

19cab04 - problem

solving and Python

Programming

By

Dr. M. Moorthy, HoD / MCA

Muthayammal Engineering College

MCA - I Semester Regulation 2019

Presentation Overview

• History of Python

• Running Python and Output

• Data Types

• Input and File I/O

• Control Flow

• Functions

• Working with MySQL d/b

Brief History of Python

• Invented in the Netherlands, early 90s by

 Guido van Rossum

• Named after Monty Python

• Open sourced from the beginning

• Considered a scripting language, but is much more

• Scalable, object oriented and functional from the beginning

• Used by Google from the beginning

• Increasingly popular

Hello World

>>> 'hello world!'

'hello world!'

•Open a terminal window and type “python”

•If on Windows open a Python IDE like IDLE

•At the prompt type ‘hello world!’

Python Overview

• Programs are composed of modules

• Modules contain statements

• Statements contain expressions

• Expressions create and process objects

The Python Interpreter

•Python is an interpreted

language

•The interpreter provides an

interactive environment to

play with the language

•Results of expressions are

printed on the screen

>>> 3 + 7

10

>>> 3 < 15

True

>>> 'print me'

'print me'

>>> print 'print me'

print me

>>>

Enough to Understand the Code

• Indentation matters to code meaning

– Block structure indicated by indentation

• First assignment to a variable creates it

– Variable types don’t need to be declared.
– Python figures out the variable types on its own.

• Assignment is = and comparison is ==

• For numbers + - * / % are as expected

– Special use of + for string concatenation and % for string formatting
(as in C’s printf)

• Logical operators are words (and, or, not) not symbols

• The basic printing command is print

Whitespace

Whitespace is meaningful in Python: especially indentation and placement

of newlines

•Use a newline to end a line of code

Use \ when must go to next line prematurely

•No braces {} to mark blocks of code, use consistent indentation instead

• First line with less indentation is outside of the block

• First line with more indentation starts a nested block

•Colons start of a new block in many constructs, e.g. function definitions,

then clauses

Naming Rules

• Names are case sensitive and cannot start with a
number. They can contain letters, numbers, and
underscores.
 bob Bob _bob _2_bob_ bob_2 BoB

• There are some reserved words:
 and, assert, break, class, continue,
def, del, elif, else, except, exec,
finally, for, from, global, if,
import, in, is, lambda, not, or,
pass, print, raise, return, try,
while

Naming conventions

The Python community has these recommend-ed

naming conventions

•joined_lower for functions, methods and, attributes

•joined_lower or ALL_CAPS for constants

•StudlyCaps for classes

•camelCase only to conform to pre-existing

conventions

•Attributes: interface, _internal, __private

The print Statement

>>> print 'hello'

hello

>>> print 'hello', 'there'

hello there

•Elements separated by

commas print with a space

between them

•A comma at the end of the

statement (print ‘hello’,) will
not print a newline character

Documentation

>>> 'this will print'

'this will print'

>>> #'this will not'

>>>

The ‘#’ starts a line comment

Variables

• Are not declared, just assigned

• The variable is created the first time you assign it
a value

• Are references to objects

• Type information is with the object, not the
reference

• Everything in Python is an object

Everything is an object

• Everything means

everything, including

functions and classes

• Data type is a property

of the object and not of

the variable

>>> x = 7

>>> x

7

>>> x = 'hello'

>>> x

'hello'

>>>

Numbers: Integers

• Integer – the equivalent of

a C long

• Long Integer – an

unbounded integer value.

