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The Course should enable the students to:

I. Relate mechanical properties of a material with its behavior under

various load types.

II. Apply the concepts of mechanics to find the stresses at a point in a

material of a structural member.

III. Analyze a loaded structural member for deflections and failure strength.

IV. Evaluate the stresses and strains in materials and deflections in beam

members.

COURSE OBJECTIVES
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STRENGTH OF MATERIALS
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COURSE STRUCTURE

UNIT I: STRESSES AND STRAINS(SIMPLE AND PRINCIPAL) 

Concept of stress and strain, elasticity and plasticity, Hooke‘s law, stress-strain

diagram for mild steel, Poisson‘s ratio, volumetric strain, elastic module and the

relationship between them bars of varying section, composite bars, temperature

stresses; Strain energy, modulus of resilience, modulus of toughness; stresses on an

inclined section of a bar under axial loading; compound stresses; Normal and

tangential stresses on an inclined plane for biaxial stresses; Two perpendicular

normal stresses accompanied by a state of simple shear; Mohr‘s circle of stresses;

Principal stresses and strains; Analytical and graphical solutions. Theories of Failure:

Introduction, various theories of failure, maximum principal stress theory, maximum

principal strain theory, strain energy and shear strain energy theory.
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UNIT III: FLEXURAL STRESSES AND SHEAR STRESSES IN BEAMS

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending

equation: M/I = f/y = E/R - Neutral axis – Determination of bending stresses – Section

modulus of rectangular and circular sections (Solid and Hollow), I,T, Angle and

Channel sections – Design of simple beam sections.

Shear Stresses: Derivation of formula – Shear stress distribution across various beam

sections like rectangular, circular, triangular, I, T angle sections.

COURSE STRUCTURE

UNIT II: SHEAR FORCE AND BENDING MOMENT

Definition of beam – Types of beams – Concept of shear force and bending moment –

S.F and B.M diagrams for cantilever, simply supported and overhanging beams

subjected to point loads, uniformly distributed load, uniformly varying loads and

combination of these loads – Point of contraflexure – Relation between S.F., B.M and

rate of loading at a section of a beam.

4
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UNIT IV: TORSION OF CIRCULAR SHAFTS

Theory of pure torsion- derivation of torsion equations: - assumptions made in the

theory of pure torsion - torsional moment of resistance - polar section modulus -

power transmitted by shaft - combined bending and torsion and end thrust - design of

shafts according to theories of failure. Introduction to springs- types of springs -

deflection of close and open coiled helical springs under axial pull and axial couple -

springs in series and parallel - carriage or leaf springs.

UNIT V: COLUMNS AND STRUTS: BUCKLING

Types of columns, short, medium and long columns, axially loaded
compression members, crushing load, Euler‘s theorem for long columns,
assumptions, derivation of Euler‘s critical load formulae for various end
conditions. Equivalent length of a column, slenderness ratio, Euler‘s critical
stress, limitations of Euler‘s theory, Rankine‘s and Gordon formula, long
columns subjected to eccentric loading, secant formula, empirical formulae,
straight line formula and Prof. Perry‘s formula. Laterally loaded struts,
subjected to uniformly distributed and concentrated loads, maximum
bending moment and stress due to transverse and lateral loading.

COURSE STRUCTURE
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Teaching Strategies

• The course will be taught via Lectures. Lectures will also
involve the solution of tutorial questions. Tutorial questions
are designed to complement and enhance both the lectures
and the students appreciation of the subject.

• Course work assignments will be reviewed with the
students.

• Daily assessment through questioning and class notes.
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UNITS:
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UNIT –I
Stresses and Strain 

(Simple and Principal)

Concept of elasticity and plasticity

• Strength of Material is its ability to withstand and
applied load without failure.

• Elasticity: Property of material by which it return to
its original shape and size after removing the
applied load , is called elasticity. And material itself
is said to elastic.

• Plasticity: Characteristics of material by which it
undergoes inelastic strains (Permanent
Deformation) beyond the elastic limit, known as
plasticity. This property is useful for pressing and
forging.

10
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Direct or Normal Stress

� When a force is transmitted through a body, the body
tends to change its shape or deform. The body is said to
be strained.

