19CAB02 -
Data Structures and Algorithms

UNIT-I

- Introduction - Abstract Data Types (ADT) - Arrays and its representation -Structures - Stack -Queue- Circular Queue - Applications of stack Infix to postfix conversion - evaluation of expression - Applications of Queue - Linked Lists Doubly Linked lists - Applications of linked list Polynomial Addition.

Introduction

Data Structure can be defined as the group of data elements Which provides an efficient way of storing and organizing data in the computer so that it can be used efficiently.
Some examples of Data Structures are arrays, Linked List, Stack, Queve, etc:
Data structure is a way of organizing all data items that considers not only the elements stored but also. their relationship to each other

Abstract Data Types

Abstract Data type (ADT) is a type (or class) for objects whose behayour is defined by a set of value and a set of operations.
Thedefinition of ADT only mentions what operations are to be performed but not how these operations will be implemented.

ADTDiagram

Array

 -hesenkens:
 ลxomph
 -
-10:EmenthEachtemstoredihanarrayis called an element.
-i0. , mineriakindexkmichisused toidentify the element.

Array Representation

Array and its representation is given below Array Index: The ocation of anelement in an array has an index, which identifies the element Array index starts from 0.

 -

Array element: ltems stored in an array is called an

Ahamemghnuenenghofanarayis defined based on yemonbermelementanarmycanstore in the above
 -

Structures

 -
-hnomskyiak apmganaswemandinction of the software is to store and

 -Sk

Stack

Stackis a linear data structure which follows a particular order in which the operations are performed. The order may be LFO(Gasth First Out or FLLO(First in Last Out). ...
So, it can be simply seen to follow LIFO(Last in First 0ut) FILO(First in Last Out) order.

Stack Operations

 -

-

-10WERStekfrentweneedtwheck thestatus of stack as well. For the samepupsentexilowing inctionalityis added to stacks
-h,

-xsmpty-xheckitstakisempty

Applications of Stack

Sbackcanbeused for expression evaluation.
Stackscanbe used to check parenthesis matching in an expression

- Stacks can be used for conversion from one form of expression to another
-Stacks can be used for Memory Management.
Stack data structures are used in backtracking problems

Queue

Queue sa anear data structure where the first element is inserted from one end called REAR and deleted from the other end called as ERONT:

Queue follows the FIFO (First - In - First Out) structure.

Circular Queue

hacircularqueue, all nodes are treated as circular. Last node is connected back to the first node.
Creubrqueue is also called as Ring Buffer.
Wis an abstract data type.

Infix to Postfix Conversion

hnix expressions are readable and solvable by humans. We can easilydistinguish the order of operators, and also can use the parenthesis to solve that part first during solving mathematical expressions. The computer cannot differentiate the operators and parenthesis easily, that's why postfix conversion is needed.
To convert infix expression to postfix expression, we will use the stack data structure. By scanning the infix expression from left to right when we willget any operand, simply add them to the postfix form, and for the operator and parenthesis, add them in the stack maintaining the precedence of them.

Applications of Queue

Gashiertine in any store.
Waiting onhodfortech support.
People:onan escalator.
Gheckoutanybook store.

Linked List

Ankedist isa sequence of data structures, which are connected together vialinks.
bhinedhist is a sequence of links which contains items.
Each tink contains a connection to another link. Linked list is the second most-used data structure after array.

Doubly Linked List

-20.

 -
 - Exent

 -2

Applications of Linked List

Poynmiamanipuation representation.
Additionof Bng positive integers.
Representation of sparse matrices.
Addition of Dong positive integers.
Symboltablecreation.
Mailing list.
Memory management.
Linked allocation of files.

Polynomial Addition.

 - = =hex
 enonent

-hnyexmoxernshavesamexanabe

UNIT-II

TREE STRUCTURES

Need for non-linear structures

- Trees and its representation Binary Tree - expression trees Binary tree traversals - left child right sibling data structures for general trees applications of trees - Huffman Algorithm - Binary search tree.

a set of edges, each of which connects a pair of nodes
-Each node may have one or more data items.
each data item consists of one or more fields
key field $=$ the field used when searching for a data item
multiple data items with the same key are referred to as duplicates
-The node at the "top" of the tree is called the root of the tree.

Relationships Between Nodes

- If a node N is connected to other nodes that are directly below it in the tree, N is referred to as their parent and they are referred to as its children.
- example: node 5 is the parent of nodes 10,11 , and 12
- Each node is the child of at most one parent.
- Other family-related terms are also used:
- nodes with the same parent are siblings
- a node's ancestors are its parent, its parent's parent, etc.
- example: node 9 's ancestors are 3 and 1
- a node's descendants are its children, their children, etc. example: node 1 's descendants are all of the other nodes
-A leaf node is a node without children.
-An interior node is a node with one or more children.

A Tree is a Recursive Data Structure
 tree!

- refer to such trees as subtrees to distinguish them from the tree as a whole
example: node 2 is the root of the subtree circled above
example: node 6 is the root of a subtree with only one nod
-We'll see that tree algorithms often lend themselves to recursive implementations.

Binary Trees

- In a binary tree, nodes have at most two children.
- Recursive definition: a binary tree is either 1) empty, or

2) a node (the root of the tree) that has

- one or more data items
- a left child, which is itself the root of a binary tree
- a right child, which is itself the root of a binary tree
- Example: (26)

26 's left child \rightarrow (12) 32 's right child

26's left subtree … 7

- How are the edges of the tree represented?

Representing a Binary Tree Using Linked Nodes public class Linkedrree \{ private class Node $\{$
private int key;
private LLList data; // list of data items
private Node left:
private Node eft; // reference to left child private Node right \}
private Node root;
3

(7)

see ~cscie119/examples/trees/LinkedTree.java

Traversing a Binary Tree
-Traversing a tree involves visiting all of the nodes
in the tree. in the tree

- visiting a node = processing its data in some way - example: print the key
-We will look at four types of traversals. Each of
them visits the nodes in a different order.
-To understand traversals, it helps to remember the recursive definition of a binary tree, in which every node is the root of a subtree

12 is the root of
26 's left subtree
(12) (32) $\begin{aligned} & 32 \text { is the root or } \\ & 26 \text { 's right subtre }\end{aligned}$ 4 i sthe root of
2 2's left subtree $(4) \cdot(18)(38$
2 's left subtree

Preorder Traversal

-preorder traversal of the tree whose root is N :

1) visit the root, N
2) recursively perform a preorder traversal of N 's left subtree
3) recursively perform a preorder traversal of N's right subtree

4
-Preorder traversal of the tree above:
7524698
-Which state-space search strategy visits nodes in this order?

Implementing Preorder Traversal
public class LinkedTree \{
private Node root;
public void preorderprint() \{ if (root !=
nul1)
${ }_{\}}$pre
private static void preorderPrintTree(Node

f (root. 7eft $!=$ null) $\quad \begin{aligned} & \text { Not aways the } \\ & \text { same as the }\end{aligned}$ preorderPrintTree(root.left); if (root.right $!=$ nul1).
preorderPrintTree(root.right); parameter the root of the tree/subtree that you want to print.
preorderprint() is a non-static method that makes the initial call. It passes in the root of the entire tree as the parameter

Implementing Postorder Traversal public class LinkedTree \{ private Node root; public void postorderPrint() \{ if (root != null) postorderPrintTree(root); private static void postorderPrintTree(Node root) \{ if (root.left ! $=$ nu11) postorderPrintTree(root.left); if (root.right != nul1) postorderPrintTree(root.right); system.out.print(root.key +" "); \} - Note that the root is printed after the two recursive calls.

Inorder Traversal
-inorder traversal of the tree whose root is N :

1) recursively perform an inorder traversal of N 's left subtree 2) visit the root, N
2) recursively perform an inorder traversal of N 's right subtree

- Inorder traversal of the tree above

2456789

Implementing Inorder Traversa
public class LinkedTree \{
private Node root;
public void inorderprint() \{ if (root ! $=$ nul1)
inorderPrintTree(root)
rivate static void inorderPrintTree(Node root) if (root.left != null)
inorderprintTree(root.left);
System. out. print (root. $\mathrm{key}+$
(root right $!=$ null)
(inorderprintTree(root.right);
inor
$\}$

- Notes
that the root is printed between the two recursive calls.

traversal?

Using a Binary Tree for an Algebraic Expression -We'll restrict ourselves to fully parenthesized expressions and to the following binary operators:,,+- , ,
-Example expression: ((a + (b*c)) - (d / e))
-Tree representation

-Leaf nodes are variables or constants; interior nodes are operators.
Because the operators are binary, ether a node has two children or it has none.

Traversing an Algebraic-Expression Tree

- Inorder gives conventional algebraic notation.
print '('' before the recursive
call on the left subtree
- print) after the recursive
- for tree at right: $((a+(b * c))-(d /$
- Preorder gives functional notation.
print '('s and ')'s as for inorder, and commas after the recursive call on the left subtree
- for tree above: subtr(add(a, mult(b, c)), divide(d, e)
- Postorder gives the order in which the computation must be carried out on a stack/RPN calculator.
- for tree above: push a, push b, push c, multiply, add,.
- see ~cscie119/examples/trees/ExprTree.java

Fixed-Length Character Encodings				
-A character encoding maps each character to a number.				
-Computers usually use fixed-length character encodings. - ASCII (American Standard Code for Information Interchange) uses 8 bits per character.				
-Fixed-length encodings are simple, because - all character encodings have the same length - a given character always has the same encoding				

Variable-Length Character Encodings

- Problem: fixed-length encodings waste space
- Solution: use a variable-length encoding
- use encodings of different lengths for different characters
- assign shorter encodings to frequently occurring characters
- Example: | | e |
| :--- | :--- |
| | 01 |
| | 0 |

\square
Challenge: when decoding/decompressing an encoded document, how do we determine the boundaries between characters?
example: for the above encoding, how do we know whether the next character is 2 bits or 3 bits?
One requirement: no character's encoding can be the prefix of another
character's encoding (e.g., couldn't have 00 and 001).

```
Huffman Encoding
-Huffman encoding is a type of variable-length encoding that is based on the actual character frequencies in a given document.
-Huffman encoding uses a binary tree
to determine the encoding of each character
to decode an encoded file - i.e., to decompress a compressed file, putting it back into ASCII
-Example of a Huffman tree (for a text with only six chars) Leaf nodes are characters.
```



```
Left branches are labeled with a 0 , and right branches are abeled with a 1 .
If you follow a path from roo to leaf, you get the encodin of the character in the leaf example: \(101=\)
```


Building a Huffman Tree (cont.)
4) Add the parent to the list of nodes:

5) Repeat steps 3 and 4 until there is only a single node in the list, which will be the root of the Huffman tree.

Completing the Huffman Tree Example I
－Merge the two remaining nodes with the lowest frequencies：

$\stackrel{27}{\square} \xrightarrow{27} \xrightarrow{40}$自自目目

Completing the Huffman Tree Example II

Completing the Huffman Tree Example III

- Merge again:

Using Huffman Encoding to Compress a File

1) Read through the input file and build its Huffiman tree
2) Write a file header for the output file.

- include an array containing the frequencies so that the tree can be rebuilt when the file is decompressed.

3) Traverse the Huffman tree to create a table containing the encoding of each character:

4) Read through the inputifile a second time, and write the Huffman code for each character to the output file.

