
19CAB12-OBJECT ORIENTED ANALYSISAND DESIGN

Mrs.M.Menakapriya

ASP/MCA

Muthayammal Engineering College

Rasipuram

Objectives

•To provide a brief, hands-on overview of object-oriented concepts and its life cycle

for software development.

•To learn for modeling the software and to design them using UML diagrams

•To understand the problem domain and to identify the objects from the problem

specification.

•To understand, how to apply design axioms and corollaries for the classes and

object relational systems.

•To gain knowledge about open source tools for Computer Aided Software

Engineering

Outcomes

•Able to understand the object oriented concepts and to apply object oriented life

cycle model for a project.

•Able to design static and dynamic models using UML diagrams.

•Able to perform object oriented analysis to identify the objects from the problem

specification.

•Able to identify and refine the attributes and methods for designing the object

oriented system.

•Able learn the open source CASE tools and to apply them in various domains.

UNIT-I INTRODUCTION

An overview – Object basics – Object state and properties –

Behavior – Methods – Messages – Information hiding –

Class hierarchy – Relationships – Associations –

Aggregations- Identity – Dynamic binding – Persistence –

Meta classes – Object oriented system development life

cycle.

UNIT-II METHODOLOGY AND UML

Introduction – Survey – Rumbaugh, Booch, Jacobson

methods – Unified modeling language – Static and

Dynamic models – Rational Rose Suite - UML diagrams –

Static diagram : Class diagram – Use case diagrams –

Behavior Diagram : Interaction diagram – State chart

diagram – Activity diagram - Implementation diagram:

Component diagram – Deployment diagram – example -

Design of online railway reservation system using UML

diagrams - Dynamic modeling – Model organization –

Extensibility.

UNIT-III OBJECT ORIENTED ANALYSIS

Identifying Use case – Business object analysis – Use case

driven object oriented analysis – Use case model –

Documentation – Classification – Identifying object,

relationships, attributes, methods – Super-sub class – A

part of relationships Identifying attributes and methods –

Object responsibility – construction of class diagram for

generalization, aggregation – example – vehicle class.

UNIT-IV OBJECT ORIENTED DESIGN

Design process and benchmarking – Axioms – Corollaries

– Designing classes – Class visibility – Refining attributes

– Methods and protocols – Object storage and object

interoperability – Databases – Object relational systems –

Designing interface objects – Macro and Micro level

processes – The purpose of a view layer interface-OOUI -

MVC Architectural Pattern and Design – Designing the

system.

UNIT-V CASE TOOLS

Railway domain: Platform assignment system for the trains

in a railway station – Academic domain: Students marks

analyzing system – ATM system – Stock maintenance –

Quiz System – E-mail Client system – Cryptanalysis –

Health Care Systems, Use Open Source CASE Tools:

StarUML / UML Graph for the above case studies.

REFERENCE BOOKS
•Ali Bahrami, “Object Oriented System Development”, McGraw Hill International

Edition, 2008.

•Brahma Dathan, Sarnath Ramnath, “Object-Oriented Analysis, Design and

Implementation”, Universities Press, 2010.

•Bernd Bruegge, Allen H. Dutoit, Object Oriented Software Engineering using

UML, Patterns and Java, Pearson 2004.

•Craig Larman, Applying UML and Patterns – An Introduction to Object-Oriented

Analysis and Design and Iterative Development”, 3rd Edition, Pearson Education,

2005.

•Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified Modeling Language

User Guide”, Addison Wesley Long man, 1999.

•Martin Fowler, “UML Distilled A Brief Guide to Standard Object Modeling

Language”, 3rd Edition, Addison Wesley, 2003.

•Russ Miles, Kim Hamilton, “Learning UML 2.0”, O‟Reilly, 2008.

INTRODUCTION

 An Overview of Object Oriented Systems Development

 Object Basics

 Object Oriented Systems Development Life Cycle

Object-oriented analysis and design – An Overview

• Object-oriented analysis and design (OOAD) is a popular technical

approach for

• analyzing,

• designing an application, system, or business

• by applying the object oriented paradigm and

• visual modeling throughout the development life cycles for better communication

and product quality.

