STRENGTH OF MATERIALS

COURSE OBJECTIVES

The Course should enable the students to:

I.  Relate mechanical properties of a material with its behavior under
various load types.

II.  Apply the concepts of mechanics to find the stresses at a point in a
material of a structural member.

III. Analyze aloaded structural member for deflections and failure strength.

IV. Evaluate the stresses and strains in materials and deflections in beam
members.




COURSE STRUCTURE

UNIT I: STRESSES AND STRAINS(SIMPLE AND PRINCIPAL)

Concept of stress and strain, elasticity and plasticity, Hooke‘s law, stress-strain
diagram for mild steel, Poisson‘s ratio, volumetric strain, elastic module and the
relationship between them bars of varying section, composite bars, temperature
stresses; Strain energy, modulus of resilience, modulus of toughness; stresses on an
inclined section of a bar under axial loading; compound stresses; Normal and
tangential stresses on an inclined plane for biaxial stresses; Two perpendicular
normal stresses accompanied by a state of simple shear; Mohr‘s circle of stresses;
Principal stresses and strains; Analytical and graphical solutions. Theories of Failure:
Introduction, various theories of failure, maximum principal stress theory, maximum

principal strain theory, strain energy and shear strain energy theory.

COURSE STRUCTURE

UNIT II: SHEAR FORCE AND BENDING MOMENT

Definition of beam — Types of beams — Concept of shear force and bending moment —
S.F and B.M diagrams for cantilever, simply supported and overhanging beams
subjected to point loads, uniformly distributed load, uniformly varying loads and
combination of these loads — Point of contraflexure — Relation between S.F., B.M and
rate of loading at a section of a beam.

UNIT III: FLEXURAL STRESSES AND SHEAR STRESSES IN BEAMS

Flexural Stresses: Theory of simple bending — Assumptions — Derivation of bending
equation: M/I = f/y = E/R - Neutral axis — Determination of bending stresses — Section
modulus of rectangular and circular sections (Solid and Hollow), LT, Angle and
Channel sections — Design of simple beam sections.

Shear Stresses: Derivation of formula — Shear stress distribution across various beam
sections like rectangular, circular, triangular, I, T angle sections.




COURSE STRUCTURE
UNIT IV: TORSION OF CIRCULAR SHAFTS

Theory of pure torsion- derivation of torsion equations: - assumptions made in the
theory of pure torsion - torsional moment of resistance - polar section modulus -
power transmitted by shaft - combined bending and torsion and end thrust - design of
shafts according to theories of failure. Introduction to springs- types of springs -
deflection of close and open coiled helical springs under axial pull and axial couple -
springs in series and parallel - carriage or leaf springs.

UNIT V: COLUMNS AND STRUTS: BUCKLING

Types of columns, short, medium and long columns, axially loaded
compression members, crushing load, Euler’s theorem for long columns,
assumptions, derivation of Euler’s critical load formulae for various end
conditions. Equivalent length of a column, slenderness ratio, Euler’s critical
stress, limitations of Euler’s theory, Rankine’s and Gordon formula, long
columns subjected to eccentric loading, secant formula, empirical formulae,
straight line formula and Prof. Perry’s formula. Laterally loaded struts,
subjected to uniformly distributed and concentrated loads, maximum
bending moment and stress due to transverse and lateral loading. 5
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Teaching Strategies

* The course will be taught via Lectures. Lectures will also
involve the solution of tutorial questions. Tutorial questions
are designed to complement and enhance both the lectures

and the students appreciation of the subject.

* Course work assignments will be reviewed with the

students.

* Daily assessment through questioning and class notes.

UNITS:
British Metric
1. Force Ib, kip, Ton g, kg,
1 kip = 1000 Ib 1 kg=1000g
1 ton=22401b I'on = 1000 kg
2. Long in, ft m, cm, mm
1f=12in 1 m=100 cm
I em = 10 mm
1 m =1000 mm
lin=2.54 cm
3. Stress psi. ksi Pa( N —), MPa, GPa
mm-
p kip

in” "in’
MPa = 10° Pa = 10° N/mm? x - T
10002 27

2
m

MPa— 2L
mm-

GPa= 10" Pa = 10° N/mm” x %
1000 2
m

GPa = kN/mm?®

S.L
, kN

1 KN = 1000 N
lkg= 10N

m, cm, mm

I m=100cm
Iem=10 mm
1 m=1000 mm

1 in=2.54 cm

N 1

=10? .
mm-

1000 2
"N




UNIT -1

Stresses and Strain
(Simple and Principal)

Concept of elasticity and plasticity

* Strength of Material is its ability to withstand and
applied load without failure.

* Elasticity: Property of material by which it return to
its original shape and size after removing the
applied load , is called elasticity. And material itself
1s said to elastic.

* Plasticity: Characteristics of material by which it
undergoes inelastic strains (Permanent
Deformation) beyond the elastic limit, known as
plasticity. This property is useful for pressing and
forging.




Direct or Normal Stress

® When a force is transmitted through a body, the body
tends to change its shape or deform. The body is said to
be strained.

® Direct Stress=  Applied Force (F)
Cross Sectional Area (A)

Units: Usually N/m? (Pa), N/mm?, MN/m?, GN/m? or
N/cm?

Note: 1 N/mm? = 1 MN/m? = 1 MPa

Direct Stress Contd.

* Direct stress may be tensile or compressive and result
from forces acting perpendicular to the plane of the
cross-section

Tension




Direct or Normal Strain

* When loads are applied to a body, some deformation will occur
resulting to a change in dimension.

* Consider a bar, subjected to axial tensile loading force, F. If the bar
extension is d/ and its original length (before loading) is /, then
tensile strain is:

F F
[ di
Direct Strain (£ ) = Change in Length
Original Length
ie. &€ =dll

Direct or Normal Strain Contd.

* As strain is a ratio of lengths, it is dimensionless.

e Similarly, for compression by amount, dl:
Compressive strain = - dI/L

Note: Strain is positive for an increase in dimension and
negative for a reduction in dimension.




Shear Stress and Shear Strain

* Shear stresses are produced by equal and opposite parallel forces not in
line.

* The forces tend to make one part of the material slide over the other
part.

* Shear stress is tangential to the area over which it acts.

Forces acting parallel
to the area concerned

Y.
.
- 5
——

Strain
o[t is defined as deformation per unit length

¢ it is the ratio of change in length to original length
*Tensile strain = increase in length = 9§
(+ Ve) (¢) Original length L

Compressive strain = decrease in length = §

(- Ve) (g) Original length L N




Ultimate Strength

The strength of a material is a measure of the stress that it can
take when in use. The ultimate strength is the measured stress
at failure but this is not normally used for design because
safety factors are required. The normal way to define a safety
factor is :

stressat failure  Ultimate stress

safety factor=

stress whenloaded Permissibk stress

Strain

We must also define strain. In engineering this is not a measure of
force but is a measure of the deformation produced by the influence
of stress. For tensile and compressive loads:

Strain is dimensionless, i.e. it is not measured in metres, kilograms

etc. increase in length x
strain € =

original length L

For shear loads the strain is defined as the angle ¥ This is measured
in radians

shear displacement x

shear strain Y = -
width L




Shear stress and strain

Area resisting

shear \ «| Shear displacement (x)

Shear Force

L . 4——— 2 Shear strain is angle 7y

Shear force

Shear Stress and Shear Strain Contd.

b

c * C D D’

A B

Shear strain is the distortion produced by shear stress on an element or
rectangular block as above. The shear strain, ¥ (gamma) is given as:

7:x/L:tan¢

20
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Shear Stress and Shear Strain Concluded

* For small ¢ V= ¢

 Shear strain then becomes the change in the right
angle.

e It is dimensionless and is measured in radians.

