
Chapter 1: Introduction

Chapter 1: Introduction

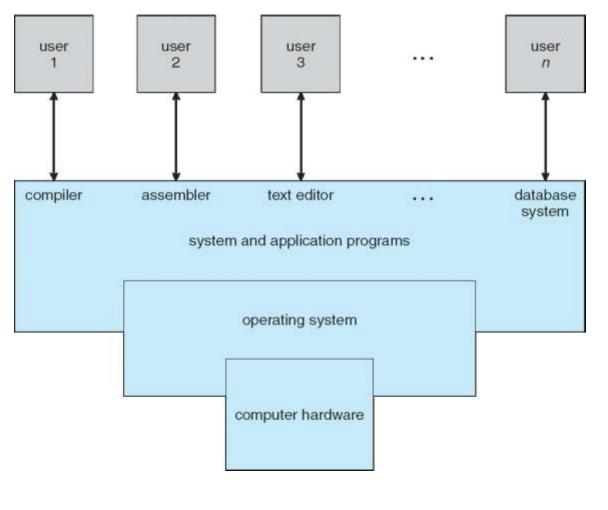
- What Operating Systems Do
- Computer-System Organization
- Computer-System Architecture
- Operating-System Structure
- Operating-System Operations
- Process Management
- Memory Management
- Storage Management
- Protection and Security
- Kernel Data Structures
- Computing Environments
- Open-Source Operating Systems

Objectives

- To describe the basic organization of computer systems
- To provide a grand tour of the major components of operat ing systems
- To give an overview of the many types of computing enviro nments
- To explore several open-source operating systems

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems eas ier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner



- Computer system can be divided into four components:
 - Hardware provides basic computing resources
 - CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates use of hardware among various a pplications and users
 - Application programs define the ways in which the system re sources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database syste ms, video games
 - Users
 - People, machines, other computers

Four Components of a Computer System

Silberschatz, Galvin and Gagne ©2013

What Operating Systems Do

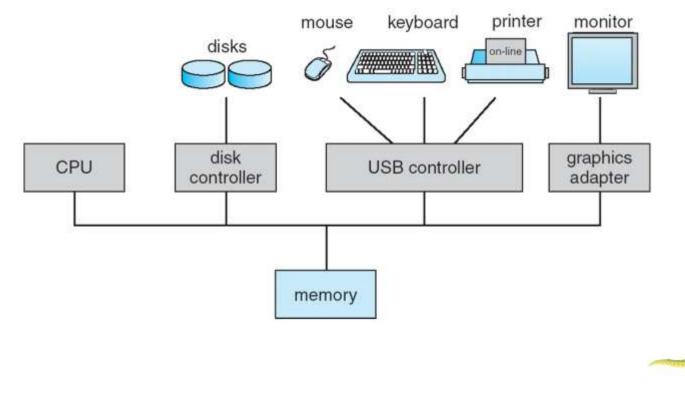
- Depends on the point of view
- Users want convenience, ease of use and good performance
 - Don't care about resource utilization
- But shared computer such as mainframe or minicomputer must keep all users happy
- Users of dedicate systems such as workstations have dedicated resources but frequently use shared resources from servers
- Handheld computers are resource poor, optimized for usability an d battery life
- Some computers have little or no user interface, such as embedde d computers in devices and automobiles

Operating System Definition

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and im proper use of the computer

Operating System Definition (Cont.)

- No universally accepted definition
- "Everything a vendor ships when you order an operating syst em" is a good approximation
 - But varies wildly
- "The one program running at all times on the computer" is the kernel.
- Everything else is either
 - a system program (ships with the operating system), or
 - an application program.



- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

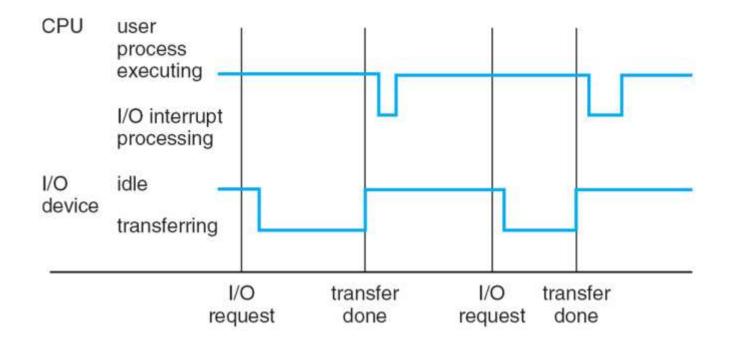
- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memor y cycles

Operating System Concepts – 9th Edition

Silberschatz, Galvin and Gagne ©2013

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operatio n by causing an interrupt

- Interrupt transfers control to the interrupt service routine ge nerally, through the interrupt vector, which contains the ad dresses of all the service routines
- Interrupt architecture must save the address of the interrupt ed instruction
- A trap or exception is a software-generated interrupt caus ed either by an error or a user request
- An operating system is **interrupt driven**



- The operating system preserves the state of the CPU by sto ring registers and the program counter
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should b e taken for each type of interrupt

Interrupt Timeline

I/O Structure

- After I/O starts, control returns to user program only upon I/O completion
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simult aneous I/O processing
- After I/O starts, control returns to user program without waiting for I/O completion
 - System call request to the OS to allow user to wait for I/ O completion
 - Device-status table contains entry for each I/O device ind icating its type, address, and state
 - OS indexes into I/O device table to determine device statu s and to modify table entry to include interrupt

Storage Definitions and Notation Review

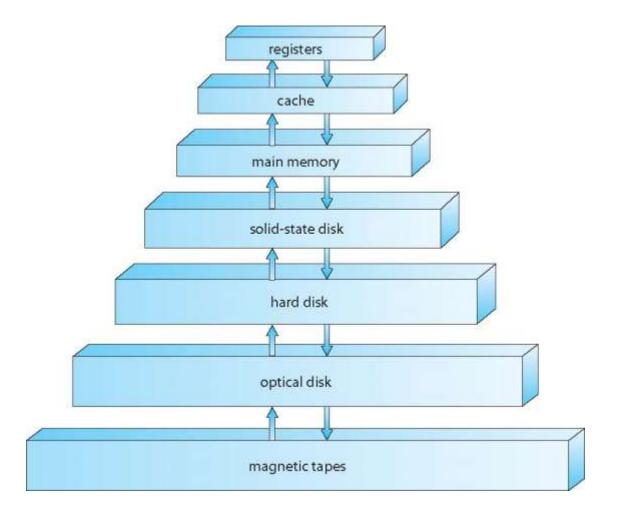
The basic unit of computer storage is the **bit**. A bit can contain one of two value s, 0 and 1. All other storage in a computer is based on collections of bits. Given enough bits, it is amazing how many things a computer can represent: numbers , letters, images, movies, sounds, documents, and programs, to name a few. A **byte** is 8 bits, and on most computers it is the smallest convenient chunk of stor age. For example, most computers don't have an instruction to move a bit but d o have one to move a byte. A less common term is **word**, which is a given computer architecture's native unit of data. A word is made up of one or more bytes. For example, a computer that has 64-bit registers and 64-bit memory addressin g typically has 64-bit (8-byte) words. A computer executes many operations in i ts native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured and manipulated in bytes and collections of bytes.

A **kilobyte**, or **KB**, is 1,024 bytes a **megabyte**, or **MB**, is 1,024² bytes a **gigabyte**, or **GB**, is 1,024³ bytes a **terabyte**, or **TB**, is 1,024⁴ bytes a **petabyte**, or **PB**, is 1,024⁵ bytes

Computer manufacturers often round off these numbers and say that a megabyt e is 1 million bytes and a gigabyte is 1 billion bytes. Networking measurements are an exception to this general rule; they are given in bits (because networks move data a bit at a time).