• Object-oriented programming (OOP) is a method

• based on the concept of “objects",

• which are data structures that contain data,

• in the form of fields,

• often known as attributes;

• and code, in the form of procedures,

• often known as methods.

Continued…

• What is OOAD?- Object-oriented analysis and design (OOAD)

is a software engineering approach that models a system as a

group of interacting objects .

• Analysis — understanding, finding and describing concepts in the

problem domain.

• Design — understanding and defining software solution/objects

that represent the analysis concepts and will eventually be

implemented in code.

• OOAD - A software development approach that emphasizes a

logical solution based on objects.

Continued…

Software development is dynamic and always undergoing major

change.

System development refers to all activities that go into producing

information system solution.

System development activities consist of

 system analysis,

 modelling,

 design,

 implementation,

 testing and maintenance.

A software development methodology series of processes can

lead to the development of an application.

Practices, procedures, and rules used to develop software, totally

based on system requirements

ORTHOGONALVIEWS OFTHE SOFTWARE

Two Approaches,

 TraditionalApproach

 Objected-OrientedApproach

TRADITIONALAPPROACH

• Collection of programs or functions.

• A system that is designed for performing certain actions.

• Algorithms + Data Structures = Programs.

• Software Development Models (Waterfall, Spiral, Incremental, etc..)

Continued…

OBJECT ORIENTED APPROACH

• OO development offers a different model from the traditional software

based on functions and procedures.

• software is a collection of discrete object that encapsulate their data as

well as the functionality.

• Each object has attributes (properties) and method (procedures).

• software by building self contained modules or objects that can be easily

REPLACED, MODIFIED AND REUSED.

• Objects grouped in to classes and object are responsible for itself.

DifferencebetweenTraditional and Object Oriented

Approach

BENEFITS OF OBJECT ORIENTATION

Faster development,

Reusability,

Increased quality

modeling the real world and provides us with the stronger

equivalence of the real world‘s entities (objects).

Raising the level of abstraction to the point where application can be

implemented in the same terms as they are described.

WHY OBJECT ORIENTATION

OO Methods enables to develop set of objects that work together

software similar to traditional techniques.

It adapts to

• Changing requirements

• Easier to maintain

• More robust

• Promote greater design

• Code reuse

Continued…

Others

• Higher level of abstraction

• Seamless transition among different phases of software

development.

• Encouragement of good programming technique.

• Promotion of reusability.

OVERVIEW OF UNIFIEDAPPROACH

The unified approach (UA) is a methodology for software

development.

Booch, Rumbaugh, Jacobson methodologies gives the best

practices, processes and guidelines for OO oriented software

development.

 Combines with the object management groups in unified

modelling language.

 UA utilizes the unified modeling language (UML) which is a set of

notations and conventions used to describe and model an

application.

Continued…

LayeredArchitecture

• UA uses layered architecture to develop applications.

• Creates object that represent elements to the user through

interface or physically stored in database.

• The layered approach consists of user interface, business, access

layers.

• This approach reduces the interdependence of the user interface,

database access and business control.

• More robust and flexible system.

OBJECT BASICS

Goals:

The developer should

Define Objects and classes

Describe objects, methods, attributes and how objects respond to
messages,

Define Polymorphism, Inheritance, data abstraction, encapsulation,
and protocol,

Describe objects relationships,

Describe object persistence,

WHAT IS AN OBJECT?

The term object was first formally utilized in the Simula language to
simulate some aspect of reality.

Attributes or properties describe object‘s state (data) and methods
(properties or functions) define its behavior.

An object is an entity.

• It knows things (has attributes)

• It does things (provides services or has methods

• Examples in next Slide ……….

OBJECT’SATTRIBUTES

Attributes represented by data type.

They describe objects states.

In the Car example the car’s attributes are:

color, manufacturer, cost, owner, model, etc.

OBJECT’S METHODS

Methods define objects behaviour and specify the way in which

an Object’s data are manipulated.

In the Car example the car’s methods are:

drive it, lock it, tow it, carry passenger in it.

IT KNOWS THINGS (ATTRIBUTES)

I am an Employee.

I know my name,

social security number and

my address.

Object-Oriented Systems Development Bahrami ? Irwin/ McGraw-Hill

ATTRIBUTES

I am a Car.
I know my color,
manufacturer, cost,
owner and model.