Elastic and Plastic deformation

Stress / / Stress /

Strain l—») Strain

Permanent
Deformation
Elastic deformation Plastic deformation

11



Modulus of Elasticity

If the strain is "elastic" Hooke's law may be used
to define

Youngs Modulus E =

Stress W L
= X —

Strain x A

Young's modulus is also called the modulus of
elasticity or stiffness and is a measure of how
much strain occurs due to a given stress. Because
strain is dimensionless Young's modulus has the
units of stress or pressure

How to calculate deflection if the proof stress is applied and then
partially removed.

If a sample is loaded up to the 0.2% proof stress and then unloaded to a stress s
the strain x = 0.2% + s/E  where E is the Young’s modulus

Yield Plastic
0.2% proof ~*=~-s \ _ /
S Failure
Stress
0.2% Strain
0.002 s/E

12



Volumetric Strain

* Hydrostatic stress refers to tensile or compressive

stress 1n all dimensions within or external to a
body.

* Hydrostatic stress results in change in volume of
the material.

* Consider a cube with sides x, y, z. Let dx, dy, and
dz represent increase in length in all directions.

* i.e. new volume = (x + dx) (y + dy) (z + dz)

Volumetric Strain Contd.

Neglecting products of small quantities:

New volume=xyz+zydx+xzdy+xydz

Original volume =xy z
=zydx+xzdy+xydz

Volumetric strain, A¥ zyvdx+xzdy + x ydz

E, Xyz
£, =dx/x+dyly +dz/z

\4

e, = &+ &+ €

13



Elasticity and Hooke’s Law

* All solid materials deform when they are stressed, and
as stress 1s increased, deformation also increases.

 If a material returns to its original size and shape on
removal of load causing deformation, it is said to be
elastic.

» If the stress is steadily increased, a point is reached
when, after the removal of load, not all the induced
strain 1s removed.

* This 1s called the elastic limit.

Hooke’s Law

* States that providing the limit of proportionality of a
material is not exceeded, the stress is directly
proportional to the strain produced.

* If a graph of stress and strain is plotted as load is
gradually applied, the first portion of the graph will
be a straight line.

* The slope of this line is the constant of
proportionality called modulus of Elasticity, E or
Young’s Modulus.

* [t 1s a measure of the stiffness of a material.

14



Hooke’s Law

Modulus of Elasticity, E = 2irectsiress _ o

Direct strain €

I h 1
Also: For Shear stress: Modulus of rigidity or shear modulus, G = Shear stress _ T

Shear strain ¥

Also: Volumetric strain , is proportional to hydrostatic stress,
within the elastic range i.e. :

o /| € = K

v

‘K’ called bulk modulus.

29

Stress-Strain Relations of Mild Steel
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Fig: Behaviour of mild-steel rod under tension.
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Equation For Extension

Fromthe above equations:

c F/4 FL
& di/ L Adl

This equation for extension is very important

Factor of Safety

* The load which any member of a machine carries is
called working load, and stress produced by this
load is the working stress.

* Obviously, the working stress must be less than the
yield stress, tensile strength or the ultimate stress.

* This working stress is also called the permissible
stress or the allowable stress or the design stress.

16



Factor of Safety Contd.

* Some reasons for factor of safety include the inexactness or
inaccuracies in the estimation of stresses and the non-
uniformity of some materials.

UTemate or vield stress

Factor of safety = - -
Design or working swess

Note: Ultimate stress is used for materials e.g. concrete
which do not have a well-defined yield point, or brittle
materials which behave in a linear manner up to failure.
Yield stress is used for other materials e.g. steel with well
defined yield stress.

Results From a Tensile Test

_ Stress up to limit of proportionality

(a) Modulus of Elasticity, E -
Strain

(b) Yield Stress or Proof Stress (See below)

(c) Percentage elongation = Incr_m_se in gauge lengih x100
Original gauge length

o iginal - t 't
(d) Percentage reduction in area = Origina are.a. area at fracture x 100
Original area

Maximum load

(e) Tensile Strength = — -
Original cross sectional area

The percentage of elongation and percentage reduction in area give an indication of the
ductility of the material i.e. its ability to withstand strain without fracture occurring.

17



Proof Stress

* High carbon steels, cast iron and most of the non-
ferrous alloys do not exhibit a well defined yield as
1s the case with mild steel.

* For these materials, a limiting stress called proof
stress 1s specified, corresponding to a non-
proportional extension.

* The non-proportional extension is a specified
percentage of the original length e.g. 0.05, 0.10,
0.20 or 0.50%.

Stress Proof Stress

A Strain

The proof stress is obtained by drawing AP parallel to the initial slope of the
stress/strain graph, the distance, OA being the strain corresponding to the
required non-proportional extension e.g. for 0.05% proof stress, the strain is
0.0005.

18



Thermal Strain

Most structural materials expand when heated,
in accordance to thelaw: &=aT

[ ag

where ¢ islinear strain and

& is the coefficient of linear expansion;

T is the rise in temperature.

That is for a rod of Length, L;

if its temperature increased by t, the extension,

a=%LT

Thermal Strain Contd.

As in the case of lateral strains, thermal strains
do not induce stresses unless they are constrained.
The total strain in a body experiencing thermal stress
may be divided into two components:

Strain due to stress, £, and

That due to temperature, &, .

Thus: &€= & + &

o
‘5: —+aT




Principle of Superposition

* It states that the effects of several actions taking
place simultaneously can be reproduced exactly by

adding the effect of each action separately.

* The principle is general and has wide applications

and holds true if:
(1) The structure is elastic
(i1) The stress-strain relationship is linear
(i11) The deformations are small.

General Stress-Strain Relationships

(a) b)

40
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Relationship between Elastic Modulus (E) and Bulk
Modulus, K

It has been shown that: €, =¢, +¢, +¢€,
£ = %[0't -v(o, +0:)]

For hydrostatic stress, ¢,=0,=0,=0

ie. €, =%[0'—2 c v]=%[l—2 v]

Similarly, £, and &_ are each %[1—2 1)]

g, =€, +¢&,+¢&  =Volumetric strain

e=2%

1-29)
3o
E—g—v[l—2 v]

Volumetric or hydrostatic stress o
Bulk Modulus, K = }' - =—
Volumetric strain £,

ie. E:3K[1—21)] and K:3[1_21)]

41

Extension of Bar of Tapering cross Section from
diameter d1 to d2:-

Bar of Tapering Section:
dx=dl +[(d2-dl)/L]*X
OA =Pox / E[m /4{d1 + [(d2 - d1) /L] * X}?]

