |  |  |  |
| 16ECD06.CO5        | ×   | ×                | ×   | X   | X   | ×   | THE STATE OF |     | x   |      | ×    |      | ×    | ×    | ×    |  |  |  |

IC FABRICATION AND OPERATIONAL AMPLIFIER UNIT I

Introduction to Integrated Circuits- Classification of ICs- Basic IC Fabrication Planar Process-Fabrication of Diode and BJT - Operational Amplifier: Basic Information of Op-Amp, Ideal Op Amp-Operational Amplifier Internal Circuit- Differential Amplifier- Analysis of current sources-Widlar-Wilson Current Sources .

CHARACTERISTICS OF OP- AMP AND APPLICATIONS

Characteristics of Op- Amp - DC Characteristics, AC Characteristics - Frequency Response- Frequency Compensation - Slew Rate- Applications: Closed Loop Op Amp Configuration - Inverting and Non inverting Amplifiers- Inverter- Voltage Follower-Summing Amplifier, Averaging Circuits - Subtractor- Differential Amplifier- Multiplier- Differentiator- Integrator- Instrumentation amplifier, Precision rectifier- V/I & I/V Converter.

COMPARATOR AND WAVEFORM GENERATORS

Comparators - Open Loop Op Amp Configuration - Inverting , Non Inverting Comparator- Applications of Comparator- Regenerative Comparator (Schmitt trigger)- Multivibrators - Astable, Monostable-Principles of Sine wave Oscillator- RC Phase Shift, Wien Bridge Oscillator.

PHASE LOCKED LOOP AND DATA CONVETER

Block Diagram of PLL- Principles-Types- Phase Detector- Voltage Controlled Oscillator-IC 566 and IC 565 Internal Block Diagram- PLL Applications - Data Converter - Sample and Hold circuits D/A Techniques: Binary Weighted Resistor- R-2R and Inverted R-2R Ladder DAC- A/D converter: Flash - Counter - Successive Approximation Converter -Single Slope- Dual Slope.

SPECIALIZED IC APPLICATIONS

555 Timer Internal Architecture- Astable and Monostable Multivibrators using 555 Timer - Applications-Voltage regulators, Fixed and Adjustable Voltage Regulators, Dual Power supply - Universal Active Filter-Switched Capacitor Filter.

TOTAL: 45 Hrs

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namalskal - 637 406.

# LIST OF EXPERIMENTS:

### Design and Testing of

- 1. Inverting, Non inverting and Differential amplifiers.
- 2. Integrator and Differentiator.
- 3. Instrumentation amplifier
- 4. Schmitt Trigger using op-amp.
- 5. Phase shift and Wien bridge oscillators using op-amp.
- 6. Astable and monostable multivibrators using NE555 Timer.
- 7. Mini Projects.

TOTAL: 30 Hrs

#### TEXT BOOKS

| Sl.No | Author(s)                     | Title of the Book                                                 | Publisher                         | Year of<br>Publication |  |
|-------|-------------------------------|-------------------------------------------------------------------|-----------------------------------|------------------------|--|
| l.    | Sergio Franco                 | Design with operational amplifiers and analog integrated circuits | 3rd Edition, Tata<br>McGraw-Hill  | 2007                   |  |
| 2.    | D.Roy Choudhry, Shail<br>Jain | Linear Integrated Circuits                                        | New Age International<br>Pvt. Ltd | 2000                   |  |

#### REFERENCES

| Sl.No | Author(s)           | Title of the Book                                                 | Publisher                        | Year of<br>Publication |  |
|-------|---------------------|-------------------------------------------------------------------|----------------------------------|------------------------|--|
| 1.    | Ramakant A.Gayakwad | OP-AMP and Linear IC's                                            | Prentice Hall of India           | 2002                   |  |
| 2.    | David L.Terrell     | Op Amps-Design, Application, and<br>Troubleshooting               | Elsevier publications            | 2005                   |  |
| 3     | Sergio Franco       | Design with operational amplifiers and analog integrated circuits | 3rd Edition, Tata<br>McGraw-Hill | 2002                   |  |
| 4     | Taub and Schilling  | Digital Integrated Electronics                                    | McGraw-Hill                      | 1997                   |  |
| 5     | William D.Stanely   | Operational Amplifiers with Linear<br>Integrated Circuits         | Pearson Education                | 2004                   |  |

## Web URLs:

- 1. www.nptel.ac.in/courses/117107094/
- 2. www.youtube.com/watch?v=clTA0pONnMs
- 3. www.youtube.com/watch?v=7beZocF34AU
- 4. www.youtube.com/watch?v=7xVSL93ZZq8
- 5. www.youtube.com/watch?v=xki9taCqsWY

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 4u6.

16ECD07

#### COMMUNICATION THEORY

L T P C 3 0 0 3

#### COURSE OBJECTIVES

- To understand the basic building blocks of communication systems.
- To provide various Amplitude modulation and demodulation systems.
- To provide various Angle modulation and demodulation systems.
- To provide some depth analysis in noise performance of various receiver.
- To study some basic information theory with some channel coding theorem.

#### COURSE OUTCOMES

| 16ECD07.CO1 | Explain the basic building blocks of communication systems |
|-------------|------------------------------------------------------------|
| 16ECD07.CO2 | Analyze the performance of amplitude modulation techniques |
| 16ECD07.CO3 | Demonstrate knowledge of angle modulation techniques       |
| 16ECD07.CO4 | Compare noise performance of receivers                     |
| 16FCD07.CO5 | Explain the concepts of information theory                 |

| Course      |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      | PSOs |  |  |  |
|-------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|--|
| Outcomes    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |  |
| 16ECD07.CO1 | X   | X                | X   | X   | X   | x   | X   |     | X   |      | X    | X    | X    | X    | X    |  |  |  |
| 16ECD07.CO2 | X   | X                | X   | х   | X   | X   | х   |     | X   |      | X    | X    | X    | X    | X    |  |  |  |
| 16ECD07.CO3 | x   | X                | Х   | х   | x   | х   | х   |     | X   |      | X    | х    | х    | X    | х    |  |  |  |
| 16ECD07.CO4 | x   | х                | x   | x   | х   | х   | х   |     | х   |      | Х    | х    | х    | х    | х    |  |  |  |
| 16ECD07.CO5 | х   | х                | X   | х   | х   | X   | х   |     | Х   |      | х    | х    | x    | X    | -X   |  |  |  |

#### UNIT I INTRODUCTION

9

Elements Communication Systems, Modulation—Types of modulation—Need for Modulation—Electromagnetic Spectrum—Communication Channels. Principles of Amplitude modulation—Mathematical Representation, Waveforms—Spectrum—Bandwidth—Phasor representation, Power Relations.

#### UNIT II AMPLITUDE MODULATION

9

Types of AM Signal - Generation of AM Signal - DSBFC- Class A and Class C Modulators, DSBSC-Balanced Modulator , Ring Modulator, FET push-pull balanced modulator, SSBSC- Filter Method, Phase Shift Method, Third Method - Demodulation of AM Signal -Envelope Detector - Coherent Detection. AM Transmitter - Low Level and High Level - Receiver Characteristics-TRF, Super heterodyne Receiver.

#### UNIT III ANGLE MODULATION

9

Basic Principles – Types of Angle Modulation: Frequency Modulation, Phase Modulation – Mathematical Representation - Waveforms – Spectrum – Bandwidth – Power - Relationship between FM and PM - Narrowband and Wideband FM - Phasor Representation. Generation of FM signal – Direct FM Modulators –Varactor diode modulator, FM Reactance modulator-Direct and Indirect FM Transmitters-Demodulation of FM Signals: Tuned Circuit Frequency Discriminators –Balanced slope detector, Foster-Seely Discriminator –PLL – FM receiver.

#### UNIT IV NOISE PERFORMANCE OF AM AND FM

9

Noise – Types: External and Internal Noise – Signal-to-Noise Ratio-White noise, Noise Equivalent Bandwidth, Narrowband Noise: Mathematical Representation, Noise in AM receivers, Noise in FM Receivers - Pre-emphasis and De-emphasis – Capture effect - Threshold effect-Performance Comparison of AM and FM Systems

#### UNIT V INFORMATION THEORY

9

Uncertainty, Information and entropy, Source coding theorem, Shannon-Fano coding, Huffman coding, Discrete Memory less Channel, Mutual Information, Channel capacity, Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Information capacity theorem.

TOTAL: 45 Hrs

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering in the Electronics and Communication Engineering in the Engineering College (Autonomous)

Rasipuram, Namakkal - 637 406.

### TEXT BOOKS

| Sl.No | Author(s)                                           | Author(s) Title of the Book            |                    |      |  |
|-------|-----------------------------------------------------|----------------------------------------|--------------------|------|--|
| 1.    | Simon Haykin                                        | Communication Systems                  | JohnWiley&<br>Sons | 2001 |  |
| 2.    | Herbert Taub, Donald L<br>Schilling and GoutamSaha, | Principles of<br>Communication Systems | McGraw Hill        | 2013 |  |

# REFERENCE BOOKS

| Sl.No | Author(s)                            | Title of the Book                                                           | Publisher                     | Year of<br>Publication |  |  |  |
|-------|--------------------------------------|-----------------------------------------------------------------------------|-------------------------------|------------------------|--|--|--|
| 1.    | B.P.Lathi, ZhiDing.                  | Modern Digital and Analog<br>Communication Systems                          | Oxford<br>University<br>Press | 2009                   |  |  |  |
| 2.    | John G. Proakis, MasoudSalehi,       | John G. Proakis, MasoudSalehi, Communication Systems Engineering Education, |                               |                        |  |  |  |
| 3.    | Ferrel G. Stremler,                  | Introduction to<br>Communication Systems                                    | Prentice-Hall                 | 2001                   |  |  |  |
| 4.    | W. Tomasi,                           | Electronic Communication<br>Systems                                         | Prentice-Hall                 | 2001                   |  |  |  |
| 5.    | George. Kennedy and Bernard<br>Davis | Electronic Communication<br>Systems                                         | Tata McGraw-<br>Hill          | 1999.                  |  |  |  |

#### WEB URLs

- 1. www.nptel.ac.in/courses/117102059
- 2. www.nptel.ac.in/courses/117102059/1
- 3. www.nptel.ac.in/courses/117102059/8
- 4. www.nptel.ac.in/courses/117102059/15
- 5. www.nptel.ac.in/courses/117102059/35

CHAIRMAN

Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 400.

#### TRANSMISSION LINES AND WAVE GUIDES 16ECD08

LTPC 3 1 0 4

#### **COURSE OBJECTIVES**

- To introduce the concept of transmission lines
- To give knowledge on the transmission line at Radio frequencies
- To understand wave propagation in guided system
- To impart knowledge on the propagation of waves through wave guides
- To become familiar with circular waveguides and cavity resonators

#### OUTCOMES

| 16ECD08.CO1 | Calculate the parameters of a transmission lines                             |
|-------------|------------------------------------------------------------------------------|
| 16ECD08.CO2 | Use Smith chart for impedance matching                                       |
| 16ECD08.CO3 | Analyse the nature of Guided wave propagation                                |
| 16ECD08.CO4 | Demonstrate the characteristics of TE and TM wave in a rectangular waveguide |
| 16ECD08.CO5 | Select proper technique for exciting desired modes in a waveguide            |

| Course<br>Outcomes | Program Outcomes |     |     |     |     |     |     |     |     | PSOs |      |      |      |      |      |
|--------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
|                    | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECD08.CO1        | x                | x   | X   | X   | x   | x   | x   |     | х   | x    | X    | x    | x    | X    | X    |
| 16ECD08.CO2        | x                | X   | х   | x   | х   | х   | x   |     | х   | x    | X    | х    | х    | х    | х    |
| 16ECD08.CO3        | x                | x   | X   | x   | X   | x   | X   |     | x   | X    | X    | X    | X    | Х .  | х    |
| 16ECD08.CO4        | x                | x   | X   | х   | х   | х   | X   |     | x   | Х    | X    | x    | X    | х    | X    |
| 16ECD08.CO5        | X                | X   | X   | X   | х   | X   | Х   |     | X   | X    | X    | Х    | X    | X    | X    |

#### TRANSMISSION LINE THEORY UNIT

Transmission line parameters- General solutions of transmission line -Wavelength , velocity of propagation - Waveform distortion - The distortion less line ,Reflections on a line not terminated in Z0 - Reflection coefficient -Calculation of current, voltage, power delivered and efficiency of transmission - Open and short circuited lines -Reflection factor and reflection loss.

## TRANSMISSION LINES AT RADIO FREQUENCIES

Line of zero dissipation - Constants for the line of zero dissipation - Voltages and currents on the dissipation less line- Standing Waves, Nodes, Standing wave Ratio - Input impedance of the dissipation less line -Input impedance of open and short circuited lines, Impedance transformation using Quarter wave line - Impedance matching by stubs: Single stub matching, double stub matching - Smith chart and its application - Single stub matching using Smith chart.

#### **GUIDED WAVES** UNIT III

Guided waves: Waves between parallel planes - Transverse Electric waves and Transverse Magnetic waves -Characteristics of Transverse Electric and Transverse Magnetic Waves - Transverse Electromagnetic waves -Velocities of propagation -Wave impedance.

#### RECTANGULAR WAVEGUIDES UNIT IV

Transverse Magnetic Waves in Rectangular Wave guides - Transverse Electric Waves in Rectangular Waveguides -Characteristic of TE and TM Waves - Cutoff wavelength and phase velocity - Impossibility of TEM waves in waveguides - Dominant mode in rectangular waveguide, Wave impedances- Excitation of modes.

# CIRCULAR WAVEGUIDES AND RESONATORS

Transverse Electric and Transverse Magnetic waves in Circular guides - Dominant mode in Circular waveguide -Method of excitation of modes in circular waveguide - Resonators, Rectangular cavity resonators, Unloaded Q factor of rectangular cavity resonator for TE<sub>101</sub> mode.

TOTAL: 45+15 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namaldal - 637 468.

## TEXT BOOKS

| Sl.No | Author(s)                        | Title of the Book                           | Publisher           | Year of<br>Publication |  |
|-------|----------------------------------|---------------------------------------------|---------------------|------------------------|--|
| 1.    | John D Ryder                     | Networks, Lines and<br>Fields               | Prentice Hall India | 2010                   |  |
| 2.    | E. C. Jordan and<br>K.G. Balmain | Electromagnetic Waves and Radiating Systems | Prentice Hall India | 2006                   |  |

### REFERENCES

| SI.No         | Author(s)                                              | Title of the Book                                                             | Publisher             | Year of<br>Publication |  |  |
|---------------|--------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------|------------------------|--|--|
| 1. G.S.N Raju |                                                        | Electromagnetic Field Theory and Transmission Lines                           | Pearson Education     | 2005                   |  |  |
| 2.            | Umesh Sinha                                            | Umesh Sinha Transmission Lines and Networks Satya Prakashan India), New Delh  |                       | 2010                   |  |  |
| 3.            | R. Shevgaonkar                                         | Electromagnetic Waves                                                         | Mcgraw Hill Education | 2005                   |  |  |
| 4.            | B. Somanathan Nair                                     | B. Somanathan Nair Transmission lines & Sanguine Tec<br>Waveguides Publishers |                       | 2006.                  |  |  |
| 5.            | Simon Ramo, John R.<br>Whinnery, Theodore<br>Van Duzer | Fields and Waves in<br>Communication Electronics                              | John Wiley            | 1994                   |  |  |

#### WEB URLs

- 1. www.nptel.ac.in/downloads/117101057
- 2. www.nptel.ac.in/video.php?subjectId=117101056
- 3. www.antenna-theory.com/tutorial/txline/transmission5.php
- 4. www. http://maritime.org/doc/neets/mod10.pdf
- 5. www.amanogawa.com/archive/transmissionpdf.com

CHAIRMAN

**Board of Studies** 

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 46...

16ECD09

### DIGITAL SIGNAL PROCESSING

LTPC

3 0 2 4

#### COURSE OBJECTIVES

- To learn discrete Fourier transform and its properties
- To know the characteristics of IIR and FIR filters
- To learn the design of infinite and finite impulse response filters for filtering undesired signals
- To understand Finite word length effects
- To study the concept of Multirate and adaptive filters

#### COURSE OUTCOMES

Analyze DFT & FFT techniques in signal processing 16ECD09.CO1 Design IIR filters in Digital Signal Processing 16ECD09.CO2 Design FIR filters in Digital Signal Processing 16ECD09.CO3 Analyze binary fixed point and floating-point representation of numbers arithmetic operation 16ECD09.CO4 Design multi rate signal processing of signals through systems 16ECD09.CO5

| Course<br>Outcomes |     |     |     |     | Pr  | ogram ( | Outcome | es  |     |      |      |      |      | PSOs |      |  |
|--------------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|--|
|                    | PO1 | PO2 | PO3 | PO4 | PO5 | P06     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECD09.CO1        | ×   | ×   | ×   | ×   | ×   | ×       |         |     | ×   |      | ×    | ×    | ×    | X    | ×    |  |
| 16ECD09.CO2        | ×   | ×   | ×   | х   | ×   | ×       |         |     | Х   |      | ×    | X    | ×    | ×    | ×    |  |
| 16ECD09.CO3        | ×   | ×   | Х   | ×   | ×   | ×       |         |     | ×   |      | ×    | X    | ×    | X    | ×    |  |
| 16ECD09.CO4        | ×   | ×   | ×   | ×   | ×   | ×       |         |     | ×   |      | х    | х    | X    | X    | ×    |  |
| 16ECD09.CO5        | ×   | ×   | ×   | х   | Х   | ×       |         |     | ×   | - T  | ×    | ×    | ×    | ×    | ×    |  |

#### DISCRETE FOURIER TRANSFORM UNIT I

Introduction to DFT - Properties of DFT - Circular Convolution - Filtering methods based on DFT - FFT Algorithms -Decimation in time Algorithms, Decimation in frequency Algorithms.

#### UNIT II IIR FILTER DESIGN

Structures of IIR - Analog filter design - Discrete time IIR filter from analog filter - IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives - (LPF, HPF, BPF, BRF) filter design using frequency translation.

#### FIR FILTER DESIGN

Structures of Finite Impulse Response Filter - Linear phase Finite Impulse Response Filter - Fourier series -Filter design using windowing techniques (Rectangular Window, Hamming Window, Hanning Window), Frequency sampling Method.

## FINITE WORDLENGTH EFFECTS

Fixed point and floating point number representations - ADC -Quantization- Fruncation and Rounding errors - Quantization noise - coefficient quantization error - Product quantization error - Overflow error - Round off noise power - limit cycle oscillations due to product round off and overflow errors - Principle of scaling.

#### DSP APPLICATIONS UNIT V

Multirate signal processing: Decimation, Interpolation, Cascading Sample Rate Converters , Efficient Transversal Structure for Decimator, Efficient Transversal Structure for Interpolator - Adaptive Filters: Introduction, Applications of adaptive filtering to equalization - Subband Coding - Channel Vocoders

TOTAL: 45 Hrs

Board of Studies

Department of Electronics and Communication Engineering Muthayammai Engineering College (Autonomous) Rasipuram, Namakkal - 637 406.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

## LIST OF EXPERIMENTS:

- 1. Generation of sequences (functional & random) & correlation
- 2. Linear and Circular Convolutions
- 3. Spectrum Analysis using DFT
- 4.Ffilter design

# DSP Processor Based Implementation

- 5. Study of architecture of Digital Signal Processor
- 6. Convolution
- 7. FFT Implementation
- 8. Waveform generation
- 9. Implementation of Filter Design
- 10. Mini Project

TOTAL: 30 Hrs

### TEXT BOOKS

| Sl.No | Author(s)                                | uthor(s) Title of the Book Publis                                 |                                      |      |  |  |
|-------|------------------------------------------|-------------------------------------------------------------------|--------------------------------------|------|--|--|
| 1.    | John G. Proakis& Dimitris<br>G.Manolakis | Digital Signal Processing Principles<br>Algorithms & Applications | Pearson Education /<br>Prentice Hall | 2007 |  |  |
| 2.    | Emmanuel CIfeachor,<br>&Barrie.W.Jervis  | Digital Signal Processing                                         | Pearson Education,<br>Prentice Hall  | 2002 |  |  |

### REFERENCE BOOKS

| SI.No | Author(s)                                    | Title of the Book                                       | Publisher         | Year of<br>Publication |  |
|-------|----------------------------------------------|---------------------------------------------------------|-------------------|------------------------|--|
| 1.    | B.P.Lathi, ZhiDing. Sanjit<br>K. Mitra       | Digital Signal Processing, A<br>Computer Based Approach | Tata Mc Graw Hill | 2007                   |  |
| 2.    | A.V.Oppenheim, R.W.<br>Schafer and J.R. Buck | Discrete-Time Signal Processing                         | Pearson           | 2004.                  |  |
| 3.    | Andreas Antoniou                             | Digital Signal Processing, Tata Mc Graw Hill, 2006.     | Prentice-Hall     | 2001                   |  |
| 4.    | A. V. Oppenheim and R. W. Schafer Edition    | Discrete-Time Signal Processing                         | Tata Mc Graw Hill | 2007                   |  |
| 5.    | R. E. Crochiere and L. R. Rabiner            | Multirate Digital Signal Processing                     | Prentice Hall,    | 2007                   |  |

### WEB URLs:

- 1. www.nptel.ac.in/courses/117102060/

- www.nptel.ac.in/courses/108105055/
   www.nptelvideos.in/2012/12/digital-signal-processing.html
   www.nptelvideos.in/2012/11/digital-signal-processing.html
- 5. www.youtube.com/watch?v=6dFnpz\_AEyA

CHAIRMAN Board of Studies Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 46c.

# DIGITAL COMMUNICATION

LTPC 3 0 2 4

# COURSE OBJECTIVES

- To know the principles of sampling & quantization
- To study the various waveform coding schemes
- To learn the various baseband transmission schemes
- To understand the various Band pass signaling schemes
- To know the fundamentals of channel coding

### COURSE OUTCOMES

| 16ECD10.CO1  | Demonstrate the Concept of Sampling and quantization                                            |
|--------------|-------------------------------------------------------------------------------------------------|
|              | Design and implement the various wave form coding schemes                                       |
|              | Explain the Base band transmission system using Nyquist criterion                               |
| 16F.CD10.CO3 | Explain the Base band transmission system using try quist enterior                              |
| 16ECD10.CO4  | Analyze the spectral characteristics of band pass signaling schemes and their noise performance |
| 16ECD10.CO5  | Compare different types of error control coding                                                 |
|              | 16ECD10.CO3<br>16ECD10.CO4                                                                      |

| Course<br>Outcomes |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      | PSOs |      |      |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|
|                    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECD10.CO1        | ×   | ×                | ×   | х   | ×   | ×   | ×   |     | ×   | ×    | ×    | ×    | X    | X    | X    |  |
| 16ECD10.CO2        | ×   | ×                | ×   | ×   | ×   | ×   | ×   |     | х   | ×    | ×    | Х    | ×    | X    | X    |  |
| 16ECD10.CO3        | ×   | ×                | ×   | ×   | x   | ×   | ×   |     | ×   | ×    | ×    | ×    | ×    | ×    | ×    |  |
| 16ECD10.CO4        | ×   | x                | ×   | ×   | х   | ×   | ×   |     | ×   | ×    | х    | х    | X    | X    | ×    |  |
| 16ECD10.CO5        | ×   | x                | x   | ×   | ×   | ×   | ×   |     | ×   | ×    | x    | х    | ×    | ×    | ×    |  |

SAMPLING & QUANTIZATION

Low Pass Sampling - Aliasing - Signal Reconstruction- Pulse Amplitude Modulation - Pulse Code Modulation - Quantization - Uniform & Non-Uniform Quantization - Quantization Noise - Quantization Noise Ratio - Logarithmic Companding of Speech Signal - Time Division Multiplexing.

### WAVEFORM CODING

Prediction Filtering - Differential Pulse Code Modulation - Adaptive Differential Pulse Code Modulation - Delta Modulation, Signal to Noise Ratio, Slope Overload Distortion, Granular Noise - Adaptive Delta Modulation

- Comparison of Digital Pulse Modulation Systems - Linear Predictive Coding.

### BASEBAND TRANSMISSION **UNIT III**

Line Codes - Power Spectral Density of Line Codes Integrate and Dump Receiver - Optimum Receiver -Matched Filter- Coherent Reception - Intersymbol Interference - Nyquist criterion for Distortionless Transmission, Ideal Solution, Raised Cosine Spectrum - Pulse Shaping - Correlative Coding, Duobinary Encoder, Modified Duobinary Encoder - M ary Schemes - Eye pattern - Equalization.

# DIGITAL MODULATION SCHEME

Geometric Representation of signals - Generation, Detection, Power Spectral Density & Bit Error Rate of Coherent BPSK, BFSK & QPSK - QAM - Comparison of Digital Modulation Systems - Synchronization, Modes of Synchronization, Carrier Synchronization, Costas Loop for Carrier Synchronization, Frame and Bit Synchronization, Closed Loop Bit Synchronization, Early Late Bit Synchronization.