Object-Oriented Systems Development Bahrami ? Irwin/ McGraw-Hill

IT DOES THINGS (METHODS)

I know how to

compute

my payroll.

Object-Oriented Systems Development Bahrami ? Irwin/ McGraw-Hill

METHODS

I know how
to stop.

Object-Oriented Systems Development Bahrami ? Irwin/ McGraw-Hill

OBJECTSARE GROUPED IN CLASSES
The role of a class is to define the attributes and methods (the state

and behaviour) of its instances.

Used to distinguish one type of object from the other.

Set of objects, that share common methods, structure, behaviour.

Single object is simply an instance of class.

The class car, for example, defines the property color. Each

individual car (object) will have a value for this property, such as

"maroon," "yellow" or "white."

Employee Class

John object Jane object Mark object

Object-Oriented Systems Development Bahrami ? Irwin/ McGraw-Hill

Class

• A class represents a collection of objects having same
characteristic properties that exhibit common behavior.

• Creation of an object as a member of a class is called
instantiation.

• Thus, object is an instance of a class.

• Example: Circle – a class

x, to the center

a, to denote the radius of the circle

• Some of its operations can be defined as follows:

findArea(), method to calculate area

findCircumference(), method to calculate
circumference

Object oriented Methodologies

• Many methodologies have been developed for object

oriented development.

• A methodology usually includes

• Notation : Graphical representation of classes and their

relationships with interactions.

• Process : Suggested set of steps to carry out for transforming

requirements into a working system.

• Tool : Software for drawings and documentation

OO Relationships: Generalization

OO Relationships: Association

• Represent relationship between instances of classes

• Student enrolls in a course

• Courses have students

• Courses have exams

• Etc.

• Association has two ends

• Role names (e.g. enrolls)

• Multiplicity (e.g. One course can have many students)

• Navigability (unidirectional, bidirectional)

Association: Multiplicity and Roles

University Person

1

0..1

employer

*

*

Multiplicity

Symbol Meaning

1

0..1

M..

N
*

0..*

1..*

One and only one

Zero or one

From M to N (natural language)

From zero to any positive integer

From zero to any positive integer

From one to any positive integer

teacher

Role

Role

“A given university groups many people;

some act as students, others as teachers.

A given student belongs to a single

university; a given teacher may or may not

be working for the university at a particular

time.”

student

Association: Model to Implementation

Class Student {

Course enrolls[4];

}

Class Course {

Student have[];

}

Student Course
enrollshas

* 4

OO Relationships: Composition

Class W

Class P1 Class P2

Composition: expresses a relationship

among instances

of related classes. It is a specific kind of

Whole-Part relationship.

It expresses a relationship where an instance

of the Whole-class has the responsibility to

create and initialize instances of each Part-

class.

It may also be used to express a relationship

where instances of the Part-classes have

privileged access or visibility to

certain attributes and/or behaviors defined

by the Whole-class.

Whole Class

Part Classes

Automobile

Engine Transmission

Example

OO Relationships: Aggregation

Class C

Class E1 Class E2

AGGREGATION

Aggregation: expresses a relationship among

instances of related classes. It is a specific kind of

Container-Containee relationship.

Aggregation should be used to express a more

informal relationship than composition expresses.

That is, it is an appropriate relationship where the

Container and its Containees

It expresses a relationship where an instance of the

Container-class has the responsibility to hold and

maintain instances of each Containee-class that

have been created outside the Container-class.

Containee Classes

Aggregation is appropriate when Container and

Containees have no special access privileges to each

other.

Container Class

Bag

Apples Milk

Example

Aggregation vs. Composition

•Composition is really a strong form of aggregation

•components have only one owner

•components cannot exist independent of their owner

•components live or die with their owner

e.g. Each car has an engine that can not be shared with

other cars.

•Aggregations may form "part of" the aggregate, but may not be

essential to it. They may also exist independent of the aggregate.

e.g. Apples may exist independent of the bag.

Objects
Object Identity Behaviors State

An employee “Mr. John” Join(),

Retire()

Joined,

Retired.

A book “Book with title

Object Oriented

Analysis Design”

AddExemplar, Rent, available,

reserved

A sale “Sale no 0015,

15/12/98”

SendInvoiced(),

Cancel().