21



L
A= 4 Pdx /[E n{d1+kx}?]
0 L
=-[4P/nE]lx 1k [ {1/(d1+kx)}] dx
0

—_ [4PL/ 7 E(d2-d1)] {1/(d1+d2 -d1)- 1/d1}

A=4PL/(nE d1d2)

Check :-
Whend=d1=d2
A=PL/[(n /4)* d’E | =PL/AE

Q. Find extension of tapering circular bar under axial pull for
the following data: d1 = 20mm, d2 = 40mm, L = 600mm, E =
200GPa. P = 40kN

AL =4PL/(m E d1 d2)

= 4*40,000*600/(* 200,000%20*40)
=0.38mm. Ans.

44
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Extension of Tapering bar of uniform
thickness t, width varies from b1 to b2:-

P/Et ] ox /[ (b1 + k*X)],

Bar of Tapering Section:
bx=bl +[(b2-bl)/L]* X=bl +k*x,
OA =Pox / [Et(bl + k*X)], k=(b2-bl)/L

L | .
AL= AL ={" P&x/ [Et(bl - k*X)].
0 0
=P/Et|8x /[ (bl - k*X)],
= P/Etk*log, [(b1-k*X)]

=PL log.(b1/b2)/[Et(b1 - b2)]

46
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Example

* A steel tube having an external diameter of 36 mm and an
internal diameter of 30 mm has a brass rod of 20 mm
diameter inside it, the two materials being joined rigidly at
their ends when the ambient temperature is 18 °C.
Determine the stresses in the two materials: (a) when the
temperature is raised to 68 °C (b) when a compressive load
of 20 kN is applied at the increased temperature.

For brass: Modulus of elasticity = 80 GN/m?; Coefficient of
expansion = 17 x 10 -6 /°C

For steel: Modulus of elasticity = 210 GN/m?; Coefficient of
expansion = 11 x 10 -6 /°C

Solution
30 Brass rod IZO 36
\
Steel tube
Area of brass rod (Ap) = x0T 31416 mm’

7x(36°=30%)
4

Area of steel tube (As) = =31102 mm’

AE, =31102 x10°m* x 210 x 10° N / m* = 0653142 x 10° N

L 15310610
A,YE\'

48
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Solution Contd.

AE,=31416x10°m* x80 x 10° N /m’ = 0251327 x 10°N

L 39788736 x 107
y Ly
T(a,—,)=50(17-1) x10°=3x10"
With increase in temperature, brass will be in compression while
steel will be in tension. This is because expands more than steel.

i.e. F[L+L] =T(a,-,)

AE, AE,
i.e. F[1.53106 + 3.9788736]x 10 %= 3x 10 *
F = 5444.71N

49

Solution Concluded

Stress in steel tube = w =1751N / mm* =1751MN / m* (Tension)
31102 mm~

Stress in brass rod = M =1733N / mm* =17.33MN | m*(Compression)
314.16 mm

(b) Stresses due to compression force, F’ of 20 kN

F'E,  20x10°N x210x10°N/m’

o, = = —=4644MN / m?*(Compression)
" EA+EA, 0.653142+0.251327 x 10

F'E, _ 20x10°N x80x10°N /m’

o,= = —= 17.69 MN | m* (Compression)
EA+EA  0653142+0251327 x 10

Resultant stress in steel tube = - 46.44 + 17.51 = 28.93 MN/m? (Compression)
Resultant stress in brass rod =-17.69 - 17.33 = 35.02 MN/m? (Compression)

25



Example

A composite bar, 0.6 m long comprises a steel bar 0.2 m long and
40 mm diameter which is fixed at one end to a copper bar having a
length of 0.4 m.

i. Determine the necessary diameter of the copper bar in order
that the extension of each material shall be the same when the
composite bar is subjected to an axial load.

ii. What will be the stresses in the steel and copper when the bar
is subjected to an axial tensile loading of 30 kN? (For steel, E
=210 GN/m?; for copper, E = 110 GN/m?)

Solution
0.2 mm
0.4 mm
F*<— 1T 40mmdia [ d F

Let the diameter of the copper bar be d mm
Specified condition: Extensions in the two bars are equal

dl, =dl,
di=er=21="L
E AE
Thus: £l _EL
ALE(’ A.\E.\

26



Solution

Also: Total force, F is transmitted by both copper and steel
iie. Fo=Fs=F
L(' —_ LY

ACE(' - ASES

ie.

Substitute values given in problem:

04 m _ 02m
7d*14m* 110x10° N /m*  7/4 x0040% x210 x10° N /m?

2
2 =%mz; d = 007816 m="7816 mm.

Thus for a loading of 30 kN

30x10°N
Stress in steel, 0,=———————————=2387 MN /m’
* /4 x0040° x10°°
30x10°N
Stress in copper, 0, = — XY _9MN/w

/4 x007816* x10™°

Elastic Strain Energy

* If a material is strained by a gradually applied load,
then work is done on the material by the applied
load.

* The work is stored in the material in the form of
strain energy.

e If the strain is within the elastic range of the
material, this energy is not retained by the material
upon the removal of load.

27



Elastic Strain Energy Contd.

Figure below shows the load-extension graph of a uniform bar.

The extension dl is associated with a gradually applied load, P

which is within the elastic range. The shaded area represents

the work done in increasing the load from zero to its value
Load

Extension

L

dl
Wark done = strain energy of bar = shaded area

Elastic Strain Energy Concluded

W=U=1/2Pdl (1)

Stress, 0 =P/Aiie P=0c A

Strain = Stress/E

iedllL = o/E, dl= (oL)E L= original length
Substituting for P and dl in Egn (1) gives:

W=U=1/20 A.(c L)E = 0%2EXAL

A L is the volume of the bar.

i.e U = 0 %2E x Volume

The units of strain energy are same as those of work i.e. Joules. Strain energy
per unit volume, o %/2E is known as resilience. The greatest amount of energy that can
stored in a material without permanent set occurring will be when ¢ is equal to the

elastic limit stress.

56
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UNIT 2

Shear Force and Bending
Moment

SHEAR FORCE AND BENDING MOMENT

Definition of beam — Types of beams — Concept of shear force
and bending moment — S.F and B.M diagrams for cantilever,
simply supported and overhanging beams subjected to point
loads, uniformly distributed load, uniformly varying loads and
combination of these loads — Point of contraflexure — Relation

between S.F., B.M and rate of loading at a section of a beam.