� Direct Stress = Applied Force (F)

Cross Sectional Area (A)

Units: Usually N/m2 (Pa), N/mm2, MN/m2, GN/m2 or
N/cm2

Note: 1 N/mm2 = 1 MN/m2 = 1 MPa
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Direct Stress Contd.

• Direct stress may be tensile or compressive and result
from forces acting perpendicular to the plane of the
cross-section

Tension

Compression

12
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Direct or Normal Strain

• When loads are applied to a body, some deformation will occur
resulting to a change in dimension.

• Consider a bar, subjected to axial tensile loading force, F. If the bar
extension is dl and its original length (before loading) is l, then
tensile strain is:

dl

FF

l

ε

ε

Direct Strain (     )   = Change in Length

Original Length

i.e.        = dl/l
13

Direct or Normal Strain Contd.

• As strain is a ratio of lengths, it is dimensionless.

• Similarly, for compression by amount, dl:
Compressive strain = - dl/L

Note: Strain is positive for an increase in dimension and
negative for a reduction in dimension.

14
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Shear Stress and Shear Strain

• Shear stresses are produced by equal and opposite parallel forces not in
line.

• The forces tend to make one part of the material slide over the other
part.

• Shear stress is tangential to the area over which it acts.

15

Strain

•It is defined as deformation per unit length

• it is the ratio of change in length to original length

•Tensile strain     = increase in length =    δ
(+ Ve) (ε) Original length       L

Compressive strain = decrease in length =  δ
(- Ve) (ε) Original length L

P
δ

L

16
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Ultimate Strength

The strength of a material is a measure of the stress that it can
take when in use. The ultimate strength is the measured stress
at failure but this is not normally used for design because
safety factors are required. The normal way to define a safety
factor is :

stressePermissibl

stressUltimate

loadedwhen stress

failureat stress
 = factorsafety =

17

Strain

We must also define strain. In engineering this is not a measure of
force but is a measure of the deformation produced by the influence
of stress. For tensile and compressive loads:

Strain is dimensionless, i.e. it is not measured in metres, kilograms
etc.

For shear loads the strain is defined as the angle γ This is measured
in radians

strain     =  
increase in length  x

original length  L
ε

shear strain        
shear displacement  x

width  L
γ ≈

18
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Shear stress and strain

Shear force

Shear Force

Area resisting 

shear
Shear displacement (x)

Shear strain is angle γL

19

Shear Stress and Shear Strain Contd.

P Q

S R

F

D D’

A B

C C’

L

x

φ

Shear strain is the distortion produced by shear stress on an element or

rectangular block as above. The shear strain, (gamma) is given as:

= x/L = tanγ φ

20

γ



11

Shear Stress and Shear Strain Concluded

• For small

• Shear strain then becomes the change in the right 
angle.  

• It is dimensionless and is measured in radians.

φ γ φ=

21

Elastic and Plastic deformation

Stress

Strain

Stress

Strain

Permanent 

Deformation

Elastic deformation Plastic deformation

22
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Modulus of Elasticity

If the strain is "elastic" Hooke's law may be used
to define

Young's modulus is also called the modulus of
elasticity or stiffness and is a measure of how
much strain occurs due to a given stress. Because
strain is dimensionless Young's modulus has the
units of stress or pressure

A

L
  

x

W
  =  

Strain

Stress
 = E    ModulusYoungs ×

23

How to calculate deflection if the proof stress is applied and then 
partially removed.

Yield

0.2% proof stress

Stress

Strain0.2%

Plastic

Failures

0.002      s/E

If a sample is loaded up to the 0.2% proof stress and then unloaded to a stress s 

the strain x = 0.2% + s/E   where E is the Young’s modulus

24
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Volumetric Strain

• Hydrostatic stress refers to tensile or compressive
stress in all dimensions within or external to a
body.

• Hydrostatic stress results in change in volume of
the material.

• Consider a cube with sides x, y, z. Let dx, dy, and
dz represent increase in length in all directions.

• i.e. new volume = (x + dx) (y + dy) (z + dz)

25

Volumetric Strain Contd.

Neglecting products of small quantities:

New volume = x y z + z y dx + x z dy + x y dz

Original volume = x y z

= z y dx + x z dy + x y dz

Volumetric strain, = z y dx + x z dy + x y dz

x y z

= dx/x + dy/y + dz/z

∆V

ε v

ε v

ε ε ε εv x y z= + +

26
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Elasticity and Hooke’s Law

• All solid materials deform when they are stressed, and
as stress is increased, deformation also increases.

