
19CAB11–

INTERNET AND

JAVA PROGRAMMING

Handled by

G.KRISHNAVENI

AP/MCA

Introduction to Java

Introduction

• Present the syntax of Java

• Introduce the Java API

• Demonstrate how to build

– stand-alone Java programs

– Java applets, which run within browsers e.g.

Netscape

• Example programs

Why Java?

• It’s the current “hot” language

• It’s almost entirely object-oriented

• It has a vast library of predefined objects
and operations

• It’s more platform independent

– this makes it great for Web programming

• It’s more secure

• It isn’t C++

Applets, Servlets and

Applications

• An applet is designed to be embedded in a
Web page, and run by a browser

• Applets run in a sandbox with numerous
restrictions; for example, they can’t read
files and then use the network

• A servlet is designed to be run by a web
server

• An application is a conventional program

Building Standalone JAVA

Programs (on UNIX)

• Prepare the file foo.java using an editor

• Invoke the compiler: javac foo.java

• This creates foo.class

• Run the java interpreter: java foo

Java Virtual Machine

• The .class files generated by the compiler are
not executable binaries

– so Java combines compilation and interpretation

• Instead, they contain “byte-codes” to be
executed by the Java Virtual Machine

– other languages have done this, e.g. UCSD Pascal

• This approach provides platform
independence, and greater security

HelloWorld (standalone)

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

• Note that String is built in

• println is a member function for the

System.out class

Comments are almost like C++

• /* This kind of comment can span multiple lines

*/

• // This kind is to the end of the line

• /**

* This kind of comment is a special

* ‘javadoc’ style comment

*/

Primitive data types are like C

• Main data types are int, double,

boolean, char

• Also have byte, short, long, float

• boolean has values true and false

• Declarations look like C, for example,

– double x, y;

– int count = 0;

Expressions are like C

• Assignment statements mostly look like those in C; you
can use =, +=, *= etc.

• Arithmetic uses the familiar + - * / %
• Java also has ++ and --

• Java has boolean operators && || !
• Java has comparisons < <= == != >= >
• Java does not have pointers or pointer arithmetic

Control statements are like C

• if (x < y) smaller = x;

• if (x < y){ smaller=x;sum += x;}

else { smaller = y; sum += y; }

• while (x < y) { y = y - x; }

• do { y = y - x; } while (x < y)

• for (int i = 0; i < max; i++)

sum += i;

• BUT: conditions must be boolean !

Control statements II

• Java also introduces the try statement,
about which more later

switch (n + 1) {

case 0: m = n - 1; break;

case 1: m = n + 1;

case 3: m = m * n; break;

default: m = -n; break;

}

Java isn't C!

• In C, almost everything is in functions

• In Java, almost everything is in classes

• There is often only one class per file

• There must be only one public class per file

• The file name must be the same as the name

of that public class, but with a .java
extension

Java program layout

• A typical Java file looks like:

import java.awt.*;

import java.util.*;

public class SomethingOrOther {

// object definitions go here

. . .

}

This must be in a file named SomethingOrOther.java !

What is a class?

• Early languages had only arrays

– all elements had to be of the same type

• Then languages introduced structures (called
records, or structs)

– allowed different data types to be grouped

• Then Abstract Data Types (ADTs) became
popular

– grouped operations along with the data

So, what is a class?

• A class consists of

– a collection of fields, or variables, very much

like the named fields of a struct

– all the operations (called methods) that can be

performed on those fields

– can be instantiated

• A class describes objects and operations

defined on those objects

Name conventions

• Java is case-sensitive; maxval, maxVal, and
MaxVal are three different names

• Class names begin with a capital letter

• All other names begin with a lowercase letter

• Subsequent words are capitalized: theBigOne
• Underscores are not used in names

• These are very strong conventions!

The class hierarchy

• Classes are arranged in a hierarchy

• The root, or topmost, class is Object

• Every class but Object has at least one

superclass

• A class may have subclasses

• Each class inherits all the fields and methods

of its (possibly numerous) superclasses

An example of a class

class Person {

String name;

int age;

void birthday () {

age++;

System.out.println (name + ' is

now ' + age);

}

}

Another example of a class

class Driver extends Person {

long driversLicenseNumber;

Date expirationDate;

}

Creating and using an object

• Person john;

john = new Person ();

john.name = "John Smith";

john.age = 37;

• Person mary = new Person ();

mary.name = "Mary Brown";

mary.age = 33;

mary.birthday ();

An array is an object

• Person mary = new Person ();

• int myArray[] = new int[5];

– or:

• int myArray[] = {1, 4, 9, 16,

25};

• String languages [] =

{"Prolog", "Java"};