## ERROR CONTROL CODING

Need for Error Detection and Correction, Overview of Error Control Systems, ARQ System, Random and Burst Errors, Definitions of Code Word, Code Rate, Code Vectors, Code Efficiency - Linear Block codes -Hamming codes - Cyclic codes - Convolutional Codes, Graphical Representation for Convolutional Encoding -Vitterbi Decoder.

TOTAL: 45 Hrs

CHAIRMAN

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 400.

# LIST OF EXPERIMENTS:

- 1. Signal Sampling and reconstruction
- 2. PAM and PWM Generation and detection
- 3. Time Division Multiplexing
- 4. AM Modulator and Demodulator
- 5. FM Modulator and Demodulator
- Pulse Code Modulation and Demodulation
- 7. Delta Modulation and Demodulation
- 8. Line coding schemes
- 9. Communication link simulation
- 10. FSK, PSK and QPSK schemes (Simulation)

TOTAL: 30 Hrs

### TEXT BOOKS

| Sl.No | Author(s)     | Title of the Book                                        | Publisher         | Year of<br>Publication |  |
|-------|---------------|----------------------------------------------------------|-------------------|------------------------|--|
| 1.    | S. Haykin     | Digital Communications                                   | John Wiley        | 2013                   |  |
| 2.    | Bernard Sklar | Digital Communication,<br>Fundamentals and Applicationsl | Pearson Education | 2014                   |  |

### REFERENCE BOOKS

| Sl.No | Author(s)                                          | Title of the Book                                                 | Publisher                    | Year of<br>Publication |  |
|-------|----------------------------------------------------|-------------------------------------------------------------------|------------------------------|------------------------|--|
| 1.    | B.P.Lathi, ZhiDing.                                | ChiDing. Modern Digital and Analog Communication Systems Oxford U |                              | 2012                   |  |
| 2.    | H P Hsu, Schaum  Analog and Digital Communications |                                                                   | ТМН                          | 2011                   |  |
| 3.    | J.G Proakis                                        | Digital Communication                                             | Tata Mc Graw Hill<br>Company | 2006.                  |  |
| 4.    | Leon W. Couch                                      | Digital and Analog<br>Communication Systems,                      | Pearson Education            | 2008                   |  |
| 5.    | A.F Molisch                                        | Wireless Communication                                            | John Wiley & Sons Ltd        | 2009                   |  |

### WEB URLs

- 1. www.nptel.ac.in/courses/117101051
- 2. www.nptel.ac.in/courses/117101051/2
- 3. www.nptel.ac.in/courses/117101051/3
- 4. www.nptel.ac.in/courses/117101051/10
- 5. www.nptel.ac.in/courses/117101051/12

SAM

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637-406.

# COMPUTER ARCHITECTURE AND ORGANIZATION

LTPC 3 0 0 3

### COURSE OBJECTIVES

- Brief the historical development of computing machines
- Understand the arithmetic algorithms and circuits needed to process data.
- Focus on concepts of pipelining to speed up the data processing
- Explain the organization of main memory, cache memory and virtual memory mechanisms and examine the design of I/O system
- Distinguish the approaches to control unit design hardwired and micro programmed

## COURSE OUTCOMES

| 16ECD11.CO1 | Describe the central processing unit focusing on instruction set design               |
|-------------|---------------------------------------------------------------------------------------|
| 16ECD11.CO2 | Apply arithmetic algorithms and interpret the processed data                          |
|             | Apply and the Louist design and I/O system design                                     |
| 16ECD11.CO3 | Appraise the control unit design and I/O system design                                |
| 16ECD11.CO4 | Recognize the principal memory technologies from a hierarchical view point            |
| 16ECD11.CO5 | Explain the system organization of a pipelined and superscalar processor cache memory |

|                    |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      | PSOs |      |      |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECD11.CO1        | ×   | ×                | ×   | ×   |     | ×   |     | 1   |     |      | ×    | ×    |      |      | ×    |
| 16ECD11.CO2        | ×   | ×                | Х   | ×   |     | ×   |     |     |     |      | ×    | X    |      |      | X    |
| 16ECD11.CO3        | x   | ×                | x   |     |     | x   |     |     |     |      | X    | ×    |      |      | X    |
| 16ECD11.CO4        | ×   | ×                | X   | ×   |     | x   |     |     |     |      | x    | ×    |      |      | X    |
| 16ECD11.CO5        | x   | ×                | x   | ×   |     | ×   |     |     | -   |      | ×    | ×    |      |      | ×    |

#### INTRODUCTION UNIT I

Computing and Computers, Evolution of Computers, VLSI Era, System Design- Register Level, Processor Level, CPU Organization, and Data Representation, Fixed -Point Numbers, Floating Point Numbers, Instruction Formats, Instruction Types. Addressing modes

## DATA PATH DESIGN

Fixed Point Arithmetic, Addition, Subtraction, Multiplication and Division, Combinational and Sequential ALUs, Carry look ahead adder, Robertson algorithm, booth's algorithm, non restoring division algorithm, Floating Point Arithmetic, Coprocessor, Modified booth's Algorithm.

# CONTROL DESIGN

Introduction to Control Design-Control Transfer- Hardwired Control, Micro programmed Control, Multiplier Control Unit, CPU Control Unit, Pipeline Control, Instruction Pipelines, Pipeline Performance, and Superscalar Processing.

# MEMORY ORGANIZATION

Random Access Memory: Static RAM, Dynamic RAM, Serial - Access Memories, RAM Interfaces, Magnetic Surface Recording, Optical Memories, multilevel memories, Cache & Virtual Memory, Memory Allocation, Associative Memory.

## SYSTEM ORGANIZATION

Communication methods, Buses, Bus Control, Bus Interfacing, Bus arbitration, IO and system control, IO interface circuits, Handshaking, DMA and interrupts, vectored interrupts, pipeline interrupts, IOP organization, multiprocessors, fault tolerance, RISC and CISC architecture.

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 406.

# TEXT BOOKS

| Sl.No | Author(s)                                                | Title of the Book                      | Publisher        | Year of<br>Publication |
|-------|----------------------------------------------------------|----------------------------------------|------------------|------------------------|
| 1.    | John P.Hayes                                             | Computer architecture and Organisation | Tata McGraw-Hill | 1998                   |
| 2.    | V.CarlHamacher, Zvonko G.<br>Varanesic and Safat G. Zaky | Computer Organisation                  | McGraw-Hill Inc  | 2002.                  |

# REFERENCE BOOKS

| Sl.No | Author(s)                                | Title of the Book                                                       | Publisher           | Year of<br>Publication |  |  |
|-------|------------------------------------------|-------------------------------------------------------------------------|---------------------|------------------------|--|--|
| 1.    | Parhami                                  | Computer Architecture                                                   | Oxford Press<br>BEH | 2005                   |  |  |
| 2.    | P.Pal Chaudhuri                          | P.Pal Chaudhuri Computer organization and design Prentice Hall of India |                     |                        |  |  |
| 3.    | Miles J. Murdocca and Vincent P. Heuring | Principles of Computer<br>Architecture                                  | Prentice Hall       | 2000                   |  |  |
| 4.    | William Stallings                        | Computer Organization Computer                                          |                     |                        |  |  |
| 5.    | Vincent P. Heuring, Harry F. Jordan,     | Computer System Architecture                                            | Pearson Education   | 2005                   |  |  |

### WEB URLs:

- 1. www.nptel.ac.in/courses/106103068/
- www.en.wikiversity.org/wiki/Computer\_architecture\_and\_organization
   www.gradeup.co/introduction-of-computer-organization-and-architecture-i-490c999
- 4. www.tutorialspoint.com/computer\_organization/index.asp
- 5. www.nptel.ac.in/courses/106103068/

### EMBEDDED SYSTEM

LTPC 3 0 2 4

### COURSE OBJECTIVES

- To study the overview of Embedded System Architecture.
- To study about the ARM Architecture.
- To learn various embedded communication protocols.
- To learn the Real Time operating System Concepts.
- To Study about applications of Embedded System.

### COURSE OUTCOMES

| Describe hardware and software architectures of Embedded Systems Explain the Architecture of ARM Processor Explain the various Communication Protocols Identify the Real Time Operating System and operations |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrate the applications of Embedded Processor                                                                                                                                                            |
|                                                                                                                                                                                                               |

| Course      | Page 1 |     | PSOs |     |     |     |     |     |     |      |      |      |      |      |      |
|-------------|--------|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Outcomes    | PO1    | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECD12.CO1 | ×      | ×   | х    | х   | ×   | ×   | ×   | ×   | ×   |      | X    | ×    | ×    | Х    | ×    |
| 16ECD12.CO2 | x      | X   | х    | ×   | ×   | ×   | x   | ×   | х   |      | ×    | ×    | х    | x    | X    |
| 16ECD12.CO3 | x      | x   | x    | ×   | ×   | ×   | ×   | ×   | ×   | -    | ×    | х    | х    | ×    | X    |
| 16ECD12.CO4 | ×      | ×   | х    | ×   | ×   | x   | ×   | ×   | ×   |      | ×    | ×    | х    | ×    | ×    |
| 16ECD12.CO5 | x      | ×   | ×    | ×   | ×   | ×   | ×   | ×   | ×   |      | х    | ×    | ×    | X    | ×    |

# ARCHITECTURE OF EMBEDDED SYSTEMS

Architecture of Embedded Systems - Categories of embedded systems - specialties of embedded systems -Recent trends in embedded systems -Hardware architecture -Software architecture -Communication software -Process of generation of executable image -development/testing tools.

#### ARM ARCHITECTURE UNIT II

Advanced RISC Machine - Architecture Inheritance - ARM Programming Model - ARM Development Tools - 3 and 5 stages Pipeline ARM Organization - ARM Instruction Execution and Implementation - ARM Co-Processor Interface - Thumb bit in the CPSR - Thumb programmer's model

# EMBEDDED COMMUNICATION PROTOCOLS

Serial/Parallel Communication - Serial communication protocols - UART - RS232 standard - Serial Peripheral Interface - Inter Integrated Circuits - Ethernet - Universal serial Bus - Controller Area Network - Parallel communication protocols - ISA / PCI Bus protocols, Internet of Things- Overview and Architecture.

# REAL-TIME OPERATING SYSTEM CONCEPTS

Architecture of the Kernel- Foreground/Background Systems- Critical Sections of Code-Resources- Shared Resources- Multitasking- Tasks- Context Switches- Kernels- Schedulers-Non-Preemptive Kernels- Preemptive Kernels-Task Priorities-Static Priorities-Dynamic Priorities-Priority Inversion- Mutual Exclusion- Deadlock-Event Flags- Inter task Communication- Message Mailboxes- Message Queues- Interrupts- Interrupt Latency-Interrupt Response- Interrupt Recovery- RTOS: RT Linux - VX Works - μCOS.

#### UNIT V APPLICATIONS

Working Principle, State Diagram, Architecture, Digital camera-washing machine-cell phones-home security systems-finger print identifiers-cruise control- printers -Automated teller machine-Washing machine-Software Modem-Audio Player.

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 466.

### LIST OF EXPERIMENTS

- 1. Interface Switches and LED's
- 2. Interface Switches
- 3. Interface LCD and Display "Hello World"
- 4. Interface 4\*4 Matrix Keyboard
- 5. Interface Stepper Motor
- 6. Interface 7 Segment Display using I2C
- 7. Interfacing Analog to Digital Converter
- 8. Interface Digital to Analog Converter
- Implementing Real Time Clock
   Mini Project

TOTAL: 30 Hrs

### TEXT BOOKS

| Sl.No         | Author(s)       | Title of the Book                                             | Publisher        | Year of<br>Publication |  |
|---------------|-----------------|---------------------------------------------------------------|------------------|------------------------|--|
| 1. Raj Kamal, |                 | Embedded Systems Architecture programming and Design          | ТМН              | 2011                   |  |
| 2.            | Prasad.K.V.K.K, | Embedded Real-Time Systems: Concepts,<br>Design & Programming | Dream tech press | 2011                   |  |

# REFERENCE BOOKS

| SI.No | Author(s)                                         | Title of the Book                                                           | Publisher                               | Year of<br>Publication |  |
|-------|---------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|------------------------|--|
| 1.    | Wayne Wolf                                        | Computers as Components - Principles of Embedded Computing System Design    | Morgan Kaufman<br>Publishers            | 2013                   |  |
| 2.    | Steve Furber,                                     | ARM System on Chip Architecture                                             | Addison- Wesley<br>Professional         | 2000                   |  |
| 3.    | Andrew N.Sloss,<br>Dominic Symes, Chris<br>Wright | ARM System Developer's Guide<br>Designing and Optimizing System<br>Software | Morgan Kaufmann<br>Publishers, Elsevier | 2004                   |  |
| 4.    | A.P.Godse&A.O.Mulani                              | Embedded Systems                                                            | Technical publications                  | 2009                   |  |
| 5.    | B.Kanth Rao,                                      | Embedded Systems                                                            | PHI Learning Private<br>Limited         | 2011                   |  |

### WEB URLs

- 1. http://www.nptel.ac.in/courses/108102045/
- 2. http://freevideolectures.com/Course/2341/EmbeddedSystems
- 3. nptel.ac.in/courses/108105057/Pdf/Lesson-3.pdf
- 4. nptel.ac.in/downloads/108105057/
- 5. nptel.ac.in/courses/108102045/5

SAN

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408

# ANTENNA AND WAVE PROPAGATION

LTPC 3 0 0 3

## COURSE OBJECTIVES

- To introduce antenna fundamentals and basic terminologies
- To study antenna arrays
- To give a thorough understanding of aperture and slot antennas
- To understand special purpose antennas and techniques involved in the measurement of antenna parameter
- To create awareness about the different types of propagation of radio waves

### COURSE OUTCOMES

| 16ECD13.CO1 | Describe various antenna parameters                                 |
|-------------|---------------------------------------------------------------------|
| 16ECD13.CO2 | Design broad side and End fire arrays                               |
| 16ECD13.CO3 | Analyze radiation patterns of aperture and slot antennas            |
| 16ECD13.CO4 | Describe special purpose antenna and antenna measurement techniques |
| 16ECD13.CO5 | Discuss radio wave propagation                                      |

| Course<br>Outcomes |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      | PSOs |      |      |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|
|                    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECD13.CO1        | X   | x                | x   |     | ×   | ×   | ×   |     | ×   |      | ×    | ×    | ×    | ×    | ×    |  |
| 16ECD13.CO2        | ×   | ×                | х   |     | Х   | ×   | ×   |     | ×   |      | ×    | X    | ×    | ×    | ×    |  |
| 16ECD13.CO3        | ×   | ×                | X   |     | ×   | ×   | ×   |     | ×   |      | ×    | ×    | ×    | ×    | ×    |  |
| 16ECD13.CO4        | ×   | X                | х   |     | ×   | x   | ×   |     | ×   |      | ×    | ×    | ×    | ×    | ×    |  |
| 16ECD13.CO5        | ×   | ×                | ×   |     | X   | ×   | x   |     | ×   |      | ×    | ×    | ×    | X    | ×    |  |

### ANTENNA FUNDAMENTALS UNIT I

Radiation from antenna, Basic antenna parameters - Radiation pattern, Radiation intensity, Beam area, Beam solid angle, Band width, Beam width, Directivity, Gain, Antenna aperture, Effective height, Effective aperture, Radiation Resistance, Input Impedance. Matching - Baluns, Radiation from Half wave dipole, folded dipole.

### ANTENNA ARRAYS UNIT II

Antenna Arrays, Expression for electric field due to two point sources: Radiation pattern, Equal voltage with same phase (Broad-side array ), Equal voltage with phase shift (End-Fire array), Different voltage with phase shift - Expression for electric field due to N element Array: Broad-side array and End-Fire array - Pattern Multiplication-Binomial array, Yagi-Uda Array.

# APERTURE AND SLOT ANTENNAS

Radiation from rectangular apertures, Horn antenna: E-Sectorial horn, H-Sectorial horn, Prymidal Horn, Horn antenna design parameters, Parabolic reflector antenna: Different types of parabolic reflectors, Spill over, Aperture blockage, Feeding mechanism of Dish antenna, Slot antennas, Microstrip patch antennas, Numerical tool for antenna analysis.

### SPECIAL ANTENNAS AND ANTENNA MEASUREMENTS UNIT IV

Principle of frequency independent antennas -Spiral antenna, Helical antenna, Log Periodic Dipole Array and its design- Reconfigurable antenna, Antenna Measurements: Antenna Test Ranges, Measurement of Gain, Measurement of Voltage Standing Wave Ratio, Measurement of Directivity.

> CHAIRMAN Board of Studies Department of Electronics and Communication Engineering Muthavammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408

### PROPAGATION OF RADIO WAVES UNIT V

Ground wave propagation: Attenuation characteristics for ground wave Sky wave propagation: Structure of the ionosphere-Critical frequency- Skip distance- Effect of earth's magnetic field- Attenuation factor for ionosphere propagation- Maximum usable frequency. Space wave propagation: Reflection characteristics of earth- Resultant of direct and reflected ray at the receiver- Duct propagation, fading and Diversity reception.

TOTAL: 45 Hrs

### TEXT BOOK

| Sl.No | Author(s)                              | Title of the Book                | Publisher         | Year of<br>Publication |
|-------|----------------------------------------|----------------------------------|-------------------|------------------------|
| 1.    | John D Kraus and<br>Ronald J. Marhefka | Antennas for all<br>Applications | Tata Mc Graw-Hill | 2001                   |
| 2.    | Robert E. Collin                       | Antennas and Radio Propagation   | Mc Graw Hill      | 1985                   |

### REFERENCES

| SI.No | Author(s)                         | Title of the Book                   | Publisher                | Year of<br>Publication |  |
|-------|-----------------------------------|-------------------------------------|--------------------------|------------------------|--|
| 1.    | Constantine A. Balanis            | Antenna Theory: Analysis and Design | Wiley                    | 2016                   |  |
| 2.    | Rajeswari Chatterjee              | Antenna Theory and<br>Practice      | New Age<br>International | 2006                   |  |
| 3.    | Serge Drabowitch                  | Modern Antennas                     | Springer Publications    | 2005                   |  |
| 4.    | G.S.N.Raju                        | Antenna Wave Propagation            | Pearson Education        | 2005                   |  |
| 5.    | A.R. Harish and<br>M. Sachidanada | Antennas and Wave propagation       | Oxford University Press  | 2007                   |  |

### WEB URLs

- 1. www.nptel.ac.in/courses/117107035
- 2. www.nptel.ac.in/courses/117101056
- www.amanogawa.com/chive/antennapdf.comar
- www.maritime.org/doc/neets/mod10.pdf
- 5. www.radio-astronomy.org/library/Antenna-design.pdf

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

### VLSI DESIGN

LTPC 3 0 2 4

### COURSE OBJECTIVES

- To learn basic CMOS Circuits
- To learn CMOS process technology
- To learn techniques of chip design using programmable devices
- To learn the concepts of designing VLSI Subsystems
- To learn the concepts of modeling a digital system using Hardware Description Language

### COURSE OUTCOMES

| 16ECD14.CO1 | Explain the process of MOS fabrication methods                 |
|-------------|----------------------------------------------------------------|
| 16ECD14.CO2 | Use Lambda based design rules for Layouting simple MOS circuit |
| 16ECD14.CO3 | Apply the Lambda based design rules for subsystem design       |
| 16ECD14.CO4 | Differentiate various FPGA architectures                       |
| 16FCD14.CO5 | Design an application using Verilog HDL                        |

| Course<br>Outcomes |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
|                    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECD14.CO1        | X   | ×                | ×   | ×   | ×   | ×   |     |     | X   |      | ×    | ×    | X    | X    | X    |  |  |
| 16ECD14.CO2        | X   | ×                | х   | х   | ×   | ×   |     |     | ×   |      | ×    | X    | X    | ×    | ×    |  |  |
| 16ECD14.CO3        | ×   | ×                | Х   | ×   | X   | ×   |     |     | ×   |      | ×    | ×    | X    | ×    | ×    |  |  |
| 16ECD14.CO4        | ×   | ×                | х   | ×   | ×   | ×   |     |     | ×   |      | ×    | ×    | ×    | ×    | ×    |  |  |
| 16ECD14.CO5        | x   | x                | ×   | х   | ×   | ×   |     |     | х   |      | ×    | ×    | X    | ×    | ×    |  |  |

MOS TRANSISTOR THEORY UNIT I

Introduction to MOSFET: Enhancement mode & Depletion mode -Characteristics -Body Effect -Fabrication: NMOS, PMOS - CMOS fabrication - P-well, N-well, Twin-Tub, SOI - BiCMOS Technology -Comparison with CMOS

MOS CIRCUITS AND DESIGN

Basic Electrical properties of MOS circuits - DC Equations, NMOS & CMOS inverter - Second Order Effects- Basic circuit concepts-Sheet resistance-Area Capacitances-Capacitance calculations-Inverter delays-Scaling of MOS Devices -Scaling Models and Scaling Factors MOS layers - Stick diagram - NMOS Design Style -CMOS Design style - lambda based design rules- Simple Layout examples

SUBSYSTEM DESIGN & LAYOUT

Switch Logic - Pass transistors and transmission gates - Two input NMOS, CMOS gates: NOT- NAND-NOR gates - Other forms of CMOS logic - Static CMOS logic-Dynamic CMOS logic - Clocked CMOS logic -Pre-charged domino CMOS logic - Structured design of simple Combinational logic design- Multiplexers -Clocked sequential circuits - Two phase clocking - D-Flip-flop-Charge storage - Dynamic register element -Dynamic shift register

PROGRAMMABLE LOGIC DEVICES

Programmable Logic Devices - PLA, PAL - Finite State Machine design using PLA - Introduction to FPGA - FPGA Design flow - Architecture - FPGA devices: Xilinx XC 2000- Xilinx XC 3000 Xilinx XC 4000 -Altera cyclone III

VERILOG HDL DESIGN PROGRAMMING UNIT V

Basic concepts: VLSI Design flow, Modeling, Syntax and Programming, Design Examples: Combinational Logic - Multiplexer, Decoder/Encoder, Comparator, Adders, Multipliers, Sequential logic- Flip Flops, Registers, and Counters, Memory-Introduction to back end tools

TOTAL: 45 Hrs

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 466.

# LIST OF EXPERIMENTS

1. Design and Simulation of combinatorial logic Circuit Using VERILOG HDL

Basic Logic gates

Adders - Half adder, full adder,

Multiplexer and demultiplexer

Encoder and Decoder

Multiplier

2. Design and simulation of Sequential logic circuit using VERILOG HDL

Flip-flops

Counters

Shift registers

3. CMOS Circuit design using Tanner tools

CMOS inverter

CMOS NAND and NOR Gates

CMOS D Latch

4. Mini Project

TOTAL: 30 Hrs

### TEXT BOOKS

| Sl.No | Author(s)                            | Title of the Book              | Publisher                     | Year of<br>Publication |
|-------|--------------------------------------|--------------------------------|-------------------------------|------------------------|
| 1.    | Douglas A.Pucknell, K.<br>Eshragian  | Basic VLSI Design              | PHI                           | 2009                   |
| 2.    | Neil.H.E.Weste,<br>KamaranEshraghian | Principles of CMOS VLSI Design | Addiso Wesley<br>Publications | 2002                   |

EFEDENCE POOKS

| Sl.No | Author(s)          | Title of the Book                                                       | Publisher                     | Year of<br>Publication |  |
|-------|--------------------|-------------------------------------------------------------------------|-------------------------------|------------------------|--|
| 1.    | Samir Palnitkar    | Verilog HDL–Guide to Digital design and synthesis                       | Pearson Education             | 2009                   |  |
| 2.    | Wayne Wolf         | Modern VLSI Design                                                      | Pearson Education             | 2003                   |  |
| 3.    | Eugene D.Fabricius | Introduction to VLSI Design                                             | Tata McGraw Hill              | 1990                   |  |
| 4.    | John P.Uyemura     | Introduction to VLSI circuits and Systems                               | John Wiley and<br>Sons        | 2005                   |  |
| 5.    | KeshabK.Parhi      | VLSI Digital Signal Processing<br>Systems, Design and<br>Implementation | John Wiley, Indian<br>Reprint | 2007                   |  |

## WEB URLs

- 1. www.tutorialspoint.com/vlsi\_design/vlsi\_design\_digital\_system.htm
- 2. www.en.wikipedia.org/wiki/Very-large-scale\_integration
- www.hindawi.com/journals/vlsi/
   www.nptel.ac.in/courses/117101058/
- 5. www.nptel.ac.in/courses/117106093/

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637,408.

### COMPUTER NETWORKS

LTPC 3024

### **COURSE OBJECTIVES**

- To introduce the students the functions of Data link layer.
- To introduce the students the functions of Network and Transport layer.
- To introduce the students the functions of Transport and Application Layer.
- To introduce IEEE standard employed in computer networking.
- To make students to get familiarized with different protocols and network components.