29



4-Classification of Beams:

1) Simple Beam

!P 5 _ 2 ke
¥ " % ‘ . "
____L__:l L i _l ;s

| =

Cantilever Beam

% po Ibfin.
[{ll!l]lll;; e 2 1 = 1
' e L2 L2 \

I
Cantilever

3) Simple Beam with Overhanging OR "Overhanging Beam"
m’!’\’?ﬁq
- = = -
L ; ‘ 3a a

Overhanging beam
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Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are
developed and the terms shear force and bending moments come into pictures which are
helpful to analyze the beams further. Let us define these terms

P Pz P
o
A A
Ra {a} Rz
P B A B
F :
A .
A | |
FF : : IR,
A ] A
i
Ri : B2
B A

61

Now let us consider the beam as shown in fig 1{a) which is supporting the loads P, P2, P2
and is simply supported at two points creating the reactions R, and R respectively. Now
let us assume that the beam is to divided into or imagined to be cut into two portions at a
section AA. Now let us assume that the resultant of loads and reactions to the left of AA
is “F' vertically upwards, and since the entire beam is to remain in equilibrium, thus the
resultant of forces to the right of AA must also be F, acting downwards. This forces ‘F' is
as a shear force. The shearing force at any x-section of a beam represents the tendency
for the portion of the beam to one side of the section to slide or shear laterally relative to
the other portion.

Therefore, now we are in a position to define the shear force “F' 1o as follows:

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral
components of the forces acting on either side of the x-section.

Sign Convention for Shear Force:

The usual sign conventions to be followed for the shear forces have been illustrated in
figures 2 and 3.

F

The resultant force which is in the downward
direction and is towards the R.H.5 of the
X-seclion is +ve Shear Force.

The resultant force which is in upward
direction and is towards the L.H.S of the

A
|
|
I
I
I
I
I
|
I
I
|
I
I
I
|
I
I
|
|
|
|

X-section is +ve Shear Force !
|

A

Positive Shear Force 62
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F

The resultant force which are in the downward
direction and is on the L.H.S of the X-section
is -ve Shear Force.

The resultant force which are in upward
direction and is on the R.H.S of the

A
]
|
]
]
]
]
]
I
|
]
]
]
|
I
I
I
I
I
I
|
I
: ¥-section is -ve Shear Force,
A

Fig 3: Negative Shear Force

BENDING MOM

P Pz Pa
I
FEA7T P Cd
A A
(2] (a) R2
F Pz o Pz
i
I
L sl 1
) ! L
T T
! I
FFA7Z ‘\ R | _ s
| -
A = \ A
I
R : =H
B} A

Let us again consider the beam which is simply supported at the two prints, carrying
loads Py, Pz and Pz and having the reactions R; and R at the supports Fig 4. Now, let us
imagine that the beam is cut into two potions at the x-section AA. In a similar manner, as
done for the case of shear force, if we say that the resultant moment about the section AA
of all the loads and reactions to the lefi of the x-section at AA is M in C.W direction, then
moment of forces to the right of x-section AA must be *M' in C.C.W. Then ‘M’ is called
as the Bending moment and is abbreviated as B.M. Now one can define the bending
moment to be simply as the algebraic sum of the moments about an x-section of all the
forces acting on either side of the section

64
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‘e .
=

#

Resultant moment on the R.H.S postion
of the X-section is C.C.W., then it may be
considered as positive B.M

’f

prmmmmmmmm===

P

Resultant moment on the L.H.S of
the X-section is C.W, then itis a
positive B.M

Fig 5: Positive Bending Moment

»

R
V4

)
J

Resultant moment on the R.H.S of
the X-section is C.WV, then it is a
negative B.M

Resultant moment on the LH.S of
the X-section is C.C.W, then itis a
negative B.M

Preasmmes

65

Basic Relationship Between The Rate of Loading,
Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly
simplified if the relationship among load, shear force and bending moment is established.
Let us consider a simply supported beam AB carrying a uniformly distributed load w/length.
Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x'
from the origin ‘0.

kmma

For

S = d o
be detached

Let us detach this portion of the beam and draw its free body diagram.

w/lengm

1 2l Ly
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The forces acting on the free body diagram of the detached portion of this loaded beam
are the following
* The shearing force F and F+ dF at the section x and x + dx respectively.

* The bending moment at the sections x and x + dx be M and M + dM respectively.
» Force due to external loading, if ‘w' is the mean rate of loading per unit length then the
total loading on this slice of length dx is w. dx, which is approximately acting through the
centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly
through the centre ‘c'. This small element must be in equilibrium under the action of these
forces and couples.
Now let us take the moments at the point ‘c'. Such that

1 +F,‘52_"+(F + &F) ‘5_2" = M+ S0

—F.5 P+ sF). B2 = s
= E

&

:>F.‘52J+F.% +5F. 2% = 5M [Neglecting the product of

&F and 6x being small quantities |
— F.8x = &M
]
“Ex
Under the limits x — 0
EL]
dx
Re solvingthe forcesvertically we get
we. 5% +(F +8F)=F
_BF
B
Under the limits §x — 0

—_F =

F=

(1)

= =

—_—we=-9E g, _ d dM,
i EERCE:
__dF _ _ d®m
W= T T g —- 123 67

A cantilever of length carries a concentrated load ‘W' at its free
end. Draw shear force and bending moment.

Solution:

At a section a distance x from free end consider the forces to the left, then F = -W
(for all values of x) -ve sign means the shear force to the left of the x-section are in
downward direction and therefore negative.

Taking moments about the section gives (obviously to the left of the section)
M = -Wx (-ve sign means that the moment on the left hand side of the portion is in
the anticlockwise direction and is therefore taken as —ve according to the sign
convention) so that the maximum bending moment occurs at the fixed end i.e.

M = -WI1 From equilibrium consideration, the fixing moment applied at the fixed
end is W1 and the reaction is W. the shear force and bending moment are shown as,
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W w 1%

EI ///////M &.F.Dingram

A

Wi —==B8.h. Diagram
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Simply supported beam subjected to a central load (i.e. load acting at the mid-

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any
section X-X from the left end then, the beam is under the action of following forces.

v
%

"
Z i ]

W . W

.So the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2]
If we consider another section Y-Y which is beyond 1/2 then
=W

S.Fyy = ﬂ_w =
2 2 for all values greater =1/2

Hence 8.F diagram can be plotted as,
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l .For B.M diagram:

If we just take the moments to the left of the cross-
section,
" 7/
\
W SF.Disgram
W )
B.M = — uforxliesbetweenO and 112
WA 2
BM =¥ LieBMax=0 s
EFERS 2 2
_ Wi
T PN PP
W I
BMyy = o x-wlx-t
v 3 i (' 2]
Again
= E ®=-Wx + E 8F
2 2
W Wi
=N
2
Wl Wil
BMan o = 5 *7
=0
B.M tw'/‘t

Which when plotted will give a straight relation i.e.
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A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

wi | length
- 1 .

pnnnq:nnn:n::é:nn

TERRLRY

¥

Here the cantilever beam is subjected to a uniformly distributed load whose
intensity is given w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we
just take the resultant of all the forces on the left of the X-section, then

S.Fu = -Wx for all values of *x". === (1)
SFu=10

S.Fucaw=1=-WI




So if we just plot the equation No. (1), then it will give a straight line relation. Bending
Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load
of the same value acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