Using Huffman Decoding to Decompress a File 1) Read the frequency table from the header and rebuild the tree.) Read one bit at a time and traverse the tree, starting from the root: when you read a bit of 1 , go to the right child
when you read a bit of 0 , go to the left child
when you reach a leaf node, record the character, return to the root, nue reading bits
The tree allows us to easily overcome the challenge of determining
example: 101111110000111100

Searching for an Item in a Binary Search Tree
-Algorithm for searching for an item with a key k : if $k==$ the
oot node's key, you're done
else if $k<$ the root node's key, search the left subtree else
search the right subtree
-Example: search for 7

Implementing Binary-Tree Search
 "̈bulic LLList search(int key) \{ Node $n=$
searchTree(root, key);
searchTree(root, ${ }^{\text {key }) ; ~}$
return ($n==$ nuil ? nul1 : n.data);
${ }_{\}}^{\text {retur }}$
private static Node searchTree(Node root, int key) \{
// write together
\}
If we find a node that has the specified key, we return its data field, which holds a list of the data items for that key.

Inserting an Item in a Binary Search Tree

- We want to insert an item whose key is k.
- We traverse the tree as if we were searching for k.
- If we find a node with key k, we add the twe ind a node with key k, we ada the If we don't find it, the last node we encounter will be the parent P of the new node.
if $k<P$'s key, make the new node P's
 eft child
else make the node P's right child
- Special case: if the tree is empty,
make the new node the root of the tree.
- The resulting tree is still a search tree.

Implementing Binary-Tree Insertion

- We'll implement part of the insert() method together.
- We'll use iteration rather than recursion.
- Our method will use two references/pointers: trav: performs the traversal down to the point of insertion
- parent: stays one behind trav
like the trail reference that we sometimes use when traversing a linked list

Implementing Binary-Tree Insertion
public void insert (int key, object data
Node trav = root; while (tra
Node
nul)
if (trav
if (trav.key $==$ key) \{
trav.data.addItem(data, 0); return;
\}

\}
Node newNode $=$ new Node (key, data);
if (parent $==$ nul1)
if (parent $==$ nul1)) // the tree was empty
root $=$ newnode
else if (key
else if (key < parent. key)
parent. 1 eft $=$ newwode; els
parent.

Deleting Items from a Binary Search Tree

－Three cases for deleting a node x

－Case 1：x has no children．
Remove x from the tree by setting its parent＇s reference to null．
：delete 4

－Case 2：x has one child．
Take the parent＇s reference to x and make it refer to x＇s child．
ex：delete 12

Deleting Items from a Binary Search Tree（cont．）
－Case 3：x has two children
－we can＇t just delete x ．why？
－instead，we replace x with a node from elsewhere in the tree
－to maintain the search－tree property，we must choose the replacement carefully
－example：what nodes could replace 26 below？

Deleting Items from a Binary Search Tree (cont.) -Case 3: x has two children (continued):

- replace x with the smallest node in x 's right subtree- call it y $-y$ will either be a leaf node or will have one right child. why?
-After copying y 's item into x, we delete y using case 1 or 2. ex: delete 26
$26 x \quad 30 x$
30

Implementing Binary-Tree Deletion
public Llisist delete(int key) $\{$
$/ /$ Find the node and its parent.
// Find the node and its parent. Node
parent $=$ null Node trav = root;
while (trav != null \&\& trav.key $!=$ key) \{ $\quad 26$ parent
parent $=$ trav;
if (key < trav.ke
trav = trav.left; ${ }^{\text {els }}$ (trave key)
trav = trav.right;

// Delete the node (if any) and return the removed items. if (trav $==$ null) (if any) and retur
return nul1;
else
LLList removeddata $=$ trav.data; deleteNode(trav, parent), return removedData
\}
This method uses a helper method to delete the node.

Efficiency of a Binary Search Tree

-The three key operations (search, insert, and delete) all have the same time complexity. insert and delete both involve a search followed by a constant number of additional operations
-Time complexity of searching a binary search tree:

- best case: $O(1)$
- worst case: $O(h)$, where h is the height of the tree
average case: $O(h)$
-What is the height of a tree containing n items? - it depends! why?
Balanced Trees
-A tree is balanced if, for each node,
the node's subtrees have the same
height or have heights that differ by - For a balanced tree with n nodes:

What If the Tree Isn't Balanced?

- Extreme case: the tree is equivalent to a linked list height $=\mathrm{n}$ -
- worst-case
time complexity $=O(\mathrm{n})$
- We'll look next at search--tree variants that take special measures to ensure balance.

UNIT-III Graphs

Definitions - Representation of graph
Graph Traversals - Depth-first traversal -
Breadth-first traversal - Applications of graphs -
Topological sort - Shortest-path algorithms -

Minimum spanning tree - Prim's and Kruskal's
algorithms - Biconnectivity - Euler circuits.

Where We Are

We have learned about the essential ADTs and data structures:

- Regular and Circular Arrays (dynamic sizing)
- Linked Lists
- Stacks, Queues, Priority Queues
- Heaps
- Unbalanced and Balanced Search Trees

We have also learned important algorithms

- Tree traversals
- Floyd's Method
- Sorting algorithms

Where We Are Going
 Less generalized data structures and ADTs

More on algorithms and related problems that require constructing data structures to make the solutions efficient

Topics will include:

- Graphs
- Parallelism

Graphs

A graph is a formalism for representing relationships among items

- Very general definition
- Very general concept

A graph is a pair: $G=(V, E) \quad v=\{$ Han,Leia,Luke $\}$

- A set of vertices, also known as nodes: $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- A set of edges $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
$\mathrm{E}=\{($ Luke,Leia $)$, (Han,Leia), (Leia,Han) $\}$
- Each edge e_{i} is a pair of vertices $\left(v_{j}, v_{k}\right)$
- An edge "connects" the vertices

Graphs can be directed or undirected

A Graph ADT?

We can think of graphs as an ADT

- Operations would inlude isEdge $\left(\mathbf{v}_{\mathbf{j}} \mathbf{v}_{\mathrm{k}}\right)$
- But it is unclear what the "standard operations" would be for such an ADT

Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms

Many important problems can be solved by:

1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

Some Graphs

For each example, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites

Core algorithms that work across such domains is why we are CSE

Scratching the Surface

Graphs are a powerful representation and have been studied deeply

Graph theory is a major branch of research in combinatorics and discrete mathematics

Every branch of computer science involves graph theory to some extent

To make formulating graphs easy and standard, we have a lot of standard terminology for graphs GRAPH TERMINOLOGY

Undirected Graphs

In undirected graphs, edges have no specific direction
-Edges are always "two-way"
Thus, (u, v) \in E implies ($v, u) \in E$.

-Only one of these edges needs to be in the set -The other is implicit, so normalize how you check for it

Degree of a vertex: number of edges containing that vertex
-Put another way: the number of adjacent vertices

Directed Graphs

In directed graphs (or digraphs), edges have direction

Thus, (u, v) \in E does not imply ($v, u) \in E$.
Let $(u, v) \in E$ mean $u \rightarrow v$
-Call u the source and v the destination
-In-Degree of a vertex: number of in-bound edges (edges where the vertex is the destination)
-Out-Degree of a vertex: number of out-bound edges (edges where the vertex is the source)

Self-Edges, Connectedness

A self-edge a.k.a. a loop edge is of the form (u, u)

- The use/algorithm usually dictates if a graph has:
- No self edges
- Some self edges
- All self edges

A node can have a(n) degree / in-degree / outdegree of zero

A graph does not have to be connected

- Even if every node has non-zero degree
- More discussion of this to come

More Notation

For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:
${ }^{-}|\mathrm{V}|$ is the number of vertices
$\cdot|E|$ is the number of edges

- Minimum?
- Maximum for undirected?

$$
\begin{aligned}
V= & \{A, B, C, D\} \\
E= & \{(C, B),(A, B), \\
& (B, A),(C, D)\}
\end{aligned}
$$

If $(u, v) \in E$, then v is a neighbor of u (i.e., v is adjacent to u)
-Order matters for directed edges: u is not adjacent to v unless $(v, u) \in E$

More Notation

For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:
${ }^{-}|\mathrm{V}|$ is the number of vertices
$-|E|$ is the number of edges

- Minimum? 0
- Maximum for undirected?
$|\mathrm{V}||\mathrm{V}+1| / 2 \in \mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Maximum for directed? $|\mathrm{V}|^{2} \in O\left(|\mathrm{~V}|^{2}\right)$

If $(u, v) \in E$, then v is a neighbor of u (i.e., v is adjacent to u)
-Order matters for directed edges: u is not adjacent to v unless $(v, u) \in E$

Examples Again

Which would use directed edges?
Which would have self-edges?
Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites

Weighted Graphs

In a weighted graph, each edge has a weight or cost

- Typically numeric (ints, decimals, doubles, etc.)
- Orthogonal to whether graph is directed
- Some graphs allow negative weights; many do not

Examples Again

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

We say "a path exists from v_{0} to v_{n} " if there is a list of vertices $\left[\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right]$ such that $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right) \in \mathrm{E}$ for all $0 \leq i<n$.

A cycle is a path that begins and ends at the same node $\left(v_{0}==v_{n}\right)$

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

Path length: Number of edges in a path Path cost: Sum of the weights of each edge

Example where
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Simple Paths and Cycles

A simple path repeats no vertices (except the first might be the last):
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
A cycle is a path that ends where it begins:
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]
A simple cycle is a cycle and a simple path:
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

- Is there a path from A to D?

No

- Does the graph contain any cycles?

Undirected Graph Connectivity

An undirected graph is connected if for all pairs of vertices $u \neq v$, there exists a path from u to v

Connected graph

Disconnected graph

An undirected graph is complete, or fully connected, if for all pairs of vertices $u \neq v$ there exists an edge from u to v

Directed Graph Connectivity

A directed graph is strongly connected if there is a path from every vertex to every other vertex

A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges

A direct graph is complete or fully connected, if for all pairs of vertices $\mathrm{u} \neq \mathrm{v}$, there exists an edge from u to v

Examples Again

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites

Trees as Graphs

When talking about graphs, we say a tree is a graph that is:

- undirected
- acyclic
- connected

How does this relate to the trees we know and "love"?

Rooted Trees

We are more accustomed to rooted trees where:

- We identify a unique root
- We think of edges as directed: parent to children

Picking a root gives a unique rooted tree

- The tree is simply drawn differently and with undirected edges

Rooted Trees

We are more accustomed to rooted trees where:

- We identify a unique root
- We think of edges as directed: parent to children

Picking a root gives a unique rooted tree

- The tree is simply drawn differently and with undirected edges

Directed Acyclic Graphs (DAGs)

A DAG is a directed graph with no directed cycles

- Every rooted directed tree is a DAG
- But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG

Examples Again

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps
- Airline routes
- Family trees
- Course pre-requisites

Density / Sparsity

Recall:
In an undirected graph, $0 \leq|\mathrm{E}|<|\mathrm{V}|^{2}$
Recall:
In a directed graph, $0 \leq|\mathrm{E}| \leq|\mathrm{V}|^{2}$

So for any graph, $|\mathrm{E}|$ is $O\left(|\mathrm{~V}|^{2}\right)$

Another fact:
If an undirected graph is connected, then $|\mathrm{E}| \geq|\mathrm{V}|-1$ (pigeonhole principle)

Density / Sparsity

|E| is often much smaller than its maximum size
We do not always approximate as |E| as $O\left(|\mathrm{~V}|^{2}\right)$

- This is a correct bound, but often not tight

If $|E|$ is $\Theta\left(|V|^{2}\right)$ (the bound is tight), we say the graph is dense

- More sloppily, dense means "lots of edges"

If |E| is $O(|\mathrm{~V}|)$ we say the graph is sparse

- More sloppily, sparse means "most possible edges missing"

Insert humorous statement here

GRAPH DATA STRUCTURES

What's the Data Structure?