Invoiced,

cancelled.

Object Class

Class is a description of a set of objects that share the

same attributes, operations, methods, relationship and

semantics.

Object classes are templates for objects. They may be used

to create objects.

An object represents a particular instance of a class.

Term of objects

Attribute: data items that define object.

Operation: function in a class that combine to form

behavior of class.

Methods: the actual implementation of procedure (the

body of code that is executed in response to a request from

other objects in the system).

Employee object & class

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Encapsulation and Data Hiding

Packaging related data and operations together is

called encapsulation.

Data hiding: hides the internal data from external by

methods (interface).

46

Encapsulation

 private attributes and methods are encapsulated within the

class, they cannot be seen by clients of the class

 public methods define the interface that the class provides to

its clients

- numCustomers = 0
- MIN_BUDGET = 200

- name: String
- address: String

- budget: int

+ placeOrder(): void

Customer

public methods + printNumCustomer(): void

private attributes

Customer class

47

Message Passing

name = “Alex”
address =

“1 Robinson Rd”
budget = 2000

placeOrder(): void

name = “Lawrence”
employeeNo =15
commission = 200

takeOrder(): int

takeOrder(“sofa”, name,
address, “120799”)

199

message

return value
alex lawrence

lawrence.takeOrder(“sofa”, “1 Robinson Rd”, “120799”)

parametersmethod nameobject reference

message

48

Message Passing

- numCustomers = 0
- MIN_BUDGET = 200

- name: String
- address: String

- budget: int

+ placeOrder(): void

Customer

+ printNumCustomer(): void

- MAX_ PRICE = 200
- name: String

- employeeNo: String
- commission: int

+ takeOrder(): void

SalesPerson

alex lawrence
takeOrder

client server

49

Inheritance

•Object classes may inherit attributes and services from

other object classes.

•Inheritance represents the generalization of a class.

50

A generalisation hierarchy

Employee

Programmer

project
progLanguage

Manager

Project
Manager

budgetsControlled

dateAppointed

projects

Dept.
Manager

Strategic
Manager

dept responsibilities

51

Library class hierarchy

Acquire ()
Catalogue ()
Dispose ()
Issue ()
Return ()

Author
Edition
Publ icationdate
ISBN

Book

Year
Issue

Magazine

Director
Date of release
Distrib

Fi lm

Version
Platform

Computer
program

Title
Publisher

Publ ished item

T itle
Medium

Recorded item

Library Item

Catalogue Number
Acquisition date
Cost
Type
Status
Number of copies

52

User class hierarchy

Name
Address
Phone
Registration #

Library user

Register ()
De-register ()

Affiliation

Reader

Items on loan
Max. loans

Borrower

Department
Department phone

Staff

Major subject
Home address

Student

53

Multiple inheritance

•Rather than inheriting the attributes and services from a

single parent class, a system which supports multiple

inheritance allows object classes to inherit from several

super-classes

•Can lead to semantic conflicts where attributes/services

with the same name in different super-classes have different

semantics

•Makes class hierarchy reorganisation more complex

54

Multiple Inheritance

Tapes

Talking book

Author
Edition

Publication date
ISBN

Book

Speaker
Duration
Recording date

Voice recording

55

Advantages of Inheritance

•It is an abstraction mechanism which may be used to

classify entities

•It is a reuse mechanism at both the design and the

programming level

•The inheritance graph is a source of organisational

knowledge about domains and systems

56

Polymorphism

•The ability of different objects to perform the appropriate
method in response to the same message is known as
polymorphism.
•The selection of the appropriate method depends on the
class used to create the object

Shape

SquareCircle

name
getName()
calculateArea()

side
calculateArea()

radius
calculateArea()

Identity (Object and identity):-

A special feature of object-oriented system is that every object has its own unique and immutable

identity. An object’s identity comes into being when the object is created and continues to represent that

object from then on. This identity never is confused with another object, even if the original object has

been deleted.

In an object system, object identity often is implemented through some kind of object identifier

(OID) or unique identifier (UID).

Dynamic Binding (Static and Dynamic Binding):-

The process of determining (dynamically) at run time which functions to invoke is termed

dynamic binding.