• If a material returns to its original size and shape on
removal of load causing deformation, it is said to be
elastic.

• If the stress is steadily increased, a point is reached
when, after the removal of load, not all the induced
strain is removed.

• This is called the elastic limit.

27

Hooke’s Law

• States that providing the limit of proportionality of a
material is not exceeded, the stress is directly
proportional to the strain produced.

• If a graph of stress and strain is plotted as load is
gradually applied, the first portion of the graph will
be a straight line.

• The slope of this line is the constant of
proportionality called modulus of Elasticity, E or
Young’s Modulus.

• It is a measure of the stiffness of a material.

28
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Hooke’s   Law

Modulus of Elasticity, E = 
Direct stress

Direct strain
=

σ

ε
 

 

Also:  For Shear stress: Modulus of rigidity or shear modulus, G =  
Shear stress

Shear strain
=

τ

γ
 

Also: Volumetric strain , is proportional to hydrostatic stress,

within the elastic range i.e. :

‘K’ called bulk modulus.

σ ε/ v K=

29

Stress-Strain Relations of Mild Steel

30
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Equation For Extension

This equation for extension is very important

31

Factor of Safety

• The load which any member of a machine carries is
called working load, and stress produced by this
load is the working stress.

• Obviously, the working stress must be less than the
yield stress, tensile strength or the ultimate stress.

• This working stress is also called the permissible
stress or the allowable stress or the design stress.

32



17

Factor of Safety Contd.

• Some reasons for factor of safety include the inexactness or
inaccuracies in the estimation of stresses and the non-
uniformity of some materials.

Note: Ultimate stress is used for materials e.g. concrete

which do not have a well-defined yield point, or brittle

materials which behave in a linear manner up to failure.

Yield stress is used for other materials e.g. steel with well

defined yield stress.

33

Results From a Tensile Test

(a) Modulus of Elasticity,       E
Stress up to it of proportionality

Strain
=

lim
 

(b) Yield Stress or Proof Stress  (See below) 

(c) Percentage elongation  =    
Increase in gauge length

Original gauge length
x 100  

(d) Percentage reduction in area  =  
Original area area at fracture

Original area
x

−
100  

(e) Tensile Strength  =  
Maximum load

Original cross tional areasec
 

The percentage of elongation and percentage reduction in area give an indication of the 

ductility of the material  i.e. its ability to withstand strain without fracture occurring. 

34
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Proof Stress

• High carbon steels, cast iron and most of the non-
ferrous alloys do not exhibit a well defined yield as
is the case with mild steel.

• For these materials, a limiting stress called proof
stress is specified, corresponding to a non-
proportional extension.

• The non-proportional extension is a specified
percentage of the original length e.g. 0.05, 0.10,
0.20 or 0.50%.

35

Determination of Proof Stress

P

Proof StressStress

The proof stress is obtained by drawing AP parallel to the initial slope of the

stress/strain graph, the distance, OA being the strain corresponding to the

required non-proportional extension e.g. for 0.05% proof stress, the strain is

0.0005.

A
Strain

36
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Thermal Strain

37

Thermal Strain Contd.

As in the case of lateral strains, thermal strains  

do not induce stresses unless they are constrained. 

The total strain in a body experiencing thermal stress  

may be divided into two components:   

Strain due to stress, εσ  and  

That due to temperature, εT .   

 Thus:      ε  =   εσ   +   εT  

 ε  =    
σ

α
E

T+  

38
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Principle of Superposition

• It states that the effects of several actions taking
place simultaneously can be reproduced exactly by
adding the effect of each action separately.

• The principle is general and has wide applications
and holds true if:

(i) The structure is elastic

(ii) The stress-strain relationship is linear

(iii) The deformations are small.