Graphs are often useful for lots of data and questions

- Example: "What's the lowest-cost path from x to y "

But we need a data structure that represents graphs
Which data structure is "best" can depend on:

- properties of the graph (e.g., dense versus sparse)
- the common queries about the graph ("is (u, v) an edge?" vs "what are the neighbors of node u?")

We will discuss two standard graph representations

- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Adjacency Matrix

Assign each node a number from 0 to $|\mathrm{V}|-1$ $\mathrm{A}|\mathrm{V}| \times|\mathrm{V}|$ matrix of Booleans (or 0 vs. 1)

- Then $\mathrm{M}[\mathrm{u}][\mathrm{v}]==$ true means there is an edge from u to v

	A	B	C	D
A	F	T	F	F
B	T	F	F	F
C	F	T	F	T
D	F	F	F	F

Adjacency Matrix Properties

Running time to:

- Get a vertex's out-edges:
- Get a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:

Space requirements:

	A	B	C	D
A	F	T	F	F
B	T	F	F	F
C	F	T	F	T
D	F	F	F	F

Best for sparse or dense graphs?

Adjacency Matrix Properties

Running time to:

- Get a vertex's out-edges:
- Get a vertex's in-edges:

O(|V|)

- Decide if some edge exists: 0 (1)
- Insert an edge:
- Delete an edge:

Space requirements:
$0\left(|\mathrm{~V}|^{2}\right)$

	A	B	C	D
A	F	T	F	F
B	T	F	F	F
C	F	T	F	T
D	F	F	F	F

Best for sparse or dense graphs? dense

Adjacency Matrix Properties

How will the adjacency matrix vary for an undirected graph?

- Will be symmetric about diagonal axis
- Matrix: Could we save space by using only about half the array?

- But how would you "get all neighbors"?

Adjacency Matrix Properties

How can we adapt the representation for weighted graphs?

- Instead of Boolean, store a number in each cell
- Need some value to represent 'not an edge'
- $0,-1$, or some other value based on how you are using the graph
- Might need to be a separate field if no restrictions on weights

Adjacency List

Assign each node a number from 0 to $|\mathrm{V}|-1$

- An array of length $|\mathrm{V}|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

Running time to:

- Get a vertex's out-edges:
- Get a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:

- Delete an edge:

Space requirements:
Best for sparse or dense graphs?

Adjacency List Properties

Running time to:

- Get a vertex's out-edges:
$\mathrm{O}(d)$ where d is out-degree of vertex
- Get a vertex's in-edges:

O(|E|) (could keep a second adjacency list for this!)

- Decide if some edge exists:

O(d) where d is out-degree of source

- Insert an edge:

O(1) (unless you need to check if it's already there)

- Delete an edge:

O(d) where d is out-degree of source
Space requirements: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
Best for sparse or dense graphs? sparse

Undirected Graphs

Adjacency lists also work well for undirected graphs with one caveat

- Put each edge in two lists to support efficient "get all neighbors"

Which is better?

Graphs are often sparse

- Streets form grids
- Airlines rarely fly to all cities

Adjacency lists should generally be your default choice

- Slower performance compensated by greater space savings

Might be easier to list what isn't a graph application...
APPLICATIONS OF GRAPHS: TRAVERSALS

Application: Moving Around WA State

What's the shortest way to get from Seattle to Pullman?

Application: Moving Around WA State

What's the fastest way to get from Seattle to Pullman?

Application: Reliability of Communication

If Wenatchee's phone exchange goes down, can Seattle still talk to Pullman?

Application: Reliability of Communication

If Tacomas's phone exchange goes down, can Olympia still talk to Spokane?

Applications: Bus Routes Downtown

If we're at 3rd and Pine, how can we get to 1st and University using Metro? How about 4th and Seneca?

Graph Traversals

For an arbitrary graph and a starting node v, find all nodes reachable from v (i.e., there exists a path)

- Possibly "do something" for each node (print to output, set some field, return from iterator, etc.)

Related Problems:

- Is an undirected graph connected?
- Is a digraph weakly/strongly connected?
- For strongly, need a cycle back to starting node

Graph Traversals

Basic Algorithm for Traversals:

- Select a starting node
- Make a set of nodes adjacent to current node
- Visit each node in the set but "mark" each nodes after visiting them so you don't revisit them (and eventually stop)
- Repeat above but skip "marked nodes"

In Rough Code Form

```
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
            next = pending.remove()
            for each node u adjacent to next
                if(u is not marked) {
                    mark u
                    pending.add(u)
            }
        }
    }
}
```


Running Time and Options

Assuming add and remove are O(1), entire traversal is $0(|E|)$ if using an adjacency list

The order we traverse depends entirely on how add and remove work/are implemented

- DFS: a stack "depth-first graph search"
- BFS: a queue "breadth-first graph search"

DFS and BFS are "big ideas" in computer science

- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: Explore areas closer to start node first

Recursive DFS, Example with Tree

A tree is a graph and DFS and BFS are particularly easy to "see" in one

DFS(Node start) \{ mark and process start for each node u adjacent to start if u is not marked DFS(u)
\}
Order processed: A, B, D, E, C, F, G, H

- This is a "pre-order traversal" for trees
- The marking is unneeded here but because we support arbitrary graphs, we need a means to process each node exactly once

DFS with Stack, Example with Tree

Order processed: A, C, F, H, G, B, E, D

- A different order but still a perfectly fine traversal of the graph

BFS with Queue, Example with Tree

Order processed: A, B, C, D, E, F, G, H

- A "level-order" traversal

DFS/BFS Comparison

BFS always finds the shortest path (or "optimal solution") from the starting node to a target node
-Storage for BFS can be extremely large
-A k-nary tree of height h could result in a queue size of k^{h}

DFS can use less space in finding a path -If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $\mathrm{d} \cdot \mathrm{p}$ elements

Implications

For large graphs, DFS is hugely more memory efficient, if we can limit the maximum path length to some fixed d.

If we knew the distance from the start to the goal in advance, we could simply not add any children to stack after level d

But what if we don't know d in advance?

Iterative Deepening (IDFS)

Algorithms

- Try DFS up to recursion of K levels deep.
- If fails, increment K and start the entire search over

Performance:

- Like BFS, IDFS finds shortest paths
- Like DFS, IDFS uses less space
- Some work is repeated but minor compared to space savings

Saving the Path

Our graph traversals can answer the standard reachability question:
"Is there a path from node x to node y ?"
But what if we want to actually output the path?
Easy:

- Store the previous node along the path: When processing u causes us to add v to the search, set v.path field to be u)
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- What's an easy way to do the reversal? A Stack!!

Example using BFS

What is a path from Seattle to Austin?

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Topological Sort

Problem: Given a DAG G=(V, E), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it

Example input:

Example output:

- 142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

Questions and Comments

Terminology:

A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Why do we perform topological sorts only on DAGs?

- Because a cycle means there is no correct answer

Is there always a unique answer?

- No, there can be one or more answers depending on the provided graph

What DAGs have exactly 1 answer?

- Lists

Uses Topological Sort

Figuring out how to finish your degree

Computing the order in which to recalculate cells in a spreadsheet

Determining the order to compile files with dependencies

In general, use a dependency graph to find an allowed order of execution

Topological Sort: First Approach

1. Label each vertex with its in-degree

- Think "write in a field in the vertex"
- You could also do this with a data structure on the side

2. While there are vertices not yet outputted:
a) Choose a vertex \mathbf{v} labeled with in-degree of 0
b) Output \mathbf{v} and "remove it" from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v}, decrement indegree of \mathbf{u}

- (i.e., \mathbf{u} such that (\mathbf{v}, \mathbf{u}) is in E)

Example

Output:

Example

Output:

Example

Output:

126

Example

Output:

126


```
Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-deg: 0
1
0
```


Example

Example

Example

Output:

126


```
Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x
In-deg: 0
1
0
```


Example

Running Time?

```
labelEachVertexWithItsInDegree();
for(i=0; i < numVertices; i++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

What is the worst-case running time?

- Initialization $\mathrm{O}(|\mathrm{V}|+|E|)$ (assuming adjacency list)
- Sum of all find-new-vertex $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ (because each $\mathrm{O}(|\mathrm{V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $\mathrm{O}\left(|\mathrm{V}|^{2}+|E|\right)$ - not good for a sparse graph!

Doing Better

Avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, or something that gives O(1) add/remove
- Order we process them affects the output but not correctness or efficiency

Using a queue:

- Label each vertex with its in-degree,
- Enqueue all 0-degree nodes
- While queue is not empty
- $v=$ dequeue()
- Output v and remove it from the graph
- For each vertex u adjacent to v, decrement the in-degree of u and if new degree is 0 , enqueue it

Running Time?