BMey = - Wx%

= - wi
= Wy 5
f— w | lengih
The above equation 18 a quadratic n x, when B.M is plotted against x this will produces a ,
parabolic variation. ' |
The extreme values of this would be at x = 0 and x =1 .
W
BMM:I_-T SF [.wm
W
=— =Wy
2
BM 'Vlﬂ‘§
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Simply supported beam subjected to a uniformly distributed load U.D.L

X W
“length
b S.F at any X-section X-X is
Wi wi =My
4 . /z > "

The bending moment at the section x is found by treating the distributed load as acting at
its centre of gravity, which at a distance of x/2 from the section

X

X
-
[
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W

BMyy = %x - Wx.% /length
sothe 5

x

=W.=(l - [ ’

5(1-2) () g My,
B.Myy =0
BMyy 2, =0

Wi Wi
B.M ax=l - o fé
8
Wi
- ‘% o 5.F . Dingram
- -

Wit
T

L B.M.Diagram

An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20
mm is used as simply supported beam for a span of 7 m. The girder carries a
distributed

load of 5 KN /m and a concentrated load of 20 KN at mid-span.

Determine the

(i). The second moment of area of the cross-section of the girder

(ii). The maximum stress set up.
Solution:

The second moment of area of the cross-section can be determined as follows :
For sections with symmetry about the neutral axis, use can be made of standard I value for
a rectangle about an axis through centroid i.e. (b.d3 )/12. The section can thus be divided
into convenient rectangles for each of which the neutral axis passes through the centroid.
Example in the case enclosing the girder by a rectangle

[ [ -1

'sha ded portion

_ (200 =300° el o |90 x260° ), e
12 12

={45-264 )10

=186 =10 m*
The maximum stressmaybefound from 300 mm
the simple bendingthearybyequation N

girder = lractangle

260 mm

I

o = Mmax,,, = zanmm—"|
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Calculations of Beam Reactions

Ex3: 250N 50N 80N

—> Fa=0 (1)
Rax=0

*l 25m 1.25m 1.25m 1.25 ml

Rey

<+ > Maa=0 --(2) Ray
250+80x25+80%x3.75-Re*x5=0 1
Ray

. Rey=+135N T

TZFy:U - (3)
Ray=-5N ] ¥ Ray=5N l

UNIT -3

Flexural and shear stresses
1n beams
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* Members Subjected to Flexural Loads
* Introduction:

* In many engineering structures members are required to resist forces that are applied
laterally or transversely to their axes. These type of members are termed as beam.

* There are various ways to define the beams such as

* Definition I: A beam is a laterally loaded member, whose cross-sectional dimensions
are small as compared to its length.

* Definition II: A beam is nothing simply a bar which is subjected to forces or couples
that lie in a plane containing the longitudinal axis of the bar. The forces are
understood to act perpendicular to the longitudinal axis of the bar.

* Definition III: A bar working under bending is generally termed as a beam.
* Materials for Beam:

* The beams may be made from several usable engineering materials such commonly
among them are as follows:

¢ Metal
* Wood
¢ Concrete

* Plastic

79

Geometric forms of Beams:

» The Area of X-section of the beam may take several forms some of them

have been shown below:

[ Rectangular section] [ T- section] [ | - section]

A

[ Triangular section) [ Circulular [ Channel X - section]
X section]
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Loading restrictions:
Concept of pure bending:

* As we are aware of the fact internal reactions developed on any cross-
section of a beam may consists of a resultant normal force, a resultant shear
force and a resultant couple. In order to ensure that the bending effects alone
are investigated, we shall put a constraint on the loading such that the
resultant normal and the resultant shear forces are zero on any cross-section
perpendicular to the longitudinal axis of the member,

That means F=0
since or M = constant.

Thus, the zero shear force means that the bending moment is constant or the
bending is same at every cross-section of the beam. Such a situation may be
visualized or envisaged when the beam or some portion of the beam, as been
loaded only by pure couples at its ends. It must be recalled that the couples are
assumed to be loaded in the plane of symmetry.

81

<—feam

Plane of Symmetry

Fig (1)

Fig {2)
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Bending Stresses in Beams or Derivation of Elastic Flexural formula :

* In order to compute the value of bending stresses developed in a loaded beam, let us
consider the two cross-sections of a beam HE and GF , originally parallel as shown
in fig 1(a).when the beam is to bend it is assumed that these sections remain parallel
i.e. H'E' and G'F', the final position of the sections, are still straight lines, they then
subtend some angle

* Consider now fibre AB in the material, at a distance y from the N.A, when the beam
bends this will stretch to A'B'

Therefore,
change inlength

straininfibre AB= ————— =
orginal length

=ABZAB ButaB = CDandCD =C'D
refertofigl(a) andfigl{b)

AB-CD

—cob

. ostrain =
* Consider now fibre AB in the material, at a distance y from the N.A, when the beam
bends this will stretch to A'B'

* Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the
neutral axis zero. Therefore, there won't be any strain on the neutral axis

_iR+y8-RE _RE+yB-RE_y
Ra i R
However stre:.as =E  whereE="Young'sModulusof elasticity

Therefore equating the twostrains as
obtained fromthe tworelationsi.e,

U_YDYU_E 1
E ﬁ ; E .............. 1
U=E

=¥

if the shaded stripisof area’'dd’
then the force onthe stripis
F=uao 6A=Ey a4,

3]

MMament about the neutral axiswould be =F.y = % yIam,
The toatl moment for the whaole
cross-section is therefore equal to
E = E z
M =% = = — Gl
gy g
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* Now the term is the property of the material and is called as a
second moment of area of the cross-section and is denoted by a
symbol 1.

* Therefore m=g| @)
combining equation 1 and 2 we get

G _M_E

y T R

* This equation is known as the Bending Theory Equation.
The above proof has involved the assumption of pure bending
without any shear force being present. Therefore this termed as
the pure bending equation. This equation gives distribution of
stresses which are normal to cross-section i.e. in x-direction.

Consider an [ - section of the dimension shown below.

:__, , — Flange
| B |
- / R =8

W Ai b [Here flange and web
. —— thickness are same|
—pp— ¥

d Ty

D N — —_—h
- web
=¥ ‘
,-FAY
The shear stress distribution for any arbitrary shape is given as Zl

Let us evaluate the quantity Ay ) the A quantity for this case comprise the contribution
due to flange area and web area
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D2

Flange area

Area of the flange =B #]

Distance of the centroidoftheflange fromthe M A
jo1fo-d), 9
2y 2 2

-

Areaoftheweb

)

Distance of the centroid fromMN_A

S_1fd
Y‘i{f Y]"'Y

-_1fd
Y‘f(i”‘]

Therefare,

= d 1{d
AY|wub=b(5"J’]5 [5“‘1’]

Hence,

- D-dYfD+d d d 1
AY|T¢=I=E T][ 1 ]*b [5'5’][5*5’]5

Thus,

Hence, _ _ DZ _ d? b dz
A?|nang.=5[02;d][¥] AY|Tm|—E[ 5 ]+§ [T— yz]
Therefore shear stress,
b _ g2
o AL
bl 8 20 4
Web Area "_ -
87
- 5 .|
3 N\
v d "4

L N\
A
DI N g Tr——a& -j
ol
./

— b j

/

' l e
Twin
—_—
Trnax
Tav
_F 72 2
7o =g P07 ) b
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: :7 Parabolic

This distribution is known as the “top — hat” distribution. Clearly the web bears the most
of the shear stress and bending theory we can say that the flange will bear most of the
bending stress.
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UNIT -4

TORSION OF CIRCULAR
SHAFTS
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Torsion of circular shafts

e Definition of Torsion: Consider a shaft rigidly
clamped at one end and twisted at the other end
by a torque T = Fd applied in a plane
perpendicular to the axis of the bar such a shaft is
said to be in torsion.