Making this determination earlier, at compile time, is called static binding.

Static binding optimizes the calls; dynamic binding occurs when polymorphic calls are

issued.

Dynamic binding allows some methods invocation decisions to be deferred until the

information is known.

Persistence (Object Persistence):-

Objects have a lifetime. They are explicitly created and can exist for a period

of time that, traditionally, has been the duration of the process in which they were

created. A filer or a database can provide support for objects having a longer

lifeline longer than the duration of the process for which they were created.From a

language perspective, this characteristic is called object persistence.

An object can persist beyond application session boundaries, during which

the object is stored in a file or a database, in some file or database form. The object

can be retrieved in another application session and will have the same state and

relationship to other objects as at the time it was saved.The lifetime of an object

can be explicitly terminated.

Meta-Classes

Is a class an object? A class is an object, a class belongs to a

class called a meta-class, or a class of classes.

For example, classes must be implemented in some way; perhaps

with dictionaries for methods, instances, and parents and methods to

perform all the work of being a class. This can be declared in a class

named meta-class.

The meta-class also can provide services to application programs,

such as returning a set of all methods, instances, or parents for review

(or even modification)

Object – Oriented Systems Development Life Cycle:-

Introduction:

The essence of the software Development Process that consists of analysis, design,

implementation, testing, and refinement is to transform users’ needs into a software

solution that satisfy those needs.

The Software Development Process:

System development can be viewed as a process. Within the process, it is possible

to replace one sub process has the same interface as the old one to allow it to fit into the

process as a whole.

For example, Object oriented approach

The process can be divided into small, interacting phases- sub processes. Each

subprocess must have the following :

 A description in terms of how it works.

 Specification of the input required for the process.

 Specification of the output to be produced.

.

Software process – transforming needs to software product

Waterfall Model – from ‘what’ to ‘use’

4 Quality Measures

Verification vs Validation

Verification
am I building the product right ?
Begin after specification accepted

Validation
am I building the right product ?
Subjective - is specification appropriate ? Uncover true users’ needs ,
therefore establish proper design ?
Begins as soon as project starts

Verification & validation independent of each other
even if product follows spec, it may be a wrong product if specification is
wrong
eg: report missing, initial design no longer reflect current needs
If specification informal, difficult to separate verification and validation

Object-oriented approach: A use-case driven approach

Object-oriented software development life cycle consists of
Object-oriented analysis
Object-oriented design
Object-oriented implementation

Use-case model can be employed throughout most activities
of software development

designs traceable across requirements, analysis, design,
implementation & testing can be produced
all design decisions can be traced back directly to user
requirements
usage scenarios can be test scenarios

Object-oriented Systems Development

Approach

Using Jacobson et al. life cycle model – traceable design across

development

Object-oriented software development

Activities

•Object-oriented analysis - use case driven

•Object-oriented design

•Prototyping

•Component-based development

•Incremental testing

Encourages

•viewing of system as a system of cooperative objects

•incremental development

Object-oriented analysis - use-case driven

• Use Case, is a name for a scenario to describe the user–computer system
interaction.

•Determine system requirements, identify classes & their relationship to other
classes in domain

To understand system requirements

•need to identify the users or actors

•who are the actors ? How do they use system ?

•Scenarios can help (in traditional development, it is treated informally, not fully
documented)

•Jacobson introduces concept of use case - scenario to describe user-computer
system interaction

Use case

Typical interaction between user & system that captures users’ goal & needs In
simple usage, capture use case by talking to typical users, discussing various things
they might want to do with system can be used to examine who does what in
interactions among objects, what role they play, intersection among objects’ role to
achieve given goal is called collaboration several scenarios (usual & unusual
behaviour, exceptions) needed understand all aspects of collaboration & all potential
actions

Use cased modeling expressing high level processes & interactions with customers in
a scenario & analyzing it gives system uses, system responsibilities
developing use case is iterative when use case model better understood & developed,
start identifying classes & create their relationship

Identifying objects

What are physical objects in system ?
Individuals,organizations, machines, units of information, pictures, whatever
makes up application/ make sense in context of real world

objects help establish workable system
work iteratively between use-case & object models
incentive payroll - employee, supervisor, office administrator, paycheck,
product made, process used to make product