- Main memory only large storage media that the CPU can access dir ectly
 - Random access
 - Typically volatile
- Secondary storage extension of main memory that provides large n onvolatile storage capacity
- Hard disks rigid metal or glass platters covered with magnetic recor ding material
 - Disk surface is logically divided into tracks, which are subdivided into sec tors
 - The **disk controller** determines the logical interaction between the device and the computer
- Solid-state disks faster than hard disks, nonvolatile
 - Various technologies
 - Becoming more popular

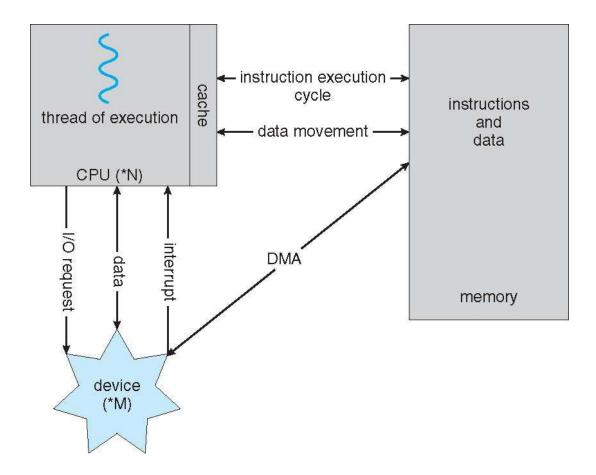


- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into faster storage system; main memory can be viewed as a cache for secondary sto rage
- Device Driver for each device controller to manage I/O
 - Provides uniform interface between controller and kern el



Storage-Device Hierarchy

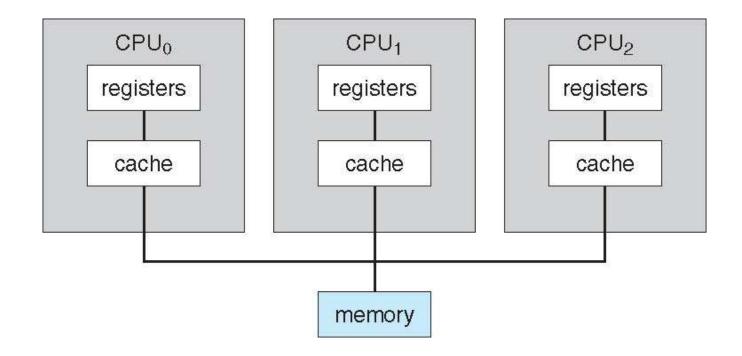
- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temp orarily
- Faster storage (cache) checked first to determine if informati on is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy



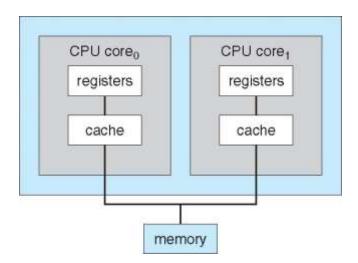
- Used for high-speed I/O devices able to transmit inform ation at close to memory speeds
- Device controller transfers blocks of data from buffer sto rage directly to main memory without CPU intervention
- Only one interrupt is generated per block, rather than th e one interrupt per byte

How a Modern Computer Works

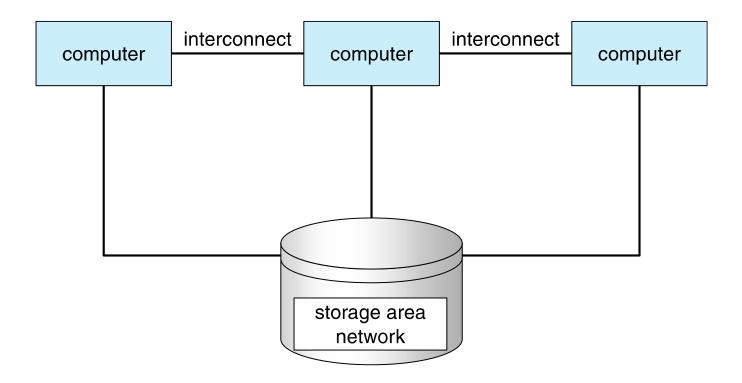
A von Neumann architecture


Silberschatz, Galvin and Gagne ©2013

- Most systems use a single general-purpose processor
 - Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include:
 - 1. Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance
 - Two types:
 - Asymmetric Multiprocessing each processor is assigned a speci e task.
 - 2. Symmetric Multiprocessing each processor performs all tasks