* Effects of Torsion: The effects of a torsional load
applied to a bar are section with respect to the
other end.nt of one end cross 1 section with
respect to the other end.

.
i
: N
F e
d/& T=F.d
g
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Twisting Moment: The twisting moment for any
section along the bar / shaft is defined to be the
algebraic sum of the moments of the applied
couples that lie to one side of the section under
consideration. The choice of the side in any case
is of course arbitrary.

Shearing Strain: If a generator a 1 b is marked
on the surface of the unloaded bar, then after the
twisting moment "T" has been applied this line
moves to a b'. The angle 6 measured between the
final and original positions of the generators is
defined as the shearing strain at the surface of the
bar or shaft. The same definition will hold at any
interior point of the bar.
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(==

Modulus of Elasticity in shear: T he ratio of
the shear stress to the shear strain is called the
modulus of elasticity in shear OR Modulus of
Rigidity and in represented by the symbol

Angle of Twist: If a shaft of length L is subjected to
a constant twisting moment T along its 1 ngth, than
the angle 6

through which one end of t he bar will twist relative
to the other is known is the angle of twist.

(=

Despite the difference s in the forms of loading, we
see that there are number of similarities between
bending and torsion, including for example, a linear
variation of stresses and strain with position.
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Relationship in Torsion:

1st Term: It refers to applied loading ad a property of
section, which in the instance is the polar second
moment of area.

2nd Term: This refers to stress, and the stress increases
as the distance from the axis increases.

3rd Term: it refers to the deformation and contains in
which is equivalent to strain for the purpose of
designing a circular shaft to with stand a given torque
we must develop an equation giving the relation
between Twisting moments max m shear stain
produced and a quantity representing the size and shape
of the cross sectional area of the shaft.

Assumption:
The materiel is homogenous i.e of uniform elastic
properties exists throughout the material.

The material is elastic, follows Hook's law, with
shear stress proportional to shear strain.

The stress does not exceed the elastic limit.

The circular section remains circular

Cross section remain plane.

Cross section rotate as if rigid i.e. every diameter
rotates through the same anole.
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DERIVATION OF TORSIONAL EQUATIONS

Consider a shaft of length L, radius R fixed at one end and subjected
to a torque T at the other end as shown in Fig.

Let O be the centre of circular section and B a point on surface. AB
be the line on the shaft parallel to the axis of shaft. Due to torque T
applied, let B move to B’. If y is shear strain (angle BOB') and 0 is
the angle of twist in length L, then

9
A{\! %_4, g AT BB'
/I ‘:%B Avme @
! ' L l :
RO-BB' Ly

If 7 is the shear stress and G is modulus of rigidity then,

Y ==

G

RO=L%

G
r, GO
R I

Similarly if the point B considered is at any distance » from centre instead of on the surface, it

can be shown that

—=— (D)
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Thus shear stress increases linearly from zero at axis to the maximum value 7 at surface.

Now consider the torsional resistance developed by an elemental area '6a' at distance » from

centre.
If T is the shear stress developed in the element the resisting force is

dF = wla

da dF = qda

Resisting torsional moment, dT=dF xr
=trda

99

Therefore,
- r
dl'=t,—da
k
Total resisting torsional moment,
’,2
T=)r,—da
Z "R
T 5
T=—> rda
R Z
But Z!‘zrhr is nothing but polar moment of inertia of the section. Representing it by notation J

we get, Tzis']

=

Where,
T - torsional moment , N-mm
J - polar moment of inertia, mm*
7 - shear stress in the element, N/mm’
r- distance of element from centre of shaft, mm
G - modulus of rigidity, N/mm”
&- angle of twist, rad
= L- length of shaft, mm
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Power Transmitted by a shaft : If T is the
applied to the shaft, then the power transmitted by
the shaft is

Distribution of shear stresses in circular Shafts
subjected to torsion :

This states that the shearing stress varies directly
as the distance 1r' from the axis of the shaft and
the following is the stress distribution in the plane
of cross section and also the complementary
shearing stresses in an axial plane.

101

Torsional stiffness: The torsional stiffness k is
defined as the torque per radian twist .

For a ductile material, the plastic flow begins first
in the outer surface. For a material which is weaker
in shear longitudinally than transverse ly for
instance a wooden shaft, with the fibers parallel t o
axis the first cracks will be produced by the
shearing stresses acting in the axial section and
they will upper on the surface of the shaft in the
longitudinal direction.
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Definition: A spring may be defined as an elastic
member whose primary function is to deflect or
distort under the action of applied load; it recovers its
original shape when load is released.

Important types of springs are:
There are various types of springs such as

Helical spring: They are made of wire coiled into a
helical form, the load being applied along the axis of
the helix. In these type of springs the major stresses is
torsional shear stress due to twisting. They are both
used in tension and compression.

Spiral springs: They are made of flat strip of metal wound in the
form of spiral and loaded in torsion.
In this the major stresses are tensile and compression due to bending.

P
NS

&

/L
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Uses of springs :

To apply forces and to control motions as in
brakes and clutches.

To measure forces as in spring balance.

To store energy as in clock springs.

To reduce the effect of shock or impact
loading as in carriage springs.

To change the vibrating characteristics of a
member as inflexible mounting of motors.

Derivation of the Formula :

In order to derive a necessary formula which
governs the behavior of springs, consider a closed
coiled spring subjected to an axial load W.

PIFIFIITRI T I FF I ITIF S
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Let

W = axial load

D = mean coil diameter d = diameter of spring wire
n = number of active coils

C = spring index = D / d For circular wires

1 = length of spring wire G = modulus of rigidity
x = deflection of spring q = Angle of twist

when the spring is being subjected to an axial load to the wire
of the spring gets be twisted like a shaft.

If q is the total angle of twist along the wire and x is the
deflection of spring under the action of load W along the axis
of the coil, so that

x=D/2.0

UNIT-5
COLUMNS & STRUTS

108

54



Introduction

Structural members which carry compressive
loads may be divided into two broad categories
depending on their relative lengths and cross-
sectional dimensions.

Columns:

Short, thick members are generally termed
columns and these usually fail by crushing when
the yield stress of the material in compression is
exceeded.