### **COURSE OUTCOMES**

| 16ECD15.CO1 | Design an application using Verilog HDL                             |
|-------------|---------------------------------------------------------------------|
| 16ECD15.CO2 | Explain data link layer protocols and LAN standards                 |
| 16ECD15.CO3 | Analyze routing algorithms and methods to improve QOS               |
| 16ECD15.CO4 | Summarize transport layer protocols and congestion controls methods |
| 16ECD15.CO5 | Describe various application layer services                         |

| Course      |     |     | Program Outcomes |     |     |     |     |     |     |      |      |      |      |      | PSOs |  |  |  |
|-------------|-----|-----|------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|--|
| Outcomes    | PO1 | PO2 | PO3              | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |  |
| 16ECD15.CO1 | х   | X   | X                | X   | X   | x   |     |     | х   |      | X    | X    | Х    | X    | X    |  |  |  |
| 16ECD15.CO2 | X   | х   | X                | Х   | х   | х   |     |     | X   |      | X    | X    | x    | x    | X    |  |  |  |
| 16ECD15.CO3 | X   | X   | X                | х   | x   | X   |     |     | x   |      | X    | X    | Х    | X    | X    |  |  |  |
| 16ECD15.CO4 | X   | x   | x                | x   | х   | X   |     |     | X   |      | X    | X    | X    | X    | X    |  |  |  |
| 16ECD15.CO5 | X   | X   | X                | x   | х   | X   |     |     | х   |      | X    | X    | х    | х    | Х    |  |  |  |

### UNIT I NETWORK COMPONENTS

.

Introduction to networks –Topologies – Protocols and Standards–ISO/OSI model-TCP/IP- Comparison of OSI model and TCP/IP. Introduction to physical layer–Transmission Media – Coaxial Cable–Fiber Optics–Digital-to-digital line Coding.

### UNIT II DATA LINK LAYER

9

LAN: Ethernet IEEE 802.3, IEEE802.5, IEEE802.11, Bridges. Error detection and correction—Forward Error Correction—Flow Control and Error control techniques - Stop and wait - Go back N ARQ - Selective repeat ARQ - sliding window techniques - HDLC.

## UNIT III NETWORK LAYER

9

Internetworks - Packet Switching and Datagram approach - IP addressing methods - IPv6- Subnetting - Routing - Distance Vector Routing, Link State Routing, Quality of services (QOS) - methods to improve QOS parameters.

### UNIT IV TRANSPORT LAYER

9

Overview of Transport layer- Multiplexing - Demultiplexing - Sockets - User Datagram Protocol (UDP) - Reliable byte stream (TCP) -- Connection management - Transmission Control Protocol(TCP) - Congestion Control - RSVP

# UNIT V APPLICATION LAYER AND SECURITY

9

Domain Name Space (DNS), Simple Mail Transfer Protocol (SMTP). File Transfer Protocol(FTP), HTTP, WWW Network security and cryptography: Symmetric key cryptography – Data Encryption standard & Advanced Encryption Standard, Asymmetric key cryptography.

TOTAL: 45 Hrs

CHAIRMAN

Board of Studies

Iectronics and Communication

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 637 408.

### LIST OF EXPERIMENTS

- 1. PC to PC Communication
- 2. Ethernet LAN protocol
- 3. To create scenario and study the performance of CSMA/CD protocol through simulation
- 4. Token bus and token ring protocols
- 5. To create scenario and study the performance of token bus and token ring protocols through simulation
- 6. To create scenario and study the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.
- Implementation and study of stop and wait protocol
- 8. Implementation and study of Goback-N and selective repeat protocols
- Implementation of distance vector routing algorithm
- 10. Implementation of Link state routing algorithm

TOTAL: 30 Hrs

### TEXT BOOKS

| Sl.No                 | Author(s)           | Title of the Book                 | Publisher        | Year of<br>Publication |  |
|-----------------------|---------------------|-----------------------------------|------------------|------------------------|--|
| 1. Behrouz. A.Foruzan |                     | Data communication and Networking | Tata McGraw-Hill | 2013                   |  |
| 2.                    | Andrew S.Tannenbaum | Computer Networks                 | РНІ              | 2003                   |  |

### REFERENCE BOOKS

| Sl.No | Author(s)                                         | Title of the Book                                        | Publisher                       | Year of<br>Publication |  |  |
|-------|---------------------------------------------------|----------------------------------------------------------|---------------------------------|------------------------|--|--|
| 1.    | James. F.Kurouse & W.Rouse                        | Computer networking: A<br>Top down Approach<br>Featuring | Addison Wesley                  | 2009                   |  |  |
| 2.    | Larry. L.Peterson &<br>Peter. S.Davie             | Computer Networks Harcourt Asia PVI, Ltd                 |                                 | 2007                   |  |  |
| 3.    | Bhushan Trivedi                                   | Computer Networks                                        | Oxford University Press         | 2012                   |  |  |
| 4.    | Ajit Pal Data communication and Computer Networks |                                                          | PHI Learning Private<br>Limited | 2014                   |  |  |
| 5.    | Chwan-Hwa (John) Wu,<br>J. David Irwin            | Introduction to Computer<br>Networks and Cybersecurity   | CRC Press                       | 2012                   |  |  |

## WEB URLs:

- 1. www.nptel.ac.in/courses/106105081/1
- 2. www.nptel.ac,in/courses/106105081/2
- 3. www.nptel.ac.in/courses/106105081/3
- www.nptel.ac.in/courses/106105081/9
   www.nptel.ac.in/courses/106105081/13

CHAIRMAN

Board of Studies Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 406

# DIGITAL IMAGE PROCESSING

LTPC 3 0 0 3

## COURSE OBJECTIVES

Learn digital image fundamentals.

Be exposed to simple image processing techniques.

Be familiar with image compression and segmentation techniques.

To learn Wavelets and Image compression

Learn to represent image in form of features

### COURSE OUTCOMES

| 16ECD16.CO1 | Explain the fundamentals of image processing                                           |
|-------------|----------------------------------------------------------------------------------------|
| 16ECD16.CO2 | Apply image processing enhancement techniques in both the spatial and frequency domain |
| 16ECD16.CO3 | Apply image processing segmentation and restoration techniques                         |
| 16ECD16.CO4 | Develop algorithms for image compression                                               |
| 16ECD16.CO5 | Explain the image analysis techniques                                                  |

| Course<br>Outcomes |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
|                    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECD16.CO1        | ×   | ×                | х   |     | x   |     |     |     | ×   |      |      | x    |      | ×    |      |  |  |
| 16ECD16.CO2        | ×   | х                | х   | ×   | ×   |     |     |     | x   |      |      | х    |      | X    |      |  |  |
| 16ECD16.CO3        | x   | ×                | х   | ×   | ×   |     |     |     | ×   |      |      | ×    |      | ×    |      |  |  |
| 16ECD16.CO4        | x   | ×                | х   | ×   | ×   |     |     |     | ×   |      |      | ×    |      | X    |      |  |  |
| 16ECD16.CO5        | x   | ×                | х   | х   | ×   |     |     |     | x   |      |      | ×    |      | ×    |      |  |  |

### DIGITAL IMAGE FUNDAMENTALS UNIT I

Introduction - Origin - Steps in Digital Image Processing - Components - Elements of Visual Perception -Sensing and Acquisition - Image Sampling and Quantization - Relationships between pixels - color Coordinate Systems -RGB, HSI, L\*a\*b\* and Color conversion, Image Transforms, Introduction to Fourier Transform ,2 D DFT, DCT, Hadamard, Haar, KL Transform.

## IMAGE ENHANCEMENT

Spatial Domain: Gray level transformations - Contrast Stretching, Digital Negative, Intensity level Slicing, Bit Extraction ,log transformation, Histogram processing , Equalization and Specification, of Spatial Filtering-Smoothing Smoothing linear filters, Non linear filters, Sharpening Spatial Filtering -Foundation, the Laplacian, Unsharp Masking and High boost filtering, Frequency Domain: Smoothing and Sharpening frequency domain filters - Ideal, Butterworth, Gaussian filters and Homomorphic filtering.

### IMAGE RESTORATION AND SEGMENTATION **UNIT III**

Image Restoration : Noise models, Degradation model, Algebraic approach to Restoration - Mean Filters -Order Statistics - Adaptive filters - Band reject Filters - Band pass Filters - Notch Filters - Optimum Notch Filtering - Inverse Filtering ,Least Mean Square Filtering, Constrained Least Squares Restoration- Wiener filtering Segmentation: Detection of Discontinuities: Lines and Edges -Edge Linking, Hough Transform and Boundary detection - Region based segmentation- Morphological processing- erosion, dilation, Opening Image Restoration :Noise models, and Closing.

WAVELETS AND IMAGE COMPRESSION

Wavelets - Sub band coding - Multiresolution expansions - Compression: Fundamentals - Image Compression models - Error Free Compression - Variable Length Coding , LZW, Bit-Plane Coding , Lossless Predictive Coding - Lossy Compression, Lossy Predictive Coding - Compression Standards: JPEG, MPEG, Basics of Vector quantization.

> **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakka! - 637 4Co.

### IMAGE REPRESENTATION AND RECOGNITION UNIT V

Boundary representation – Chain Code – Polygonal approximation, signature, boundary segments – Boundary description – Shape number – Fourier Descriptor, moments- Regional Descriptors – Topological feature, Texture - Patterns and Pattern classes - Recognition based on decision – theoretic methods: Matching, optimum statically classifiers and Neural network.

**TOTAL: 45 Hrs** 

### TEXT BOOKS

| Sl.No | Author(s)                  | Title of the Book                           | Publisher         | Year of<br>Publication |  |
|-------|----------------------------|---------------------------------------------|-------------------|------------------------|--|
| 1.    | R.C. Gonzalez & R.E. Woods | Digital Image<br>Processing                 | Pearson education | 2015.                  |  |
| 2.    | A K Jain                   | Fundamentals of Digital<br>Image Processing | Pearson           | 2013                   |  |

### REFERENCE BOOKS

| Sl.No | Author(s)                                              | Author(s) Title of the Book                      |                            |      |  |  |
|-------|--------------------------------------------------------|--------------------------------------------------|----------------------------|------|--|--|
| 1.    | Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins | Digital Image Processing<br>Using MATLAB         | McGraw Hill                | 2011 |  |  |
| 2.    | Anil Jain K                                            | Fundamentals of Digital<br>Image Processing      | PHI                        | 2011 |  |  |
| 3.    | William K Pratt                                        | Digital Image Processing                         | Tata McGraw Hill           | 2002 |  |  |
| 4.    | Malay K. Pakhira                                       | Digital Image Processing and Pattern Recognition | PHI                        | 2011 |  |  |
| 5.    | S.Sridhar                                              | Digital Image Processing                         | Oxford Higher<br>Education | 2011 |  |  |

### WEB URLs:

- 1. www.youtube.com/watch?v=CVV0TvNK6pk
- 2. www.youtube.com/wa
- 3. www.youtube.com/watch?v=gIQ6S8U6Vpc
- 4. www.youtube.com/watch?v=IcBzsP-fvPo
- 5. www.youtube.com/watch?v=IcBzsP-fvPo

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 466.

## RF AND MICROWAVE ENGINEERING

LTPC 3024

### COURSE OBJECTIVES

- To inculcate understanding of the basics required for circuit representation of RF networks.
- To deal with the issues in the design of microwave amplifier.
- To understand various passive and active Microwave Devices.
- To understand microwave generation methods.
- To deal with the microwave measurement techniques

## COURSE OUTCOMES

| 16ECD17.CO1 | Explain the properties of S parameter                      |   |
|-------------|------------------------------------------------------------|---|
| 16ECD17.CO2 | Construct matching networks                                |   |
| 16ECD17.CO3 | Compute the S parameters of microwave passive devices      | 3 |
| 16ECD17.CO4 | Explain the concept of various microwave signal generators |   |
| 16ECD17.CO5 | Use microwave test bench and measuring instruments         |   |

| C                  |     |     | Program Outcomes |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |  |
|--------------------|-----|-----|------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
| Course<br>Outcomes | PO1 | PO2 | PO3              | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECD17.CO1        | ×   | ×   | ×                |     | ×   | ×   |     | ×   | х   |      | ×    | x    | х    | ×    | ×    |  |  |
| 16ECD17.CO2        | ×   | ×   | х                |     | ×   | ×   |     | ×   | x   |      | x    | x    | ×    | ×    | ×    |  |  |
| 16ECD17.CO3        | ×   | ×   | х                |     | ×   | ×   |     | ×   | х   |      | ×    | ×    | x    | ×    | ×    |  |  |
| 16ECD17.CO4        | ×   | ×   | х                |     | ×   | ×   |     | x   | х   |      | х    | ×    | х    | X    | ×    |  |  |
| 16ECD17.CO5        | ×   | ×   | ×                |     | X   | ×   |     | ×   | х   |      | ×    | Х    | ×    | ×    | ×    |  |  |

# TWO PORT NETWORK THEORY

Review of Low frequency parameters: Impedance, Admittance, Hybrid and ABCD parameters, Different types of interconnection of Two port networks, High Frequency parameters, Formulation of S parameters, Properties of S parameters, Reciprocal and lossless Network, RF behavior of Resistors, Capacitors and Inductors.

## RF AMPLIFIERS AND MATCHING NETWORKS

Characteristics of Amplifiers, Amplifier power relations, Stability considerations, Stabilization Methods, Noise Figure, Constant VSWR Circle, matching using discrete components, Two component matching Networks, Microstrip Line Matching Networks.

# PASSIVE AND ACTIVE MICROWAVE DEVICES

Attenuators, Phase shifters, Directional couplers, E-plane, H-Plane and Magic Tee, Circulator, Isolator, Impedance matching devices: Tuning screw, Stub and quarter wave transformers. Crystal diode detector, PIN diode switch, Gunn diode oscillator.

#### MICROWAVE GENERATION UNIT IV

High frequency effects in vacuum Tubes, Theory and application of Two cavity Klystron Amplifier, Reflex Klystron oscillator, Traveling wave tube amplifier, Magnetron oscillator using Cylindrical Cavity, Backward wave, Crossed field amplifier and oscillator.

# MICROWAVE MEASUREMENTS

Measuring Instruments: Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** 

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkel - 637-408.

# LIST OF EXPERIMENTS

- 1. Reflex klystron characteristics
- 2. Gunn diode characteristics
- 3. Measurement of Frequency and Wavelength
- 4. Measurement of VSWR
- 5. Directional Coupler Characteristics.
- 6. Radiation Pattern of Horn Antenna.
- 7. Radiation Pattern of Parabolic Antenna.
- 8. S-parameter Measurement of Isolator , Circulator
- 9. Characteristics of E plane Tee, H Plane Tee, Magic Tee
- 10. Measurement of Attenuation

TOTAL: 30 Hrs

### TEXT BOOKS

| Sl.No | Author(s)                            | Title of the Book                          | Publisher         | Year of<br>Publication |
|-------|--------------------------------------|--------------------------------------------|-------------------|------------------------|
| 1.    | Reinhold Ludwig and<br>Gene Bogdanov | RF Circuit Design: Theory and Applications | Pearson Education | 2011                   |
| 2.    | Robert E Colin                       | Foundations for Microwave<br>Engineering   | John Wiley & Sons | 2007                   |

### REFERENCES

| Sl.No | Author(s)                        | Title of the Book                                                                                                                 | Publisher           | Year of<br>Publication |  |  |
|-------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|--|--|
| 1.    | David M. Pozar                   | Microwave Engineering                                                                                                             | Wiley India (P) Ltd | 2011                   |  |  |
| 2.    | Thomas H Lee                     | Planar Microwave Engineering: A Practical Guide to Theory, Measurements and Circuits  Planar Microwave Cambridge University Press |                     |                        |  |  |
| 3.    | Mathew M Radmanesh               | RF and Microwave<br>Electronics                                                                                                   | Prentice Hall       | 2001                   |  |  |
| 4.    | Annapurna Das and<br>Sisir K Das | Microwave Engineering                                                                                                             | Tata Mc Graw Hill   | 2009                   |  |  |
| 5.    | Ahmad Shahid Khan                | Microwave Engineering:<br>Concepts and Fundamentals                                                                               | CRC Press           | 2017                   |  |  |

### WEB URLs

- www.nptel.ac.in/courses/117101119/2
   www.nptel.ac.in/courses/117101119/6
- 3. www.nptel.ac.in/courses/117101119/10
- 4. www.nptel.ac.in/courses/117101119/15
- 5. www.nptel.ac.in/courses/117101119/23

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40a.

### OPTICAL FIBER COMMUNICATION

LTPC 3024

### COURSE OBJECTIVES

- To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures
- To understand the different kind of losses, signal distortion in optical wave guides and other signal degradation factors
- To learn the various optical source materials, LED structures, quantum efficiency, Laser diodes
- To learn the fiber optical receivers such as PIN APD diodes, noise performance in photo detector, receiver operation and configuration
- To learn the fiber optical network components, variety of networking aspects, FDDI, SONET/SDH and operational principles WDM

### COURSE OUTCOME

| 16ECD18.CO1 | Classify the optical fiber structures and its fabrication techniques    |
|-------------|-------------------------------------------------------------------------|
| 16ECD18.CO2 | Analyze optical fiber transmission characteristics                      |
| 16ECD18.CO3 | Select the optical source for free space communications                 |
| 16ECD18.CO4 | Select the optical detectors to produce low noise Signal to Noise Ratio |
| 16ECD18.CO5 | Analyze the characteristics of optical network components               |

| Course      |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |
|-------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|
| Outcomes    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECD18.CO1 | x   | ×                | х   | ×   | ×   | x   |     | х   | ×   |      | ×    | ×    | ×    | x    | ×    |  |
| 16ECD18.CO2 | ×   | ×                | ×   | ×   | ×   | ×   |     | x   | ×   |      | ×    | ×    | ×    | х    | х    |  |
| 16ECD18.CO3 | ×   | ×                | ×   | ×   | ×   | x   |     | ×   | ×   |      | ×    | X    | ×    | x    | ×    |  |
| 16ECD18.CO4 | х   | ×                | ×   | ×   | ×   | ×   |     | x   | х   |      | ×    | ×    | ×    | ×    | ×    |  |
| 16ECD18.CO5 | x   | ×                | ×   | ×   | ×   | x   |     | х   | х   |      | ×    | ×    | ×    | ×    | ×    |  |

### UNIT I INTRODUCTION TO OPTICAL FIBERS

(

Introduction, light propagation in optical fibers, ray and mode theory of light, optical fiber structure and parameters, fiber materials, fiber fabrication techniques, optical signal attenuation mechanisms, merits and demerits of guided and unguided optical signal transmissions.

### UNIT II TRANSMISSION CHARACTERISTICS

.

Optical signal distortion – Group delay, material dispersion, waveguide dispersion, polarization mode dispersion, intermodal dispersion, profile dispersion, fiber types, Standard Singlemode Fibers, Dispersion Shifted Fibers, Dispersion Flattened Fibers, Polarization Maintaining Fibers, Dispersion compensation, Principles of fiber nonlinearity.

## UNIT III OPTICAL TRANSMITTERS

9

Light-emitting diodes, semiconductor laser diodes, longitudinal modes, gain and index-guiding, power-current characteristics, spectral behaviour, longitudinal mode control and tunability, noise, direct and external modulation, Laser sources and transmitters for free space communication.

# UNIT IV OPTICAL RECEIVERS

9

Principles of optical detection, spectral responsivity, PIN Photodiode, avalanche photodiode (APD), Light Emitters As Detectors, preamplifier types, receiver noises, Signal to Noise Ratio (SNR) and Bit Error Rate (BER), Principles of coherent detection

# UNIT V OPTICAL NETWORKING PRINCIPLES AND COMPONENTS

9

power and rise time budget.WDM optical networks, SONET/SDH/FDDI optical networks, layered optical network architecture, Optical couplers, filters, isolators, switches, optical amplifiers: erbium doped fiber amplifiers, semiconductor optical amplifiers.

TOTAL: 45 Hrs

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 637 408.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

## LIST OF EXPERIMENTS

- 1. Fiber optic Analog and Digital Link
- Characteristics of LED and PIN Photo diode
- Study the characteristics of Laser Diodes
- 4. Measurement of connector , bending and Propagation losses
- 5. Numerical Aperture determination for Fibers
- 6. Attenuation Measurement in Fibers
- Observation of Eye Pattern
- 8. Optical Fiber Wavelength Division Multiplexing & Demultiplexing technique

TOTAL: 30 Hrs

## TEXT BOOKS

| Sl.No       | Author(s)         | Title of the Book                 | Publisher                                   | Year of<br>Publication |  |
|-------------|-------------------|-----------------------------------|---------------------------------------------|------------------------|--|
| Gerd Kaiser |                   | Optical Fiber Communications      | 3 <sup>rd</sup> , McGraw Hill<br>Publishers | 2000                   |  |
| 2.          | Govind P. Agrawal | Fiber-Optic Communication Systems | Third Edition, John<br>Wiley & Sons         | 2004                   |  |

### REFERENCES

| Sl.No | Author(s)                             | Title of the Book                                        | Publisher,                                          | Year of<br>Publication |  |  |
|-------|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------|--|--|
| 1.    | John M. Senior                        | Optical Fiber Communications-<br>Principles And Practice | Second Edition, Prentice-<br>Hall Of India Pvt. Ltd | 2007                   |  |  |
| 2.    | Rajiv Ramasamy&<br>Kumar N. Sivarajan | Optical Networks – A Practical Perspective               | 2 Ed, Morgan Kauffman                               | 2002                   |  |  |
| 3.    | Uyless Black                          | Optical Networks- Third<br>Generation Transport Systems  | Pearson Education Asia                              | 2002                   |  |  |
| 4.    | John E. Midwinter                     | Optical Fibers for Transmission<br>Pure & Applied Optics | Wiley-Blackwell                                     | 1979                   |  |  |
| 5.    | John Gowar                            | Optical Communication Systems                            | Prentice Hall PTR                                   | 1993                   |  |  |

### WEB URLs

- 1. www.freevideolectures.com/Course/3056/Advanced-Optical-Communication
- 2. www.freevideolectures.com/Course/2329/Wireless-Communication/14
- 3. www.youtube.com/watch?v=MBxFVBAzdMc
- 4. www.freevideolectures.com/Course/3102/Advanced-3G-and-4G-Wireless-Mobile-Communications
- 5. www.youtube.com/watch?v=-ymnQ5rpcYA

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40s.

ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY 16ECD19

LTPC 3 0 0 3

### COURSE OBJECTIVES

- To understand the basics of EMI
- To study EMI Sources
- To understand EMI problems
- To understand Solution methods in PCB
- To understand Measurement technique for emission and immunity

### OUTCOMES

| 16ECD19.CO1 | Explain the concept of EMI and EMC                    |
|-------------|-------------------------------------------------------|
| 16ECD19.CO2 | Describe various EMI coupling methods                 |
| 16ECD19.CO3 | Construct filters to control EM                       |
| 16ECD19.CO4 | Select components for electromagnetic compatible PCBs |
| 16ECD19.CO5 | Describe EMI Standards                                |

| C                  |     |     |     |     | Pr  | ogram ( | Outcome | es  |     |      |      |      | PSOs |      |      |
|--------------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECD19.CO1        | x   | ×   | х   |     |     |         | ×       |     |     |      |      | х    |      | х    |      |
| 16ECD19.CO2        | x   | ×   | х   |     |     | ×       |         |     |     |      |      | х    |      | ×    |      |
| 16ECD19.CO3        | ×   | х   | х   |     | ×   | ×       |         | 7   |     |      |      | х    |      | x    |      |
| 16ECD19.CO4        | ×   | x   | х   |     | ×   |         | ×       |     |     |      |      | X    |      | x    |      |
| 16ECD19.CO5        | x   | X   | ×   |     |     | ×       |         |     |     |      |      | ×    |      | ×    |      |

EMI/EMC CONCEPTS

Introduction to EMI and EMC, Intra and inter system EMI, Elements of Interference, Sources and Victims of EMI, Conducted and Radiated EMI emission and susceptibility, Case Histories, Radiation hazards to humans, Various issues of EMC, EMC Testing categories, EMC Engineering Application

EMI COUPLING PRINCIPLES UNIT II

Conducted, radiated and transient coupling; Common ground impedance coupling; Common mode and ground loop coupling; Differential mode coupling; Near field cable to cable coupling, cross talk; Field to cable coupling; Power mains and Power supply coupling.

EMI CONTROL TECHNIQUES

Shielding- Shielding Material-Shielding integrity at discontinuities, Filtering- Characteristics of Filters-Impedance and Lumped element filters-Telephone line filter, Power line filter design, filter installation and Evaluation, Grounding- Measurement of Ground resistance-system grounding for EMI/EMC-Cable shielded grounding, Bonding, Isolation transformer, Transient suppressors, Cable routing, Signal control. EMI gaskets

EMC DESIGN OF PCBS UNIT IV

EMI Suppression Cables-Absorptive, ribbon cables-Devices-Transient protection hybrid circuits, Component selection and mounting; PCB trace impedance; Routing; Cross talk control - Electromagnetic Pulse-Noise from relays and switches, Power distribution decoupling; Zoning; Grounding; VIAs connection; Terminations.