```
labelAllWithIndegreesAndEnqueueZeros();
for(i=0; i < numVertices; i++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
            w.indegree--;
            if(w.indegree==0)
            enqueue(w);
    }
}
```

- Initialization: $O(|\mathrm{~V}|+|E|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: $O(|\mathrm{~V}|)$
- Sum of all decrements: O (|E|) (assuming adjacency list)
- So total is $O(|E|+|V|)$ - much better for sparse graph!

More Graph Algorithms

Finding a shortest path is one thing

- What happens when we consider weighted edges (as in distances)?

Next time we will discuss shortest path algorithms and the contributions of a curmudgeonly computer scientist

Unit-IV

Introduction to Algorithms

Introduction - Notion of Algorithm -
Fundamentals of Algorithmic problem
solving - Important problem types -
Mathematical analysis for recursive \& non
recursive algorithms - Brute Fore -
Selection Sort - Bubble Sort.

What is course about?

The theoretical study of design and
analysis of computer algorithms
Basic goals for an algorithm:

- always correct
- always terminates
- This class: performance
- Performance often draws the line between what is possible and what is impossible.

Design and Analysis of Algorithms

- Analysis: predict the cost of an algorithm in terms of resources and performance
- Design: design algorithms which minimize the cost

The problem of sorting

Input: sequence $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of numbers.
Output: permutation $\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\rangle$ such that $a_{1}^{\prime} \leq a_{2}^{\prime} \leq \cdots \leq a_{n}^{\prime}$.

Example:

$$
\begin{aligned}
& \text { Input: } 8244936 \\
& \text { Output: } 2344689
\end{aligned}
$$

Insertion sort

Example of insertion sort

8	2	4	9	3	6

Example of insertion sort

8	2	4	9	3	6

Example of insertion sort

8	2	4	9	3	6
2	8	4	9	3	6

Example of insertion sort

Example of insertion sort

Example of insertion sort

Example of insertion sort

8	2	4	9	3	6
2	4	4	9	3	6
2	4	8	V_{9}^{8}	3	6
2	4	8	9	3	6

Example of insertion sort

Running time

- The running time depends on the input: an already sorted sequence is easier to sort.
- Major Simplifying Convention: Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones.
$\Rightarrow \mathrm{T}_{\mathrm{A}}(\mathrm{n})=$ time of A on length n inputs
- Generally, we seek upper bounds on the running time, to have a guarantee of performance.

Kinds of analyses

Worst-case: (usually)

- $T(n)=$ maximum time of algorithm on any input of size n.
Average-case: (sometimes)
- $T(n)=$ expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (NEVER)

- Cheat with a slow algorithm that works fast on some input.

Machine-independent time

What is insertion sort's worst-case time?

Big Ideas:

- Ignore machine dependent constants, otherwise impossible to verify and to compare algorithms
- Look at growth of $T(n)$ as $n \rightarrow \infty$.

"Asymptotic Analysis"

Θ-notation

DEF:

$\Theta(g(n))=\left\{f(n)\right.$: there exist positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $\left.n \geq n_{0}\right\}$
Basic manipulations:

- Drop low-order terms; ignore leading constants.
- Example: $3 n^{3}+90 n^{2}-5 n+6046=\Theta\left(n^{3}\right)$

Asymptotic performance

When n gets large enough, $\mathrm{a} \Theta\left(n^{2}\right)$ algorithm always beats a $\Theta\left(n^{3}\right)$ algorithm.

- Asymptotic analysis is a useful tool to help to structure our thinking toward better algorithm
- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing ${ }_{\text {L1. } 153}$

Insertion sort analysis

Worst case: Input reverse sorted.

$$
\left.T(n)=\sum_{j=2}^{n} \Theta(j)=\Theta\left(n^{2}\right) \quad \text { [arithmetic series }\right]
$$

Average case: All permutations equally likely.

$$
T(n)=\sum_{j=2}^{n} \Theta(j / 2)=\Theta\left(n^{2}\right)
$$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small n.
- Not at all, for large n.

Example 2: Integer Multiplication

- Let $\mathrm{X}=\mathrm{A} \mid \mathrm{B}$ and $\mathrm{Y}=\mathrm{C} \mid \mathrm{D}$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $\mathrm{n} / 2$ bit integers
- Simple Method: $X Y=\left(2^{\mathrm{n} / 2} \mathrm{~A}+\mathrm{B}\right)\left(2^{\mathrm{n} / 2} \mathrm{C}+\mathrm{D}\right)$
- Running Time Recurrence

$$
\mathrm{T}(\mathrm{n})<4 \mathrm{~T}(\mathrm{n} / 2)+100 \mathrm{n}
$$

- Solution T(n) $=\theta\left(\mathrm{n}^{2}\right)$

Better Integer Multiplication

- Let $\mathrm{X}=\mathrm{A} \mid \mathrm{B}$ and $\mathrm{Y}=\mathrm{C}$ D where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $\mathrm{n} / 2$ bit integers
- Karatsuba:
$X Y=\left(2^{\mathrm{n} / 2}+2^{\mathrm{n}}\right) A C+2^{\mathrm{n} / 2(A-B)(C-D)}+\left(2^{\mathrm{n} / 2}+1\right) B D$
- Running Time Recurrence

$$
T(n)<3 T(n / 2)+100 n
$$

- Solution: $\theta(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log 3}\right)$

Example 3:Merge sort

Merge-Sort $A[1 \ldots n]$

1. If $n=1$, done.
2. Recursively sort $A[1 . .\lceil n / 2\rceil]$ and $A[\lceil n / 2\rceil+1 \ldots n]$.
3. "Merge" the 2 sorted lists.

Key subroutine: Merge

Merging two sorted arrays

$20 \quad 12$
1311
79
21

Merging two sorted arrays

20	12
13	11
7	9
2	1

Merging two sorted arrays

20	12	20	12
13	11	13	11
7	9	7	9
2			
1			

Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$
1311	1311
$7 \quad 9$	9
2	2
1	2

Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$	20	12
1311	1311	13	11
$7 \quad 9$	$7 \quad 9$	7	9
2	2		
1	2		

Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$	$20 \quad 12$
1311	1311	1311
$7 \quad 9$	$7 \quad 9$	(7) 9
2	2	\downarrow
1	2	7

Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$	$20 \quad 12$		
1311	1311	1311	13	11
79	$7 \quad 9$	(7) 9		9
2	2			
1	2	7		

Merging two sorted arrays

$20 \quad 12$	$20 \quad 12$	$20 \quad 12$	$20 \quad 12$
1311	1311	1311	1311
$7 \quad 9$	$7 \quad 9$	(7) 9	(9)
2	2	1	1
1	2	7	9

Merging two sorted arrays

| $20 \quad 12$ |
| :---: | :---: | :---: | :---: | :---: |
| 1311 | 1311 | 1311 | 1311 | 1311 |
| $7 \quad 9$ | $7 \quad 9$ | (7) 9 | (9) | |
| 2 | 2 | | 1 | |
| 1 | 2 | 7 | 9 | |

Merging two sorted arrays

| $20 \quad 12$ |
| :---: | :---: | :---: | :---: | :---: |
| 1311 | 1311 | 1311 | 1311 | 13 (11) |
| 79 | 79 | (7) 9 | (9) | T |
| 2 | 2 | \downarrow | 1 | \downarrow |
| 1 | 2 | 7 | 9 | 11 |

Merging two sorted arrays

$20 \quad 12$					
1311	1311	1311	1311	13 (1)	13
$7 \quad 9$	$7 \quad 9$	(7) 9	(9)	T	
2	2		1	\downarrow	
1	2	7	9	11	

Merging two sorted arrays

$20 \quad 12$	20				
1311	1311	1311	1311	13 (11)	13
$7 \quad 9$	$7 \quad 9$	(7) 9	(9)		
2	2		1	1	
1	2	7	9	11	12

Merging two sorted arrays

$20 \quad 12$	20 (12)				
1311	1311	1311	1311	13 (11)	13
$7 \quad 9$	$7 \quad 9$	(7) 9	(9)		
2	2		1	\downarrow	
1	2	7	9	11	12

Time $=\Theta(n)$ to merge a total of n elements (linear time).

Analyzing merge sort

$T(n)$	Merge-Sort $A[1 \ldots n]$
$\Theta(1)$	1. If $n=1$, done.
$2 T(n / 2)$	2. Recursively sort $A[1 \ldots\lceil n / 2\rceil]$
$\Theta(n)$	and $A[\lceil n / 2\rceil+1 \ldots n]$.
3. "Merge" the 2 sorted lists	

Sloppiness: Should be $T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)$,
but it turns out not to matter asymptotically.

Recurrence for merge sort

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 ; \\
2 T(n / 2)+\Theta(n) \text { if } n>1 .
\end{array}\right.
$$

- We shall usually omit stating the base case when $T(n)=\Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- Lecture 2 provides several ways to find a good upper bound on $T(n)$.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.
$T(n)$

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+c n$, where $c>0$ is constant.

Total $=\Theta(n \lg n)$

Conclusions

- $\Theta(n \lg n)$ grows more slowly than $\Theta\left(n^{2}\right)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for $n>30$ or so.

ALGORITHM ANALYSIS AND DESIGN

INTRODUCTION

> Algorithm Analysis - Asymptotic Notations - Divide and Conquer - Merge Sort - Binary Search - Greedy
> Algorithms - Knapsack Problem - Dynamic
> Programming - Warshall's Algorithm for Finding
> Transitive Closure - Backtracking - Sum of Subset
> Problem - Branch and Bound - Travelling Salesman
> Problem.

Algorithm

- An algorithm is a step by step procedure for solving the given problem.
- An algorithm is independent of any programming language and machine.

Definition

3 An Algorithm is a finite sequence of effective steps to solve a particular problem where each step is unambiguous(definite) and which terminates for all possible inputs in a finite amount of time.

- An Algorithm accepts zero or more inputs and produces one or more outputs.

Properties

- Definiteness
- Effectiveness
- Finiteness

Definiteness

- Each instruction should be clear and unambiguous.
- It must be perfectly clear what should be done.
- Example Directions which are not permitted
- "add 6 or 7 to x"
- compute $x / 0$
- remainder of m / n when m and n are -ve numbers
- it is not clear which of the 2 possibilities should be done.

Definiteness Contd..

- Achievement using programming language for algorithms
- designed such that each legitimate sentence has a unique meaning

Effectiveness

- Each step must be such that it can at least in principle be done by a person using paper and pencil in a finite amount of time.
- Example -Effective
- Performing arithmetic on integers
- Example not effective
- Some arithmetic with real numbers.
- if k is the largest integer n such that $x^{\wedge} n+y^{\wedge} n=z^{\wedge} n$ in all positive integers then go to step 4

Finiteness

- The algorithm should terminate after a finite number of steps in all the cases.
- The time for termination should be reasonably short.

Example Algorithm

- An algorithm to find the maximum in array of n numbers

```
Algorithm max(a,n)
// a is an array of size n
{ result:= a[1];
for i = 2 to n do
{ if (a[i] > result)
then result :=a[i];
}
return result;
}
```


Development of an algorithm

- Steps Involved
- Devise
- Validate
- Analyse
- Test

Devise the algorithm

- An art which cannot be fully automated
- Design techniques
- Yields good algorithms for known problems
- Helps to devise new useful algorithms

General Techniques

- Provide directions for algorithmic problem solutions
- Help programmers thinking in designing an algorithm
- Types - depending on applied problems
- Solve almost all variety problems.
- Solve only to specific type of problems.

Devise Algorithm For New Problems

- Requires exploration of the specific features of the problem discussed
- General design techniques can be applied to a much extend.
- The best technique has to be selected from the possible set of techniques.
- It should be applied in the right way.

Example Sorting Approaches

- Incremental
- Insertion sort
- Divide-and-conquer
- Quick sort
- Merge sort etc.

Validating the algorithm

- To show that algorithm computes the correct answer for all possible legal inputs.
- Need not be expressed as a program.
- sufficient to state it any precise way.
- Assurance of correctness of algorithm
- Independent of the issues concerning the programming language

Validating the algorithm

- A proof of correctness is more valuable than 100 tests.
- Mathematical proof
- solution stated in two forms
- Program
- The program is expressed as a set of predicate calculus assertions in input and output variables.
- Specification
- specifications are also expressed as predicate calculus assertions

Analyse algorithms

- This phase performs performance analysis
- Execution requires CPU time and memory
- Task of determining time and space requirements.
- Performance in cases considered separately
- Best case
- Worst case
- Average case etc.

Good algorithm

- One which works correctly
- should give the desired output
- Readable
- Steps are clear and understandable
- Efficient in terms of time and memory utilization .
- give the desired output faster
- utilize less resources.
- Given multiple solutions, finding out the better one.

Performance Measures

- Quality of the solution
- How much time does the solution take?.
- How much space does the solution occupy?
- Simplicity of the solution
- Performance Improvement
- Improving the algorithm design.
- Continuous improvements in hardware and communication infrastructure

Testing

- Two phases
- Debugging
- Profiling (performance measurement)

Debugging

- Process of executing programs on sample data sets to determine whether faulty results occur and if so to correct them.
- Requirement
- A proof of correctness prove that the algorithm will correctly for all cases.
- Not easy to obtain mathematical proofs.

Profiling

- Executing programs with sample data sets to measure the time and space requirements.
- It is helpful for optimization since it can point out logical places that require optimization.

Basic Mathematical Principles A few formulae

$$
\begin{aligned}
& 1+2+\ldots+n=n *(n+1) / 2 \\
& 1+2^{2}+\ldots+n^{2}=n *(n+1) *(2 n+1) / 6 \\
& 1+a+a^{2}+\ldots+a^{n}=\left(a^{(n+1)}-1\right) /(a-1) \\
& a+a r+a^{2}+a^{3}+\ldots \ldots \ldots+a^{n}=a\left(r^{n+1}-1\right) /(r-1)
\end{aligned}
$$

$$
\sum_{n=1}^{n} T^{k} \approx \frac{1}{1<1}<n^{k+1}
$$

$$
\sum_{i=1}^{k} i \times 2^{i}=(k-1) \times 2^{k+1}+2
$$

Mathematical Formulae Contd..

- Floor(x) or $|x|$ is the largest integer less than or equalto x
- Ceil(x) or $\lceil x\rceil$ is the smallest integer greater than or equal to x

Mathematical Formulae Contd.