>>> 132224

132224

>>> 132323 ** 2

17509376329L

>>>

Numbers: Floating Point

• int(x) converts x to an

integer

• float(x) converts x to a

floating point

• The interpreter shows

a lot of digits

>>> 1.23232

1.2323200000000001

>>> print 1.23232

1.23232

>>> 1.3E7

13000000.0

>>> int(2.0)

2

>>> float(2)

2.0

Numbers: Complex

• Built into Python

• Same operations are

supported as integer and

float

>>> x = 3 + 2j

>>> y = -1j

>>> x + y

(3+1j)

>>> x * y

(2-3j)

Numbers are immutable

>>> x = 4.5

>>> y = x

>>> y += 3

>>> x

4.5

>>> y

7.5

x 4.5

y

x 4.5

y 7.5

String Literals

• Strings are immutable

• There is no char type like

in C++ or Java

• + is overloaded to do

concatenation

>>> x = 'hello'

>>> x = x + ' there'

>>> x

'hello there'

String Literals: Many Kinds
• Can use single or double quotes, and three double

quotes for a multi-line string

>>> 'I am a string'

'I am a string'

>>> "So am I!"

'So am I!'

>>> s = """And me too!

though I am much longer

than the others :)"""

'And me too!\nthough I am much longer\nthan the others :)‘
>>> print s

And me too!

though I am much longer

than the others :)‘

Substrings and Methods

>>> s = '012345'

>>> s[3]

'3'

>>> s[1:4]

'123'

>>> s[2:]

'2345'

>>> s[:4]

'0123'

>>> s[-2]

'4'

• len(String) – returns the

number of characters in the

String

• str(Object) – returns a

String representation of the

Object

>>> len(x)

6

>>> str(10.3)

'10.3'

String Formatting

• Similar to C’s printf
• <formatted string> % <elements to insert>

• Can usually just use %s for everything, it will
convert the object to its String representation.

>>> "One, %d, three" % 2

'One, 2, three'

>>> "%d, two, %s" % (1,3)

'1, two, 3'

>>> "%s two %s" % (1, 'three')

'1 two three'

>>>

Lists

• Ordered collection of data

• Data can be of different

types

• Lists are mutable

• Issues with shared

references and mutability

• Same subset operations as

Strings

>>> x = [1,'hello', (3 + 2j)]

>>> x

[1, 'hello', (3+2j)]

>>> x[2]

(3+2j)

>>> x[0:2]

[1, 'hello']

Lists: Modifying Content

• x[i] = a reassigns the

ith element to the

value a

• Since x and y point to

the same list object,

both are changed

• The method append

also modifies the list

>>> x = [1,2,3]

>>> y = x

>>> x[1] = 15

>>> x

[1, 15, 3]

>>> y

[1, 15, 3]

>>> x.append(12)

>>> y

[1, 15, 3, 12]

Lists: Modifying Contents

• The method
append modifies
the list and returns
None

• List addition (+)
returns a new list

>>> x = [1,2,3]

>>> y = x

>>> z = x.append(12)

>>> z == None

True

>>> y

[1, 2, 3, 12]

>>> x = x + [9,10]

>>> x

[1, 2, 3, 12, 9, 10]

>>> y

[1, 2, 3, 12]

>>>

Operations on Lists Only

Lists have many methods, including index, count, remove,

reverse, sort

>>> li = [‘a’, ‘b’, ‘c’, ‘b’]
>>> li.index(‘b’) # index of 1st occurrence

3

>>> li.count(‘b’) # number of occurrences
2

>>> li.remove(‘b’) # remove 1st occurrence

>>> li

 [‘a’, ‘c’, ‘b’]

Operations on Lists Only (Contd..)

>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*

>>> li

 [8, 6, 2, 5]

>>> li.sort() # sort the list *in place*

>>> li

 [2, 5, 6, 8]

>>> li.sort(some_function)

 # sort in place using user-defined comparison

Tuples

• Tuples are immutable

versions of lists

• One strange point is the

format to make a tuple with

one element:

 ‘,’ is needed to differentiate
from the mathematical

expression (2)

>>> x = (1,2,3)

>>> x[1:]

(2, 3)

>>> y = (2,)

>>> y

(2,)