EMI MEASUREMENTS AND STANDARDS

Open area test site; TEM cell; EMI test shielded chamber and shielded ferrite lined anechoic chamber; Tx /Rx Antennas, Sensors, Injectors / Couplers, and coupling factors; EMI Rx and spectrum analyzer; Civilian standards-CISPR, FCC, IEC, EN; Military standards-MIL461E/462.Frequency assignment - spectrum conversation. British VDE standards, Euro norms standards in Japan - comparisons. EN Emission and Susceptibility standards and Specifications

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40%.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

## TEXT BOOKS

| Sl.No | Author(s)       | Title of the Book                             | Publisher                                   | Year of<br>Publication |
|-------|-----------------|-----------------------------------------------|---------------------------------------------|------------------------|
| 1.    | Dr. V.P. Kodali | Engineering Electromagnetic<br>Compatibility  | IEEE Publication,<br>S. Chand & Co.<br>Ltd. | 2001                   |
| 2.    | Clayton R.Paul  | Introduction to Electromagnetic Compatibility | John Wiley<br>Publications                  | 2008                   |

### REFERENCES

| Sl.No | Author(s)          | Title of the Book                                                               | Publisher            | Year of<br>Publication<br>2008 |  |
|-------|--------------------|---------------------------------------------------------------------------------|----------------------|--------------------------------|--|
| 1.    | Henry W.Ott.       | Noise Reduction Techniques in Electronic<br>Systems                             | John Wiley &<br>Sons |                                |  |
| 2.    | Bemhard Keiser     | Oxford University<br>Press                                                      | , 2005               |                                |  |
| 3.    | Xingcun Colin Tong | Advanced Materials and Design for<br>Electromagnetic Interference Shielding     | CRC Press            | 2008                           |  |
| 4.    | David A. Weston    | Electromagnetic Compatibility: Methods,<br>Analysis, Circuits, and Measurement. | CRC Press            | 2016                           |  |
| 5.    | Donald G. Baker    | Electromagnetic Compatibility: Analysis and Case Studies in Transportation      | Wiley Publishers     | 2015                           |  |

### WEB URLs

- 1. www.youtube.com/playlist?list=PL8h307Ml6hQqwqzYxiGntCiBVa-mcxdOO
- 2. www.freevideolectures.com/Course/2271/Physics-I-Oscillations-and-Waves/15
- 3. www.freevideolectures.com/Course/2271/Physics-I-Oscillations-and-Waves/16
- 4. www.freevideolectures.com/Course/2271/Physics-I-Oscillations-and-Waves/37
- 5. www.freevideolectures.com/Course/2271/Physics-I-Oscillations-and-Waves/42

SAN

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 406.

# CELLULAR AND MOBILE COMMUNICATION

LTP C 3 0 0 3

### **COURSE OBJECTIVES**

- To have an insight into the various wireless channel models and the diversity techniques in mobile communication.
- To understand the basic cellular system concepts.
- To gain knowledge of the various cellular mobile standards.
- To understand the basic mobile radio Concepts.
- To understand the concepts of Speech coding Techniques.

### COURSE OUTCOMES

| 16ECD20.CO1 | Explain multiple access techniques and cellular concept            |
|-------------|--------------------------------------------------------------------|
| 16ECD20.CO2 | Analyze different Mobile radio propagation models                  |
| 16ECD20.CO3 | Explain various modulation techniques used in Mobile communication |
| 16ECD20.CO4 | Summarize the working of GSM and CDMA Technology                   |
| 16ECD20.CO5 | Describe the evolution of Cellular Network Standards               |

| Course             |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECD20.CO1        | х   | ×                | ×   |     |     | ×   |     |     |     |      |      | x    |      | ×    |      |  |
| 16ECD20.CO2        | ×   | ×                | X   |     |     | 1   |     |     |     |      |      | Х    |      | ×    |      |  |
| 16ECD20.CO3        | ×   | ×                | Х   |     |     | ×   |     |     |     |      |      | Х    |      | ×    |      |  |
| 16ECD20.CO4        | X   | ×                | ×   |     |     | ×   |     |     |     |      |      | Х    |      | ×    |      |  |
| 16ECD20.CO5        | ×   | ×                | ×   |     |     | ×   |     |     |     |      |      | ×    |      | ×    |      |  |

UNITI

MULTIPLE ACCESS TECHNIQUES AND CELLULAR CONCEPT

Multiple Access Techniques: FDMA-TDMA-spread spectrum multiple access-CDMA- SDMA-CSMA protocols-Cellular Concept: Frequency reuse-channel assignment- handoff-Interference and system capacity-tracking and grade of service-Improving Coverage and capacity in Cellular systems

UNITII MOBILE RADIO PROPAGATION

Free space propagation model- relating power to electric field -Propagation mechanismsreflection-Groundreflectionmodel-diffraction-scattering- link budget design using path loss models-Small scale
Multipath propagation-Impulse response model of a multi-path channel-Small scale Multipath measurementsparameters of Mobile multipath channels-types of small scale fading-

UNITII MODULATION TECHNIQUES-DIVERSITYAND ANTENNAS

Modulation Techniques: Binary frequency shift keying- Minimum Shift Keying- Gaussian MSK-Orthogonal Frequency Division Multiplexing- Diversity reception—Types of diversity-RAKE receiver-Basic combining methods-Base station and mobile station antennas.

UNITIV SPEECH CODING

Characteristicsofspeechsignals-Quantizationtechniques-AdaptiveDifferential pulse code modulation (ADPCM)-Frequency domain coding of speech Vocoders- Linear Predictive Coders-Selection of Speech Codec for Mobile Communication- GSM Codec-USDC Codec-Performance evaluation

UNITY
AMPS- GSM-Architecture-Channels and Frame structure- GPRS- EDGE- CDMA standards (IS-95)Forward CDMA channel and reverse CDMA channel—W-CDMA- Layer architecture

TOTAL: 45 Hrs

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasiguram, Namakkal - 637 466.

# TEXT BOOKS

| Sl.No | Author(s)     | Title of the Book                                                       | Publisher         | Year of<br>Publication |  |
|-------|---------------|-------------------------------------------------------------------------|-------------------|------------------------|--|
| 1.    | T.S.Rappaport | Wireless Communications                                                 | Thomson Learning  |                        |  |
| 2.    | Vijay K-Garg  | Mobile and Cellular<br>Telecommunications Analog and<br>Digital Systems | Pearson Education | 2003                   |  |

# REFERENCES

| Sl.No | Author(s)                          | Title of the Book                        | Publisher                     | Year of<br>Publication |  |  |  |
|-------|------------------------------------|------------------------------------------|-------------------------------|------------------------|--|--|--|
| 1.    | Dharma Prakash<br>Agarwal and Qing | Celleage Learning                        |                               |                        |  |  |  |
| 2.    | William C.Y.Lee                    | Tata Mc Graw Hill                        | 2006                          |                        |  |  |  |
| 3.    | Tse & Viswanath                    | Cellular Communication                   | Cambridge University<br>Press | 2005                   |  |  |  |
| 4.    | Schiller                           | iller Mobile Communications              |                               | 2005                   |  |  |  |
| 5.    | Andrea Goldsmith                   | Andrea Goldsmith Wireless Communications |                               | 2005                   |  |  |  |

### WEB URLs

- 1. www.nptel.ac.in/courses/117102062/4

- www.nptel.ac.in/courses/117102002/4
   www.nptel.ac.in/courses/117102062/
   www.youtube.com/watch?v=whYljse4Abc
   www.youtube.com/watch?v=QHDxbbc1GWs
   www.nptelvideos.in/2012/12/wireless-communication.html

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namalkal - 637 40%.

### CONTROL SYSTEMS

LT P C 3 0 2 4

### COURSE OBJECTIVES

- To understand the use of transfer function models for analysis physical systems
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed—loop frequency responses of systems.
- · To introduce stability analysis concepts
- To introduce compensator techniques and state variable representation of physical systems

### COURSE OUTCOMES

| 16ECD21.CO1 | Explain different types of systems and their algebraic equations  |
|-------------|-------------------------------------------------------------------|
| 16ECD21.CO2 | Predict the transient performance parameters of the system        |
| 16ECD21.CO3 | Analyze the nature of stability of the system in frequency domain |
| 16FCD21.CO4 | Analyze the system response and stability in time domain          |
| 16ECD21.CO5 | Analyze state variable models                                     |

| C                  |     |     |     |     | Pr  | ogram ( | Outcome | es  |     |      |      |      | PSOs |      |      |  |
|--------------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|--|
| Course<br>Outcomes | POI | PO2 | PO3 | PO4 | PO5 | PO6     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECD21.CO1        | X   | X   | X   | X   | х   | X       |         |     | X   |      | X    | X    | X    | X    | X    |  |
| 16ECD21.CO2        | X   | X   | X   | х   | X   | X       |         |     | х   |      | X    | X    | X    | X    | X    |  |
| 16ECD21.CO3        | X   | X   | X   | X   | X   | х       |         |     | X   |      | X    | X    | X    | X    | X    |  |
| 16ECD21.CO4        | x   | X   | X   | X   | X   | X       |         |     | x   |      | X    | X    | x    | X    | X    |  |
| 16ECD21.CO5        | X   | X   | X   | X   | x   | Х       |         |     | х   |      | N    | X    | X    | X    | X    |  |

# UNIT I SYSTEMS AND THEIR REPRESENTATION

9

Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC servomotors – Block diagram reduction techniques – Signal flow graphs.

## UNIT II TIME RESPONSE ANALYSIS

9

Time response – Time domain specifications – Types of test input – I and II order system response – Error coefficients – Generalized error series – Steady state error - Effects of P, PI, PID modes of feedback control – Time response analysis using MATLAB (only simulation).

# UNIT III FREQUENCY RESPONSE ANALYSIS

9

Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications – Lag, lead and lag-lead networks – Lag, lead and lag-lead compensator design using bode plots.

# UNIT IV STABILITY AND COMPENSATOR DESIGN

9

Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion – Effects of addition of poles and zeros – Root locus construction - applications of Root locus.

# UNIT V STATE VARIABLE ANALYSIS

9

Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – sample and Hold Circuit.

TOTAL: 45 Hrs

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

# LIST OF EXPERIMENTS:

- 1. Determination of transfer functions of DC Servomotor
- Determination of transfer functions of AC Servomotor.
- 3. DC Motor Position Control Systems
- 4. AC Motor Position Control Systems
- 5. Open loop and closed loop response of first order type 0 and type 1 system
- 6. Stepper motor position control systems
- 7. Digital Simulation Determination of step response and impulse response for first order & second order system with unity feedback using MATLAB.
- 8. (i)Digital Simulation of stability analysis using Root Locus Techniques
  - (ii) Digital Simulation of stability analysis using bode plot
  - (iii)Digital Simulation of stability analysis using Nyquist plot
- 9. Digital design Lag, Lead and Lag-Lead Compensators
- 10. Digital design of P, PI and PID controllers
- 11. Synchro Transmitter and Receiver Characteristics

TOTAL: 30 Hrs

### **TEXT BOOKS:**

| SI.No | Author(s)         | Title of the Book                         | Publisher         | Year of Publication |  |  |
|-------|-------------------|-------------------------------------------|-------------------|---------------------|--|--|
| 1.    | M. Gopal          | Control Systems,<br>Principles and Design | Tata McGraw Hill  | 2012                |  |  |
| 2.    | S.K. Bhattacharya | Control System<br>Engineering             | Pearson education | 2013.               |  |  |

### REFERENCE BOOKS:

| Sl.No | Author(s)                                  | Title of the Book                          | Publisher                             | Year of Publication |  |  |  |  |
|-------|--------------------------------------------|--------------------------------------------|---------------------------------------|---------------------|--|--|--|--|
| 1.    | Arthur,<br>G.O.Mutambara                   | Design and Analysis of<br>Control; Systems | CRC Press                             | 2009                |  |  |  |  |
| 2.    | Richard C. Dorf<br>and Robert H.<br>Bishop | Modern Control Systems                     | Control Systems Pearson Prentice Hall |                     |  |  |  |  |
| 3.    | Benjamin C. Kuo                            | Automatic Control systems                  | PHI press                             | 2010.               |  |  |  |  |
| 4.    | K. Ogata                                   | Modern Control<br>Engineering              | PHI press                             | 2012                |  |  |  |  |
| 5.    | S.N.Sivanandam,<br>S.N.Deepa               | Control System Engineering using Mat Lab   | Vikas Publishing                      | 2012                |  |  |  |  |

### WEB URLs:

- 1. www.nptel.ac.in/courses/108101037/3
- 2. www.nptel.ac.in/courses/108101037/7

- www.youtube.com/watch?v=vVFDm\_CdQw
   www.nptel.ac.in/courses/108101037/20
   www.freevideolectures.com/Course/3116/Control-Engineering-I/10

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40s.

16 ECE01

## RADAR AND NAVIGATIONAL AIDS

LTPC 3 0 0 3

### COURSE OBJECTIVES

- To understand the fundamentals of Radar and its equations
- To apply Doppler principle and describe the different types of Radar and their working
- To describe Radar signal Detection techniques and propagation related to radars
- To understand principles of navigation, in addition to approach and landing aids as related to navigation
- To illustrate principles of antennas and propagation as related to radars, also study of transmitters and receivers.

### COURSE OUTCOMES

| 16ECE01.CO1 | Explain principle of navigation and detection of targets in RADAR |
|-------------|-------------------------------------------------------------------|
| 16ECE01.CO2 | Apply the principle of Doppler RADAR to track moving targets      |
| 16ECE01.CO3 | Outline the process of RADAR signal detections                    |
| 16ECE01.CO4 | Use the Radio Navigation techniques                               |
| 16ECE01.CO5 | Analyze RADAR receiver signals                                    |

| Course<br>Outcomes | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |
|--------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|
|                    | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECE01.CO1        | X                | X   | X   |     | X   |     |     |     | X   |      |      | X    |      |      |      |  |
| 16ECE01.CO2        | X                | x   | X   |     |     |     |     |     | X   |      |      |      | X    |      |      |  |
| 16ECE01.CO3        | X                | X   | х   |     | х   |     |     |     | ,   |      | X    | X    |      | X    |      |  |
| 16ECE01.CO4        | X                | X   | x   |     | х   |     |     |     |     |      | X    | X    |      | X    |      |  |
| 16ECE01.CO5        | x                | X   | X   |     | x   |     |     |     |     | -    |      | X    | X    | X    |      |  |

### RADAR EQUATIONS

RADAR Block Diagram & operation- RADAR Frequencies- RADAR Equation- Detection of signals in Noise-RADAR cross section of targets- RADAR cross section fluctuations- transmitter power- pulse repetition frequency- system losses and propagation effects.

# MTI AND PULSE DOPPLER RADAR

Introduction to Doppler & MTI RADAR- Delay Line canceller- Moving Target Detector- Pulse Doppler RADAR- Non-Coherent MTE- CW RADAR- FMCW RADAR- Tracking RADAR- Mono pulse Tracking - Conical Scan and Sequential Lobing.

### RADAR SIGNAL DETECTION AND PROPAGATION ON WAVES **UNIT-III**

Detection criteria- automatic detection- constant false alarm rate receiver- information available from a RADAR- ambiguity diagram- pulse compression- introduction to clutter- surface clutter RADAR equation anomalous propagation and diffraction.

# RADIO NAVIGATION

Adcock directional finder- automatic directional finder- hyperbolic Systems of Navigation- Loren and Decca Navigation System- Tactical Air Navigation. Four methods of Navigation .- The Loop Antenna - Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finding The Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - VOR Receiving Equipment - Range and Accuracy of VOR - Recent Developments.

RADAR TRANSMITTER AND RECEIVER

Linear beam power tubes- Solid state RF power sources- solid state devices used in RADAR- Magnetron crossed field amplifiers- other aspects of radar transmitter- RADAR Receiver- Receiver noise figure- super heterodyne receiver- dynamic range- RADAR Displays.

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

### **TEXTBOOKS**

| Sl.No              | Author(s)    | Title of the Book                            | Publisher                         | Year of<br>Publication |  |
|--------------------|--------------|----------------------------------------------|-----------------------------------|------------------------|--|
| Merrill I. Skolnik |              | Introduction to Radar Systems                | Tata Mc Graw-Hill-<br>3rd edition | 2003                   |  |
| 2.                 | N.S.Nagaraja | Elements of Electronic Navigation<br>Systems | Tata Mc Graw-Hill-<br>2nd edition | 2000                   |  |

### REFERENCES

| Sl.No | Author(s)          | Title of the Book                                    | Publisher                                       | Year of<br>Publication |  |
|-------|--------------------|------------------------------------------------------|-------------------------------------------------|------------------------|--|
| 1.    | Peyton Z. Peebles  | Radar Principles                                     | John Wiley                                      | 2004                   |  |
| 2.    | J.C Toomay         | Principles of Radar                                  | Prentice Hall of India<br>Pvt., Ltd., New Delhi | 2004                   |  |
| 3.    | Roger J. Sullivan  | Radar Foundations for Imaging and<br>Advanced Topics | SciTech Publishing Inc                          | 2004                   |  |
| 4.    | Sen & Bhattacharya | Radar Systems and Radio Aids to<br>Navigation        | Khanna publishers                               | 2005                   |  |
| 5.    | Brookner           | RADAR Technology                                     | Artech Hons                                     | 1986                   |  |

### WEB URLs:

- www.nptel.ac.in/courses/101108056/module1/lecture3.pdf
   www.nptel.ac.in/courses/101108056/module6/lecture11.pdf
- 3. www.stm.laartcc.org/Introduction+to+Radar
- 4. www.iitbbs.ac.in/researches.php?code=es
- 5. www.vssut.ac.in/lecture\_notes/lecture1428280600.pdf

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering

Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 637 408.

16 ECE02

### HIGH SPEED NETWORKS

LTPC 3 00 3

### COURSE OBJECTIVES

- To have an insight into the various ISDN and Broadband ISDN techniques in High speed Networks.
- To understand the Packet switching Networks and ATM concepts.
- To gain knowledge of the various Frame Relay
- To know the advanced Network Architecture standards.
- To gain knowledge of Bluetooth Technology.

### COURSE OUTCOMES

| 16ECE02.CO1 | Describe ISDN and B-ISDN architecture and protocols               |
|-------------|-------------------------------------------------------------------|
| 16ECE02.CO2 | Analyze packet switched networks and ATM                          |
| 16ECE02.CO3 | Explain the concept of congestion control in frame relay protocol |
| 16ECE02.CO4 | Summarize integrated and differentiated services                  |
| 16ECE02.CO5 | Discuss about Bluetooth protocol stacks                           |

| Commo              |     |     | PSOs |     |     |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE02.CO!        | x   | X   | x    | x   | X   | x   |     | x   | х   |      |      | х    | x    | х    | х    |
| 16ECE02.CO2        | х   | x   | x    | x   | x   | x   |     | х   | х   |      |      | х    | х    | х    | X    |
| 16ECE02.CO3        | X   | X   | х    | х   | x   | х   |     | х   | х   |      |      | х    | X    | x    | X    |
| 16ECE02.CO4        | X   | x   | X    | x   | x   | x   |     | X   | х   |      |      | х    | X    | х    | X    |
| 16ECE02.CO5        | X   | X   | X    | x   | X   | х   |     | X   | x   |      |      | X    | X    | X    | X    |

# ISDN AND BROADBAND ISDN

ISDN - overview - interfaces and functions - Layers and services - Signaling System 7 - Broadband ISDN architecture and Protocols.

### PACKET SWITCHED NETWORKS AND ATM UNIT II

FDDI - DQDB - SMDS: Internetworking with SMDS, ATM: Main features - addressing -signaling and routing - ATM header structure -adaptation layer - management and control -ATM switching and transmission

### FRAME RELAY UNIT III

Frame Relay Protocols and services - Congestion control - Internetworking with ATM - Internet and ATM - Frame relay via ATM.

### ADVANCED NETWORK ARCHITECTURE UNIT IV

IP forwarding architectures overlay model - Multi Protocol Label Switching (MPLS) - integrated services in the Internet - Resource Reservation Protocol (RSVP) - Differentiated services.

### BLUE TOOTH TECHNOLOGY UNIT V

The Blue tooth module - Protocol stack Part I: Antennas - Radio interface - Base band - The Link controller - The Link Manager - The Host controller interface The Blue tooth module - Protocol stack Part II: Logical link control and adaptation protocol - RFCOMM - Service discovery protocol - Wireless access protocol.

TOTAL: 45 Hrs

CHAIRMAN Board of Studies Department of Sectionics and Communication Engineering

Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40a.

## TEXT BOOKS

| Sl.No | Author(s)    | Title of the Book                          | Publisher             | Year of Publication |  |
|-------|--------------|--------------------------------------------|-----------------------|---------------------|--|
| 1.    | Jean Warland | High Performance<br>Communication Networks | Pearson education     | 2002                |  |
| 2.    | SumitKasera  | ATM Networks                               | Tata McGraw -<br>Hill | 2002                |  |

### REFERENCES

| Sl.No | Author(s)         | Title of the Book                                 | Publisher            | Year of<br>Publication |  |
|-------|-------------------|---------------------------------------------------|----------------------|------------------------|--|
| L.    | William Stallings | ISDN and Broadband ISDN with Frame Relay and ATM  | Pearson education    | 2002                   |  |
| 2.    | Leon Gracia       | Communication Networks                            | Tata McGraw          | 2017                   |  |
| 3.    | Jennifer Bray     | Charles Sturman                                   | Prentice Hall        | 2007                   |  |
| 4.    | John. C. Bellamy  | Digital Telephony                                 | John Wiley &<br>Sons | 2000                   |  |
| 5.    | Behrouz Forouzan  | Introduction to Data Communication and Networking | Tata Mc-Graw<br>Hill | 1996                   |  |

### WEB URLs

- 1. nptel.ac.in/courses/106105081/1

- nptel.ac.in/courses/106105080/pdf/M5L6.pdf
   nptel.ac.in/courses/106105080/pdf/M5L5.pdf
   getreport.in/idea/nptel-lecture-notes-on-high-speed-networks
   www.nptelvideos.in/2012/12/high-speed-devices-circuit.html

CHAIRMAN Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408. 16ECE03

# WIRELESS SENSOR NETWORKS

LTPC 3 0 0 3

### COURSE OBJECTIVES

- To be aware of the Challenges of Wireless Sensor Networks.
- To be aware of the Architecture of Wireless Sensor Networks.
- To get familiarized with different MAC protocols in Wireless Sensor Networks.
- To get familiarized with different network Components in Wireless Sensor Networks.
- To provide advanced knowledge of wideband wireless communication techniques

### COURSE OUTCOMES

| Recognize the significances of sensor network mechanisms                        |
|---------------------------------------------------------------------------------|
| Describe the wireless sensor networks architecture                              |
| Analyze the communication protocols of wireless sensor networks                 |
| Explain the concept of localization and positioning in wireless sensor networks |
| Evaluate the Quality of Service parameters of wireless sensor networks          |
|                                                                                 |

| Course<br>Outcomes |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
|                    | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE03.CO1        | x   | х                | X   |     |     |     |     |     | X   |      |      | X    |      | X    |      |
| 16ECE03.CO2        | x   | X                | X   |     | X   |     |     |     | х   |      |      | X    |      | х    |      |
| 16ECE03.CO3        | x   | X                | х   |     | х   |     |     |     | х   |      |      | , x  |      | X    |      |
| 16ECE03.CO4        | x   | x                | х   |     | х   |     | -   |     | х   |      |      | x    |      | x    |      |
| 16ECE03.CO5        | X   | X                | X   |     | X   |     |     |     | X   |      |      | X    |      | X    |      |

### OVERVIEW OF WIRELESS SENSOR NETWORKS UNIT I

Wireless sensor networks: definition, advantages, characteristics features, applications, constraints and challenges, required mechanisms - Field uses - enabling technologies, Characteristics of Wireless channel, Emerging technologies for wireless networks, Sensor Networks Applications.

# WIRELESS SENSOR NETWORK ARCHITECTURES

Single - Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture - Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design Principles and service interfaces, Gateway Concepts.

# COMMUNICATION PROTOCOLS

Physical Layer and Transceiver Design Considerations, MAC Protocols, Low Duty Cycle Protocols and Wakeup Concepts - Schedule-based protocols, The Mediation Device Protocol, Address and Name Management, Assignment of MAC Addresses, Time synchronization, Routing Protocols- Attribute-based or Data-centric Routing Protocols - SPIN - Hierarchical Routing Protocols - Low Energy Adaptive Clustering Hierarchy - Power-Efficient Gathering in Sensor Information Systems - Threshold Sensitive Energy Efficient Sensor Network Protocol, Geographic Routing - Greedy Algorithms - Geographic Adaptive Fidelity

# LOCALIZATION AND POSITIONING

Properties of localization and positioning - Possible approaches - Single-hop localization - Positioning in multi-hop environments. Topology Control - Controlling topology in flat networks - Power Control - Hierarchical networks by dominating sets and clustering - Combining hierarchical topologies and power control - Adaptive node activity

### TRANSPORT LAYER AND QUALITY OF SERVICE UNIT V

Coverage and deployment - Reliable data transport - Single packet delivery - Block delivery - Congestion control and rate control, Advanced application support, Security and Application-specific support, Sensor network programming Challenges, ns2 Simulators.