```
\(\log _{a} x y=\log _{a} x+\log _{a} y\)
\(\log _{a}(x / y)=\log _{a} x-\log _{a} y\)
\(\log _{a} x^{\wedge} n=n \log _{a} x\)
\(\log _{\mathrm{a}} 1=0\)
\(\log _{x} x=1\)
\(\log _{a} x=1 / \log _{x} a\)
\(\log _{a}(x)=\log _{a}(b) * \log _{b}(x)\)
\(\log _{a} x=\log _{b} x / \log _{b} a\)
\(a^{\log }{ }_{a}=x\)
if \(2^{k}=n\) then \(k=\log _{2} n\)
\(\mathbf{x}^{\log _{b}}{ }^{y}=y^{\log _{b}} \mathbf{x}\)
```


Mathematical Formulae
 Contd.

$C(n, k)=\binom{n}{k}=\frac{n \times(n-1) \times--\times(n-k+1)}{k!}$
$C(n, k)=\left(n_{k}\right)=\frac{n!}{(n-k)!\times k!}$ for $\mathbf{n}>=\mathbf{k}>=\mathbf{0}$

$$
\sum_{k=0}^{n} C(n, k)=2^{n}
$$

Mathematical Formulae Contd..

- A.P.
- Nth term - $a+(n-1) d$
- Sum - Sn = $n / 2^{*}(2 a+(n-1) d)$
- G.P.
- Nth term - ar ${ }^{(n-1)}$
- Sum - Sn =a(1-ri)/(1-r) (valid only if $r \neq 1)$

A Commonly Used Result During Analysis

- How many times should we half the number n (discarding reminders if any) to reach 1 ?
- two cases.
- Case -1 : n is a power of 2
- Case - 2: n is not a power of 2

A Commonly Used Result Contd..

Case $-1: \mathrm{n}$ is a power of $2 \rightarrow \mathrm{n}=2^{\mathrm{m}}$
Example $n=8$
8 must be halved 3 times to reach 1

$$
\begin{array}{llll}
8 & 4 & 2 & 1
\end{array}
$$

16 must be halved 4 times to reach 1
$\begin{array}{lllll}16 & 8 & 4 & 2 & 1\end{array}$

A Commonly Used Result Contd..

- Case - 2: n is not a power of $2 ; \mathrm{n}>2^{\mathrm{m}}$

Example $\mathrm{n}=9$
9 must be halved 3 times to reach 1
9421
15 must be halved 3 times to reach 1
15731

A Commonly Used Result Contd..

General Case $\left.2^{\mathrm{m}} \leq \mathrm{n}<2^{(\mathrm{m}+1}\right)$
n must be halved m times to reach 1
n must be halved m times if $2^{\mathrm{m}} \leq \mathrm{n}<2^{(\mathrm{m}+1)}$
So $\mathrm{m} \leq \log _{2}(\mathrm{n})<\mathrm{m}+1$
$\mathrm{m}=$ floor $\left(\log _{2} \mathrm{n}\right)$ or $\quad \log _{2}$
Number n must be hatwed $\left[\log _{2}\right]^{\text {times to reach } 1}$

A Corollary to the result Contd..

- A number n must be halved floor $\left(\log _{2} \mathrm{n}\right)+1$ times
- To reach 0

Performance Analysis

- to improve existing algorithms
- to choose among several available algorithms
- Two types
- Apriori Analysis
- Aposteriori Analysis

Apriori Analysis - Example

- Doing an analysis of the solutions before performing the action.
- Physical Example- Find path from P to Q
- Criteria for selection
- Path length, road conditions, type of vehicle, speed

Apriori Analysis

- Doing an analysis of the solutions before coding the algorithms
- Given two or more algorithms for a problem
- Doing a machine independent analysis to find better algorithm

Space Time Tradeoff
 Example

Store Employee information

- Solutions
- Array
- Linked list
- Which locates a particular employee faster?
- Which provides better utilization of memory?
- Which is easy to code?
- Which is easier to test?

Space Complexity

- Amount of memory the algorithm needs to run to completion
- Requirements
- Fixed part
- Variable part
- $S(P)=c+S p$

Example Algorithm

```
Algorithm abc(a,b,c)
{return a+b+b*c+(a-c)/(a+b) +2.0;
```

$$
\begin{aligned}
& S(P)=c+S p \\
& S p=0 S(P)>3
\end{aligned}
$$

Example Algorithm

```
Algorithm sum(a,n)
\{s = 0.0;
for \(\mathrm{i}:=1\) to n do \(\mathrm{s}:=\mathrm{s}+\mathrm{a}[\mathrm{i}]\);
return s; \}
```

one word for each integer $\mathrm{n}, \mathrm{i}, \mathrm{s}, \mathrm{a}[]$
$\mathrm{s}(\mathrm{n})>=\mathrm{n}+3$

Example Algorithm

algorithm rsum(a,n)
\{ if $(n<=0)$ then return 0.0
else return $\operatorname{rsum}(a, n-1)+a[n] ;\}$

- Instance characterized by n
- Recursive stack space required at each level
-(n,return address, *a[]) 3 words
- Depth of recursion considering first invocation - $(\mathrm{n}+1)$
- $\mathrm{S}(\mathrm{n})>=3^{*}(\mathrm{n}+1)$

Time Complexity

- Amount of computer time needed for the algorithm to run to completion
- $\mathrm{T}(\mathrm{P})=\mathrm{C}(\mathrm{P})+\mathrm{R}(\mathrm{P})$
- $\mathrm{C}(\mathrm{P})$ is independent of problem instance and is always not required (recompilation)
- So usually only $\mathrm{R}(\mathrm{P})$ is considered

Apriori Measures

- Instruction count
- Basic operations
- Basic steps
- Size of input.

Computing Instruction Count

- Initialization instructions
- Loops.
- Number of passes of the loops
- Count the basic operations/steps

Basic Steps - Example

- Search
- Basic operation is compare x and y
- Matrix multiplication
- Basic operation is multiplication of real numbers

Step in Algorithm

- Step is a meaningful segment of program or computational unit that is independent of the instance characteristics
- Example
- 10 or 100 additions can be one step
- 200 multiplications can be another step
- but not n additions

Example 1