>>>

Summary: Tuples vs. Lists

• Lists slower but more powerful than tuples

– Lists can be modified, and they have lots of

handy operations and mehtods

– Tuples are immutable and have fewer features

• To convert between tuples and lists use the list()

and tuple() functions:

li = list(tu)

tu = tuple(li)

Dictionaries

• A set of key-value pairs

• Dictionaries are mutable

>>> d = {1 : 'hello', 'two' : 42, 'blah' : [1,2,3]}

>>> d

{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}

>>> d['blah']

[1, 2, 3]

Dictionaries: Add/Modify

>>> d

{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}

>>> d['two'] = 99

>>> d

{1: 'hello', 'two': 99, 'blah': [1, 2, 3]}

>>> d[7] = 'new entry'

>>> d

{1: 'hello', 7: 'new entry', 'two': 99, 'blah': [1, 2, 3]}

• Entries can be changed by assigning to that entry

• Assigning to a key that does not exist adds an entry

Dictionaries: Deleting Elements

• The del method deletes an element from a dictionary

>>> d

{1: 'hello', 2: 'there', 10: 'world'}

>>> del(d[2])

>>> d

{1: 'hello', 10: 'world'}

Copying Dictionaries and Lists

• The built-in list

function will

copy a list

• The dictionary

has a method

called copy

>>> l1 = [1]

>>> l2 = list(l1)

>>> l1[0] = 22

>>> l1

[22]

>>> l2

[1]

>>> d = {1 : 10}

>>> d2 = d.copy()

>>> d[1] = 22

>>> d

{1: 22}

>>> d2

{1: 10}

Data Type Summary

• Lists, Tuples, and Dictionaries can store any type

(including other lists, tuples, and dictionaries!)

• Only lists and dictionaries are mutable

• All variables are references

Data Type Summary

• Integers: 2323, 3234L

• Floating Point: 32.3, 3.1E2

• Complex: 3 + 2j, 1j

• Lists: l = [1,2,3]

• Tuples: t = (1,2,3)

• Dictionaries: d = {‘hello’ : ‘there’, 2 : 15}

Input

• The raw_input(string) method returns a line of

user input as a string

• The parameter is used as a prompt

• The string can be converted by using the

conversion methods int(string), float(string), etc.

Input: Example

print "What's your name?"

name = raw_input("> ")

print "What year were you born?"

birthyear = int(raw_input("> "))

print "Hi %s! You are %d years old!" % (name, 2011 - birthyear)

~: python input.py

What's your name?

> Michael

What year were you born?

>1980

Hi Michael! You are 31 years old!

Files: Input

inflobj = open(‘data’,
‘r’)

Open the file ‘data’
for input

S = inflobj.read() Read whole file into

one String

S = inflobj.read(N) Reads N bytes

(N >= 1)

L = inflobj.readlines() Returns a list of line

strings

Files: Output

outflobj = open(‘data’, ‘w’) Open the file ‘data’
for writing

outflobj.write(S) Writes the string S to

file

outflobj.writelines(L) Writes each of the

strings in list L to file

outflobj.close() Closes the file

Booleans

• 0 and None are false

• Everything else is true

• True and False are aliases for 1 and 0 respectively

Boolean Expressions

• Compound boolean expressions
short circuit

• and and or return one of the
elements in the expression

• Note that when None is returned
the interpreter does not print
anything

>>> True and False

False

>>> False or True

True

>>> 7 and 14

14

>>> None and 2

>>> None or 2

2

Moving to Files

• The interpreter is a good place to try out some code,

but what you type is not reusable

• Python code files can be read into the interpreter

using the import statement

Moving to Files
• In order to be able to find a module called myscripts.py,

the interpreter scans the list sys.path of directory names.

• The module must be in one of those directories.