TOTAL: 45 Hrs

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 402.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

# TEXT BOOKS

| Sl.No                           | Author(s)                                                   | Title of the Book                                               | Publisher                                                          | Year of<br>Publication |
|---------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|------------------------|
| 1. Holger Karl & Andreas Willig | Protocols And Architectures for<br>Wireless Sensor Networks | John Wiley                                                      | 2005                                                               |                        |
| 2.                              | Feng Zhao & Leonidas<br>J. Guibas                           | Wireless Sensor Networks- An<br>Information Processing Approach | Wireless Sensor Networks-<br>An Information Processing<br>Approach | 2007                   |

### REFERENCE BOOKS

| Sl.No | Author(s)                                   | Title of the Book                                             | Publisher            | Year of<br>Publication |  |
|-------|---------------------------------------------|---------------------------------------------------------------|----------------------|------------------------|--|
| 1.    | Waltenegus Dargie,<br>Christian Poellabauer | Fundamentals of wireless sensor networks: Theory and Practice | John Wiley           | 2010                   |  |
| 2.    | Sunil Gupta and Dr.<br>Harsh K. Verma       | Wireless Sensor Networks                                      | Katson               | 2014                   |  |
| 3.    | Robert Faludi                               | Building Wireless Sensor<br>Networks                          | O'Reilly             | 2011                   |  |
| 4.    | S. Swapna Kumar                             | A Guide to Wireless Sensor<br>Networks                        | Lakshmi Publications | 2013                   |  |
| 5.    | Shuang-Hua Yang                             | Wireless Sensor Networks                                      | Springer             | 2013                   |  |

### WEB URLs

- www.onlinecourses.nptel.ac.in/noc17\_cs07
   www.nptel.ac.in/courses/117102062/2
- 3. www.nptel.ac.in/courses/114106035/37
- 4. www.nptel.ac.in/courses/117104118/
- 5. www.nptel.iitm.ac.in/video.php?courseId=106105160&p=3

CHAIRMAN Board of Studies Department of Bectrarics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40a. 16ECE04

## BIO MEDICAL ENGINEERING

LTPC 3 0 0 3

### COURSE OBJECTIVES

- To Understand the Human physiology and components of biomedical system
- To get exposed to electro physiological parameter measurements
- To get exposed to non-electro physiological parameter measurements
- To know about medical imaging and biotelemetry systems
- To Understand the principle of operation of Therapeutic equipments

## COURSE OUTCOMES

| 16ECE04.CO1 | Explain Human physiology and components of biomedical system    |
|-------------|-----------------------------------------------------------------|
| 16ECE04.CO2 | Discuss the electro physiological parameter measurements        |
| 16ECE04.CO3 | Describe the non - electro physiological parameter measurements |
| 16ECE04.CO4 | Operate of medical imaging and biotelemetry systems             |
| 16ECE04.CO5 | Explain the principles of operation of Therapeutic equipments   |
|             |                                                                 |

| Course<br>Outcomes |     |     |     |     | Pr  | ogram ( | Outcome | es  |     |      |      |      | PSOs |      |      |  |
|--------------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|--|
|                    | PO1 | PO2 | PO3 | PO4 | PO5 | PO6     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECE04.CO1        | x   | X   | X   |     |     | x       |         |     | x   |      | x    | х    | Х    | X    | х    |  |
| 16ECE04.CO2        | X   | X   | х   |     |     | x       |         |     | х   |      | X    | x    | X    | X    | X    |  |
| 16ECE04.CO3        | X   | N   | х   | 14  |     | x       |         |     | x   |      | X    | х    | X    | х    | Х    |  |
| 16ECE04.CO4        | X   | X   | X   |     |     | х       |         |     | X   |      | X    | х    | X    | X    | X    |  |
| 16ECE04.CO5        | X   | X   | X   |     |     | X       |         |     | X   |      | X    | X    | X    | X    | X    |  |

# PHYSIOLOGY AND TRANSDUCERS

Cell and its structure - Resting and Action Potential - Nervous system: Functional organization of the nervous system - Structure of nervous system, neurons - synapse - transmitters and neural communication -Cardiovascular system - respiratory system , Basic components of a biomedical system . Transducers - selection criteria - Piezo electric, ultrasonic transducers, Temperature measurements, Fibre optic temperature sensors.

# ELECTRO - PHYSIOLOGICAL MEASUREMENTS

Electrodes - Limb electrodes-floating electrodes - pregelled disposable electrodes - micro- needle and surface electrodes - Amplifiers: Preamplifiers- differential amplifiers- chopper amplifiers -Isolation amplifier. Physiological measurements-ECG, EEG, EMG, ERG - Lead systems and recording methods-Typical waveforms. Electrical safety in medical environment: shock hazards-leakage current.

### NON-ELECTRICAL PARAMETER MEASUREMENTS UNIT III

Measurement of blood pressure -Cardiac output -Heart rate-Heart sounds-Pulmonary function measurements - spirometer -Photo Plethysmography- Body Plethysmography-Blood Gas analyzers - pH of blood measurement of blood pCO2, pO2, finger-tip oxymeter - ESR, GSR measurements.

# MEDICAL IMAGING AND BIOTELEMETRY

Radio graphic and fluoroscopic techniques -Computer tomography-Magnetic Resonance Imaging -Ultrasonography-A mode, B mode ,M mode- Endoscopy-Thermography-Different types of biotelemetry systems and patient monitoring-Wireless Telemetry, single channel, multichannel, multi patient and implantable telemetry systems.

ASSISTING AND THERAPEUTIC EQUIPMENTS UNIT V

Pacemakers-External and internal pacemakers-Defibrillators-DC defibrillator, implantable defibrillators-Ventilators -Nerve and muscle stimulators -TENS-Surgical diathermy machine, safety aspects in Electro surgical units- Heart Lung machine- Audiometers-Dialysers-Lithotripsy.

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40e.

# Programme Code & Name: EC & B.E. - Electronics and Communication Engineering

## TEXT BOOKS

| SI.No | Author(s)                                               | Title of the Book                               | Publisher                             | Year of<br>Publication |  |
|-------|---------------------------------------------------------|-------------------------------------------------|---------------------------------------|------------------------|--|
| 1.    | R.S.Khandpur                                            | Hand Book of Bio-Medical instrumentation        | Tata McGraw Hill<br>Publishing Co Ltd | 2004                   |  |
| 2.    | Leslie Cromwell, Fred<br>J.Weibell, Erich<br>A.Pfeiffer | Bio-Medical Instrumentation and<br>Measurements | Pearson Education                     | 2002                   |  |

# REFERENCE BOOKS

| Sl.No | Author(s)                             | Title of the Book                                     | Publisher                  | Year of<br>Publication |  |  |
|-------|---------------------------------------|-------------------------------------------------------|----------------------------|------------------------|--|--|
| 1.    | M.Arumugam                            | Bio-Medical Instrumentation                           | Anuradha Agencies          | 2003.                  |  |  |
| 2.    | L.A. Geddes and<br>L.E.Baker          | Principles of Applied Bio-<br>Medical Instrumentation | John Wiley & Sons          | 1975                   |  |  |
| 3.    | J.Webster                             | Medical Instrumentation                               | John Wiley & Sons          | 1995                   |  |  |
| 4.    | William R Hendee, E. Russell Ritenour | Medical Imaging Physics                               | John Wiley & Sons          | 2002                   |  |  |
| 5.    | Paul Suetens                          | Fundamentals of Medical Imaging                       | Cambridge University press | 2009                   |  |  |

### WEB URLs

- 1. www.nptel.ac.in/courses/117108037/15
  2. www.nptel.ac.in/courses/108102041/
  3. www.nptel.ac.in/courses/103105054/

- 4. www.technicalsymposium.com/alllecturenotes\_biomed.html
- 5. www.nptelvideos.in/2012/11/biochemical-engineering.html

CHAIRMAN Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 40a. 16ECE05

# BIO SIGNAL AND IMAGE PROCESSING

LTPC 3 0 0 3

## COURSE OBJECTIVES

- To understand various bio signals to acquainted and methods of capturing them.
- To understand various the biomedical systems and will be able to analyze analog signals.
- Know the different compression techniques of bio signals.
- To study the various image processing algorithms and techniques.
- To explore the applications of image processing.

### COURSE OUTCOMES

| 16ECE05.CO1 | Discuss different types of bio medical signal and its spectral components              |
|-------------|----------------------------------------------------------------------------------------|
| 16ECE05.CO2 | Test filter performance on bio medical signals                                         |
| 16ECE05.CO3 | Identify physiological interferences and artifacts affect in bio signals               |
| 16ECE05.CO4 | Apply image processing enhancement techniques in both the spatial and frequency domain |
|             | Describe the principle of operation of Therapeutic equipments                          |
| 16ECE05.CO5 | Describe the principle of operation of Therapeutic equipments                          |

|                    |     | Program Outcomes |     |     |     |     |      |     |     |      |      |      |      |      | PSOs |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|------|-----|-----|------|------|------|------|------|------|--|--|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7  | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECE05.CO1        | x   | X                | X   |     | X   |     | A.E. |     | X   |      |      |      |      | N    |      |  |  |
| 16ECE05.CO2        | х   | Х                | X   |     | X   |     |      |     | X   |      |      |      |      | X    |      |  |  |
| 16ECE05.CO3        | х   | X                | X   |     | х   |     |      |     | X   |      |      |      |      | X    |      |  |  |
| 16ECE05.CO4        | X   | x                | х   | х   | х   |     |      |     | x   |      |      | Х    |      | X    |      |  |  |
| 16ECE05.CO5        | X   | x                | X   | x   |     |     |      |     | х   |      |      | X    |      | X    |      |  |  |

INTRODUCTION TO BIO- SIGNALS AND THEIR ACQUISITION UNIT I

Origin of bio-signal, action potential, nerve and muscle cells and their electrical activity, electrical activity of the heart, genesis of ECG, ECG lead systems, electrical activity of the brain, EEG signal and its acquisition, EMG signals and its acquisition. Sources of contamination and variation of bio signals.

ANALOG SIGNAL PROCESSING OF BIO-SIGNALS

Biomedical instrumentation systems, biomedical transducers, electrodes and their characteristics, instrumentation amplifier, isolation amplifier, active filters(commonly used topologies), ADC, aliasing effect, antialiasing filters, grounding, shielding, bonding and EMI filters: Principles and types of grounding, shielding and bonding with reference to Biomedical equipment.

DIGITAL SIGNAL PROCESSING OF BIO-SIGNALS

Review of FIR, IIR Filters, Weiner filters, adaptive filters, Model-based spectral analysis, AR, Eigen analysis spectral analysis, Time-frequency methods: Spectrogram, Wigner-Ville and other methods. Principal Component Analysis, Independent Component Analysis, Continuous Wavelet Transform, and Discrete Wavelet transform, Electrocardiogram: Signal analysis of event related potentials, morphological analysis of ECG waves. Envelope extraction and analysis of activity, application- Normal and Ectopic ECG beats, Phonocardiography

MEDICAL IMAGE PROCESSING

Algorithms, Thresholding, Contrast Enhancement, SNR, Characteristics, Filtering, Histogram Modeling, Medical Image Visualization, Image Compression Models - Variable length coding, Huffman coding, Lossless predictive coding, Lossy predictive coding

APPLICATIONS OF MEDICAL IMAGING

Validation, Image Guided Surgery, Image Guided Therapy, Computer Aided Diagnosis/Diagnostic Support Systems

TOTAL: 45 Hrs

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

## TEXT BOOKS

| Sl.No | Author(s)            | Title of the Book                                                                             | Publisher                            | Year of<br>Publication |
|-------|----------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|------------------------|
| 1.    | Malmivuo &<br>Robert | Bioelectromagnetism - Principles and<br>Applications of Bioelectric and<br>Biomagnetic Fields | Oxford University<br>Press, New York | 1995                   |
| 2.    | John L<br>Semmlow    | Signals and Systems for Bioengineers                                                          | Academic Press                       | 2012                   |

# REFERENCE BOOKS

| Sl.No             | Author(s)                                | Title of the Book                                                                                 | Publisher                                | Year of<br>Publication |  |
|-------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|------------------------|--|
| 1. John L Semmlow |                                          | Biosignal and Biomedical Image<br>Processing MATLAB-Based<br>Applications-2 <sup>nd</sup> Edition | Marcel Dekker, Inc                       | 2008                   |  |
| 2.                | Rafel C Gonzalez,<br>Richard E Woods     | Digital Image Processing                                                                          | Wesley Publishing<br>Company, New Delhi, | 2014                   |  |
| 3.                | Scott E Umbahgh                          | Digital Image Processing and<br>Analysis                                                          | CRC Press                                | 2010                   |  |
| 4.                | William R Hendee,<br>E. Russell Ritenour | Medical Imaging Physics                                                                           | John Wiley & Sons,<br>Inc., New York     | 2003                   |  |
| 5.                | Paul Suetens                             | Fundamentals of Medical Imaging                                                                   | Cambridge University press               | 2017                   |  |

## WEB URLs

- 1. www.nptel.ac.in/courses/117105079/1
- www.nptel.ac.in/courses/117105079/14
   www.nptel.ac.in/courses/108105091/1
   www.nptel.ac.in/courses/108105091/2
   www.nptel.ac.in/courses/108105091/2
   www.oyc.yale.edu/node/87

CHAIRMAN
Board of Studies
Department of Bectronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 40s.

TELECOMMUNICATION SWITCHING NETWORKS 16ECE06

LPTC 3 0 0 3

# COURSE OBJECTIVES

To introduce fundamentals functions of a telecom switching Systems

To provide statistical modeling of telephone traffic and characteristics of blocking and queuing system

To learn the various switching networks

To introduce the concepts of Digital Switching Systems

To study signaling, packet switching and networks.

### **COURSE OUTCOMES**

| 16ECE06.CO1 | Describe the Basic Switching concepts of telecommunication |
|-------------|------------------------------------------------------------|
| 16ECE06.CO2 | Analyze fundamental telecommunication traffic models       |
| 16ECE06.CO3 | Summarize the significance of switching networks           |
| 16ECE06.CO4 | Explain the concepts of digital switching                  |
|             | Explain the signaling and packet switching techniques      |
| 16ECE06.CO5 | Explain the signaming and packet streets                   |

| C                  |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      | PSOs |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECE06.CO1        | x   | x                | X   |     |     |     |     |     | х   |      |      | X    |      |      |      |  |  |
| 16ECE06.CO2        | X   | х                | X   |     |     |     |     |     | х   |      |      | X    |      |      | X    |  |  |
| 16ECE06.CO3        | Х   | X                | х   |     |     |     |     |     | х   |      |      | X    |      |      | X    |  |  |
| 16ECE06.CO4        | х   | x                | x   |     |     |     | *   |     | X   |      |      | X    |      |      | X    |  |  |
| 16ECE06.CO5        | x   | x                | x   |     |     |     |     |     | X   |      |      | X    |      |      | X    |  |  |

SWITCHING SYSTEMS

Evolution of Telecommunications; Basics of a Switching System; Functions of a Switching System; Crossbar Switching-Principle of Crossbar Switching; Crossbar Switch Configurations; Cross-Point Technology; Crossbar Exchange Organization; A General Trunking; Electronic Switching; Digital Switching Systems.

TRAFFIC ENGINEERING

Congestion - Network traffic load and Parameters - Traffic measurement - Lost-call system - Grade of Service and Blocking probability - Modeling switching systems - Incoming traffic and service time characterization Blocking models and loss estimates – Queuing systems – Simulation models.

SWITCHING NETWORKS

Single Stage Networks; Gradings-Principle; Two Stage Networks; Three Stage Networks; Four Stage Networks - Gradings - Link systems - Grades of service of link systems - Application of graph theory to link systems - Use of expansion - Call packing - Rearrangeable networks - Strict-sense non-blocking networks -Sectionalized switching networks.

DIGITAL SWITCHING SYSTEMS

Space and time switching - Time-division switching networks - Grades of service of time-division switching networks— hybrid time and space division multiplexes - Non-blocking networks - Synchronization -Call-processing functions - Common control - Reliability, availability and security - Stored program control.

SIGNALING AND PACKET SWITCHING

Customer line signaling - FDM carrier systems - PCM signaling - Inter-register signaling - Commonchannel signaling principles - CCITT signaling - Digital customer line signaling - Statistical multiplexing - Local area and wide area networks - Large scale and Broadband networks.

TOTAL: 45 Hrs

**Board** of Studies

Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

# TEXT BOOKS

| Sl.No                   | Author(s)         | Title of the Book                                   | Publisher                       | Year of<br>Publication |  |
|-------------------------|-------------------|-----------------------------------------------------|---------------------------------|------------------------|--|
| Thiagarajan Viswanathan |                   | Telecommunication Switching<br>Systems and Networks | Prentice Hall of India Pvt. Ltd | 2006                   |  |
| 2.                      | William Stallings | Wireless Communication and<br>Networks              | Pearson Education,<br>New Delhi | 2004                   |  |

# REFERENCE BOOKS

| Sl.No | Author(s)        | Title of the Book                                     | Publisher                     | Year of<br>Publication<br>2006 |  |
|-------|------------------|-------------------------------------------------------|-------------------------------|--------------------------------|--|
| 1.    | J.E Flood        | Telecommunications Switching,<br>Traffic and Networks | Pearson Education Ltd         |                                |  |
| 2.    | John C Bellamy   | Digital Telephony                                     | John Wiley                    | 2000                           |  |
| 3.    | Behrouz Forouzan | Introduction to Data Communication and Networking     | Tata Mc-Graw Hill<br>New York | 1996                           |  |
| 4.    | Tomasi           | Introduction to Data Communication and Networking     | Pearson Education             | 2007                           |  |
| 5.    | R.A.Thomson      | Telephone switching Systems                           | Artech House<br>Publishers    | 2000                           |  |

# WEB URLs

- 1. www.nptel.ac.in/courses/117104128/12

- www.inper.ac.in/courses/106105082/20
   www.nptel.ac.in/courses/106105082/20
   www.nptel.ac.in/courses/117104104/
   www.nptel.ac.in/courses/117101050/25
   www.nptel.ac.in/courses/106105080/pdf/M4L1.pdf

#### COGNITIVE RADIO NETWORKS 16ECE07

LPTC 3 0 0 3

#### **COURSE OBJECTIVES**

- To enable the student to understand the evolving paradigm of cognitive radio communication and the enabling technologies for its implementation.
- To enable the student to understand the essential of Primary Cognitive Radio functions, Behaviors, Components
- To enable the student to understand the location and environment awareness in Cognitive Radios
- To enable the student to understand the essential functionalities and requirements in designing software defined radios and their usage for cognitive communication
- To expose the student to the evolving next generation wireless networks and their associated challenges

## **COURSE OUTCOMES**

| Explain the principles of the software defined radio |
|------------------------------------------------------|
| Describe the architecture of software defined radio  |
| Explain the design considerations of cognitive radio |
| Demonstrate knowledge of spectrum sensing            |
| Apply cross-layer design for cognitive radio         |
|                                                      |

| Course             |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      | PSOs |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECE07.CO1        | x   | x                | х   | x   |     |     | X   |     |     |      |      | 1    | x    |      |      |  |  |
| 16ECE07.CO2        | X   | X                | 1   | X   |     |     | х   |     |     |      |      | X    | X -  |      |      |  |  |
| 16ECE07.CO3        | х   | - х              | х   | x   |     |     | X   |     |     |      |      | Х    | Х    |      |      |  |  |
| 16ECE07.CO4        | х   | х                | х   | х   |     |     | х   |     |     |      |      | X    | х    |      |      |  |  |
| 16ECE07.CO5        | x   | X                | 1   | X   |     |     | X   |     |     |      |      | x    | X    |      |      |  |  |

#### INTRODUCTION TO SOFTWARE DEFINED RADIO UNIT I

Definitions and potential benefits, software radio architecture evolution - foundations, technology tradeoffs and architecture implications

#### SDR ARCHITECTURE UNIT II

Essential functions of the software radio, architecture goals, quantifying degrees of programmability, top level component topology, computational properties of functional components, interface topologies among plug and play modules, architecture partitions.

# INTRODUCTION TO COGNITIVE RADIOS

Marking radio self-aware, the cognition cycle, organization of cognition tasks, structuring knowledge for cognition tasks, Enabling location and environment awareness in cognitive radios - concepts, architecture, design considerations.

#### COGNITIVE RADIO ARCHITECTURE UNIT IV

Primary Cognitive Radio functions, Behaviors, Components, A-Priori Knowledge taxonomy, observe phase data structures, Radio procedure knowledge encapsulation, components of orient, plan, decide phases, act phase knowledge representation, design rules.

# NEXT GENERATION WIRELESS NETWORKS

The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross - layer design.

TOTAL: 45 Hrs

Board of Studies Department of Electronics and Communication Engineering muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40s.

# TEXT BOOKS

| Sl.No | Author(s)                                               | Title of the Book                                 | Publisher                 | Year of<br>Publication<br>2007 |  |
|-------|---------------------------------------------------------|---------------------------------------------------|---------------------------|--------------------------------|--|
| 1.    | Qusay. H. Mahmoud,                                      | Cognitive Networks: Towards<br>Self Aware Network | John Wiley & Sons<br>Ltd. |                                |  |
| 2.    | Markus Dillinger,<br>KambizMadani, Nancy<br>Alonistioti | Software Defined Radio                            | John Wiley                | 2003                           |  |

# REFERENCE BOOKS

| Sl.No | Author(s)                                              | Title of the Book                                                                  | Publisher                    | Year of<br>Publication |  |
|-------|--------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|------------------------|--|
| 1.    | HuseyinArslan                                          | Cognitive Radio, SDR and<br>Adaptive System                                        | Springer                     | 2007                   |  |
| 2.    | Joseph Mitola                                          | Cognitive Radio Architecture                                                       | John Wiley & Sons<br>Ltd     | 2006                   |  |
| 3.    | Alexander M. Wyglinski,<br>Maziarnekovec, Y. Thomas Hu | Cognitive Radio Communication and Networks                                         | Elsevier                     | 2010                   |  |
| 4.    | J.Mitola                                               | The Software Radio<br>Architecture                                                 | IEEE Communications Magazine | 1995                   |  |
| 5.    | J.Mitola                                               | Cognitive Radio: An Integrated<br>Agent Architecture for software<br>defined radio | Royal Inst.<br>Technology    | 2000                   |  |

# WEB URLs:

- www.nptel.ac.in/courses/117102062/
   www.nptel.ac.in/courses/117102062/5
   www.nptel.ac.in/courses/117107035/1
   www.nptel.ac.in/courses/117101003/1
- 5. www.nptel.ac.in/courses/117101002/1

CHAIRMAN Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

#### RF MEMS

LTPC 3003

# COURSE OBJECTIVES

- To acquire basic knowledge about application of MEMS in RF communications.
- To study about MEMS physical modeling and reconfigurable elements.
- To understand MEMS phase shifters
- To learn about Micromachined Transmission line and Antenna
- To study about the MEMS Filters and RF MEMS Filters

#### COURSE OUTCOMES

| 16ECE08.CO1 | Explain the fabrication process of RF MEMS                          |
|-------------|---------------------------------------------------------------------|
| 16ECE08.CO2 | Describe the properties of components used in MEMS                  |
| 16ECE08.CO3 | Summarize characteristics of various types of phase shifters        |
| 16ECE08.CO4 | Explain the concept of Micro machined transmission line and antenna |
| 16ECE08.CO5 | Discuss various types of MEMS Filters                               |
| TOLCEOO.COS |                                                                     |

| Course             |     | Program Outcomes |     |     |     |     |     |     |      |      |      |      |      |      | PSOs |  |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|--|--|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9  | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |  |
| 16ECE08.CO1        | X   | X                | X   | 1   |     |     |     |     | х    |      |      | X    |      | Х    |      |  |  |
| 16ECE08.CO2        | X   | X                | х   |     |     |     |     |     | х    |      |      | X    |      | X    |      |  |  |
| 16ECE08.CO3        | x   | х                | X   | x   |     |     |     |     | ti . |      |      | х    |      | Х    |      |  |  |
| 16ECE08.CO4        | X   | x                | X   | Х   |     |     |     |     | Х    |      |      |      |      | X    |      |  |  |
| 16ECE08.CO5        | X   | X                | X   | x   |     |     |     |     |      |      |      | X    |      | X    |      |  |  |

#### UNIT I INTRODUCTION

Introduction to RF MEMS: application in wireless communications, space and defense Applications Overview of RF MEMS fabrication, design and testing-Introduction to Micro fabrication Techniques Materials properties-Bulk and surface micromachining-Wet and dry etching- Thin-film depositions (LPCVD, Sputtering, Evaporation). LIGA and Electroplating.

#### UNIT II MEMS

Physical Modeling Physical and practical aspects of RF circuit design: Impedance mismatch effects in RF MEMSRF/Microwave substrate properties: Micro machined - enhanced elements, MEM switches, Resonators. MEMS modeling. Switch parameters Actuation mechanisms - Bistable micro relays and micro actuators.

# MEMS INDUCTORS CAPACITORS AND PHASE SHIFTERS

MEMS Inductor: Effect of inductor layout - Modeling and design issues of planar inductor - MEMS Capacitor: Gap tuning and area tuning capacitors. Types of phase shifters and their limitations - MEMS Phase Shifter: Switched delay line phase shifter - Distributed MEMS phase shifter - Polymer based phase shifters.