```
Algorithm sum(a,n)
\{ \(\mathrm{s}=0.0\);
count:=count+1;
for \(\mathrm{i}:=1\) to n do
    \{count:=count+1;
        \(\mathrm{s}:=\mathrm{s}+\mathrm{a}[\mathrm{I}]\);
        count:=count+1;\}
count:=count +1 ;
count:count+1;
    return s ; \}
```

$$
\text { count }=2 n+3
$$

Example 2

Count ?

Computing Step Count from s/e

- Each statement will have an (s/e) steps/execution depending on the type of statement
- Frequency of each statement is multiplied with the corresponding s/e of that statement to get the step count for that statement.
- Statement Step counts are added to give the total count

$$
\sum f \times(s / e)
$$

Example 1

Algorithm sum(a,n)	s/e freq	total	
$\{\mathrm{s}=0.0 ;$	1	1	1
for $\mathrm{i}:=1$ to n do	1	$\mathrm{n}+1$	$\mathrm{n}+1$
$\{\mathrm{~s}:=\mathrm{s}+\mathrm{a}[\mathrm{i}] ;\}$	1	n	n
return $\mathrm{s} ;$	$\}$	1	1
		1	
			$--\cdots---$
			$2 \mathrm{n}+3$

Example 2

$$
\begin{aligned}
& \text { algorithm } \operatorname{add}(a, b, b, m, n) \\
& \text { \{for } \mathrm{i}:=1 \text { to } \mathrm{m} \text { do } \\
& \text { for } \mathrm{j}:=1 \text { to } \mathrm{n} \text { do } \\
& c[i, j]:=a[i, j]+b[i, j] ;\} \\
& 1 \mathrm{~m}(\mathrm{n}+1) \mathrm{m}(\mathrm{n}+1) \\
& 1 \mathrm{mn} \mathrm{mn} \\
& 2 m n+2 m+1
\end{aligned}
$$

Example 3

	s/e	freq	freq	total	total
algorithm rsum(a,n)		$\mathrm{n}=0$	$\mathrm{n}>0$	$\mathrm{n}=0$	$\mathrm{n}>0$
\{ if $(\mathrm{n}<=0)$ then	1	1	1	1	1
\{ return 0.0; \}		1	0	1	0
else	$1+\mathrm{x}$				
$\begin{aligned} & \{\text { return } \operatorname{rsum}(a, n-1)+a[n] ; \\ & \quad\}\} \end{aligned}$		0	1	0	$1+\mathrm{x}$
				2	$2+x$

Computing Complexity

$\mathrm{X}=\mathrm{t}_{\mathrm{rsum}}(\mathrm{n}-1)$
$\mathrm{t}_{\text {rsum }}(\mathrm{n})=\left\{{ }^{2}{ }_{2+\operatorname{trsum}(\mathrm{n}-1)}\right.$ if ${ }_{\text {if }}{ }^{\mathrm{n}=0}{ }_{\mathrm{n}>0}$
Known as a recurrence relation.

Solving the Recurrence

$$
\begin{gathered}
\mathrm{t}_{\mathrm{rsum}}(\mathrm{n})=2+\mathrm{t}_{\mathrm{rsum}}(\mathrm{n}-1) \\
=2+2+\mathrm{t}_{\mathrm{rsum}}(\mathrm{n}-2) \\
=2 * 2+\mathrm{t}_{\mathrm{rsum}}(\mathrm{n}-2) \\
=2 * 3+\mathrm{t}_{\mathrm{rsum}}(\mathrm{n}-3) \\
---)^{2}--- \\
=2 * \mathrm{n}+\mathrm{t}_{\mathrm{rsum}}(\mathrm{n}-\mathrm{n}) \\
=2 \mathrm{n}+2 \quad \mathrm{n}>=0
\end{gathered}
$$

Complexity - Representation

- when the step count cannot be uniquely represented, the step count for the best, worst and average cases can be separately listed.

Worst Case Complexity

- Dn be the set of inputs of size n
- i ε Dn.
- Let T(i) be the number of basic operations performed by the algorithm on input i.
- Worst case complexity W can be defined as
$-W(n)=\max \{T(i) / i \varepsilon D n\}$

Best Case Complexity

- Dn be the set of inputs of size n
- i ε Dn.
- Let T(i) be the number of basic operations performed by the algorithm on input i.
- Best case complexity B can be defined as

$$
-B(N)=\min \{T(i) / i \varepsilon D n\}
$$

Average Case Complexity

- Dn be the set of inputs of size n
- T(i) be the number of basic operations performed by the algorithm on input i.
- $\mathrm{P}(\mathrm{i})$ be the probability for input I to occur
- Average behavior can be defined as
- $\quad \mathrm{A}(\mathrm{n})=\quad \sum_{\mathrm{i} \text { } D D_{n}} \mathrm{P}(\mathrm{i}) \times \mathrm{T}(\mathrm{i})$

Computing Average Case Complexity

- Two steps
- An understanding of the average nature of the input
- Performing a run-time analysis of the algorithm for different cases
- Difficult to estimate the statistical behavior of the input

Expressing Complexity

- Goodness of an algorithm often expressed in terms of its worst-case running time.
- Two reasons for this:
- the need for a bound on one's pessimism
- ease of calculation of worst-case

Example Algorithm

Algorithm insert(A,i,k)
$/ / T \mathrm{To}$ insert k at position i in $\mathrm{a}[1 . . \mathrm{n}]$
$\{$ Copy a[i...n-1] to a[i + 1...n]
Copy k to a[i] \}

Worst Case Complexity

| Algorithm insert(A,i,k) |
| :--- | :---: |
| $/ /$ To insert k at position i in $\mathrm{a}[1 . . \mathrm{n}]$ |
| $\{$ Copy a[i...n-1] to $\mathrm{a}[\mathrm{i}+1 \ldots \mathrm{n}] \quad \mathrm{n}-1$ copies |
| Copy k to a[i] $\}$ 1 copy |

total number of copy operations is $n-1+1=n$.
worst case complexity of array insertion is n steps

Best Case Complexity

| Algorithm insert(A,i,k) |
| :--- | ---: |
| $/ /$ To insert k at position i in $\mathrm{a}[1 . . \mathrm{n}]$ |
| $\{$ Copy a[i...n-1] to $\mathrm{a}[\mathrm{i}+1 \ldots \mathrm{n}] \quad 0$ copies |
| Copy k to a[i] $\}$ 1 copy |

total number of copy operations is $0+1=1$
worst case complexity of array insertion is 1 steps

Average Case Complexity

Algorithm insert(A,i,k)
//To insert k at position i in $\mathrm{a}[1 . . \mathrm{n}]$
$\{$ Copy $\mathrm{a}[\mathrm{i} . . . \mathrm{n}-1]$ to $\mathrm{a}[\mathrm{i}+1 \ldots \mathrm{n}]$
Copy k to $\mathrm{a}[\mathrm{i}]\}$

Average Complexity $=\sum_{\mathrm{i} \epsilon D n} \mathrm{P}(\mathrm{i}) \times \mathrm{T}(\mathrm{i}) \quad$ Step count for $\mathrm{n}-1$ copy $-\mathrm{n}-1$
$=(1 / n)+(2 / n)+\ldots+(n-1) / n=(n-1) / 2$.

$$
((\mathrm{n}-1) / 2)+1 \text { steps. }
$$

Compare Algorithms

- Analysis to get an idea about the fastness
- Exact step count is not required
- Example
- An algorithm with step count $10 \mathrm{n}+10<$ $100 \mathrm{n}+10$.
- Constant associated is not much relevant
- 100 n but it is 40 or 80 n .
- $\mathrm{c}_{3} \mathrm{n}<\mathrm{c}_{1} \mathrm{n}^{2}+\mathrm{c}_{2} \mathrm{n}$

Break Even Point

- Normally $c_{3} n<c_{1} n^{2}+c_{2} n$
- Irrelevant of c_{1}, c_{2} and c_{3} there will be a value of n beyond which $c_{3} n$ will run faster.
- Exact value of break even point by running
- Sufficient condition for existence
- Compare $c_{1} n^{2}+c_{2} n \& c_{3} n$
- break even point exist irrelevant of $\mathrm{c}_{1}, \mathrm{c}_{2}$ and c_{3}

Algorithm Analysis

- Precise mathematical analysis is difficult
- Steps to simplify the analysis
- Identify fastest growing term
- Neglect the slow growing terms
- Neglect the constant factor in the fastest growing term are performed.
- Simplification result
- algorithm's time complexity.
- Focuses on the growth rate of the algorithm with respect to the problem size

Running Times- Comparison

Asymptotic Notations

- Describing complexity

Upper Bound

- A set of numbers ranging from a to b.
- Upper bound for the set
- Any number greater than or equal to b
- Could be b or $\mathrm{b}+1$, or $\mathrm{b}+2, \ldots$
- Moves closer as the number increases
- No point of time it is greater than upper bound.

O-Notation (Upper Bound)

- $f(n)=O(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or below $c g(n)$ or $\mathrm{f}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}>n_{0}$.

O-Notation Contd..

- If $f(n)=O(g(n)) \rightarrow f(n)$ is at least as good as $\mathrm{g}(\mathrm{n})$.
- Informally $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ denotes the set of all functions with a smaller or same order of growth as $\mathrm{g}(\mathrm{n})$.
- n^{2} belongs $\mathrm{O}\left(\mathrm{n}^{3}\right)$.

O-Notation Examples

- $\mathrm{n}^{2}+10 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- $5 \mathrm{n}^{3}+6=\mathrm{O}\left(\mathrm{n}^{3}\right)$
- $3 \log n+8=O(\log n)$
- $\mathrm{n}^{2}+10 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{3}\right)$

General Rules for analysis

- In expressing running times, each elementary step such as an assignment, an addition or an initialization is counted as one unit of time
- Leading constants and lower order terms are ignored

Analysis Rules Loops

- The running time of a for loop, is at most the running time of the statements inside the for loop (including tests) multiplied by the number of iterations
- Nested loops should be analyzed inside out.
- The total running time for a statement inside innermost loop is given by its running time multiplied by the product of the sizes of all for loops

Analysis Rules If

- The running time of an if/else statement is not more than the running time of the test, plus the larger of the running times of statements contained inside then and else conditions.

Properties of \mathbf{O} notation.

- Constant factors can be omitted
$-2 n^{3}+6 \varepsilon \mathrm{O}\left(\mathrm{n}^{3}\right), 2$ and 6 are omitted
- Growth rate of a sum is given by the rate of its fastest growing term.
$-5 n^{3}+3 n+8 \varepsilon O\left(n^{3}\right)$
- if $f(n)>g(n), g(n)>b(n)$ then $f(n)>b(n)$
$-\mathrm{O}\left(\mathrm{n}^{2}\right)>\mathrm{O}(\mathrm{n}), \mathrm{O}(\mathrm{n})>\mathrm{O}(\operatorname{logn})$ so $\mathrm{O}\left(\mathrm{n}^{2}\right)>\mathrm{O}(\operatorname{logn})$
- Higher powers of n grows faster than lower powers
$-\mathrm{O}\left(\mathrm{n}^{3}\right)>\mathrm{O}\left(\mathrm{n}^{2}\right)$

Example Problem 1

$\operatorname{Read}(A)$
$X:=A * A$
$-\cdots--$
$\operatorname{Write}(X)$

any segment for which each statement is executed only once will have a total number of statements executed that is independent of n.
Time complexity will be $\mathrm{O}(1)$

Example Problem2

for $\mathrm{i}:=1$ to n do
for $\mathrm{j}:=1$ to n do
$\{$
$\}$

- complexity $\mathrm{n} * \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$

Example Problem3

complexity is $1+2+3+4+---+n=n *(n+1) / 2=O\left(n^{2}\right)$

Example Problem4

- Values of $\mathrm{i}=1,2,4,---, 2^{\mathrm{k}}, 2^{\mathrm{k}+1} \mathrm{if} 2^{\mathrm{k}}<=\mathrm{n}<2^{\mathrm{k}+1}$
- If n is a proper power of 2
- Loop executed $\mathrm{k}+1$ times where $\mathrm{k}=\log _{2}$
-if n is not a proper power of 2
-Loop executed $\mathrm{k}+1$ times where $\mathrm{k}=\quad \log _{2}$
-Complexity is $1+$

$$
\left\lfloor\log _{2}\right\rfloor \text { so }(\mathbb{n}(\log n)
$$

Example Problem2

```
Algorithm power(b,n)
{p:=1; q:=b;
While (n>0) do
{If n is odd, then p:=p*q;
n:=n /2;
q:=q*q;}
Return (p); }
```

- Complexity $=\mathrm{O}(\log n)$

Example Problem2