>>> import sys

>>> sys.path

['C:\\Python26\\Lib\\idlelib', 'C:\\WINDOWS\\system32\\python26.zip',

'C:\\Python26\\DLLs', 'C:\\Python26\\lib', 'C:\\Python26\\lib\\plat-win',

'C:\\Python26\\lib\\lib-tk', 'C:\\Python26', 'C:\\Python26\\lib\\site-packages']

>>> import myscripts

Traceback (most recent call last):

 File "<pyshell#2>", line 1, in <module>

 import myscripts.py

ImportError: No module named myscripts.py

No Braces

• Python uses indentation instead of braces to determine
the scope of expressions

• All lines must be indented the same amount to be part
of the scope (or indented more if part of an inner
scope)

• This forces the programmer to use proper indentation
since the indenting is part of the program!

If Statements

import math

x = 30

if x <= 15 :

 y = x + 15

elif x <= 30 :

 y = x + 30

else :

 y = x

print ‘y = ‘,
print math.sin(y)

In file ifstatement.py

>>> import ifstatement

y = 0.999911860107

>>>

In interpreter

While Loops

x = 1

while x < 10 :

 print x

 x = x + 1

>>> import whileloop

1

2

3

4

5

6

7

8

9

>>>

In whileloop.py

In interpreter

Loop Control Statements

break Jumps out of the closest

enclosing loop

continue Jumps to the top of the closest

enclosing loop

pass Does nothing, empty statement

placeholder

The Loop Else Clause

• The optional else clause runs only if the loop exits

normally (not by break)

x = 1

while x < 3 :

 print x

 x = x + 1

else:

 print 'hello'

~: python whileelse.py

1

2

hello

Run from the command line

In whileelse.py

The Loop Else Clause

x = 1

while x < 5 :

 print x

 x = x + 1

 break

else :

 print 'i got here'

~: python whileelse2.py

1

whileelse2.py

For Loops
• Similar to perl for loops, iterating through a list of values

~: python forloop1.py

1

7

13

2

for x in [1,7,13,2] :

 print x
forloop1.py

~: python forloop2.py

0

1

2

3

4

for x in range(5) :

 print x
forloop2.py

range(N) generates a list of numbers [0,1, …, n-1]

For Loops
• For loops also may have the optional else clause

for x in range(5):

 print x

 break

else :

 print 'i got here'

~: python elseforloop.py

1

elseforloop.py

Function Basics

def max(x,y) :

 if x < y :

 return x

 else :

 return y

>>> import functionbasics

>>> max(3,5)

5

>>> max('hello', 'there')

'there'

>>> max(3, 'hello')

'hello'
functionbasics.py

Functions are first class objects

• Can be assigned to a variable

• Can be passed as a parameter

• Can be returned from a function

• Functions are treated like any other variable in

Python, the def statement simply assigns a

function to a variable

Function names are like any variable

• Functions are objects

• The same reference

rules hold for them as

for other objects

>>> x = 10

>>> x

10

>>> def x () :

... print 'hello'

>>> x

<function x at 0x619f0>

>>> x()

hello

>>> x = 'blah'

>>> x

'blah'

Functions as Parameters

def foo(f, a) :

 return f(a)

def bar(x) :

 return x * x

>>> from funcasparam import *

>>> foo(bar, 3)

9

Note that the function foo takes two

parameters and applies the first as a

function with the second as its

parameter

funcasparam.py

Higher-Order Functions
map(func,seq) – for all i, applies func(seq[i]) and returns the

corresponding sequence of the calculated results.

def double(x):

 return 2*x

>>> from highorder import *

>>> lst = range(10)

>>> lst

[0,1,2,3,4,5,6,7,8,9]

>>> map(double,lst)

[0,2,4,6,8,10,12,14,16,18]
highorder.py

Higher-Order Functions

filter(boolfunc,seq) – returns a sequence containing all those items

in seq for which boolfunc is True.

def even(x):

 return ((x%2 == 0)

>>> from highorder import *

>>> lst = range(10)

>>> lst

[0,1,2,3,4,5,6,7,8,9]

>>> filter(even,lst)