39

General Stress-Strain Relationships

40
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Relationship between Elastic Modulus (E) and Bulk 
Modulus, K

It has been shown that :  ε ε ε εv x y z= + +  

ε σ υ σ σ

σ σ σ σ

ε σ σ υ
σ

υ

ε ε
σ

υ

ε ε ε ε

ε
σ

υ

σ

ε
υ

σ

ε

υ
υ

x x y z

x y z

x

y z

v x y z

v

v

v

E

For hydrostatic stress

i e
E E

Similarly and are each
E

Volumetric strain

E

E

Bulk Modulus K
Volumetric or hydrostatic stress

Volumetric strain

i e E K and K
E

= − +

= = =

= − = −

−

= + + =

= −

= −

= =

= − =
−

1

1
2 1 2

1 2

3
1 2

3
1 2

3 1 2
3 1 2

( )

,

. .

,

,

. .
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PP

X

L

d1 d2
dx

δx

Extension of Bar of Tapering cross Section from 

diameter d1 to d2:-

Bar of Tapering Section:

dx = d1 + [(d2 - d1) / L] * X

δ∆ = Pδx / E[π /4{d1 + [(d2 - d1) / L] * X}2]

42
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`` PP

X

L

d1 d2
dx

δx

Q. Find extension of tapering circular bar under axial pull for

the following data: d1 = 20mm, d2 = 40mm, L = 600mm, E =

200GPa. P = 40kN

∆L = 4PL/(π E d1 d2)

= 4*40,000*600/(π* 200,000*20*40)

= 0.38mm.            Ans.

44
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PP

X

L

b2 b1bx

δx

Bar of Tapering Section:

bx = b1 + [(b2 - b1) / L] * X = b1 + k*x, 

δ∆ = Pδx / [Et(b1 + k*X)],   k = (b2 - b1) / L

Extension of Tapering bar of uniform 

thickness t,  width varies from b1 to b2:-

P/Et ∫ δx / [ (b1 + k*X)],

45
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Example

• A steel tube having an external diameter of 36 mm and an
internal diameter of 30 mm has a brass rod of 20 mm
diameter inside it, the two materials being joined rigidly at
their ends when the ambient temperature is 18 0C.
Determine the stresses in the two materials: (a) when the
temperature is raised to 68 0C (b) when a compressive load
of 20 kN is applied at the increased temperature.

For brass: Modulus of elasticity = 80 GN/m2; Coefficient of
expansion = 17 x 10 -6 /0C

For steel: Modulus of elasticity = 210 GN/m2; Coefficient of
expansion = 11 x 10 -6 /0C

47

Solution

   

    

         
         30               Brass  rod                      20       36 

 

 

 

       

             Steel  tube 
 

Area of brass rod (Ab) =    
π x

mm
20

4
314 16

2
2= .  

Area of steel tube (As) =    
π x

mm
( )

.
36 30

4
31102

2 2
2−

=  

A E x m x x N m x Ns s = =−31102 10 210 10 0 653142 106 2 9 2 8. / .  

1
153106 10 8

A E
x

s s

= −.  

48
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Solution Contd.

A E x m x x N m x Nb b = =−
314 16 10 80 10 0 251327 10

6 2 9 2 8
. / .  

1
39788736 10 8

A E
x

b b

= −.  

T x xb s( ) ( )α α− = − =− −
50 17 11 10 3 10

6 4
 

With increase in temperature, brass will be in compression while  

steel will be in tension.  This is because expands more than steel. 

i e F
A E A E

T
s s b b

b s. . [ ] ( )
1 1

+ = −α α
 

i.e.  F[1.53106 + 3.9788736] x 10 -8 =  3 x 10 -4 

F  =  5444.71 N 

49

Solution Concluded

Stress in steel tube =      
5444 71

31102
17 51 17 51

2

2 2.

.
. / . / ( )

N

mm
N mm MN m Tension= =  

Stress in brass rod  =      
5444 71

314 16
17 33 17 33

2

2 2.