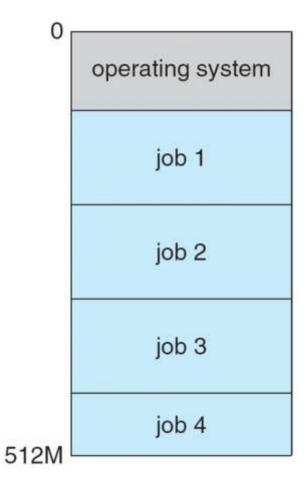


- Multi-chip and multicore
- Systems containing all chips
 - Chassis containing multiple separate systems


Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, mon itoring each other
 - Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization
 - Some have distributed lock manager (DLM) to avoid conflicting operat ions

Clustered Systems



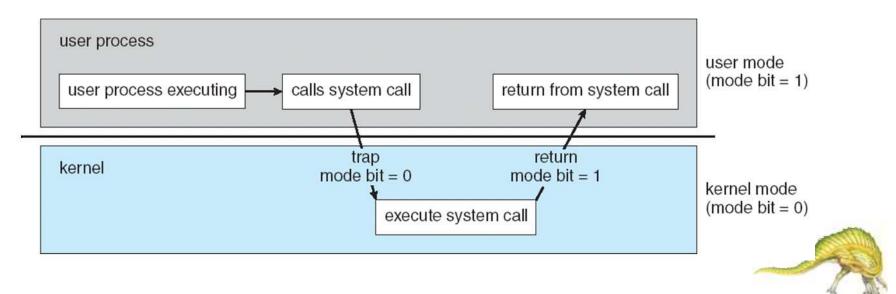
Multiprogramming (Batch system) needed for efficiency

- Single user cannot keep CPU and I/O devices busy at all times
- Multiprogramming organizes jobs (code and data) so CPU always has one t o execute
- A subset of total jobs in system is kept in memory
- One job selected and run via job scheduling
- When it has to wait (for I/O for example), OS switches to another job
- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating int eractive computing
 - **Response time** should be < 1 second
 - Each user has at least one program executing in memory ⇒process
 - If several jobs ready to run at the same time ⇒ CPU scheduling
 - If processes don't fit in memory, **swapping** moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Interrupt driven (hardware and software)

- Hardware interrupt by one of the devices
- Software interrupt (exception or trap):
 - Software error (e.g., division by zero)
 - Request for operating system service
 - Other process problems include infinite loop, processes modifying each other or the operating system


Operating-System Operations (cont.)

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executab le in kernel mode
 - System call changes mode to kernel, return from call resets it to user
- Increasingly CPUs support multi-mode operations
 - i.e. virtual machine manager (VMM) mode for guest VMs

- Timer to prevent infinite loop / process hogging resources
 - Timer is set to interrupt the computer after some time period
 - Keep a counter that is decremented by the physical clock.
 - Operating system set the counter (privileged instruction)
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate pro gram that exceeds allotted time

Operating System Concepts – 9th Edition

Silberschatz, Galvin and Gagne ©2013

- A process is a program in execution. It is a unit of work within the system. Program is a *passive entity*, process is an *active entity*.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files
 - Initialization data
- Process termination requires reclaim of any reusable resources
- Single-threaded process has one program counter specifying lo cation of next instruction to execute
 - Process executes instructions sequentially, one at a time, until l completion
- Multi-threaded process has one program counter per thread
- Typically system has many processes, some user, some operatin g system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes / threads

The operating system is responsible for the following activities in connect ion with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

- To execute a program all (or part) of the instructions must be in memory
- All (or part) of the data that is needed by the program must be in memory.
- Memory management determines what is in memory and when
 - Optimizing CPU utilization and computer response to users
- Memory management activities
 - Keeping track of which parts of memory are currently being u sed and by whom
 - Deciding which processes (or parts thereof) and data to mov e into and out of memory
 - Allocating and deallocating memory space as needed