[0,2,4,6,8]
highorder.py

Higher-Order Functions

reduce(func,seq) – applies func to the items of seq, from left to

right, two-at-time, to reduce the seq to a single value.

def plus(x,y):

 return (x + y)

>>> from highorder import *

>>> lst = [‘h’,’e’,’l’,’l’,’o’]
>>> reduce(plus,lst)

‘hello’
highorder.py

Functions Inside Functions

• Since they are like any other object, you can have

functions inside functions

def foo (x,y) :

 def bar (z) :

 return z * 2

 return bar(x) + y

>>> from funcinfunc import *

>>> foo(2,3)

7

funcinfunc.py

Functions Returning Functions

def foo (x) :

 def bar(y) :

 return x + y

 return bar

main

f = foo(3)

print f

print f(2)

~: python funcreturnfunc.py

<function bar at 0x612b0>

5

funcreturnfunc.py

Parameters: Defaults

• Parameters can be

assigned default

values

• They are overridden if

a parameter is given

for them

• The type of the default

doesn’t limit the type
of a parameter

>>> def foo(x = 3) :

... print x

...

>>> foo()

3

>>> foo(10)

10

>>> foo('hello')

hello

Parameters: Named

• Call by name

• Any positional

arguments must

come before

named ones in a

call

>>> def foo (a,b,c) :

... print a, b, c

...

>>> foo(c = 10, a = 2, b = 14)

2 14 10

>>> foo(3, c = 2, b = 19)

3 19 2

Anonymous Functions

• A lambda
expression returns a
function object

• The body can only
be a simple
expression, not
complex statements

>>> f = lambda x,y : x + y

>>> f(2,3)

5

>>> lst = ['one', lambda x : x * x, 3]

>>> lst[1](4)

16

Modules

• The highest level structure of Python

• Each file with the py suffix is a module

• Each module has its own namespace

Modules: Imports
import mymodule Brings all elements

of mymodule in, but

must refer to as

mymodule.<elem>

from mymodule import x Imports x from

mymodule right into

this namespace

from mymodule import * Imports all elements

of mymodule into

this namespace

Working with MySQL Database

• What is MySQLdb?

 MySQLdb is an interface for connecting to a MySQL database server from

Python. It implements the Python Database API v2.0 and is built on top of the

MySQL C API.

• The Python standard for database interfaces is the Python DB-API. Most Python database interfaces

adhere to this standard.

• You can choose the right database for your application. Python Database API supports a wide range

of database servers such as −

 GadFly

 mSQL

 MySQL

 PostgreSQL

 Microsoft SQL Server 2000

 Informix

 Interbase

 Oracle

 Sybase

Working with MySQL Database (Contd…)

• Here is the list of available Python database interfaces: Python

Database Interfaces and APIs .You must download a separate DB API

module for each database you need to access. For example, if you need

to access an Oracle database as well as a MySQL database, you must

download both the Oracle and the MySQL database modules.

• The DB API provides a minimal standard for working with databases

using Python structures and syntax wherever possible. This API

includes the following:

 - Importing the API module.

 - Acquiring a connection with the database.

 - Issuing SQL statements and stored procedures.

 - Closing the connection

Working with MySQL Database (Contd…)
 #import database module

 import MySQLdb

 # Open database connection

 db = MySQLdb.connect("127.0.0.1","root","root","mydb")

 # prepare a cursor object using cursor() method

 cursor = db.cursor()

 # Prepare SQL query

 sql = "SELECT * FROM EMPLOYEE"

 try:

 # Execute the SQL command

 cursor.execute(sql)

 # Fetch all the rows in a list of lists.

 results = cursor.fetchall()

 for row in results:

 fname = row[0] ; lname = row[1]; age = row[2]; sex = row[3]; income = row[4]

 # Now print fetched result

 print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \

 (fname, lname, age, sex, income)

 except:

 print "Error: unable to fecth data"

 # disconnect from server

 db.close()

THANK YOU