# MICROMACHINED TRANSMISSION LINES AND ANTENNA

Losses in transmission lines - Coplanar lines - Micro machined waveguide components - Micro machined directional coupler. Micro strip antennas - Micromachining techniques to improve antenna performance -Micromachining as a fabrication process for small antennas - Reconfigurable antennas.

#### MEMS FILTERS RF MEMS FILTERS UNIT V

Film bulk acoustic wave filters - FBAR filter fundamentals, FBAR filter for PCS applications, RF MEMS filters - A Ka-Band millimeter-wave Micromachined tunable filter, A High-Q 8-MHz MEM Resonator filter, RF MEMS Oscillators - fundamentals, A 14-GHz MEM Oscillator, A Ka- Band Micromachined cavity oscillator, A 2.4 GHz MEMS based voltage controlled oscillator..

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 4uc.

# TEXT BOOKS

| Sl.No | Author(s)        | Title of the Book                                  | Publisher     | Year of<br>Publication |
|-------|------------------|----------------------------------------------------|---------------|------------------------|
| Ŀ     | H.J.Delos Santos | RF MEMS circuit Design for Wireless Communications | Artech House, | 2002                   |
| 2.    | G.M.Rebeiz       | MEMS Theory, Design and Technology                 | John Wiley    | 2003                   |

# REFERENCE BOOKS

| Sl.No | Author(s)          | Title of the Book                         | Publisher  | Year of<br>Publication |
|-------|--------------------|-------------------------------------------|------------|------------------------|
| 1.    | V.K.Varadanetal    | RF MEMS and their<br>Applications         | John Wiley | 2003                   |
| 2.    | Mohamed Gad-el-Hak | MEMS: Introduction and Fundamentals       | CRC Press  | 2005                   |
| 3.    | Mohamed Gad-el-Hak | MEMS: Applications                        | CRC Press  | 2005                   |
| 4.    | Stephen D.senturia | Microsystem Design                        | Springer - | 2000                   |
| 5.    | J.Allen            | Micro Electro Mechanical<br>System Design | CRC Press  | 2005                   |

# WEB URLs:

- 1. www.nptel.ac.in/courses/117105082/
- 2. www.nptel.ac.in/courses/117105082/4
- 3. www.nptelvideos.in/2012/12/mems-microsystems.html
- 4. www.textofvideo.nptel.iitm.ac.in/117105082/lec1.pdf
- 5. www.uio.no/studier/emner/matnat/ifi/INF5490/v12/.../LN05.pdf

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous
Rasipuram, Namakkal - 637 4Ge.

# SOFT COMPUTING TECHNIQUES

LPTC 3 0 0 3

#### COURSE OBJECTIVES

- To provide adequate knowledge about neural networks
- To teach about the concept of fuzzy involved in various systems
- To provide adequate knowledge about genetic algorithm
- To gain knowledge on Hybrid Computing Techniques
- To provide adequate knowledge to modeling the system

#### COURSE OUTCOMES

Describe basics of ANN and its learning algorithms 16ECE09.CO1 Explain the Fuzzy logic concept 16ECE09.CO2 Differentiate the Traditional algorithms and Genetic algorithms 16ECE09.CO3 Develop hybrid Computing Techniques 16ECE09.CO4 Solve the real time problems with MATLAB tool box 16ECE09.CO5

|                    |     |     |     | PSOs |     |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3 | PO4  | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE09.CO1        | X   | х   | X   |      | х   |     |     |     | x   |      | X    |      | 1.   | х    |      |
| 16ECE09.CO2        | X   | X   | X   |      | X   |     |     |     | X   | _    | X    |      |      | X    |      |
| 16ECE09.CO3        | x   | X   | x   | X    | X   |     |     |     | X   |      | X    |      |      | X    |      |
| 16ECE09.CO4        | X   | X   | X   | х    | X   |     |     |     |     |      | X    | X    |      | X    |      |
| 16ECE09.CO5        | x   | X   | X   |      | X   |     |     |     |     |      | X    | X    |      | X    |      |

NEURAL NETWORKS UNIT I

Fundamentals of Neural Networks - History- Architectures- Learning methods-XOR problem-Delta rulederivation-Back propagation- applications- parameters in BPN- Associative memory - Hetero associative- BAMenergy function problems-applications of associative memories- ART1- ART2- applications of adaptive networks.

# BASIC CONCEPTS OF FUZZY LOGIC

Introduction to fuzzy logic, Classical sets and Fuzzy sets, Fuzzy relations, Membership function: Features of membership function, Fuzzification, Methods of membership value assignments- Fuzzy rules and reasoning: Fuzzy if-then rules. Fuzzy Inference Systems (FIS): Introduction- Methods of FIS: Mamdani, Sugeno and Tsukamoto. Defuzzification: Lambda-Cuts for fuzzy sets and fuzzy relations, Defuzzification methods.

#### GENETIC ALGORITHMS UNIT III

Fundamentals of Genetic Algorithms-Difference between Traditional Algorithms and Genetic Algorithms creation of off springs - encoding - fitness function reproduction- Crossover- insertion& deletion- mutationbitwise operators -applications- Multi-objective Genetic Algorithm (MOGA)- genetic algorithms in search and optimization, GA based clustering Algorithm.

#### HYBRID SOFT COMPUTING TECHNIQUES UNIT IV

Hybrid systems - Neuro Fuzzy Modelling -Applications of Neural Networks- Pattern Recognition and classification - Neuro Genetic hybrids - fuzzy Genetic hybrids- GA based weight determination and applicationsfuzzy BPN - simplified fuzzy ARTMAP.

Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle Swarm Optimization (PSO).

#### PROGRAMMING AND APPLICATIONS UNIT V

Using Neural Network toolbox - Using Fuzzy Logic toolbox- Using Genetic Algorithm & directed search toolbox Application: Printed Character Recognition, Optimization of travelling salesman problem using genetic algorithm approach, Identification and control of linear and nonlinear dynamic systems using Matlab-Neural Network toolbox

TOTAL: 45 Hrs

Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 406.

# TEXT BOOKS

| Sl.No | Author(s)                                  | Title of the Book                                   | Publisher | Year of<br>Publication |
|-------|--------------------------------------------|-----------------------------------------------------|-----------|------------------------|
| 1.    | S.N.Sivanandam,<br>S.N.Deepa               | Principles of Soft Computing                        | Wiley .   | 2014                   |
| 2.    | Rajasekaran.S and<br>Vijayalakshmi Pai.G.A | Neural Networks, Fuzzy Logic and Genetic Algorithms | РНІ       | 2011                   |

# REFERENCE BOOKS

| Sl.No                              | Author(s)                      | Title of the Book                                                      | Publisher                | Year of<br>Publication |  |
|------------------------------------|--------------------------------|------------------------------------------------------------------------|--------------------------|------------------------|--|
| J.S.R.Jang, C.T.Sun,<br>E.Mizutani |                                | Neuro – Fuzzy and Soft<br>Computing                                    | PHI Learning Pvt.<br>Ltd | 2012                   |  |
| 2.                                 | Timothy J.Ross                 | Fuzzy Logic with Engineering applications                              | John Whey and Sons       |                        |  |
| 3.                                 | Simon Haykin                   | Neural Networks Comprehensive Foundation                               | Pearson Education        | 2005                   |  |
| 4.                                 | Samir Roy,<br>Udit Chakraborty | Neuro Fuzzy and Genetic<br>Algorithms                                  | Pearson Education        | 2013                   |  |
| 5.                                 | Davis E.Goldberg               | Genetic Algorithms in Search,<br>Optimization, and Machine<br>Learning | Pearson Education        | 2009                   |  |

### WEB URLs:

- http://nptel.ac.in/courses/117105084/
   http://nptel.ac.in/courses/108104049/13

- http://nptel.ac.in/courses/106106126/15
   http://nptel.ac.in/courses/108104049/27
   http://www.nptelvideos.in/2012/12/neural-networks-and-applications.html

CHAIRMAN Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

# NANO ELECTRONICS

LPTC 3 0 0 3

- To learn and understand basic concepts of Nano electronics
- To know the techniques of fabrication and measurement
- To know the properties of nano technology
- To gain knowledge about Nanostructure devices
- To gain knowledge of logic devices and application

#### COURSE OUTCOMES:

| 16ECE10.CO1 | Describe the basics of Nano electronics                   |
|-------------|-----------------------------------------------------------|
| 16ECE10.CO2 | Explain the fabrication of nanostructures and nanodevices |
| 16ECE10.CO3 | Outline the properties of Nano electronics                |
| 16ECE10.CO4 | Discuss the quantum mechanism in Nano Structure Devices   |
| 16ECE10.CO5 | Design logic devices using Nano Electronics               |

|                    |     |     |     |     | Pr  | ogram ( | Outcome | 28  |     |      |      |      | PSOs |      |      |
|--------------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE10.CO1        | X   | x   | X   | x   |     |         |         |     |     |      | X    | X    | 1    |      |      |
| 16ECE10.CO2        | X   | X   | X   | X   | X   | X       |         |     | X   |      |      |      |      | X    |      |
| 16ECE10.CO3        | x   | x   | X   | х   |     | X       |         |     | x   |      |      |      |      | Х    |      |
| 16ECE10.CO4        | X   | Х   | х   | 1   | X   | х       |         |     | х   |      |      |      |      | Х    |      |
| 16ECE10.CO5        | X   | X   | х   | х   | X   |         |         |     | X   |      | Х    |      | X    |      |      |

# INTRODUCTION TO NANOELECTRONICS

Microelectronics towards biomolecule electronics-Particles and waves- Wave-particle duality- Wave mechanics- Schrödinger wave equation- Wave mechanics of particles: - Atoms and atomic orbitals- Materials for nano electronics- Semiconductors- Crystal lattices: Bonding in crystals- Electron energy bands- Semiconductor hetero structures- Lattice-matched and pseudomorphic hetero structures- Inorganic-organic hetero structures-Carbon nanomaterials: nanotubes and fullerenes

#### FABRICATION AND MEASUREMENT TECHNIQUES **UNIT II**

Growth, fabrication, and measurement techniques for nanostructures- Bulk crystal and hetero structure growth- Nanolithography, etching, and other means for fabrication of nanostructures and nano devices-Techniques for characterization of nanostructures- Spontaneous formation and ordering of nanostructures- Clusters and nanocrystals- Methods of nanotube growth- Chemical and biological methods for nanoscale fabrication-Fabrication of nano-electromechanical systems

# PROPERTIES OF NANO MATERIALS

Dielectrics-Ferroelectrics-Electronic Properties and Quantum Effects-Magneto electronics - Magnetism and Magneto transport in Layered Structures-Organic Molecules - Electronic Structures, Properties, and Reactions-Neurons - The Molecular Basis of their Electrical Excitability-Circuit and System Design- Analysis by Diffraction and Fluorescence Methods-Scanning Probe Techniques

#### NANO STRUCTURE DEVICES UNIT IV

Electron transport in semiconductors and nanostructures- Time and length scales of the electrons in solids-Statistics of the electrons in solids and nanostructures- Density of states of electrons in nanostructures- Electron transport in nanostructures-Electrons in traditional low-dimensional structures- Electrons in quantum wells-Electrons in quantum wires- Electrons in quantum dots- Nanostructure devices- Resonant-tunneling diodes- Fieldeffect transistors- Single-electron-transfer devices- Potential-effect transistors- Light-emitting diodes and lasers-Nano-electromechanical system devices- Quantum-dot cellular automata

#### LOGIC DEVICES AND APPLICATIONS UNIT V

Logic Devices-Silicon MOSFETs-Ferroelectric Field Effect Transistors-Quantum Transport Devices Based on Resonant Tunneling-Single-Electron Devices for Logic Applications-Superconductor Digital Electronics-Quantum Computing Using Superconductors-Carbon Nanotubes for Data Processing- Molecular Electronics

TOTAL: 45 Hrs

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40s.

# TEXT BOOKS

| Sl.No | Author(s)                                                             | Title of the Book                                                                             | Publisher                        | Year of<br>Publication |
|-------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------|------------------------|
| 1.    | Vladimir V. Mitin,<br>Viatcheslav A. Kochelap,<br>Michael A. Stroscio | Introduction to Nanoelectronics: Science,<br>Nanotechnology, Engineering, and<br>Applications | Cambridge<br>University<br>Press | 2011                   |
| 2.    | SupriyoDatta                                                          | Lessons from Nanoelectronics: A New<br>Perspective on Transport                               | World<br>Scientific              | 2012                   |

#### REFERENCES

| Sl.No                                              | Author(s)                | Title of the Book                                                                        | Publisher                               | Year of<br>Publication |  |
|----------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|--|
| I. Karl Goser, Peter<br>Glösekötter, Jan Dienstuhl |                          | Nanoelectronics and Nanosystems: From<br>Transistors to Molecular and Quantum<br>Devices | Springer                                | 2004                   |  |
| 2.                                                 | W. R. Fahrner            | Nanotechnology and Nan electronics:<br>Materials, Devices, Measurement<br>Techniques     | SpringerVerla<br>g Berlin<br>Heidelberg | 2005                   |  |
| 3.                                                 | Mark A. Reed, Takhee Lee | Molecular Nanoelectronics                                                                | American<br>Scientific<br>Publishers    | 2003                   |  |
| 4.                                                 | Jaap Hoekstra            | Introduction to Nanoelectronic Single-<br>Electron Circuit Design                        | Pan Stanford<br>Publishing              | 2010                   |  |
| 5.                                                 | W. Ranier                | Nano Electronics and Information<br>Technology                                           | John Wiley &<br>Sons                    | 2012                   |  |

# WEB URLs:

- 1. www.youtube.com/watch?v=tW1-fSRiAdc
- 2. www.dailymotion.com/video/x3ww9bs
- 3. www.news-medical.net/life-sciences/Properties-of-Nanoparticles.aspx
- 4. www.nptel.ac.in/courses/117108047/37
- 5. www.nptel.ac.in/courses/117108040/downloads/Programmable%20Logic%20Devices%20(PLD).pdf

SAN

WIRELESS COMMUNICATION 16ECE11

LTPC 3 0 0 3

#### COURSE OBJECTIVES

- Basic wireless, cellular concepts.
- Radio wave propagation and Mobile Channel models.
- Various performance analysis of mobile communication system
- Standards 1G, 2G Basic system available.
- Understand the various multiple antenna system

#### COURSE OUTCOME

| 16ECE11.CO1<br>16ECE11.CO2 | Describe the cellular radio concepts such as frequency reuse and handoff<br>Analyze the mobile radio wave propagation models |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 16ECE11.CO3                | Explain the small scale and multipath propagation                                                                            |
| 16ECE11.CO4                | Explain the capacity, diversity and equalization techniques                                                                  |
| 16ECE11.CO5                | Summarize the Wireless Systems and Standards                                                                                 |

|                    |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      | PSOs |      |  |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECE11.CO1        | X   | X                | x   | х   | X   | х   | х   |     | х   |      | X    | Х    | X    | X    | X    |  |
| 16ECE11.CO2        | X   | X                | Х   | х   | Х   | x   | x   |     | х   | 8    | х    | x    | X    | X    | X    |  |
| 16ECE11.CO3        | X   | X                | x   | X   | X   | x   | x   |     | X   |      | X    | x    | X    | X    | X    |  |
| 16ECE11.CO4        | X   | x                | x   | x   | X   | х   | х   |     | x   |      | x    | x    | X    | X    | X    |  |
| 16ECE11.CO5        | X   | x                | x   | x   | x   | x   | х   | R   | х   |      | X    | х    | x    | X    | Х    |  |

INTRODUCTION TO WIRELESS COMMUNICATION

Evolution of Mobile Radio Communication - Examples of Wireless Communication System - Cellular concept - Frequency Reuse - Channel assignment - Hand off - Interference & System capacity - Trunking and Erlang - capacity calculation - Improving coverage and capacity.

MOBILE RADIO WAVE PROPAGATION

Radio wave Propagation - Transmit and receive Signal Models - Free Space path loss - Ray Tracing -Empirical Path loss models - Simplified path loss model - Shadow fading - Combine path loss and Shadowing -Outage Probability under path loss & shadowing - Cell coverage area.

SMALL SCALE AND MULTIPATH PROPAGATION

Small Scale Multipath Propagation - Impulse response model of a Multipath Channel - Small Scale Multipath Measurements - Parameters of Mobile Multipath Channels - Types of fading (fading effects due to Multipath Time Delay Spread & Doppler spread) - Rayleigh and Ricean Distribution.

UNIT IV

CAPACITY, DIVERSITY AND EQUALIZATION IN WIRELESS SYSTEM

Capacity in AWGN - Capacity of Flat Fading Channels - Channel and System Model - Channel Distribution Information known - CSI at Receiver Diversity Technique - Selection combining - EGC - MRC -Feedback - Time - Frequency - Rake Receiver - Interleaving. Equalization - Linear Equalization - Non linear (DFE & MLSE) - Algorithm of Adaptive Equalization - Zero Frequency algorithm - LMS algorithm - Recursive Least Square algorithm.

WIRELESS SYSTEMS AND STANDARDS

AMPS & ETACS System overview - Call handling - GSM System - Services and features - Architecture - Radio Subsystem -- GSM Call - Frame Structure - Signal Processing - CDMA Digital Cellular Standard (IS-95) -

> CHAIRMAN Board of Studies Department of Electronics and Communication Engineering Mutheyammel Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

Frequency & Channel Specification - Forward CDMA channel - Reverse CDMA channel. Introduction to OFDM system – Cyclic prefix – Matrix representation case study: IEEE 802.11a wireless LAN.

TOTAL: 45 Hrs

### TEXT BOOKS

| Sl.No | Author(s)         | Title of the Book                                   | Publisher                 | Year of<br>Publication |
|-------|-------------------|-----------------------------------------------------|---------------------------|------------------------|
| 1.    | Rappaport T.S     | Wireless Communications:<br>Principles and Practice | Pearson education         | 2009                   |
| 2.    | William Stallings | Wireless Communication & Networking                 | Pearson education<br>Asia | 2009                   |

#### REFERENCE BOOKS

| Sl.No      | Author(s)                       | Title of the Book                                        | Publisher                     | Year of<br>Publication |  |
|------------|---------------------------------|----------------------------------------------------------|-------------------------------|------------------------|--|
| 1. Feher K |                                 | Wireless Digital<br>Communications                       | Prentice Hall                 | 1995                   |  |
| 2.         | Schiller Mobile Communication   |                                                          | Pearson Education<br>Asia Ltd | 2008                   |  |
| 3.         | Andrea Goldsmith                | Wireless Communications                                  | Cambridge University Press    | 2005                   |  |
| 4.         | Lee W.C.Y                       | Mobile Communications Engineering: Theory & Applications | McGraw Hill                   | 1998                   |  |
| 5.         | Van Nee, R. and Ramji<br>Prasad | OFDM for wireless multimedia communications              | Artech House                  | 2000                   |  |

## WEB URLs:

- 1. www.nptel.ac.in/courses/117102062/
- 2. www.youtube.com/watch?v=IBJdZzb2cl0
- 3. www.youtube.com/watch?v=XQDZn83-V2U
- 4. www.nptel.ac.in/courses/117102062/28
- 5. www.nptel.ac.in/courses/117104099/

CHAIRMAN Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

#### SATELLITE COMMUNICATION

LTPC 3 003

## COURSE OBJECTIVES

- Overview of satellite systems in relation to other terrestrial systems.
- Study of satellite orbits and launching.
- Study of earth segment and space segment components
- Study of satellite access by various users.
- Study of DTH and compression standards

# COURSE OUTCOMES

Analyze the satellite orbits 16ECE12.CO1 Analyze the space segment 16ECE12.CO2

Summarize the Satellite Access Techniques 16ECE12.CO3

Analyze the earth segment 16ECE12.CO4

Explain various application Satellites 16ECE12.CO5

| Comme              |     |     |     |     | Pr  | ogram ( | Outcome | es  |     |      |      |      | PSOs |      |      |
|--------------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE12.CO1        | X   | X   | X   | X   |     | X       |         |     | X   |      | X    | X    | X    | X    | X    |
| 16ECE12.CO2        | X   | X   | X   | x   |     | x       |         |     | X   |      | X    | X    | X    | X    | X    |
| 16ECE12.CO3        | X   | X   | X   | X   |     | x       |         |     | X   |      | X    | X    | X    | X    | X    |
| 16ECE12.CO4        | X   | X   | X   | x   |     | x       |         |     | х   |      | X    | х    | X    | X    | X    |
| 16ECE12.CO5        | X   | X   | X   | X   |     | х       |         |     | X   |      | X    | X    | X    | X    | X    |

SATELLITE ORBITS UNIT I

Kepler's Laws, Newton's law, orbital parameters, orbital perturbations, station keeping.geo stationary and non Geo-stationary orbits - Look Angle Determination- Limits of visibility -eclipse-Sub satellite point -Sun transit outage-Launching Procedures -launch vehicles and propulsion.

# SPACE SEGMENT AND SATELLITE LINK DESIGN

Spacecraft Technology- Structure, Primary power, Attitude and Orbit control, Thermal control and Propulsion, communication Payload and supporting subsystems, Telemetry, Tracking and command. Satellite uplink and downlink Analysis and Design, link budget, E/N calculation- performance impairments-system noise, inter modulation and interference, Propagation Characteristics and Frequency considerations- System reliability and design lifetime.

# SATELLITE ACCESS:

Modulation and Multiplexing: Voice, Data, Video, Analog - digital transmission system, Digital video Brocast, multiple access: FDMA, TDMA, CDMA, Assignment Methods, Spread Spectrum communication, compression - encryption

#### EARTH SEGMENT UNIT IV

Earth Station Technology-- Terrestrial Interface, Transmitter and Receiver, Earth Station Tracking System: Satellite acquisition, Automatic tracking, Manual tracking, Program tracking. Antenna Systems TVRO, MATV, CATV, Test Equipment Measurements on G/T, C/No, EIRP, Antenna Gain.

SATELLITE APPLICATIONS

INTELSAT Series, INSAT, VSAT, Mobile satellite services: GSM, GPS, INMARSAT, LEO, MEO, Satellite Navigational System. Direct Broadcast satellites (DBS)- Direct to home Broadcast (DTH), Digital audio broadcast (DAB)- Worldspace services, Business TV(BTV), GRAMSAT, Specialized services - E -mail, Video conferencing.

TOTAL: 45 Hrs

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering Muthayammai Engineering College (Autonomous) Rasipuram, Namakkal - 637 40s.

## TEXT BOOKS

| Sl.No | Author(s)                                                   | Title of the Book                              | Publisher                    | Year of<br>Publication |
|-------|-------------------------------------------------------------|------------------------------------------------|------------------------------|------------------------|
| 1.    | Dennis Roddy                                                | Satellite Communication                        | McGraw Hill<br>International | 2008                   |
| 2.    | Wilbur L. Pritchard, Hendri G. Suyderhoud, Robert A. Nelson | Satellite Communication<br>Systems Engineering | Prentice, Hall/Pearson       | 2017                   |

## REFERENCE BOOKS

| Sl.No | Author(s)         | Title of the Book                                      | Publisher                                     | Year of<br>Publication |
|-------|-------------------|--------------------------------------------------------|-----------------------------------------------|------------------------|
| 1.    | N.Agarwal         | Design of Geosynchronous Space<br>Craft                | Prentice Hall                                 | 1986                   |
| 2.    | Bruce R. Elbert   | The Satellite Communication Applications               | Hand Book, Artech<br>House, Bostan<br>,London | 2004                   |
| 3.    | Brian Ackroyd     | World Satellite Communication and earth station Design | BSP professional<br>Books                     | 1990                   |
| 4.    | Emanuel Fthenakis | Manual of Satellite<br>Communications                  | McGraw Hill Book<br>Co.,                      | 1984                   |
| 5.    | Robert G. Winch   | Telecommunication Trans Mission Systems                | McGraw-Hill Book Co                           | 1983                   |

#### WEB URLs:

- 1. www.en.wikipedia.org/wiki/Communications\_satellite
- 2. www.isro.gov.in/applications/satellite-communication
- www.nasa.gov/directorates/heo/scan/communications/.../txt\_satellite\_comm.ht.
   www.radio-electronics.com/.../satellite/communications\_satellite/satellite-communication.
- www.britannica.com/technology/satellite-communication

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

#### TELEVISION AND VIDEO ENGINEERING 16ECE13

LTPC 3 0 0 3

#### COURSE OBJECTIVES

- To study the analysis and synthesis of TV Pictures, Composite Video Signal.
- To study and analysis of receiver picture tubes and television Camera Tubes
- To study the principles of Monochrome Television Transmitter and Receiver systems.
- To study the various Color Television systems with a greater emphasis on PAL system.
- To study the advanced topics in Television systems and Video Engineering

#### COURSE OUTCOME

| 16ECE13.CO1 | Describe the basic concepts of video generation in a television system |
|-------------|------------------------------------------------------------------------|
| 16ECE13.CO2 | Explain various components of a monochrome TV transmitter and receiver |
| 16ECE13.CO3 | Describe different techniques involved in audio and video processing   |
| 16ECE13.CO4 | Distinguish NTSC, PAL and SECAM colour TV system                       |
| 16ECE13.CO5 | Compare advanced digital TV systems                                    |
|             |                                                                        |

| Commo              |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      | PSOs |      |      |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE13.CO1        | X   | X                | х   |     |     |     |     |     | X   |      |      | X    | х    |      |      |
| 16ECE13.CO2        | X   | x                | 1   |     |     |     |     |     | х   |      |      | X    | х    |      |      |
| 16ECE13.CO3        | X   | Х                | х   |     | х   |     |     |     | х   |      |      | X    |      |      |      |
| 16ECE13.CO4        | X   | X                | X   |     |     |     |     |     | х   |      |      | X    | X    |      |      |
| 16ECE13.CO5        | X   | X                | X   |     | X   |     |     |     | Х   |      |      | Х    | Х    |      |      |

#### FUNDAMENTALS OF TELEVISION . UNIT I

Geometry form and Aspect Ratio - Image Continuity - Number of scanning lines - Interlaced scanning -Picture resolution - Camera tubes- Image orthicon - vidicon - plumbicon -silicon diode array vidicon -solid state image scanners- monochrome picture tubes- composite video signal-video signal dimension- horizontal sync. Composition-vertical sync. Details - functions of vertical pulse train - scanning sequence details. Picture signal transmission - positive and negative modulation - VSB transmission sound signal transmission - standard channel bandwidth.