- OS provides uniform, logical view of information storage
 - Abstracts physical properties to logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, data-tran sfer rate, access method (sequential or random)
- File-System management
 - Files usually organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and directories
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

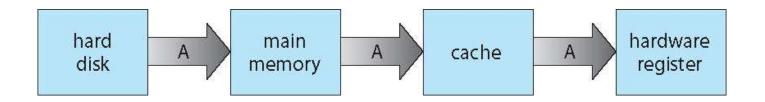
Silberschatz, Galvin and Gagne ©2013

Mass-Storage Management

- Usually disks used to store data that does not fit in main memory or d ata that must be kept for a "long" period of time
- Proper management is of central importance
- Entire speed of computer operation hinges on disk subsystem and its algorithms
- OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling
- Some storage need not be fast
 - Tertiary storage includes optical storage, magnetic tape
 - Still must be managed by OS or applications
 - Varies between WORM (write-once, read-many-times) and RW (r ead-write)

Silberschatz, Galvin and Gagne ©2013

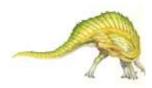
Performance of Various Levels of Storage


Level	1	2	3	4	5
Name	registers	cache	main memory	solid state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 - 25	80 - 250	25,000 - 50,000	5,000,000
Bandwidth (MB/sec)	20,000 - 100,000	5,000 - 10,000	1,000 - 5,000	500	20 - 150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

Multitasking environments must be careful to use most recent value , no matter where it is stored in the storage hierarchy

- Multiprocessor environment must provide cache coherency in hard ware such that all CPUs have the most recent value in their cache
- Distributed environment situation even more complex
 - Several copies of a datum can exist
 - Various solutions covered in Chapter 17

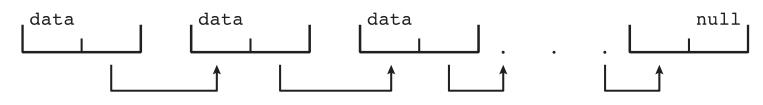


I/O Subsystem

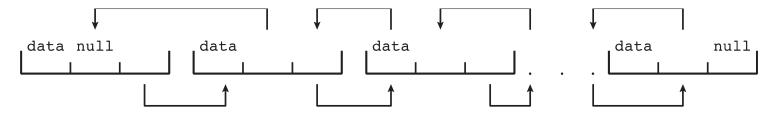
One purpose of OS is to hide peculiarities of hardware devices fro m the user

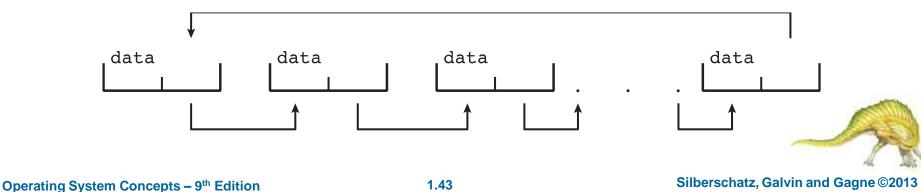
I/O subsystem responsible for

- Memory management of I/O including buffering (storing data t emporarily while it is being transferred), caching (storing parts of data in faster storage for performance), spooling (the overla pping of output of one job with input of other jobs)
- General device-driver interface
- Drivers for specific hardware devices

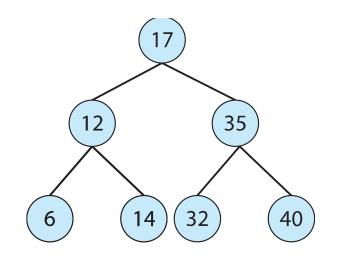

Protection and Security

- Protection any mechanism for controlling access of processes or u sers to resources defined by the OS
- Security defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms, viruses, identity th eft, theft of service
- Systems generally first distinguish among users, to determine who ca n do what
 - User identities (user IDs, security IDs) include name and associat ed number, one per user
 - User ID then associated with all files, processes of that user to det ermine access control
 - Group identifier (group ID) allows set of users to be defined and c ontrols managed, then also associated with each process, file
 - Privilege escalation allows user to change to effective ID with mo re rights