```
Algorithm fact(n)
{ if n=1 then return(1);
else return(n*fact(n-1)); }
```

- Time complexity as a recurrence relation
- $T(n)=a$ for $\mathrm{n}=1$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{c}$ for $\mathrm{n}>1$
- Where a and c are contstants

Solving Recurrences

- 3 methods
- using iteration
- using recurrence trees
- using master theorem

Method of substitution / Iteration

- Method expanding recurrence to see a pattern.
- Expand (iterate) the recurrence and express it as a summation of terms dependent only on n and the initial conditions

Iteration Method Contd..

- Key focus on 2 parameters
- the number of times the recurrence needs to be iterated to reach the boundary condition
- the sum of terms arising from each level of the iteration process
- Techniques for evaluating summations can then be used to provide bounds on solution

Example Problem1

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{c}$

$$
\begin{array}{ll}
= & \mathrm{T}(\mathrm{n}-2)+\mathrm{c}+\mathrm{c} \\
= & \mathrm{T}(\mathrm{n}-(\mathrm{n}-1)+(\mathrm{n}-1) \mathrm{c} \\
= & \mathrm{T}(1)+(\mathrm{n}-1) \mathrm{c} \\
= & \mathrm{a}+\mathrm{c}(\mathrm{n}-1) \\
= & \mathrm{O}(\mathrm{n})
\end{array}
$$

Example Problem2

$$
\text { - } \begin{aligned}
\mathrm{T}(1) & =1 \\
\mathrm{~T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n}-1)+\mathrm{n} \\
& =[\mathrm{T}(\mathrm{n}-2)+\mathrm{n}-1]+\mathrm{n} \\
& =\mathrm{T}(\mathrm{n}-2)+\mathrm{n}-1+\mathrm{n} \\
& =---\cdots-\cdots-\cdots \\
& =\mathrm{T}(\mathrm{n}-(\mathrm{n}-1)+2+3+\ldots+\mathrm{n}-1+\mathrm{n} \\
& =\mathrm{T}(1)+2+3+\ldots+\mathrm{n}-1+\mathrm{n} \\
& =\mathrm{n}^{*}(\mathrm{n}+1) / 2 \\
& =O\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Example Problem3

$$
\text { - } \quad \begin{aligned}
\mathrm{T}(1) & =1 \\
\mathrm{~T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n} / 2)+1 \\
& =\mathrm{T}(\mathrm{n} / 4)+1+1 \\
& =\mathrm{T}\left(\mathrm{n} / 2^{2}\right)+1+1 \\
& --\cdots-\cdots \\
& =\mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+1+1+1--\mathrm{k} \text { times } \\
& =\mathrm{T}(1)+\mathrm{k} \quad \text { where } \mathrm{k}=\log _{2}(\mathrm{n}) \\
& =\operatorname{logn}+1 \\
& =\quad \mathrm{O}(\operatorname{logn})
\end{aligned}
$$

Example Problem4

$$
\text { - } \begin{aligned}
\mathrm{T}(1) & =0 \\
\mathrm{~T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n} / 2)+\mathrm{n} \\
& =\mathrm{T}\left(\mathrm{n} / 2^{2}\right)+\mathrm{n} / 2+\mathrm{n} \\
& -\cdots--\cdots- \\
& =\mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+2+4+--\mathrm{n} / 2+\mathrm{n} \\
& =\mathrm{T}(1)+\left(2^{1}\right)+\left(2^{2}\right)+--+\left(2^{\mathrm{k}-1}\right)+\left(2^{\mathrm{k}}\right) \\
& =0+2^{*}\left(2^{\mathrm{k}}-1\right) /(2-1) \\
& =2^{*}(\mathrm{n}-1) \\
& =\mathrm{O}(\mathrm{n})
\end{aligned}
$$

Example Problem5

- Example of algorithm that ------ into 2 values and seeks to solve both

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{an} \\
& =2^{2} \mathrm{~T}(\mathrm{n} / 4)+\mathrm{an}+\mathrm{an} \\
& =2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\operatorname{akn} \\
& =\mathrm{n}+\operatorname{an} \log \mathrm{n} \\
& =O(\mathrm{n} \log \mathrm{n})
\end{aligned}
$$

Example Problem6

$$
\text { - } \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\sqrt{ } \mathrm{n})+\log \mathrm{n} \text { for } \mathrm{n}>2
$$

Substitute $\mathrm{m}=\log \mathrm{n}$

$$
\mathrm{T}\left(2^{\mathrm{m}}\right)=\quad \begin{aligned}
& 2 \mathrm{~T}\left(2^{\mathrm{m} / 2}\right)+\mathrm{m} \\
& \text { when } \mathrm{n}=2
\end{aligned} \mathrm{~m}=1 \text { Termination condn is } \mathrm{m}=1
$$

Substitute $T\left(2^{m}\right)$ with $S(m)$

$$
\begin{aligned}
& =2^{*} \mathrm{~S}(\mathrm{~m} / 2)+\mathrm{m} \\
& =2^{2} \mathrm{~S}(\mathrm{~m} / 4)+2^{*} \mathrm{~m} \\
& =2^{\mathrm{k}} \mathrm{~S}(1)+\mathrm{k}^{*} \mathrm{~m} \quad \text { where } \mathrm{k}=\operatorname{logm} \\
& =\mathrm{m}+\mathrm{m} \log \mathrm{~m} \\
& =\mathrm{O}(\log \mathrm{n} * \log (\log \mathrm{n}))
\end{aligned}
$$

Example Problem7

Show that

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}(\lceil\mathrm{n} / 2\rceil)+1 \text { is } \mathrm{O}(\log \mathrm{n})
$$

$$
\begin{array}{rlr}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n} / 2)+1 & \\
& =\mathrm{T}(\mathrm{n} / 4)+1+1 & \\
& =\mathrm{T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\mathrm{k} & \\
& =\mathrm{a}+\mathrm{k} & \\
& =\mathrm{a}+\log \mathrm{n} & \\
& =\mathrm{O}(\log \mathrm{n}) &
\end{array}
$$

Example Problem8

$$
\begin{aligned}
& \bullet \mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\operatorname{Ln} / 4])+\mathrm{n} \\
= & \mathrm{n}+3 \mathrm{~T}(\mathrm{n} / 4) \\
= & \mathrm{n}+3\left[(\mathrm{n} / 4)+3 \mathrm{~T}\left(\mathrm{n} / 4^{2}\right)\right] \\
= & \mathrm{n}\left[1+3 / 4+3^{2} / 4^{2}\right]+3^{3} \mathrm{~T}\left(\mathrm{n} / 4^{3}\right) \\
= & \mathrm{n}\left[1+3 / 4+3^{2} / 4^{2}+\ldots \ldots+3^{\mathrm{k}-1} / 4^{\mathrm{k}-1}\right]+3^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 4^{\mathrm{k}}\right) \text { where } \mathrm{k}=\log _{4} \mathrm{n} \\
= & \mathrm{n}\left[\left(1 *(3 / 4)^{\mathrm{k}}-1\right) / 3 / 4-1\right]+3^{\mathrm{k}} \mathrm{a} \\
= & \mathrm{c}^{*} \mathrm{n}(3 / 4)^{\log _{4} \mathrm{n}}+4 \mathrm{n}+3^{\log _{4} \mathrm{n}} * \mathrm{a} \\
= & \mathrm{c} * \mathrm{n}^{*} \mathrm{n}^{\log _{4} 3 / 4}+\mathrm{a}^{*} \mathrm{log}_{4}{ }^{3}+\mathrm{b}^{*} \mathrm{n} \\
= & \mathrm{c} * \mathrm{n}^{\log _{4} 4+\log _{4} 3-\log _{4} 4}+\mathrm{an}^{\log _{4} 3}+\mathrm{b}^{*} \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\log _{4} 3}\right)+\mathrm{O}(\mathrm{n}) \\
= & \mathrm{O}(\mathrm{n})
\end{aligned}
$$

Recurrence Tree

- A convenient way to visualize what happens when a recursion is iterated
- It is good for generating guesses for the substitution method.
- We may describe the execution of a recursive program on a given input by a rooted tree, which is known as recurrence tree

The steps involved in building the Recurrence Tree

- Determine height of tree and the size(sum) of each level as a function of input size
- Add the sizes of each level and

Multiply by the height of the tree

Recurrence Tree Example

Recurrence Tree Example

- Tree corresponding to $\mathrm{T}(\mathrm{n})=2 * \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$ for $\mathrm{n}=8$

Recurrence Tree $T(n)=2 * T(n / 2)+n$

Total: $n \lg n$

Example Problem

Example Problem

Example Problem

Example Problem

So recurrence is atmost $\mathrm{c}^{*} \mathrm{n}^{*} \log _{(3 / 2)} \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{*} \log _{(3 / 2)} \mathrm{n}\right)$

Master Theorem

$\mathrm{T}(1)=\mathrm{d}$
$\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{cn}$

Has solution
$\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$ if $\mathrm{a}<\mathrm{b}$
$\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \operatorname{logn})$ If $\mathrm{a}=\mathrm{b}$
$\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}\right)$ if $\mathrm{a}>\mathrm{b}$

Verification Example 1

$$
\begin{aligned}
& T(1)=0 \\
& T(n)=4 T(n / 2)+c n \text { for } n=2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=4 ; \mathrm{b}=2 ; \mathrm{a}>\mathrm{b} \\
& \mathrm{~T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}\right) \text { if } \mathrm{a}>\mathrm{b} \\
& \mathrm{~T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{2} 4}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Verification Example 2

$$
\begin{aligned}
& T(1)=0 \\
& T(n)=3 T(n / 2)+n \text { for } n=2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}=3 ; \mathrm{b}=2 ; \mathrm{a}>\mathrm{b} \\
& \mathrm{~T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}\right) \text { if } \mathrm{a}>\mathrm{b} \\
& \mathrm{~T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\log _{2} 3}\right)=\mathrm{O}\left(\mathrm{n}^{1.6}\right)
\end{aligned}
$$

Verification Example 3

$\mathrm{T}(1)=$	0
$\mathrm{~T}(\mathrm{n})=$	$\mathrm{T}(\mathrm{n} / 2)+\mathrm{n}$

$$
a=1 ; b=2 ; a<b
$$

$$
T(n)=O(n) \text { if } a<b
$$

$$
T(n)=O(n)
$$

Verification Example 4

$$
a=2 ; b=2 ; a=b
$$

$$
T(n)=O(n \log n) \text { If } a=b
$$

$$
T(n)=O(n \operatorname{logn})
$$

ת-Notation (Lower Bound)

- $f(n)=\Omega(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or above $c g(n)$.

θ-Notation

- $f(n)=\theta(g(n))$ if there exist positive constants n_{0}, c_{1} and c_{2} such that to the right of n_{0} the value of $f(n)$ always lies between $c_{1} g(n)$ and $c_{2} g(n)$ inclusive.

Other notations

- for every positive real constant c there exists a nonnegative integer N such that for all $\mathrm{n}>=\mathrm{N}$
- $\mathrm{f}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$
- so $5 n$ is $o\left(n^{2}\right) 6 \log (n)$ is $o(n)$ and $8 n$ is $o(n \operatorname{logn})$
- The asymptotic upper bound provided by O may or may not be asymptotically tight. But o small is used to denote an upeer bound that is not asymptotically tight.

Other notations Contd..

- Similarly ω (small omega) notation is used to denote a lower bound that is not asymptotically tight

Examples

Examples Contd..

$$
\mathrm{o}\left(\mathrm{n}^{2}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)-\boldsymbol{\theta}\left(\mathrm{n}^{2}\right)
$$

General Master Theorem

$$
\begin{aligned}
& \mathrm{T}(1)=\boldsymbol{\theta}(1) \\
& \mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\boldsymbol{\theta}\left(\mathrm{n}^{\alpha}\right)
\end{aligned}
$$

Has solution

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\boldsymbol{\theta}\left(\mathrm{n}^{\alpha}\right) \text { if } \alpha \cdot \beta \\
& \mathrm{T}(\mathrm{n})=\boldsymbol{\theta}\left(\mathrm{n}^{\alpha}\right) \log _{\mathrm{b}} \mathrm{n} \text { if } \alpha=\beta \\
& \mathrm{T}(\mathrm{n})=\boldsymbol{\theta}\left(\mathrm{n}^{\beta}\right) \text { if } \alpha \cdot \beta
\end{aligned}
$$

Posterior Analysis

- Technique of coding a given solution and then measuring its efficiency.
- Provides the actual time taken by the program.
- Draw back
- Depends upon the programming language, the processor and a lot of other external parameters.

Comparison

- Gettime() is a function that returns the current time in milli seconds.
- The issues
- What value of n to be selected
- Which data set is to be used
- best,average or worst case
- What is the accuracy required.
- How many values of n are required.

Comparison Contd..

- If asymptotic behaviour is already known then 2 or 3 values can generate the curve.
- Asymptotic behaviour omits initial values of n and constant terms involved
- For an accurate estimate more values of n
- More samples needed from small vales of n.

Example Case

- A reasonable set of values for n for the sequential search algorithm is $10,20,30,40,50,60,70,80,90$, 100, 200, 300, 400, 500, ----- .

Example Algorithm

Algorithm seqsearch $(\mathrm{a}, \mathrm{x}, \mathrm{n})$
$\{$
$\mathrm{i}:=\mathrm{n} ; \mathrm{a}[0]:=\mathrm{x} ;$
while (a[i]<>x) do $\mathrm{i}:=\mathrm{i}-1 ;$
return $\mathrm{i} ;$
$\}$

worst case when x is which is not present in a. for definiteness set $\mathrm{a}[\mathrm{i}]=\mathrm{i}$ for 1 to n and $\mathrm{x}=0$

Profiling Example- Search

- For definiteness element searched is taken as 0
- Search is performed with different array sizes
- Search is repeated many times for more accuracy
- array n stores different sizes of a for search

Algorithm for Profiling