# MONOCHROME TELEVISION TRANSMITTER AND RECEIVER

TV transmitter - TV signal propagation - Interference - TV transmission Antennas - Monochrome TV receiver - RF tuner - UHF, VHF tuner- Digital tuning techniques- AFT-IF subsystems - AGC - Noise cancellation-Video and sound inter carrier detection- vision IF subsystem- video amplifiers requirements and configurations - DC re-insertion - Video amplifier circuits- Sync separation - typical sync processing circuits- Deflection current waveform - Deflection Oscillators - Frame deflection circuits - requirements- Line Deflection circuits - EHT generation - Receiver Antennas.

#### BASICS OF COLOUR TELEVISION UNIT III

Compatibility - colour perception- Three colour theory- luminance, hue and saturation-colour television cameras values of luminance and colour difference signals- colour television display tubes- delta - gun-precision in-line and Trinitron colour picture tubes- purity and convergence- purity and static and dynamic convergence adjustments pincushion correction techniques- automatic degaussing circuit- grey scale tracking - colour signal transmission bandwidth- modulation of colour difference signals - weighting factors- Formation of chrominance signal.

TYPES COLOUR TELEVISION SYSTEMS

NTSC colour TV system- NTSC colour receiver- limitations of NTSC system - PAL colour TV system cancellation of phase errors- PAL -D colour system- PAL coder - Pal-Decolour receiver- chromo signal amplifier-

> Board of Studies Department of Sectronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

separation of U and V signals- colour burst separation - Burst phase Discriminator - ACC amplifier- Reference Oscillator- Ident and colour killer circuits- U and V demodulators- Colour signal matrixing - merits and demerits of the PAL system - SECAM system - merits and demerits of SECAM system.

#### ADVANCED TELEVISION SYSTEMS UNIT V

Satellite TV technology- Cable TV - VCR- Video Disc recording and playback- Tele Text broadcast receiver - digital television - Transmission and reception- projection Television - Flat panel display TV receiver -Stereo sound in TV – 3D TV – HDTV – Digital equipments for TV studios.

TOTAL: 45 Hrs

#### TEXT BOOK

| Sl.No | Author(s)  | Title of the Book                                                          | Publisher                                          | Year of<br>Publication |
|-------|------------|----------------------------------------------------------------------------|----------------------------------------------------|------------------------|
| 1.    | R.R.Gulati | Monochrome Television Practice, Principles, Technology and servicing       | Third edition, New age<br>International Publishes  | 2006                   |
| 2.    | R.R.Gulati | Monochrome Television<br>Practice, Principles,<br>Technology and servicing | Second edition, New age<br>International Publishes | 2004                   |

#### REFERENCE

| Sl.No | Author(s)         | Title of the Book                        | Publisher                          | Year of<br>Publication |  |
|-------|-------------------|------------------------------------------|------------------------------------|------------------------|--|
| 1.    | R.R.Gulati        | Monochrome and colour television         | New age International<br>Publisher | 2003                   |  |
| 2.    | A.M Dhake         | Television and Video<br>Engineering      | Second edition, TMH                | 2003                   |  |
| 3.    | R.P.Bali          | Color Television,<br>Theory and Practice | Tata McGraw-Hill                   | 1994                   |  |
| 4.    | B.Rajagnanapazham | Television and Video<br>Engineering      | SCE                                | 2007                   |  |
| 5.    | R G Gupta         | Television engineering and video systems | Tata McGraw-Hill                   | 2006                   |  |

### WEB URLs

- 1. www.data.kemt.fei.tuke.sk/DigitalnaTelevizia/prednasky/Prezentacie/uocdtv1.html
- www.youtube.com/watch?v=EAybxdgS2T4
   www.readorrefer.in/article/PAL-Colour-Television-System\_12068/
- 4. www.freevideolectures.com/Course/2314/Communication-Engineering/17
- 5. www.eeweb.poly.edu/~yao/EE4414/digitalTV.pdf

## OPTO ELECTRONIC DEVICES

LTPC 3 0 0 3

# COURSE OBJECTIVES

- To know the basics of solid state physics and understand the nature and characteristics of light.
- To understand different methods of luminescence, display devices and laser types and their applications.
- To learn the principle of optical detection mechanism in different detection devices.
- To understand different light modulation techniques and the concepts and applications of optical switching
- To study the integration process and application of opto electronic integrated circuits in transmitters and

# COURSE OUTCOMES

| 16ECE14.CO1 | Review solid state semiconductor physics           |
|-------------|----------------------------------------------------|
| 16ECE14.CO2 | Explain the concepts of lasers                     |
| 16ECE14.CO3 | Classify different optical detection devices       |
| 16ECE14.CO4 | Distinguish different light modulation techniques  |
| 16ECE14.CO5 | Summarize applications of opto electronic circuits |

| Common             |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      | PSOs |      |      |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE14.CO1        | X   | X                | X   | X   | X   | X   |     |     |     |      | X    | X    | N    |      | X    |
| 16ECE14.CO2        | X   | X                | X   | X   | X   | X   |     |     |     |      | X    | X    | X    |      | X    |
| 16ECE14.CO3        | X   | X                | X   | x   | X   | х   |     |     |     |      | X    | X    | X    |      | X    |
| 16ECE14.CO4        | x   | X                | х   | x   | х   | x   |     |     |     |      | X    | х    | X    |      | Х    |
| 16ECE14.CO5        | X   | X                | x   | X   | X   | х   |     |     |     |      | X    | X    | X    |      | X    |

ELEMENTS OF LIGHT AND SOLID STATE PHYSICS **UNIT-I** 

Wave nature of light, Polarization, Interference, Diffraction, Light Source, review of Quantum Mechanical concept, Review of Solid State Physics, Review of Semiconductor Physics and Semiconductor Junction Device.

# DISPLAY DEVICES AND LASERS

Introduction, Photo Luminescence, Cathode Luminescence, Electro Luminescence, Injection Luminescence, LED, Plasma Display, Liquid Crystal Displays, Numeric Displays. Laser Emission, Absorption, Radiation, Population Inversion, Optical Feedback, Threshold condition, Laser Modes. Classes of Lasers, Mode Locking, laser applications.

#### OPTICAL DETECTION DEVICES UNIT-III

Principle and operation of Photo detector, Thermal detector, Photo Devices, Principle and operation of Photo Conductors, Principle and operation of Photo diodes, Detector Performance, details of the basic physics and operation of solar cells.

# OPTOELECTRONIC MODULATORS AND SWITCHING DEVICES

Introduction, Analog and Digital Modulation, Electro-optic modulators, Magneto Optic Devices, Acoustooptic devices, Optical, Switching and Logic Devices. the operation of quantum well electro-absorption modulators and electro-optic modulators

# OPTOELECTRONIC INTEGRATED CIRCUITS

Introduction, hybrid and Monolithic Integration, Application of Opto Electronic Integrated Circuits, Integrated transmitters and Receivers, Guided wave devices. Designs, demonstrations and projects related to optoelectronic device phenomena.

TOTAL: 45 Hrs

CHAIRMAN **Board of Studies** 

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

# TEXTBOOKS

| Sl.No         | Author(s)    | Title of the Book                                           | Publisher                                          | Year of<br>Publication |  |
|---------------|--------------|-------------------------------------------------------------|----------------------------------------------------|------------------------|--|
| Jasprit Singh |              | Opto Electronics – As Introduction to materials and devices | McGraw-Hill<br>International<br>Edition            | 1998                   |  |
| 2.            | Bhattacharya | Semiconductor Opto Electronic<br>Devices                    | Prentice Hall of<br>India Pvt., Ltd.,<br>New Delhi | 1995                   |  |

#### REFERENCES

| Sl.No            | Author(s)                               | Title of the Book                                                                | Publisher                                          | Year of<br>Publication |  |
|------------------|-----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|------------------------|--|
| 1.               | J. Wilson and J.Haukes                  | Opto Electronics – An<br>Introduction                                            | Prentice Hall of<br>India Pvt., Ltd.,<br>New Delhi |                        |  |
| 2.               | Xun Li                                  | Optoelectronic Devices: Design,<br>Modeling, and Simulation                      | Cambridge<br>University Press                      | 2009                   |  |
| 3.               | Tamir T. Grifel and<br>Henry L. Bertoni | Guided wave opto-electronics:<br>Device characterization, analysis<br>and design | Plenium Press                                      | 1995                   |  |
| 4.               | S.C Gupta                               | Optoelectronic Devices and systems                                               | Prentice Hall of<br>India Pvt., Ltd.,<br>New Delhi | 2005                   |  |
| 5. A. K. Ganguly |                                         | Optoelectronic Devices and<br>Circuits: Theory and Applications                  | Alpha Science<br>International Ltd                 | 2007                   |  |

# WEB URLs:

- 1. www.study.com/academy/.../the-bohr-model-and-atomic-spectra.html
- 2. www.nptel.ac.in/courses/113104012/Optoelectronic%20Materials%20and%20Devices.pdf
- 3. www.stanleytools.com/products/hand-tools/.../laser-tape-measure
- 4. www.textofvideo.nptel.iitm.ac.in/113104012/lec1.pdf
- 5. www.satishkashyap.com/2013/02/video-lectures-on-optoelectronic.html

CHAIRMAN

Board of Studies

Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)

Rasipuram, Namakkal - 637 408.

#### MOBILE AD-HOC NETWORKS

LTPC 3 0 0 3

# COURSE OBJECTIVES

- To gain knowledge in wireless network protocol and standards.
- To study the MAC, Routing protocols for ad hoc networks.
- To gain knowledge about Network Simulator.
- To learn the concept of security mechanism for wireless networks.
- To study about Characteristics of security protocols.

#### COURSE OUTCOMES

| 16ECE15.CO1 | Summarize applications of opto electronic circuits                          |
|-------------|-----------------------------------------------------------------------------|
| 16ECE15.CO2 | Analyze the medium access control protocols of Ad hoc networks              |
| 16ECE15.CO3 | Analyze the routing protocols and their performance using network simulator |
| 16ECE15.CO4 | Explain the basics of wireless sensor networks                              |
| 16ECE15.CO5 | Analyze the characteristics of different security protocols                 |

| C                  |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      | PSOs |      |      |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE15.CO1        | X   | X                | х   |     |     |     |     |     |     |      | X    | x    |      | X    |      |
| 16ECE15.CO2        | X   | X                | X   |     |     |     |     |     |     |      | Х    | X    |      | X    |      |
| 16ECE15.CO3        | x   | X                | х   | х   |     |     |     |     |     |      | х    | X    |      | X    |      |
| 16ECE15.CO4        | X   | X                | х   | х   | х   |     |     |     |     |      | x    | x    |      | Х    |      |
| 16ECE15.CO5        | X   | X                | X   | x   | X   |     |     |     |     |      | х    | х.   |      | Х    |      |

#### UNIT I INTRODUCTION

Introduction to Ad-Hoc wireless networks- Packet radio networks-Key definitions of ad-hoc and sensor networks- Advantages of ad-hoc and sensor networks -Unique constraints and challenges and Vulnerabilities-Wireless Communications/Radio Characteristics. Applications of Ad-Hoc/Sensor Network and Future Directions: Driving Applications- Ultra wide band radio communication- Wireless fidelity systems-optical wireless networks -Simulation of Wi-Fi using QUALNET simulator.

# MEDIA ACCESS CONTROL (MAC) PROTOCOLS

Issues in designing MAC protocols-Bandwidth efficiency-Quality of service support-Synchronization hidden node-exposed node problems. Classifications of MAC protocols: Contention based protocols- MACAW-Media access protocol for wireless LAN-media access with reduced handshake- contention based with reservation mechanisms-Distributed priority-scheduling. Mac protocols using directional antenna. Simulation of 802.11using **QUALNET** 

#### ROUTING PROTOCOLS UNIT III

Issues in designing routing protocols-Mobility-bandwidth constraint-Table driven routing protocols :DSDV, ,WRP, CHGSRP, - On demand routing protocol : AODV,DSR, TORA,LAR,ANODR- zone routing protocol-Fish eye state routing protocol-power aware routing protocol. Simulation of routing protocols using QUALNET simulator.

# WIRELESS SENSOR NETWORKS

Introduction-sensor network architecture-Data dissemination-data gathering-self organizing, MAC Protocols for Sensor Networks - Location discovery- Quality of a Sensor Network - Evolving Standards - Energy efficient issues-Transport layer. Synchronization issues.

# UNIT V SECURITY ISSUES IN AD HOC / SENSOR NETWORK

Introduction -Need for Security- classification of attack-MAC layer attacks-Network layer attacks-Wired

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

Equivalent Privacy(WEP)-Intrusion prevention scheme- Confidentiality : Symmetric Encryption- DES and Triple DES detection systems- Authentication :Digital Signatures, Certificates, User Authentication, Elliptic Curve Cryptosystems. Intrusion detection systems: behavior based detection knowledge based detection-watch dog-path rater. Reputation based system: CORE, CONFIDENT

TOTAL: 45 Hrs

## TEXT BOOKS

| Sl.No | Author(s)                            | Title of the Book                                            | Publisher      | Year of<br>Publication |
|-------|--------------------------------------|--------------------------------------------------------------|----------------|------------------------|
| 1.    | Siva Ram Murthy C. and Manoj<br>B S, | Ad Hoc Wireless<br>Networks: Architectures<br>and Protocols  | Prentice Hall, | 2014.                  |
| 2.    | Toh C K,                             | Ad Hoc Mobile Wireless<br>Networks: Protocols and<br>Systems | Prentice Hall  | 2008                   |

#### REFERENCE BOOKS

| Sl.No | Author(s)                                      | Title of the Book                                      | Publisher          | Year of<br>Publication |  |
|-------|------------------------------------------------|--------------------------------------------------------|--------------------|------------------------|--|
| 1.    | Charles Perkins,<br>Addision Wesley,           | Ad hoc Networking                                      | Pearson            | 2008                   |  |
| 2.    | Toh C.K,                                       | Ad Hoc Mobile wireless Networks : protocol and Systems | Prentice Hall PTR, | 2008                   |  |
| 3.    | Feng zhao, Leonidas<br>Guibas                  | Wireless sensor network, with the are                  |                    |                        |  |
| 4.    | Kazemsohraby, Daniel<br>minoli and TaiebZnati, | 1 CCHHOIOgy, 1 Totocois                                |                    | 2007                   |  |
| 5.    | T.L.Singhal                                    | Wireless Communication                                 | тмн,               | 2012                   |  |

## WEB URLs

- 1. www.onlinecourses.nptel.ac.in/noc17\_cs07
- 2. www.nptel.ac.in/courses/106105160/3
- 3. www.nptel.ac.in/courses/106105080/pdf/M5L7.pdf
- 4. www.ece.rochester.edu/courses/ECE586/lectures/MANETS\_MAC.pdf
- 5. www.onlinecourses.nptel.ac.in/noc17\_cs07/announcements

CHAIRMAN Board of Studies
Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40%,

#### INTERNET AND JAVA PROGRAMMING 16ECE16

LTPC

#### **COURSE OBJECTIVES**

- To understand networking and protocols
- To understand internet routing protocols
- To learn world wide web and its applications
- To learn fundamentals of java programming
- To learn java programming

#### COURSE OUTCOMES

Explain the working of internet with TCP/IP protocol and mapping of address. 16ECE16.CO1 Demonstrate the use of various routing protocols. 16ECE16.CO2 Implement the various markup languages. 16ECE16.CO3 Explain the fundamentals of Java programming 16ECE16.CO4 Create Applets, Packages and Database connectivity using Java advanced programs. 16ECE16.CO5

| 6                  |     |     | PSOs |     |     |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE16.CO1        | x   | X   | X    | x   | x   | x   |     | x   | x   | X    | X    | X    | X    | X    | X    |
| 16ECE16.CO2        | X   | X   | X    | X   | X   | x   |     | x   | X   | X    | x    | x    | X    | X    | X    |
| 16ECE16.CO3        | X   | X   | x    | X   | X   | х   |     | X   | x   | х    | X    | x    | X    | X    | X    |
| 16ECE16.CO4        | x   | X   | X    | X   | X   | X   |     | X   | Х   | X    | X    | х    | X    | X    | x    |
| 16ECE16.CO5        | X   | X   | X    | x   | X   | x   |     | х   | X   | х    | X    | X    | X    | X    | X    |

INTERNETWORKING WITH TCP / IP UNIT I

Internetworking concept and Architectural model, Review of network technologies, Internet addressing, Address resolution protocols (ARP / RARP), Routing IP datagrams, Classless and Subnet Address Extensions, Reliable stream transport service (TCP) TCP / IP over ATM networks, Internet applications - E-mail, Telnet, FTP, NFS, Internet traffic management.

INTERNET ROUTING UNIT II

Concepts of graph theory, Routing protocols, Distance vector protocols (RIP), Link state protocol (OSPP), Path vector protocols (BGP and IDRP), Routing for high speed multimedia traffic, Multicasting, Resource reservation (RSVP), IP switching.

WORLD WIDE WEB UNIT III

Introduction to World Wide Web-Hyper Text Transfer Protocol, Web browsers, Web servers, Internet explorer, Web site and Web page design, Hyper Text Mark-up Language, Dynamic HTML, XHTML, XML,CGI, Java script, Telnet, Dotnet, PHP

AVA FUNDAMENTAL UNIT IV

Java Programming Environment, Java features - Java Platform - Java Fundamentals - Expressions, Operators, and Control Structures - Classes, Packages and Interfaces - Exceptions and Debugging, Muitithreading and RMI.

UNIT V

JAVA PROGRAMMING

9

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 406.

Networking with Java, Swing: Applets and Applications, Menu's & Tool Bars, Java and XML - Creating packages, Interfaces, JAR files & Annotations, JavaBeans, JDBC, Networking Basics - Java and the Net -InetAddress – TCP/IP Client Sockets – URL –URL Connection.

TOTAL: 45 Hrs

#### TEXT BOOKS

| Sl.No | Author(s)        | Title of the Book             | Publisher         | Year of<br>Publication |
|-------|------------------|-------------------------------|-------------------|------------------------|
| 1,    | Douglas E.Comer, | Internetworking with TCP/IP   | Pearson Education | 2007                   |
| 2.    | Robert W.Sebesta | Programming the worldwide web | Pearson Education | 2007                   |

## REFERENCE BOOKS

| Sl.No | Author(s)                         | Title of the Book                                 | Publisher                       | Year of<br>Publication |
|-------|-----------------------------------|---------------------------------------------------|---------------------------------|------------------------|
| 1.    | Cay S.Hortsmann, Gary<br>Cornwell | Core Java 2- Vol I                                | Pearson Education               | 2015                   |
| 2.    | W. Richard Stevens                | TCP/IP Illustrated, The Protocol                  | Pearson Education               | 2012                   |
| 3.    | Behrouz A. Farouzon               | TCP/IP Protocol Suite                             | Tata McGraw Hill                | 2008                   |
| 4.    | Chris Bates                       | Web Programming Building<br>Internet Applications | Wiley<br>Publications.          | 2009                   |
| 5.    | Kogent Solutions Inc              | Java Server Programming                           | Black Book,<br>Dream tech Press | 2008                   |

#### WEB URLs

- 1. www.nptel.ac.in/courses/106105084/13
- 2. www.nptel.ac.in/courses/106105084/
- 3. www.freevideolectures.com > Computer Science > IIT Kharagpur
- 4. www.nptelvideos.com/video.php?id=725
- 5. www.nptelvideos.in/2012/11/internet-technologies.html

CHAIRMAN **Board of Studies** Department of Rectronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 406.

# 16ECE17 ARCHITECTURE AND PROGRAMMING

L T P C 3 0 0 3

# COURSE OBJECTIVES

- To teach the architecture of 8 bit RISC processor
- To teach the architecture and programming of 16 bit RISC processor
- To instruct the implementation of DSP in ARM processor
- To discuss on memory management in RISC processor
- To teach the application development with ARM processor

#### COURSE OUTCOMES

| 16ECE17.CO1 | Explain the internal components of AVR Microcontroller               |
|-------------|----------------------------------------------------------------------|
| 16ECE17.CO2 | Write program for arithmetic and logical operations in ARM processor |
| 16ECE17.CO3 | Develop the signal processing applications in ARM processor          |
|             | Explain the memory management in RISC processor                      |
| 16ECE17.CO4 |                                                                      |
| 16ECE17.CO5 | Develop application with advanced processors                         |

|                    |     | Program Outcomes |     |     |     |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE17.CO1        | X   | X                | X   |     |     |     |     |     | х   |      |      | X    |      |      |      |
| 16ECE17.CO2        | X   | X                | 1   | х   |     |     |     |     | х   |      |      | Х    |      | X    |      |
| 16ECE17.CO3        | X   | x                | X   | х   |     |     |     |     | х   |      |      | X    |      | X    |      |
| 16ECE17.CO4        | X   | x                | 1   |     | X   |     |     |     | х   |      |      | X    |      | X    |      |
| 16ECE17.CO5        | x   | X                | x   |     | X   |     |     |     | X   |      |      | X    |      | X    |      |

UNIT I

AVR MICROCONTROLLER ARCHITECTURE

Architecture – Memory Organization – Addressing Modes – I/O Memory – Buses – Interrupts – DMAInterface circuits - Daisy Chaining with Priority Group - EEPROM – I/O Ports – SRAM – Timer – UART –
Interrupt Structure – Serial Communication with PC – ADC/DAC Interfacing

UNIT II ARM ARCHITECTURE AND PROGRAMMING
Arcon RISC Machine – Architectural Inheritance – Core & Architectures – The ARM Programmer's
Model – Registers – Pipeline – Interrupts – ARM Organization –
Instruction Set – Thumb Instruction Set – Instruction Cycle Timings

UNIT III ARM APPLICATION DEVELOPMENT

Introduction to DSP on ARM – FIR Filter – IIR Filter – Discrete Fourier Transform – Exception Handling – Interrupts – Interrupt Handling Schemes – Firmware and Boot loader – Embedded Operating Systems – Fundamental Components – Example: Simple Little Operating System

UNIT IV MEMORY PROTECTION AND MANAGEMENT

Introduction of Memory Protection and Management - Protected Regions - Initializing MPU - MIDI

Processing Unit, Cache and Write Buffer - MPU to MMU - Virtual Memory - Page Tables - TLB - Domain and

Memory Access Permission - Fast Context Switch Extension

UNIT V DESIGN WITH ARM MICROCONTROLLERS

9

CHAIRMAN
Board of Studies
Department of Bectronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

Advanced RISC Machine featuresARM Coretex-M3 Microcontroller - Switching Microcontrollers - Assembler Rules and Directives - Simple ASM/C Programs - Hamming Code - Division - Negation Simple Loops - Look Up Table - Block Copy - Subroutines

TOTAL: 45 Hrs

## TEXT BOOKS

| Sl.No | Author(s)                                                                    | Title of the Book                                                            | Publisher          | Year of<br>Publication |
|-------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|------------------------|
| 1.    | Steve Furber                                                                 | ARM system on chip architecture                                              | Addision<br>Wesley | 2007                   |
| 2.    | G.M.Rebeiz Andrew N. Sloss.<br>Dominic Symes, Chris Wright,<br>John Rayfield | ARM System Developer's Guide<br>Designing and Optimizing System<br>Software' | Elsevier           | 2007                   |

#### REFERENCE BOOKS

| Sl.No | Author(s)                         | Title of the Book                                                                                                | Publisher                     | Year of<br>Publication |
|-------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|
| 1.    | Barnett , L. O' CULL and S. Cox   | Embedded C Programming and Atmel AVR                                                                             | Delmar<br>Cengage<br>Learning | 2009                   |
| 2.    | Trevor Martin                     | The Insider's Guide To The Philips ARM7-Based Microcontrollers, An Engineer's Introduction To The LPC2100 Series | Hitex<br>(UK) Ltd             | 2005                   |
| 3.    | Dananjay V. Gadre                 | Programming and Customizing the AVR microcontroller'                                                             | McGraw<br>Hill                | 2001                   |
| 4.    | William<br>Hohl,Christopher hinds | ARM Assebly Language' Fundamentals and Techniques                                                                | CRC<br>press                  | 2014                   |
| 5.    | David Seal                        | ARM Architecture Reference Manual                                                                                | Addison<br>Wesley             | 2011                   |

#### WEB URLS

- 1. www.nptel.ac.in/courses/106104024/
- 2. www.nptel.ac.in/courses/106102114/
- 3. www.nptel.ac.in/courses/106104024/2
- 4. www.nptel.ac.in/courses/108102045/5
- 5. www.textofvideo.nptel.iitm.ac.in/108102045/lec6.pdf

SA

CHAIRMAN
Board of Studies
Department of Bedronics and Communication Engineering
Muthayammel Engineering College (Autonomous)
Rasipuram, Namakkal - 637 48%.