.
. / . / ( )

N

mm
N mm MN m Compression= =  

(b)  Stresses due to compression force, F’ of 20 kN 

σ s
s

s s b b

F E

E A E A

x N x x N m

x
MN m Compression=

+
=

+
=

' /

. .
. / ( )

20 10 210 10

0 653142 0 251327 10
46 44

3 9 2

8

2  

σ b
b

s s b b

F E

E A E A

x N x x N m

x
MN m Compression=

+
=

+
=

' /

. .
. / ( )

20 10 80 10

0 653142 0 251327 10
17 69

3 9 2

8

2
 

Resultant stress in steel tube = - 46.44 + 17.51 = 28.93 MN/m2  (Compression) 

Resultant stress in brass rod  = -17.69 - 17.33 = 35.02 MN/m2 (Compression) 

 

50
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Example

A composite bar, 0.6 m long comprises a steel bar 0.2 m long and
40 mm diameter which is fixed at one end to a copper bar having a
length of 0.4 m.

i. Determine the necessary diameter of the copper bar in order
that the extension of each material shall be the same when the
composite bar is subjected to an axial load.

ii. What will be the stresses in the steel and copper when the bar
is subjected to an axial tensile loading of 30 kN? (For steel, E
= 210 GN/m2; for copper, E = 110 GN/m2)

51

Solution

              0.2 mm 

  0.4 mm 

         F             40 mm dia                   d                                                F 

                        

 Let the diameter of the copper bar be d mm 

Specified condition:  Extensions in the two bars are equal 

 

dl dl

dl L
E

L
FL

AE

c s=

= = =ε
σ  

Thus:   
F L

A E

F L

A E

c c

c c

s s

s s

=  

52
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Solution

Also:  Total force, F is transmitted by both copper and steel  

       i.e.  Fc = Fs = F 

   i e
L

A E

L

A E

c

c c

s

s s

. . =  

Substitute values given in problem: 

0 4

4 110 10

0 2

4 0 040 210 102 2 9 2 2 9 2

.

/ /

.

/ . /

m

d m x N m

m

x x x N mπ π
=  

d
x x

m d m mm
2

2
22 210 0 040

110
0 07816 7816= = =

.
; . . .  

Thus for a loading of 30 kN 

Stress in steel,   σ
π

s

x N

x x
MN m= =

−

30 10

4 0 040 10
2387

3

2 6

2

/ .
. /  

Stress in copper, σ
π

c

x N

x x
MN m= =

−

30 10

4 0 07816 10
9

3

2 6

2

/ .
/  
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Elastic Strain Energy

• If a material is strained by a gradually applied load,
then work is done on the material by the applied
load.

• The work is stored in the material in the form of
strain energy.

• If the strain is within the elastic range of the
material, this energy is not retained by the material
upon the removal of load.

54
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Elastic Strain Energy Contd.

55

Elastic Strain Energy Concluded

56

W = U = 1/2 P dl          (1) 

 Stress,  σ  = P/A  i.e  P = σ  A 

 Strain  =  Stress/E 

 i.e dl/L  =  σ /E ,    dl =   (σ L)/E             L=   original length 

Substituting for P and dl in Eqn (1) gives: 

 W = U = 1/2 σ  A . (σ  L)/E  =  σ 2/2E x A L 

A L   is the volume of the bar. 

 

 i.e             U = σ 2/2E x Volume 

 

 The units of strain energy are same as those of work i.e. Joules.  Strain energy 

per unit volume, σ 2/2E is known as resilience.  The greatest amount of energy that can 

stored in a material without permanent set occurring will be when σ  is equal to the 

elastic limit stress. 
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UNIT 2

Shear Force and Bending 
Moment 

SHEAR FORCE AND BENDING MOMENT

Definition of beam – Types of beams – Concept of shear force

and bending moment – S.F and B.M diagrams for cantilever,

simply supported and overhanging beams subjected to point

loads, uniformly distributed load, uniformly varying loads and

combination of these loads – Point of contraflexure – Relation

between S.F., B.M and rate of loading at a section of a beam.
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Cantilever Beam

59
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BENDING MOMENT

64
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Basic Relationship Between The Rate of Loading,

Shear Force and Bending Moment:
The construction of the shear force diagram and bending moment diagrams is greatly

simplified if the relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length.

Let us imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x'

from the origin ‘0'.

66
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The forces acting on the free body diagram of the detached portion of this loaded beam 

are the following  

•  The shearing force F and F+ dF at the section x and x + dx respectively. 

• The bending moment at the sections x and x + dx be M and M + dM respectively.

• Force due to external loading, if ‘w' is the mean rate of loading per unit length then the

total loading on this slice of length dx is w. dx, which is approximately acting through the

centre ‘c'. If the loading is assumed to be uniformly distributed then it would pass exactly

through the centre ‘c'. This small element must be in equilibrium under the action of these

forces and couples.