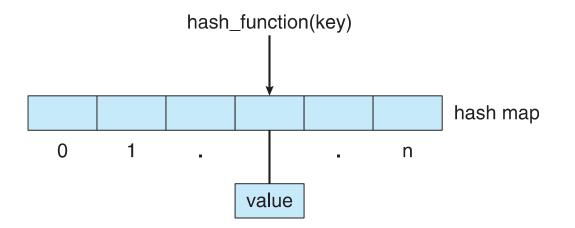

- Many similar to standard programming data structures
- Singly linked list

Doubly linked list


Circular linked list

Kernel Data Structures

- Binary search tree
 - left <= right
 - Search performance is O(n)
 - Balanced binary search tree is O(lg n)



Operating System Concepts – 9th Edition

Hash function can create a hash map

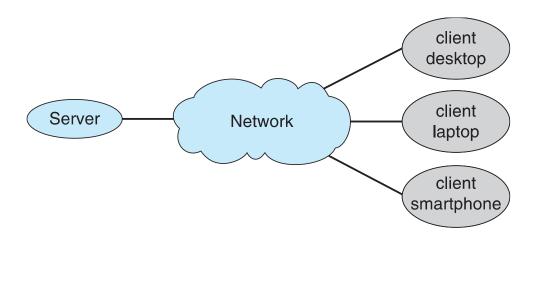
- Bitmap string of n binary digits representing the status of n items
- Linux data structures defined in

```
include files <linux/list.h>, <linux/kfifo.h>,
<linux/rbtree.h>
```

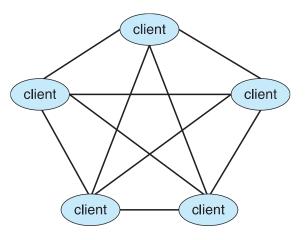

- Stand-alone general purpose machines
- But blurred as most systems interconnect with others (i.e., t he Internet)
- Portals provide web access to internal systems
- Network computers (thin clients) are like Web terminals
- Mobile computers interconnect via wireless networks
- Networking becoming ubiquitous even home systems use firewalls to protect home computers from Internet attacks

Computing Environments - Mobile

- Handheld smartphones, tablets, etc
- What is the functional difference between them and a "traditio nal" laptop?
- Extra feature more OS features (GPS, gyroscope)
- Allows new types of apps like *augmented reality*
- Use IEEE 802.11 wireless, or cellular data networks for connectivity
- Leaders are Apple iOS and Google Android



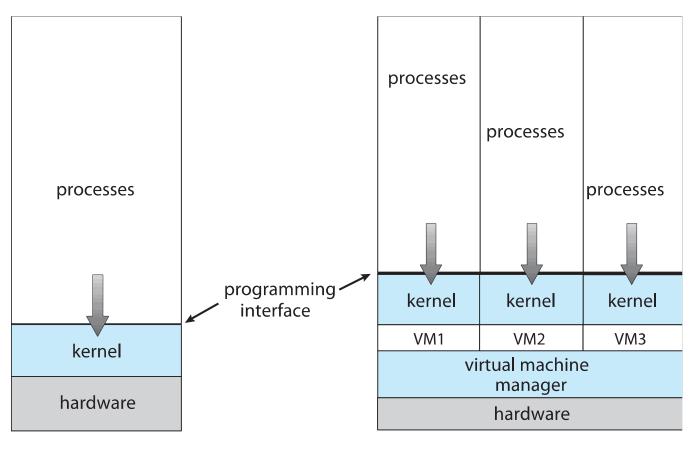
- Distributed computing
 - Collection of separate, possibly heterogeneous, systems netw orked together
 - Network is a communications path, TCP/IP most common
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
 - Network Operating System provides features between syste ms across network
 - Communication scheme allows systems to exchange mess ages
 - Illusion of a single system



- Client-Server Computing
 - Dumb terminals supplanted by smart PCs
 - Many systems now servers, responding to requests generated by clients
 - Compute-server system provides an interface to client to r equest services (i.e., database)
 - File-server system provides interface for clients to store an d retrieve files