Struts

Long, slender columns are generally termed as
struts, they fail by buckling some time before the
yield stress in compression is reached. The buckling
occurs owing to one the following reasons.

The strut may not be perfectly straight initially.

The load may not be applied exactly along the axis
of the Strut.

One part of the material may yield in compression
more readily than others owing to some lack of
uniformity in the material properties through out the
strut.

110
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Euler's Theory

The struts which fail by buckling can be analyzed
by Euler's theory. In the following sections,
different cases of the struts have been analyzed.

Case A
Strut with pinned ends

Consider an axially loaded strut, shown below,
and is subjected to an axial load 1P' this load 1P
produces a deflection 1y' at a distance 1x' from
one end.

Assume that the ends are either pin jointed or
rounded so that there 1s no moment at either end.

111

Assumption:

The strut 1s assumed to be initially straight,
the end load being applied axially through
centroid.

+BM

According lo sign
convention
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Let us define a operator
D = d/dx
(D2 +n 2 )y =0 where n2 = P/EI

This is a second order differential equation which
has a solution of the form consisting of
complimentary function and particular integral but
for the time being we are interested in the
complementary solution only[in this P.I = 0; since
the R.H.S of Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx) Where A and B
are some constants.

COLUMN BOTH ENDS PINNED (OR HINGED)

Consider a column AB of length 1 and uniform cross-
sectional area, hinged at both of its ends A and B. Let P
be the crippling load at which the column has just
buckled. Due to the crippling load, the column will
deflect into a curved form ACB as shown in fig. 8.5.
Consider any section at a distance x from the end A.

Let y = Deflection (lateral displacement) at the section.

The moment due to the crippling load at the section = -
P.y
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2
But moment =EI il .
dx?

Equating the two moments, we have
d? 2
B --P.y or Elgx;_" +P.y=0

d? P
dx—g+?.y=0 R

The solution™ of the above differential equation is

[P | |
y=C1.cos(x EJ+Cz.sm(x "EPT]

(M)

*Theequatian‘-‘iz—y+£xy:Dcanbewrittenasd—zy %y =0 wh B
2 E 22 * o =0vhere o?=

EI ora=

The solution of the equation is y = Cicos(ax)+C, sin (e x)

[P , jP' 3
=C1cos[ E—Ixr]+czsm[ Exx]asq_-_ EPI.

Where C; and C, are the constants of integration. The values of C; and C, are obtained as given
below:
(i) AtA,x =0andy=0
Substituting these values in equation (1), we get

0=C.cos0°+Cysm0

Cix1+Cyx0

Therefore, C=0 (ii)
(i1) At B, x=l and y = 0

Substituting these values in equation (1), we

1 f_ in L% =
0=C;.cos "]IEI +C, . sin \JEI
™ P 4 i ii
=0+C,.sin " E [+ C, = 0 from equation (ii)]

-, [P
=C,sin [z J%] (i)

From equation (111), it is clear that either C; =0
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As ('; = 0, then if C; is also equal to zero, then from equation (1) we will get y = 0. This means

that the bending of the column will be zero or the column will not bend at all. This is not true.

a(t{E) -0

= sin 0 or sin x or sin 27 or sin 3m or

l,'% =0ormor 2ror 3w or...

Taking the least practical value,
P

NEr

b4

n’E.
12

P=

.

COLUMN ONE END FIXED AND OTHER END FREE

Consider a column AB, of length 1 and uniform cross-
sectional area, fixed at the end A and free at the end B. The
free end will sway sideways when load is applied at free
end and curvature in the length 1 will be similar to that of
upper half of the column whose both ends are hinged. Let P
is the crippling load at which the column has just buckled.
Due to the crippling load P, the column will deflect as
shown in Fig. 8.6 in which AB is the original position of
the column and AB', is the deflected position due to
crippling load P.

Consider any section at a distance x from the fixed end A.

Fig.8.6

Let y = Deflection (or lateral displacement) at the section
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Let y = Deflection (or lateral displacement) at the section
a = Deflection at the free end B. Then moment at the section due to the

crippling load =P (a-y)

But moment, M =EI d——‘—

dx”
Equating the two moments, we get

d? .
EIﬁ":P(@—y):P.a—P.y
2
EI % +P.y=P.a
d’y P P

?4'-5‘; =g

119

The solution* of the differential equation is

‘ {P . fP
y=Cl.cos[x E}+Cz.sm(x ﬁ)+a

(1

Where (;and C; are constant of integration; the values of ('; and C» are obtained from boundary
conditions. The boundary conditions are:

(1) For a fixed end, the deflection as well as slope is zero.

S . v
Hence at end A (which is fixed), the deflection y = 0 and also slope % =0
dx

Hence at A, x=0andy =0

Substituting these values in equation (7), we get

0=Cjcos0+Casin0+a
=C1x1+Cyx0+a
=C1+a (ll)
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At A, x =0and ﬂ=O
dx

Differentiating the equation (1) w.r.t. x, we get

dy ([P [P [P) [P
dx—Cl.(—l)sm(x EJ I+Czcos “Nar | -—-EI+0

B P P ’P

=-C,. -ﬁsm{x —E—f]-rcg. Ecos(x E—I]

But atx = 0 and ﬂ= 0
dx

The above equation becomes as

From the above equation it is clear that either C; =0,
or 12 o
EI

it / P
But for the crippling load P, the value of ¥ cannot be equal to zero.

Therefore, C,=0

Substituting the values of (; = - @ and C>= 0 in equation (1) we get

01
P )
) a-co{.\g}tu (111)

But at the free end of the column, x =/ and y = «@. Substituting these values in equation (iii) we

get
a=—-a.cos|{/. i +a
( VEI .
’P iP
0=~—a.cos[l- ﬁ} oracos[l. E]-G

But *a' cannot be equal to zero
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P T os 3 orcos B
cos | 1. -Ef —0—coszorcos 9 or cos 5 OT cvvee

, [E_n 8x be
.—E—}-—201'202 ......

{P % /_P;_i‘.
l. E=2 ar EIﬁQl
P

Taking the least practical value,

*2El
4%

COLUMN BOTH THE ENDS OF THE COLUMN ARE FIXED

Consider a column AB, of length 1 and uniform cross-sectional
area, both ends A and B fixed. Let P is the crippling load at
which the column has just buckled. Due to the crippling load
P, the column will deflect as shown in Figure. Due to fixed
ends, there will be fixed end moments (say Mo) at the ends A
and B. The fixed end moments will be acting in such direction
so that slope at the fixed ends becomes zero.

Consider any section at a distance x from the fixed end A.