# PATTERN RECOGNITION AND AI TECHNIQUES

LTPC 3 0 0 3

# COURSE OBJECTIVES

- To provide a strong foundations of fundamental concepts in Artificial Intelligence
- To get familiar with the various applications of these techniques in Intelligent Systems
- To learn the fundamentals of Pattern Recognition techniques.
- To learn the various Statistical Pattern recognition techniques.
- To learn the various Syntactical Pattern recognition techniques.

#### COURSE OUTCOMES

| 16ECE18.CO1 | Interpret pattern recognition techniques                            |
|-------------|---------------------------------------------------------------------|
| 16ECF18.CO2 | Outline the major approaches in statistical and pattern recognition |
| 16ECE18.CO3 | Discuss syntactic pattern recognition                               |
| 16ECE18.CO4 |                                                                     |
| 16ECE18.CO5 | Discuss AI concept                                                  |

|                    |     | Program Outcomes |     |     |     |       |     |     |     |      |      |      |      |      |      |
|--------------------|-----|------------------|-----|-----|-----|-------|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6   | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE18.CO1        | X   | X                | x   | 1   |     |       |     |     | X   |      |      | x    |      | X    |      |
| 16ECE18.CO2        | X   | X                | х   | X   | х   |       |     |     |     |      |      | Х    |      | х    |      |
| 16ECE18.CO3        | X   | X                | 1   |     | х   |       |     |     | X   |      |      | x    |      | х    |      |
| 16ECE18.CO4        | X   | X                | X   | x   | X   |       |     |     |     |      |      | X    |      | X    |      |
| 16ECE18.CO5        | X   | X                | X   | x   | x   | 4 = 1 |     |     |     |      |      | X    |      | X    |      |

PATTERN RECOGNITION OVERVIEW UNITI

Introduction of Pattern recognition, Classification and Description-Patterns and feature Extraction with Examples-Introduction to Pattern Recognition System-Training and Learning in PR systems-Pattern recognition Approaches

STATISTICAL PATTERN RECOGNITION

Introduction to statistical Pattern Recognition—supervised Learning using Parametric and Non Parametric Approaches. Introduction—Discrete and binary Classification problems—Techniques to directly Obtain linear Classifiers -- Formulation of Unsupervised Learning Problems-Clustering for unsupervised learning and classification.

SYNTACTIC PATTERN RECOGNITION UNIT III

Overview of Syntactic Pattern Recognition-Syntactic recognition via parsing and other grammars-Graphical Approaches to syntactic pattern recognition—Learning via grammatical inference-Hopcroft-Karp algorithm-String searching algorithm.

NEURAL PATTERN RECOGNITION **UNIT IV** 

Introduction to Neural networks-Neuron- ActivationFunction-Feed forward Networks and training by Back Propagation-Content Addressable Memory Approaches and Unsupervised Learning in Neural Pattern Recognition System.

UNITV

INTRODUCTION TO AI

9

**Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408.

Introduction to AI-Problem formulation, Problem Definition -Production systems, Control strategies, Search strategies. Problem characteristics, Production system characteristics -Specialized production system-Problem solving methods - Problem graphs, Matching, Indexing and Heuristic functions -Hill Climbing-Depth first and Breath first, Constraints satisfaction - Related algorithms, Measure of performance and analysis of search algorithms.

TOTAL: 45 Hrs

## TEXT BOOKS

| Sl.No | Author(s)                          | Title of the Book                                                       | Publisher                | Year of<br>Publication |
|-------|------------------------------------|-------------------------------------------------------------------------|--------------------------|------------------------|
| 1.    | Kevin Knight, Eline Rich<br>B.Nair | Artificial Intelligence                                                 | McGraw Hill<br>Education | 2012                   |
| 2.    | Robert Schalkoff                   | Pattern Recognition: statistical<br>structural and neural<br>approaches | John wiley& sons<br>Inc  | 2007                   |

#### REFERENCE BOOKS

| Sl.No | Author(s)                                     | Title of the Book                             | Publisher                       | Year of<br>Publication |  |
|-------|-----------------------------------------------|-----------------------------------------------|---------------------------------|------------------------|--|
| 1.    | Stuart Russel and Peter<br>Norwig             | Artificial Intelligence: A Modern<br>Approach | Prentice Hall                   | 2012                   |  |
| 2.    | Earl Gose, Richard<br>johnsonbaugh, SteveJost | Pattern Recognition and<br>Image Analysis     | Prentice Hall of India,.Pvt Ltd | 1997                   |  |
| 3.    | Duda R.O., P.E.Hart&<br>D.G Stork             | Pattern Classification                        | J.WileyInc                      | 2012.                  |  |
| 4.    | Duda R.O.&P.E.Hart                            | Pattern Classification and Scene<br>Analysis  | J.wileyInc                      | 1973                   |  |
| 5.    | Bishop C.M                                    | Neural Networks for Pattern<br>Recognition    | Oxford University               | 1995                   |  |

## WEB URLs:

- 1. www.en.wikipedia.org/wiki/Pattern\_recognition
- 2. www.journals.elsevier.com/pattern-recognition
- 3. www.coursera.org/courses?query=pattern%20recognition
- 4. www.quora.com/What-is-pattern-recognition-in-artificial-intelligence
- 5. www.nptel.ac.in/courses/117105101/

#### BIOMETRICS

LTPC 3 0 0 3

#### **COURSE OBJECTIVES**

- To provide students with understanding of biometrics.
- Able to know about more biometric equipment.
- Able to understand automated biometric system.
- To know about the application areas of biometries.
- Able to know how standards applied to security.

### COURSE OUTCOMES

16ECE19.CO1 Explain the fundamentals of Biometric systems
16ECE19.CO2 Explain the various Biometric technologies
16ECE19.CO3 Explain the Biometric system and behavioral biometrics
16ECE19.CO4 Develop a system for Biometric identification
16ECE19.CO5 Use Biometric Standards

|                    |     | Program Outcomes |     |     |     |     |      |     |     |      |      |      |      |      |      |
|--------------------|-----|------------------|-----|-----|-----|-----|------|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2              | PO3 | PO4 | PO5 | PO6 | PO7  | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE19.CO1        | x   | x                | x   | X   |     | х   |      | х   |     |      |      |      | X    |      |      |
| 16ECE19.CO2        | x   | x                | 1   | х   |     | X   | 17.4 | X   |     |      |      | X    |      |      |      |
| 16ECE19.CO3        | x   | x                | X   | х   | X   |     |      |     |     |      | X    | X    | X    |      |      |
| 16ECE19.CO4        | x   | х                | X   | X   | х   |     |      |     |     |      |      | X    |      |      |      |
| 16ECE19.CO5        | X   | X                | X   | 1   | 1   |     |      | X   |     |      |      | X    | X    |      |      |

# UNIT I INTRODUCTION

9

Biometric fundamentals – Biometric technologies – Biometrics Vs traditional techniques – Characteristics of a good biometric system – Benefits of biometrics – Key biometric processes: verification, identification and biometric matching – Performance measures in biometric systems: FAR, FRR, FTE rate, EER and ATV rate – Accuracy in Biomedical Systems

# UNIT II PHYSIOLOGICAL BIOMETRICS

9

Physiological biometric technologies: components, working principles, competing technologies, strengths and weaknesses Finger-scan – components, working principles, competing technologies, strengths and weaknesses Facial-scan – components, working principles, competing technologies, strengths and weaknesses Iris-scan – components, working principles, competing technologies, strengths and weaknesses Voice-scan – components, working principles, competing technologies, strengths and weaknesses Retina Scan -components, working principles, competing technologies, strengths and weaknesses Retina Vascular Pattern.

# UNIT III AUTOMATED BIOMETRIC SYSTEM AND BEHAVIOURAL BIOMETRICS 9

Automated finger print identification systems - Leading technologies: components, feature extraction, working principles, strengths and weaknesses Signature-scan – components, feature extraction, working principles, strengths and weaknesses Keystroke scan – components, feature extraction, working principles, strengths and weaknesses- DNA biometrics.

Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

# UNIT IV BIOMETRIC APPLICATIONS

9

Categorizing biometric applications – application areas: criminal and citizen identification, surveillance, PC/network access, e-commerce and retail/ATM – costs to deploy – other issues in deployment, Signature and Handwriting Technologies.

# UNIT V PRIVACY AND STANDARDS IN BIOMETRICS

9

Assessing the Privacy Risks of Biometrics – Designing Privacy-Sympathetic Biometric Systems – Need for standards – Multi biometrics and multi factor biometrics – two factor authentication with passwords – tickets and tokens.

TOTAL: 45 Hrs

#### TEXT BOOK

| Sl.No                                           | Author(s)                                                     | Title of the Book                              | Publisher                    | Year of<br>Publication |
|-------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|------------------------------|------------------------|
| Samir Nanavati, Michael<br>Thieme, Raj Nanavati | Biometrics – Identity<br>Verification in a Networked<br>World | Wiley-dreamtech<br>India Pvt Ltd, New<br>Delhi | 2003                         |                        |
| 2.                                              | John Chirillo and Scott Blaul                                 | Implementing Biometric Security                | Wiley Eastern<br>Publication | 2005                   |

## REFERENCE BOOKS

| Sl.No | Author(s)                                  | Title of the Book                                  | Publisher         | Year of<br>Publication |
|-------|--------------------------------------------|----------------------------------------------------|-------------------|------------------------|
| 1.    | Paul Reid                                  | Biometrics for Network Security                    | Pearson Education | 2004                   |
| 2.    | John R Vacca                               | Biometric Technologies and<br>Verification Systems | Elsevier Inc      | 2007                   |
| 3.    | Anil K Jain, Patrick Flynn,<br>Arun A Ross | Handbook of Biometrics                             | Springer          | 2008                   |
| 4.    | John Berger                                | Biometrics for Network Security                    | Prentice Hall     | 2004                   |
| 5.    | Julian Ashbourn                            | Guide to Biometries for Large<br>Scale System      | Springer          | 2011                   |

#### WEB URLs:

- 1. www.books.google.co.in/books?isbn=9400775229
- 2. www.dhs.gov/biometrics
- 3. www.books.google.co.in/books?isbn=0080488390
- 4. www.books.google.co.in/books?isbn=1856173941
- 5. www.books.google.co.in/books?isbn=3319290886

SAN

## EMBEDDED SOLUTIONS ENGINEERING

LTPC 3 00 3

#### COURSE OBJECTIVES

- To understand the fundamental concepts of embedded systems.
- To learn the architecture of Advanced MSP430 microcontrollers.
- To understand the interfacing and data acquisition using ARM and MSP430.
- To acquire knowledge on the serial and network communication protocols.
- To understand the IoT based embedded system.

#### COURSE OUTCOMES

| 16ECE20.CO1 | Describe hardware and software architectures of embedded systems    |
|-------------|---------------------------------------------------------------------|
| 16ECE20.CO2 | Explain the architecture of Advanced MSP430 series microcontrollers |
| 16ECE20.CO3 | Develop MSP430 based embedded system applications                   |
| 16ECE20.CO4 | Explain the communication protocols used in embedded system         |
| 16ECE20.CO5 | Develop an embedded system for IoT applications                     |
| TOLCELO.COS |                                                                     |

| C                  |     |     |     |     | Pr  | ogram ( | Outcome | es  |     |      |      |      | PSOs |      |      |
|--------------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECE20.CO1        | x   | х   | х   | x   |     |         |         |     | X   |      |      | X    |      |      | x    |
| 16ECE20.CO2        | x   | x   | Х   |     | X   |         |         |     | x   |      |      | X    |      |      | Х    |
| 16ECE20.CO3        | X   | x   | х   |     | X   |         |         | x   |     |      |      | х    |      |      | х    |
| 16ECE20.CO4        | х   | x   | х   | x   |     |         |         |     | X   |      |      | X    |      |      | X    |
| 16ECE20.CO5        | X   | X   | x   |     | X   |         |         | X   |     |      |      | X    |      |      | X    |

# UNIT I INTRODUCTION TO EMBEDDED SYSTEMS

9

Embedded system overview, applications, features and architecture considerations - ROM, RAM, timers, data and address bus, I/O interfacing concepts, memory mapped I/O. CISC Vs RISC design philosophy, Von-Neumann Vs Harvard architecture. Low power RISC MSP430 – block diagram, features and architecture, Instruction set, instruction formats, and various addressing modes of 16-bit microcontroller e.g. MSP430, Variants of the MSP430 family viz. MSP430x2x, MSP430x4x, MSP430x5x and their targeted applications, Sample embedded system on MSP430 microcontroller.

# UNIT II MSP430X5X SERIES ARCHITECTURE

9

MSP430x5x series block diagram, address space, on-chip peripherals (analog and digital), and Register sets. I/O ports pull up/down registers concepts, Interrupts and interrupt programming. Watchdog timer. System clocks. Low Power aspects of MSP430: low power modes, Active vs Standby current consumption, FRAM vs Flash for low power & reliability.

# UNIT III EMBEDDED INTERFACING AND APPLICATIONS

9

Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog interfacing and data acquisition: ADC and Comparator in MSP430, data transfer using DMA.

Case Study: MSP430 based embedded system application using ADC & PWM demonstrating peripheral intelligence. "Remote Controller of Air Conditioner using MSP430".

UNIT IV

EMBEDDED COMMUNICATION PROTOCOLS

9

CHAIRMAN
Board of Studies
Department of Sectronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

Serial communication basics, Synchronous/Asynchronous interfaces (like UART, USB, SPI, and I2C). UART protocol, I2C protocol, SPI protocol. Implementing and programming UART, I2C, SPI interface using MSP430, Interfacing external devices.

Case Study: MSP430 based embedded system application using the interface protocols for communication with external devices: "A Low-Power Battery less Wireless Temperature and Humidity Sensor with Passive Low Frequency RFID"

IoT BASED APPLICATIONS

IoT overview and architecture, Adding Wi-Fi capability to the Microcontroller, Embedded Wi-Fi, User APIs for Wireless and Networking applications, Building IoT applications using CC3100 user API for connecting

TOTAL: 45 Hrs

#### TEXT BOOKS

| Sl.No | Author(s)      | Title of the Book             | Publisher                     | Year of<br>Publication |  |  |
|-------|----------------|-------------------------------|-------------------------------|------------------------|--|--|
| 1.    | John H. Davies | MSP430 microcontroller basics | Newnes Publication            | 2008                   |  |  |
| 2.    | Raj Kamal      | Embedded Systems              | Tata McGraw-Hill<br>Education | 2011                   |  |  |

## REFERENCE BOOKS

| SI.No | Author(s)                                                                            | Title of the Book                                                                | Publisher                                        | Year of<br>Publication |  |
|-------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|------------------------|--|
| 1.    | Adrian Fernandez, Dung<br>Dang                                                       | Gettingstarted with the MSP430<br>Launchpad                                      | Newnes Publication                               | 2013                   |  |
| 2.    | Dung Dang, Daniel J.<br>Pack, Steven F. Barrett                                      | Embedded Systems Design<br>with the Texas Instruments<br>MSP432 32-bit Processor | Morgan & Claypool publishers                     | 2016                   |  |
| 3.    | Manuel Jiménez,<br>Rogelio Palomera,<br>Isidoro Couvertier                           | Introduction to Embedded<br>Systems: Using<br>Microcontrollers and the<br>MSP430 | Springer Science +<br>Business Media New<br>York | 2014                   |  |
| 4.    | Massimo Conti, Simone<br>Orcioni, Natividad<br>Martínez Madrid, Ralf<br>E.D. Seepold | Solutions on Embedded<br>Systems                                                 | Springer Science +<br>Business Media New<br>York | 2011                   |  |
| 5.    | Ivan Cibrario Bertolotti,<br>Gabriele Manduchi                                       | Real-Time Embedded Systems:<br>Open-Source Operating<br>Systems Perspective      | CRC Press                                        | 2012                   |  |

#### WEB URLs:

- 1. www.nptel.ac.in/courses/108102045/
- 2. www.nptel.ac.in/courses/108102045/2
- 3. www.nptelvideos.in/2012/11/embedded-systems.html
- 4. www.documents.mx/documents/vtulecture1.html
- 5. www.nptel.ac.in/courses/108102045/10

CHAIRMAN **Board of Studies** Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408. 16ECF01

PROJECT WORK PHASE - I

LTPC 0 0 6 3

#### **COURSE OBJECTIVES**

 To achieve integrated electronic design of a product through parts design, assembly and preparation of printed circuit board drawings

### **COURSE OUTCOMES**

| 16ECF01.CO1 | Discover potential research areas in the field of ECE                                         |
|-------------|-----------------------------------------------------------------------------------------------|
| 16ECF01.CO2 | Summarize a survey of several available literatures in the preferred field of study           |
| 16ECF01.CO3 | Compare the several existing solutions for research challenge                                 |
|             | Demonstrate an ability to work in teams and manage the conduct of the research study          |
| 16ECF01.CO4 | Definition and admity to work in teams and mixing a solution for the research plan identified |
| 16ECF01.CO5 | Formulate and propose a plan for creating a solution for the research plan identified         |

| C                  |     |     |     | PSOs |     |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3 | PO4  | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECF01.CO1        | X   | X   | Х   | x    | х   | х   |     | X   | х   | х    | х    | X    | X    | x    | Х    |
| 16ECF01.CO2        | X   | X   | X   | х    | х   | х   |     | X   | х   | X    | х    | X    | Х    | x    | х    |
| 16ECF01.CO3        | X   | X   | x   | X    | X   | х   |     | X   | х   | X    | X    | X    | Х    | х    | Х    |
| 16ECF01.CO4        | x   | X   | x   | x    | X   | х   |     | x   | X   | X    | X    | X    | X    | X    | X    |
| 16ECF01.CO5        | X   | X   | x   | x    | X   | х   |     | X   | х   | х    | х    | X    | X    | Х    | Х    |

Students are asked to form a team which consists of 4 members, maximum. Each team has to work under a project supervisor. Based on the current industrial scenario, any relevant problem should be selected for the project with the consultation of the supervisor. Literature review should be done related to the problem considered. The working methodology of the project work for the phase II should be decided. These activities should be registered in a report and submitted by the student which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report, jointly by external and internal examiners.

TOTAL: 90 Hrs

Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

16ECF02

# PROJECT WORK PHASE -II

LTPC 0 0 30 15

#### COURSE OBJECTIVES

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews and viva voce examination.

## **COURSE OUTCOMES**

| 16ECF02.CO1 | Demonstrate a sound technical knowledge of their selected project topic    |
|-------------|----------------------------------------------------------------------------|
| 16ECF02.CO2 | Formulate a solution for the problem identified                            |
| 16ECF02.CO3 | 1 11 mill a matematic approach                                             |
| 16FCF02 CO4 | Develop an engineering product                                             |
| 16ECF02.CO5 | Demonstrate the knowledge, skills and attitudes of a professional engineer |

| Course      |     |     |     |     | Pr  | ogram ( | Outcome | es  |     |      |      |      | PSOs |      |      |  |
|-------------|-----|-----|-----|-----|-----|---------|---------|-----|-----|------|------|------|------|------|------|--|
| Outcomes    | PO1 | PO2 | PO3 | PO4 | PO5 | PO6     | PO7     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |  |
| 16ECF02.CO1 | X   | X   | Х   | X   | X   | х       |         | х   | х   | X    | X    | X    | X    | X    | X    |  |
| 16ECF02.CO2 | X   | X   | Х   | X   | X   | x       |         | х   | х   | X    | X    | X    | X    | x    | X    |  |
| 16ECF02.CO3 | X   | X   | Х   | X   | X   | x       |         | X   | х   | X    | X    | X    | X    | х    | X    |  |
| 16ECF02.CO4 | x   | X   | x   | x   | X   | Х.      |         | x   | X   | X    | X    | _ X  | X    | x    | X    |  |
| 16ECF02.CO5 | X   | X   | Х   | X   | X   | X       |         | x   | х   | N    | X    | X    | X    | Х    | , X  |  |

Based on the work methodology decided in the Phase I, the project is further developed. Necessary modeling and analysis is done using required software. The project is fabricated. The analytical results and the experimental results are validated. Three reviews will be conducted periodically by a committee constituted by the Head of the Department. A project report to be prepared by the students along with which the project has to be submitted for the final viva voce examination

TOTAL: 450 Hrs

CHAIRMAN **Board of Studies** Department of Bectronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 408. 16MEF03

# COMPREHENSION

LTPC 0 0 2 2

## **COURSE OBJECTIVES**

 To encourage the students to comprehend the knowledge acquired from the first Semester to Sixth Semester of B.E. Degree course through periodic exercise

To gain ability to understand and comprehend any given problem related to mechanical engineering field.

# COURSE OUTCOMES

16MEF03.CO1

Recall the basic principles of previous semester courses.

16MEF03.CO2

Comprehend and analyze problems associated with mechanical engineering

| Course             |     |     |     | PSOs |     |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|-----|-----|------|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| Course<br>Outcomes | PO1 | PO2 | PO3 | PO4  | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16MEF03.CO1        | Х   | X   | x   | -    | -   | -   | -   | -   | -   | 9    | -    | -    | X    | -    | -    |
| 16MEF03.CO2        | X   | X   | x   | -    | -   | -   | -   | -   | -   | -    | -    | :=   | X    | *    |      |

The students have to recall the principles and fundamental of the courses studied in their previous semesters. Weekly examination will be conducted and evaluated. The question papers will contain objective and descriptive questions which will be asked from the previous semester Courses. The average of the marks obtained in the tests will be considered for the end semester evaluation.

TOTAL: 30 Hrs

SEN

16ECF04

**DESIGN PROJECT** 

LTPC 0042

# **COURSE OBJECTIVES**

 To give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

# COURSE OUTCOMES

16ECF04.CO1 Use of design principles and develop conceptual and engineering design of any components.

Ability to fabricate any components using different modern tools.

| Course<br>Outcomes |     |     |     | PSOs |      |     |     |     |     |      |      |      |      |      |      |
|--------------------|-----|-----|-----|------|------|-----|-----|-----|-----|------|------|------|------|------|------|
|                    | PO1 | PO2 | PO3 | PO4  | PO5  | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECF04.CO1        | x   | X   | Х   | -    | -    | - 9 | -   | -   | -   | -    | -    | -    | х    | -    | -    |
| 16ECF04.CO2        | X   | X   | х   | -    | .=); | -   | -   | -   | -   | -    | -    | -    | x    | -    |      |

The students may be grouped into 2to4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 60 Hrs

CHAIRMAN Board of Studies

Department of Electronics and Communication Engineering Muthayammal Engineering College (Autonomous) Rasipuram, Namakkal - 637 40.6. 16ECF05

#### TECHNICAL SEMINAR

LT P C 0 0 4 2

#### **COURSE OBJECTIVES**

 To give an opportunity to the student to get speaking skills in explaining a complete working model, which is designed by them

## COURSE OUTCOMES

16ECF05.CO1 Use of design principles and develop conceptual and engineering design of any components.
16ECF05.CO2 Ability to explain the concept of working model using modern tools.

| Course<br>Outcomes | Program Outcomes |     |     |     |     |     |     |     |     |      |      | PSOs |      |      |      |
|--------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
|                    | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| 16ECF05.CO1        | X                | X   | X   |     | •   | -   | -   | -   | -   | -    | -    | -    | X    | -    |      |
| 16ECF05.CO2        | X                | х   | х   | -   | -   |     |     | -   | -   | -    | -    | -    | X    | -    | -    |

The students may be grouped into 2 to 4 and work under a supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. Students will present a power point presentation about their models. It will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the technical seminar is evaluated based on oral presentation of each student by external and internal examiners constituted by the Head of the Department.

TOTAL: 60 Hrs

CHAIRMAN

Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.

| Programme Code & Name: EC | C & B.E Electronics and Communication Engineering |   |
|---------------------------|---------------------------------------------------|---|
|                           |                                                   |   |
| ~                         |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
| 1.150                     |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
| Maria 1 a Charles         |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   | 2 |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
| 1                         |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |
|                           |                                                   |   |

CHAIRMAN
Board of Studies
Department of Electronics and Communication Engineering
Muthayammal Engineering College (Autonomous)
Rasipuram, Namakkal - 637 408.