Now let us take the moments at the point ‘c'. Such that

67

A cantilever of length carries a concentrated load ‘W' at its free 

end. Draw shear force and bending moment. 

Solution:  
At a section a distance x from free end consider the forces to the left, then F = -W

(for all values of x) -ve sign means the shear force to the left of the x-section are in

downward direction and therefore negative.

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in

the anticlockwise direction and is therefore taken as –ve according to the sign

convention) so that the maximum bending moment occurs at the fixed end i.e.

M = -Wl From equilibrium consideration, the fixing moment applied at the fixed

end is Wl and the reaction is W. the shear force and bending moment are shown as,

68
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Simply supported beam subjected to a central load (i.e. load acting at the mid-

way) 

70
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.For B.M diagram:  

If we just take the moments to the left of the cross-

section, 

71

A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

Here the cantilever beam is subjected to a uniformly distributed load whose

intensity is given w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we

just take the resultant of all the forces on the left of the X-section, then

72



73

Simply supported beam subjected to a uniformly distributed load U.D.L

74
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An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 

mm is used as simply supported beam for a span of 7 m. The girder carries a 

distributed 

load of 5 KN /m and a concentrated load of 20 KN at mid-span.  

Determine the  

(i). The second moment of area of the cross-section of the girder  

(ii). The maximum stress set up. 
Solution:  

The second moment of area of the cross-section can be determined as follows :

For sections with symmetry about the neutral axis, use can be made of standard I value for

a rectangle about an axis through centroid i.e. (b.d3 )/12. The section can thus be divided

into convenient rectangles for each of which the neutral axis passes through the centroid.

Example in the case enclosing the girder by a rectangle

76
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UNIT -3

Flexural and shear stresses 
in beams
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• Members Subjected to Flexural Loads

• Introduction:

• In many engineering structures members are required to resist forces that are applied 
laterally or transversely to their axes. These type of members are termed as beam.

• There are various ways to define the beams such as

• Definition I: A beam is a laterally loaded member, whose cross-sectional dimensions 
are small as compared to its length.

• Definition II: A beam is nothing simply a bar which is subjected to forces or couples 
that lie in a plane containing the longitudinal axis of the bar. The forces are 
understood to act perpendicular to the longitudinal axis of the bar.

• Definition III: A bar working under bending is generally termed as a beam.

• Materials for Beam:

• The beams may be made from several usable engineering materials such commonly 
among them are as follows:

• Metal

• Wood

• Concrete

• Plastic

79

Geometric forms of Beams:

• The Area of X-section of the beam may take several forms some of them 
have been shown below:

80
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Loading restrictions:

Concept of pure bending:

• As we are aware of the fact internal reactions developed on any cross-
section of a beam may consists of a resultant normal force, a resultant shear
force and a resultant couple. In order to ensure that the bending effects alone
are investigated, we shall put a constraint on the loading such that the
resultant normal and the resultant shear forces are zero on any cross-section
perpendicular to the longitudinal axis of the member,

That means F = 0

since or M = constant.

Thus, the zero shear force means that the bending moment is constant or the
bending is same at every cross-section of the beam. Such a situation may be
visualized or envisaged when the beam or some portion of the beam, as been
loaded only by pure couples at its ends. It must be recalled that the couples are
assumed to be loaded in the plane of symmetry.
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Bending Stresses in Beams or Derivation of Elastic Flexural formula :

• In order to compute the value of bending stresses developed in a loaded beam, let us 
consider the two cross-sections of a beam HE and GF , originally parallel as shown 
in fig 1(a).when the beam is to bend it is assumed that these sections remain parallel 
i.e. H'E' and G'F' , the final position of the sections, are still straight lines, they then 
subtend some angle

• Consider now fibre AB in the material, at a distance y from the N.A, when the beam 
bends this will stretch to A'B'

• Consider now fibre AB in the material, at a distance y from the N.A, when the beam 
bends this will stretch to A'B'

• Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the 
neutral axis zero. Therefore, there won't be any strain on the neutral axis
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• Now the term is the property of the material and is called as a
second moment of area of the cross-section and is denoted by a
symbol I.