Let y = Deflection (or lateral displacement) at the section

As the both the ends of the column are fixed and column
carries a crippling load, there will be some fixed end moments
at A and B.
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Let M, = Fixed end moments at A and B.
Then moment at the section = M, — Py

dzy
But moment at the section is also = EI o

~. Equating the two moments, we get
dzy
EI‘ F = MO - P.y
dz
or EI d.x_g +P.y=M,
. d’y P M, (A
or &%? VEYTE
My P_P M,
T EI P EI'p
The solutien* of the above differential equation is

: P P M .
y:Cl.cos(x'\ﬁJ+Cg.sin[x'\’EI}+Tn @)

where C, and C, are constant of integration and their values are obtained from boundary
conditions. Boundary conditions are :

(i) AtA,x=0,y=0and also j—i’ =0as A is a fixedend.

(ii) At B,x =1,y = 0 and also % =0 as B is also a fixed end.

Substituting the value x = 0 and y = 0 in equation (i), we get

0=C1x1+sz0+M£

P {v cos0=1)
M,
= CL + _ﬁ_
M, .
= i D)

Differentiating the equation (i), with respect to x, we get
d _ w2 2 AN
dx—Cl.(—l)sm[x. EI]' EI+Czcos x. VT +0
. P P P P
:—Clsm[x. EI)' Fo74 +Czcos(x. EI). b7
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d:
Substituting the value x = 0 and Ey = 0, the above equation becomes

0:—Clx0+C2xlx"§f (- sin0=0andcos0=1)

’P
=G EI

P
From the above equation, it is clear that either C, = 0 or "Ef = 0. But for a given

crippling load P, the value of ‘% cannot be noual to zero.
C,=0.

Now substituting the values of C, =— —% and C, = 0 in equation (i), we get

y=- —cos[ FJ+0+—
fcos(xJE_]+ .iid)
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At the end B of the column, x =/ and y = 0.
Substituting these values in equation (iii), we get

0:—%cos[!, --'-E-)---‘]+—1|/‘—[g

I. EI;[ 0, 2x, 4%, 61, ......

Taking the least practical value,

. ,’P -2 pP= ~*El
EI gt or = iz -
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COLUMN ONE END FIXED AND OTHER END HINGED

Consider a column AB of length I and uniform cross-sectional area
fixed at the end A and hinged at the end B as shown in Fig. 19.7. Let P is
the crippling load at which the column has buckled. Due to the crippling
Joad P, the column will deflect as shown in Fig. 19.7.

There will be fixed end moment (M) at the fixed end A. This will
try to bring back the slope of deflected column zero at A. Hence it will be
acting anticlock wise at A. The fixed end moment M at A is to be bal-
‘anced. This will be balanced by a horizontal reaction (H) at the top end B
as shown in Fig. 19.7. P ‘
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Consider a section at a distance x from the end A.
Let y = Deflection of the column at the section,
M0 = Fixed end moment at A, and
H = Horizontal reaction at B.
The moment at the section = Moment due to crippling load at B
+ Moment due to horizontal reaction at B

=—P.y+H.(l-x)
But the moment at the section is also
d? y
=EI —5
dx
Equating the two moments, we get
d2
E dx—é’ - P.y+H(-)
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, d?
* or EIdt—g+P.y=H(léx)

d®y P H

or Ef+uﬁf'y:ﬁ

{-x) (Dividing by EI) ...(A)

_H o o PP HU-%
_EI —-Xx) X E.

P EI P

—~

The solution* of the above differential equation is

P . P H
y=C, cos {x\J_E—I] + C, sin (r—‘ﬁ] +F(l—x) (D)

where C; and C, are constants of integration and their values are obtained from boundary
conditions. Boundary conditions are :

d

(i) At the fixed end 4, x = 0,y = 0 and also =~ =0

(ii) At the hinged end B, x =l and y = 0.
Substituting the value x = 0 and y = 0 in equation (i), we get
H H.l
0=Cl>( 1+C2x0+ ? (I—O):Cl+ 5
H .
Cy=- 5 1 i3]

Differentiating the equation (i) w.r.t. x, we get

dy . [P\ [P [P P H

dx —CI.(— 1) sin [x. Ef] I +C, cos (x. i VEl TP
. [P ’P ’P P H
=—Clsm(x. EIJ wE-‘;+Czcos(x. EI-J % " P

d
AtA,x:Oand-Ey-—-O.

H
0:-Cl>(0+02.1. ‘F

P .
I (- sin0=0,c080=1)
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=C, —-— o C,=

P _H H [EI
ETTP PYP -

Substituting the values of C, = -
H P\ H [BL ( [P) H
yz"“P‘“.ICOS[I EIJ-}F TSln[JC —"EI +PU x)

Attheend B,x=1andy =0.
Hence the above equation becomes as

=,

H |BI fp H P
or Z =L A

5\ P sn[l IJ P Zcos(l _EI)
or sin | ] £ E P JP . cos

EI P - H \

=1. ‘/EI cos [l ]

. P P
or  tan [,{ EIJ i. T

The solution to the above equation is, . EI} = 4.5 radians
Squaring both sides, we get

p
iz, ET'“E 20.25

EI

P=2025 l_z

But approximately 20.25 = 252
2Bl

P=5
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. EFFECTIVE LENGTH (OR EQUIVALENT LENGTH) OF A COLUMN

The effective length of a given column with given end conditions is the length of an

equivalent column of the same material and cross-section with hinged ends, and having the

value of the erippling load equal to that of the given column. Effective length is also called
equivalent length.

Let L, = Effective length of a column,
{ = Actual length of the coluran, and
P = Crippling load for the column,
Then the crippling load for any type of end condition is given by
2
Er .
P= EL 5 .{19.5)

e

The crippling load (P) in terms of actual length and effective length and also the relation
between effective length and actual length are given in Table

S.No. | End conditions Crippling load in terms of Re;f:tiqn l:;etwjin
! effective leng
of colimn Actual length Effective length and actual length
x*El n*El L <t
1. | Both ends hinged =z Lﬂz _ e =
KZEI quI L =92
2. | One end is fixed —‘“_g' Le2 e
and other is free
axEl 2Bl L=t
3. | Both ends fixed Z L? )
4x°El n*El L=t
4. | One end fixed and E Lez . )
other is hinged

There are two values of moment of inertia i.e., I, and I”.

The value of I (moment of inertia) in the above expressions shogld be ta!{en as the least
value of the two moments of inertia as the column will tend to bend in the direction of least
moment of inertia. .
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Crippling Stress in Terms of Effective Length and Radius of Gyration.
The moment of inertia {) can be expressed in terms of radius of gyration (k) as
I = Ak*® where A = Area of cross-section.
As [ is the least value of moment of inertia, then
% = Least radius of gyration of the column section.
Now crippling load P in terms of effective length is given by
2 25 AR?
pomEL_HE A o 1oa®

_TczExA:anXA
L’ LY
k? k

And the stress corresponding to crippling load is given by
_ Crippling load _ P

..{19.6}

Crippling stress

Area A
Ex A
= LYV {Substituting the value of P)
Al 2
(%)
n’E
= -.(19.7)

Slenderness Ratio. The ratio of the actual length of a column to the least
radius of gyration of the column, is known as slenderness ratio.

Mathematically, slenderness ratio is given by
Actual length 1
Least radius of gyration Tk

Slenderness ratio = ...(19.8)
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