Intangible objects ?
Data entry screens, data structures

Documentation
80-20 rule
80% work can be done with 20% documentation
20% easily accessible, 80% available to few who needs to know
modeling & documentation inseparatable

good modeling implies good documentation

Object-oriented Design

Goal : to design classes identified during analysis phase & user interface

Identify additional objects & classes that support implementation of requirements
Eg. add objects for user interface to system (data entry windows, browse
windows)

Can be intertwined with analysis phase

Highly incremental, eg. can start with object-oriented analysis, model it, create
object-oriented design, then do some more of each again & again, gradually
refining & completing models of system
Activities & focus of oo analysis & oo design are intertwined, grown not built

Object-oriented Design

First, build object model based on objects & relationship

Then iterate & refine model

Design & refine classes
Design & refine attributes
Design & refine methods
Design & refine structures
Design & refine associations

Prototyping

Prototype – version of software product developed in early stages of
product’s life cycle for specific, experimental purposes

•Enables us to fully understand how easy/difficult it will be to
implement some features of system
•Gives users chance to comment on usability & usefulness of user
interface design
•Can assess fit between software tools selected, functional specification
& user needs
•Can further define use cases, makes use case modeling easier

•prototype that satisfies user + documentation -> define basic
courses of action for use cases covered by prototype

Important to construct prototype of key system components shortly after
products are selected

•Pictures worth a thousand words
•Build prototype with use-case modeling to design systems that users
like & need

Categories of Prototypes
Horizontal prototype

Simulation of interface (entire interface in full-featured system)
Contain no functionality
Quick to implement, provide good overall feel of system

Vertical prototype
Subset of system features with complete functionality
Few implemented functions can be tested in great depth

Hybrid prototypes
Major portions of interface established, features having high degree of risk are
prototyped with more functionality

Analysis prototype
Aid in exploring problem domain, used to inform user & demonstrate proof of
concept
Not used as basis of development, discarded when it has serve purpose
Final product use prototype concepts, not code

Domain prototype
Aid for incremental development of the ultimate software solution
Often used as tool for staged delivery of subsystems to users/other members of
development team
Demonstrate the feasibility of implementation
Eventually evolve into deliverable product

Implementation: Component-based development

•No more custom development, now assemble from prefabricated components

•No more cars, computers, etc custom designed & built for each customer

•Can produce large markets, low cost, high quality products

•Cost & time reduced by building from pre-built, ready-tested components

•Value & differentiation gained by rapid customization to targeted customers

Component-based development

•Industrialised approach to system development, move form custom development
to assembly of pre-built, pre-tested, reusable software components that operate with
each other

•Application development improved significantly if applications assembled quickly
from prefabricated software components

•Increasingly large collection of interpretable software components could be made
available to developers in both general & specialist catalogs

•Components themselves can be constructed from other components, down to
prebuilt components/old-fashioned code written in prg languages like C

•Visual tools/actual code can be used to glue together components Visual glue –
Digitalk’s Smalltalk PARTS, IBM VisualAge

•Less development effort, faster, increase flexibility

Rapid Application Development

•Set of tools & techniques to build application faster than typically possible with
traditional methods

•Often used with software prototyping

•Iterational development

•Implement design & user requirements incrementally with tools like Delphi,
VisualAge, Visual Basic, or PowerBuilder

Begins when design completed

•Do we actually understood problem (analysis) ?
•Does the system do what it is supposed to do (design) ?
•Make improvement in each iteration

Incremental testing

•Software development and all of its activities including testing are
an iterative process.

•Waiting until after development waste money & time

•Turning over applications to quality assurance group not helping
since they are not included in initial plan

Reusability:-

A major benefit of object-oriented system development is reusability, and this is the most

difficult promise to deliver on. For an object to be really reusable, much more effect must be

spent designing it.

Software components for reuse by asking the following questions:

•Has my problem already solved?

•Has my problem been partially solved?

•What has been done before to solve a problem similar to this one?

The reuse strategy can be based on the following:

 Information hiding (encapsulation).

 Conformance to naming standards.

 Creation and administration of an object repository.

 Encouragement by strategic management of reuse as opposed to constant

development.

 Establishing targets for a percentage of the objects in the project to be reused.