- Another model of distributed system
- P2P does not distinguish clients and servers
 - Instead all nodes are considered peers
 - May each act as client, server or both
 - Node must join P2P network
 - Registers its service with central look up service on network, or
 - Broadcast request for service and re spond to requests for service via *dis covery protocol*
 - Examples include Napster and Gnutella, Voice over IP (VoIP) such as Skype

- Allows operating systems to run applications within other OSes
 - Vast and growing industry
- Emulation used when source CPU type different from target ty pe (i.e. PowerPC to Intel x86)
 - Generally slowest method
 - When computer language not compiled to native code In terpretation
- Virtualization OS natively compiled for CPU, running guest OSes also natively compiled
 - Consider VMware running WinXP guests, each running ap plications, all on native WinXP host OS
 - VMM (virtual machine Manager) provides virtualization ser vices



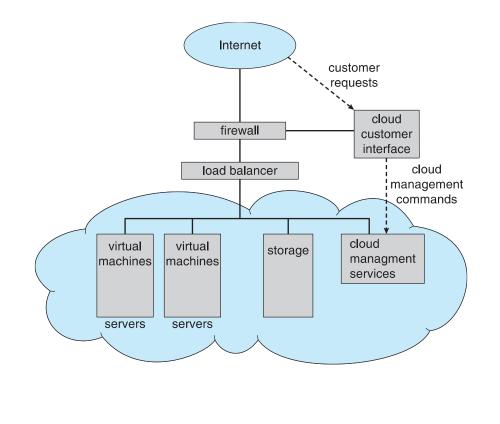
- Use cases involve laptops and desktops running multiple OSes f or exploration or compatibility
 - Apple laptop running Mac OS X host, Windows as a guest
 - Developing apps for multiple OSes without having multiple s ystems
 - QA testing applications without having multiple systems
 - Executing and managing compute environments within data centers
- VMM can run natively, in which case they are also the host
 - There is no general purpose host then (VMware ESX and Ci trix XenServer)

Computing Environments - Virtualization

(a)

(b)

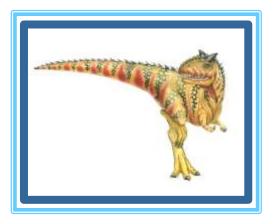
Operating System Concepts – 9th Edition


- Delivers computing, storage, even apps as a service across a network
- Logical extension of virtualization because it uses virtualization as the base f or it functionality.
 - Amazon EC2 has thousands of servers, millions of virtual machines, pe tabytes of storage available across the Internet, pay based on usage
- Many types
 - Public cloud available via Internet to anyone willing to pay
 - **Private cloud** run by a company for the company's own use
 - Hybrid cloud includes both public and private cloud components
 - Software as a Service (SaaS) one or more applications available via t he Internet (i.e., word processor)
 - Platform as a Service (PaaS) software stack ready for application use via the Internet (i.e., a database server)
 - Infrastructure as a Service (laaS) servers or storage available over Int ernet (i.e., storage available for backup use)

Computing Environments – Cloud Computing

- Cloud computing environments composed of traditional OSes, pl us VMMs, plus cloud management tools
 - Internet connectivity requires security like firewalls
 - Load balancers spread traffic across multiple applications

- Real-time embedded systems most prevalent form of computers
 - Vary considerable, special purpose, limited purpose OS, rea I-time OS
 - Use expanding
- Many other special computing environments as well
 - Some have OSes, some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - Processing *must* be done within constraint
 - Correct operation only if constraints met



Open-Source Operating Systems

- Operating systems made available in source-code format rather t han just binary closed-source
- Counter to the copy protection and Digital Rights Management t (DRM) movement
- Started by Free Software Foundation (FSF), which has "copylef t" GNU Public License (GPL)
- Examples include GNU/Linux and BSD UNIX (including core of Mac OS X), and many more
- Can use VMM like VMware Player (Free on Windows), Virtualbox (open source and free on many platforms - http://www.virtualbox. com)
 - Use to run guest operating systems for exploration

End of Chapter 1