• Therefore

• This equation is known as the Bending Theory Equation.
The above proof has involved the assumption of pure bending
without any shear force being present. Therefore this termed as
the pure bending equation. This equation gives distribution of
stresses which are normal to cross-section i.e. in x-direction.
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UNIT -4
TORSION OF CIRCULAR 

SHAFTS
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Torsion of circular shafts

• Definition of Torsion: Consider a shaft rigidly
clamped at one end and twisted at the other end
by a torque T = F.d applied in a plane
perpendicular to the axis of the bar such a shaft is
said to be in torsion.

• Effects of Torsion: The effects of a torsional load
applied to a bar are section with respect to the
other end.nt of one end cross 1 section with
respect to the other end.
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• Twisting Moment: The twisting moment for any
section along the bar / shaft is defined to be the
algebraic sum of the moments of the applied
couples that lie to one side of the section under
consideration. The choice of the side in any case
is of course arbitrary.

• Shearing Strain: If a generator a 1 b is marked
on the surface of the unloaded bar, then after the
twisting moment 'T' has been applied this line
moves to a b'. The angle θ measured between the
final and original positions of the generators is
defined as the shearing strain at the surface of the
bar or shaft. The same definition will hold at any
interior point of the bar.
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Modulus of Elasticity in shear: T he ratio of

the shear stress to the shear strain is called the

modulus of elasticity in shear OR Modulus of

Rigidity and in represented by the symbol
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Angle of Twist: If a shaft of length L is subjected to
a constant twisting moment T along its l ngth, than
the angle θ

through which one end of t he bar will twist relative

to the other is known is the angle of twist.

Despite the difference s in the forms of loading, we
see that there are number of similarities between
bending and torsion, including for example, a linear
variation of stresses and strain with position.
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• Relationship in Torsion:

• 1st Term: It refers to applied loading ad a property of
section, which in the instance is the polar second
moment of area.

• 2nd Term: This refers to stress, and the stress increases

as the distance from the axis increases.

• 3rd Term: it refers to the deformation and contains in
which is equivalent to strain for the purpose of
designing a circular shaft to with stand a given torque
we must develop an equation giving the relation
between Twisting moments max m shear stain
produced and a quantity representing the size and shape
of the cross sectional area of the shaft.

95

Assumption:

•The materiel is homogenous i.e of uniform elastic
properties exists throughout the material.
•The material is elastic, follows Hook's law, with
shear stress proportional to shear strain.

•The stress does not exceed the elastic limit.

•The circular section remains circular

•Cross section remain plane.
•Cross section rotate as if rigid i.e. every diameter
rotates through the same angle.

96



49

97

DERIVATION OF TORSIONAL EQUATIONS 

Consider a shaft of length L, radius R fixed at one end and subjected

to a torque T at the other end as shown in Fig.

Let O be the centre of circular section and B a point on surface. AB

be the line on the shaft parallel to the axis of shaft. Due to torque T

applied, let B move to B’. If γ is shear strain (angle BOB') and θ is

the angle of twist in length L, then

98



50

99

100



51

Power Transmitted by a shaft : If T is the

applied to the shaft, then the power transmitted by

the shaft is

Distribution of shear stresses in circular Shafts

subjected to torsion :

This states that the shearing stress varies directly

as the distance 1r' from the axis of the shaft and

the following is the stress distribution in the plane

of cross section and also the complementary

shearing stresses in an axial plane.
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Torsional stiffness: The torsional stiffness k is

defined as the torque per radian twist .

For a ductile material, the plastic flow begins first

in the outer surface. For a material which is weaker

in shear longitudinally than transverse ly for

instance a wooden shaft, with the fibers parallel t o

axis the first cracks will be produced by the

shearing stresses acting in the axial section and

they will upper on the surface of the shaft in the

longitudinal direction.
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Definition: A spring may be defined as an elastic
member whose primary function is to deflect or
distort under the action of applied load; it recovers its
original shape when load is released.

Important types of springs are:

There are various types of springs such as

Helical spring: They are made of wire coiled into a
helical form, the load being applied along the axis of
the helix. In these type of springs the major stresses is
torsional shear stress due to twisting. They are both
used in tension and compression.

•
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Spiral springs: They are made of flat strip of metal wound in the

form of spiral and loaded in torsion.

In this the major stresses are tensile and compression due to bending.
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Uses of springs :

To apply forces and to control motions as in

brakes and clutches.

To measure forces as in spring balance.

To store energy as in clock springs.

To reduce the effect of shock or impact

loading as in carriage springs.

To change the vibrating characteristics of a

member as inflexible mounting of motors.
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• Derivation of the Formula :

• In order to derive a necessary formula which

governs the behavior of springs, consider a closed

coiled spring subjected to an axial load W.
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Let

W = axial load

D = mean coil diameter d = diameter of spring wire

n = number of active coils

C = spring index = D / d For circular wires

l = length of spring wire

x = deflection of spring

G = modulus of rigidity

q = Angle of twist

when the spring is being subjected to an axial load to the wire
of the spring gets be twisted like a shaft.

If q is the total angle of twist along the wire and x is the
deflection of spring under the action of load W along the axis
of the coil, so that

x = D / 2 . θ
107

UNIT-5

COLUMNS & STRUTS
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Introduction

Structural members which carry compressive

loads may be divided into two broad categories

depending on their relative lengths and cross-

sectional dimensions.

Columns:

Short, thick members are generally termed

columns and these usually fail by crushing when

the yield stress of the material in compression is

exceeded.
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Struts

Long, slender columns are generally termed as
struts, they fail by buckling some time before the
yield stress in compression is reached. The buckling
occurs owing to one the following reasons.

The strut may not be perfectly straight initially.

The load may not be applied exactly along the axis
of the Strut.

One part of the material may yield in compression
more readily than others owing to some lack of
uniformity in the material properties through out the
strut.
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Euler's Theory

The struts which fail by buckling can be analyzed
by Euler's theory. In the following sections,
different cases of the struts have been analyzed.

Case A

Strut with pinned ends

•Consider an axially loaded strut, shown below,
and is subjected to an axial load 1P' this load 1P'
produces a deflection 1y' at a distance 1x' from
one end.

•Assume that the ends are either pin jointed or
rounded so that there is no moment at either end.
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• Assumption:

• The strut is assumed to be initially straight,

the end load being applied axially through

centroid.
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Let us define a operator

D = d/dx

(D2 +n 2 )y =0 where n2 = P/EI

This is a second order differential equation which
has a solution of the form consisting of
complimentary function and particular integral but
for the time being we are interested in the
complementary solution only[in this P.I = 0; since
the R.H.S of Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx) Where A and B

are some constants.
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Consider a column AB of length l and uniform cross-

sectional area, hinged at both of its ends A and B. Let P

be the crippling load at which the column has just

buckled. Due to the crippling load, the column will

deflect into a curved form ACB as shown in fig. 8.5.

Consider any section at a distance x from the end A.

Let y = Deflection (lateral displacement) at the section.

The moment due to the crippling load at the section = -

P . y

COLUMN BOTH ENDS PINNED (OR HINGED)
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Consider a column AB, of length l and uniform cross-

sectional area, fixed at the end A and free at the end B. The

free end will sway sideways when load is applied at free

end and curvature in the length l will be similar to that of

upper half of the column whose both ends are hinged. Let P

is the crippling load at which the column has just buckled.

Due to the crippling load P, the column will deflect as

shown in Fig. 8.6 in which AB is the original position of

the column and AB', is the deflected position due to

crippling load P.

Consider any section at a distance x from the fixed end A.

Let y = Deflection (or lateral displacement) at the section

COLUMN ONE END FIXED AND OTHER END FREE 
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Consider a column AB, of length l and uniform cross-sectional

area, both ends A and B fixed. Let P is the crippling load at

which the column has just buckled. Due to the crippling load

P, the column will deflect as shown in Figure. Due to fixed

ends, there will be fixed end moments (say Mo) at the ends A

and B. The fixed end moments will be acting in such direction

so that slope at the fixed ends becomes zero.

Consider any section at a distance x from the fixed end A.

Let y = Deflection (or lateral displacement) at the section

As the both the ends of the column are fixed and column

carries a crippling load, there will be some fixed end moments

at A and B.

COLUMN BOTH THE ENDS OF THE COLUMN ARE FIXED 
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MODES OF FAILURE OF THE  COLUMNS
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COLUMN ONE END FIXED AND OTHER END HINGED 
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Stable, Neutral and unstable Equilibrium
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MODES OF FAILURE OF THE  COLUMNS
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