```
Algorithm timesearch()
\{ for \(\mathrm{j}:=1\) to 1000 do \(\mathrm{a}[\mathrm{j}]:=\mathrm{j}\);
for \(\mathrm{j}:=1\) to 10 do /*array n stores different sizes of a for search */
\(\left\{\mathrm{n}[\mathrm{j}]:=10^{*}(\mathrm{j}-1)\right.\);
\(\mathrm{n}[\mathrm{j}+10]:=100 * \mathrm{j} ;\} / *\) generating different \(\mathrm{n} * /\)
for \(\mathrm{j}:=1\) to 20 do
\{ h:= gettime();
\(\mathrm{k}:=\operatorname{seqsearch}(\mathrm{a}, 0, \mathrm{n}[\mathrm{j}]) ; / * \mathrm{x}\) is taken as \(0 * /\)
h1:=gettime();
\(\mathrm{t}:=\mathrm{h} 1-\mathrm{h}\);
write(n[j],t); \} \}
```


Worst Case analysis

- For smaller values of n, repetition factor should be large.
- Generating data
- Difficult to find all possible cases and its maximum
- Usually available maximum is chosen as the worst case.

Average Case analysis

- More difficult than worst case.
- For n inputs there will n ! combinations
- Determining all cases and their average is a very difficult task.
- Average of a limited subset is usually determined.

Assignment 1 Problem1

Solve $\left.\quad T(n)=3 T(\ln / 4\rfloor^{2}\right)+n$

Assignment 1 Problem2

Solve

$$
T(n)= \begin{cases}a & \text { for } n<=2 \\ 8 T(n / 2)+b n^{2} & \text { for } n>2\end{cases}
$$

Assignment 1 Problem2

$\underset{T(n)}{\text { Solve }}=\left\{\begin{array}{lr}a & \text { for } n<=2 \\ 8 T(n / 2)+b n^{2} & \text { for } n>2\end{array}\right.$

Example Problem1

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{c}$

$$
\begin{array}{ll}
= & \mathrm{T}(\mathrm{n}-2)+\mathrm{c}+\mathrm{c} \\
= & \mathrm{T}(\mathrm{n}-(\mathrm{n}-1)+(\mathrm{n}-1) \mathrm{c} \\
= & \mathrm{T}(1)+(\mathrm{n}-1) \mathrm{c} \\
= & \mathrm{a}+\mathrm{c}(\mathrm{n}-1) \\
= & \mathrm{O}(\mathrm{n})
\end{array}
$$

Example Problem1

- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{c}$

$$
\begin{array}{ll}
= & \mathrm{T}(\mathrm{n}-2)+\mathrm{c}+\mathrm{c} \\
= & \mathrm{T}(\mathrm{n}-(\mathrm{n}-1)+(\mathrm{n}-1) \mathrm{c} \\
= & \mathrm{T}(1)+(\mathrm{n}-1) \mathrm{c} \\
= & \mathrm{a}+\mathrm{c}(\mathrm{n}-1) \\
= & \mathrm{O}(\mathrm{n})
\end{array}
$$

O-Notation (Upper Bound)

- $f(n)=O(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or below $c g(n)$ or $\mathrm{f}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}>n_{0}$.

$$
\operatorname{cg}(\mathbf{n})
$$

$$
\mathbf{f}(\mathbf{n})
$$

$$
f(n)=O(g(n))
$$

Running Times- Comparison

ALGORITHM ANALYSIS AND DESIGN

DIVIDE AND CONQUER

Strategy

- Given a function on n inputs
- input splitted into k disjoint subsets
- yielding k subproblems.
- Solve subproblems
- Combine the subsolutions into a solution

Solving Subproblems

- Large Subproblems
- Solved by reapplication of divide and conquer.
- Subproblems same type as the original problem implemented using recursive algorithm
- Smaller subproblems solved independently.

Control Abstraction

- Procedure whose flow of control is clear.
- Primary operations are specified by other procedures whose precise meanings are left undefined

Control Abstraction for DandC

```
Algorithm DandC(P)
{ if small(P) then return(P);
else
{divide P into smaller instances P1,P2,-- -, Pk for k>1
apply DandC to each subproblem ;
return combine(DandC(P1),- - - ,DandC(Pk));}}
```


Time Complexity

$$
T(n)=\left\{\begin{array}{l}
g(n) \text { when } n \text { is small } \\
T(n 1)+T(n 2)+--+T(n k)+f(n)
\end{array}\right.
$$

- when subproblems are similar, complexity can be represented by a recurrence

$$
T(n)= \begin{cases}T(1) & n=1 \\ a^{*} T(n / b)+f(n) & n>1\end{cases}
$$

Time Complexity Contd..

- In general
- $T(n)=n^{\log } b^{a}[t(1)+u(n)]$ where $u(n)={ }_{j=1} \varepsilon^{k} h(b j)$
- $\mathrm{H}(\mathrm{n})=\mathrm{f}(\mathrm{n}) / \mathrm{n}^{\log \mathrm{b}^{\mathrm{a}}}$
- If $h(n)$ is $O\left(n^{r}\right)$ for $r>0$ then $u(n)$ is $O(1)$
- If $h(n)$ is $\theta\left(\operatorname{logn}^{r}\right)$ for $r=>0$ then $u(n)$ is $\theta\left(\operatorname{logn}^{r+1} /(r+1)\right)$
- If $h(n)$ is $\Omega\left(n^{r}\right)$ for $r>0$ then $u(n)$ is $\theta(h(n))$

Example

$$
T(n)=\left\{\begin{array}{l}
1 \quad \text { for } n=1 \\
T(n / 2)+c \text { for } n>1
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{h}(\mathrm{n})=\mathrm{f}(\mathrm{n}) / \mathrm{n}^{\log \mathrm{ba}=\mathrm{c}^{*}(\log n)^{0}} \\
& \text { So } \mathrm{u}(\mathrm{n})=\theta(\log n) \\
& \mathrm{T}(\mathrm{n})=\mathrm{n}^{\log 1}[\mathrm{c}+\theta(\log n)]=\theta(\log n)
\end{aligned}
$$

Binary Search

```
Algorithm binsearch(a,i,j,x)
{if (i=j) then
{ if (x=a[i]) then return i;
else return 0; }
else
{mid:= (i+j) div 2;
if (x=a[mid] then return mid;
else if (x<a[mid]) then
return binsearch(a,i,mid-1,x);
else return binsearch(a,mid+1,j,x); }}
```


Computing Complexity

Example

1	3	5	7	9	11	13

Unsuccessfull cases

Binary Search Complexity

- unsuccessful search θ (logn)
- Successful
- best - θ (1)
- worst - when leaf node is reached - $\theta(\operatorname{logn})$

Average Case Complexity

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2^{0 *} 1^{1+2^{1} * 2+--+2^{\mathrm{k}-1} * \mathrm{k}} \\
& =\left[2^{1 *} 1+2^{2 *} 2+--+2^{\mathrm{k}-1} *(\mathrm{k}-1)\right]+\left[2^{0}+2^{1}+--+2^{\mathrm{k}-1}\right] \\
& =\left[(\mathrm{k}-2)^{*} 2^{\mathrm{k}-1}+2\right]+\left[2^{(\mathrm{k}+1)}-1\right] \\
& \text { since we have }{ }_{\mathrm{i}=1} \varepsilon^{\mathrm{k}} \mathrm{i}^{*} 2^{\mathrm{i}}=(\mathrm{k}-1)^{*} 2^{(\mathrm{k}+1)}+2 \\
& =\mathbf{k}^{*} 2^{\mathrm{k}}+2 \\
& =\theta \text { (nlogn) } \\
& \text { so average case complexity } \theta(\operatorname{logn})
\end{aligned}
$$

Finding Max \& Min

Algorithm smaxmin(i, $\mathrm{j}, \mathrm{n}, \max , \min)$
$\{\max :=\mathrm{a}[1] ; \min :=\mathrm{a}[1] ;$
For $\mathrm{i}:=2$ to n do
$\{$ if $(\mathrm{a}[\mathrm{i}]>\max)$ then $\max :=\mathrm{a}[\mathrm{i}] ;$
if $(\mathrm{a}[\mathrm{i}]<\min)$ then min: $=\mathrm{a}[\mathrm{i}] ;$
$\}\}$

2(n-1) Comparisons

Improvement

```
Algorithm smaxmin(i,j,n,max,min)
\{max:=a[1]; min:=a[1];
For \(\mathrm{i}:=2\) to n do
\{if (a[i]>max) then max:=a[i];
else if (a[i]<min) then min:=a[i];
\}\}
```

Worst case- sorted in descending order - 2(n-1) Comparisons Best case- sorted in ascending order - n -1Comparisons Average case - half cases $a[i]$ is greater $-\mathrm{n} / 2+(\mathrm{n}-1)=3 \mathrm{n} / 2-1$

Divide and Conquer Approach

- Split input into smaller subsets
- Repeat until input size is 1 or 2

MAXMIN

Algorithm maxmin(i,j,max,min)
$\{$ if $(\mathrm{i}=\mathrm{j})$ then max $:=\min :=\mathrm{a}[\mathrm{i}] ;$
else if $(\mathrm{i}=\mathrm{j}-1)$ then
if $(\mathrm{a}[\mathrm{i}]<\mathrm{a}[\mathrm{j}])$ then
$\{\max :=\mathrm{a}[\mathrm{j}] ; \min :=\mathrm{a}[\mathrm{i}] ;\}$
else $\{\max :=\mathrm{a}[\mathrm{i}] ; \min :=\mathrm{a}[\mathrm{j}] ;\}\}$
else
$\{\underline{\text { mid }:=\mathrm{L}(\mathrm{i}+\mathrm{j}) / 2 \square ;}$;
$\operatorname{maxmin}(\mathrm{i}, \operatorname{mid}, \max , \min) ;$
$\operatorname{maxmin}(\operatorname{mid}+1, \mathrm{j}, \max 1, \min 1) ;$
if $(\max <\max 1)$ then $\max :=\max 1 ;$
if $(\min >\min 1)$ then $\min :=\min 1 ;\}\}$

Time Complexity

$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{T}(\mathrm{n} / 2)+2$ for $\mathrm{n}>2 ;=1$ for $\mathrm{n}=2$
When n is a power of $2, \mathrm{~T}(\mathrm{n})=2 * \mathrm{~T}(\mathrm{n} / 2)+2$

$$
\begin{aligned}
& =2^{\mathrm{k}-1} * \mathrm{~T}(2)+2^{*}\left(2^{\mathrm{k}-1}-1\right)=2^{\mathrm{k}-1}+2^{\mathrm{k}}-2 \\
& =3^{*} \mathrm{n} / 2-2
\end{aligned}
$$

it is the best, average and worst case complexity.
Compared to the $2 \mathrm{n}-1$ comparisons of straight maxmin this approach is better.
But it requires $\log n+1$ levels of stack.

Considering Index Comparisons

- When element and index comparisons of the same cost
- In languages that does not support switch statement modification required

Improvement

```
Algorithm maxmin(i,j,max,min)
{if (i\geq j) then
if (a[i]<a[j]) then {max:=a[j];min:=a[i];}
else {max:=a[i];min:=a[j];}}
else
{ mid:= L(i+j)/2\square ;
maxmin( i,mid,max,min);
maxmin(mid+1,j,max1,min1);
if max<max1) then max:=max1;
if (min>min1) then min:= min1;}}
```


Complexity

$$
\begin{aligned}
\mathrm{C}(\mathrm{n}) & =2^{*} \mathrm{C}(\mathrm{n} / 2)+3 & & \text { for } \mathrm{n}>2 \\
& =2 & & \text { for } \mathrm{n}=2
\end{aligned}
$$

- unfolding recurrence

$$
\begin{aligned}
&-\mathrm{C}(\mathrm{n})=2^{\mathrm{k}-1 *} \mathrm{C}(2)+3^{*}{ }_{0} \varepsilon^{\mathrm{k}-2} 2^{\mathrm{i}} \\
&=2^{\mathrm{k}}+3^{*} 2^{\mathrm{k}-1}-3 \\
&=5 \mathrm{n} / 2-3
\end{aligned}
$$

Comparison

- Better than straight maxmin $3^{*}(n-1)$
- Practically slower due the overhead of stacking

Summary

- When element comparisons are costlier dandc yields a better algorithm.
- Dandc always willnot give better algorithm.
- Only a design technique that will guide to better designs.
- Constants should be specified, during comparisons if relevant(when both has same order complexity).

Merge Sort

- Divides list into two sub lists
- Sort sub lists separately
- Recursive invocation
- Merges the sub lists

Algorithm Mergesort

```
Algorithm mergesort(low,high)
{ if (low<high) then
    { mid:= L (low+high)/2\square
        megesort(low,mid);
        mergesort(mid+1,high);
        mege(low,mid,high);
}}
```


Algorithm Merge

Algorithm merge(low,mid,high)
\{h:=low;i:=low; $\mathrm{j}:=$ mid $+1 ;$
while $((\mathrm{h}<=$ mid $)$ and $(\mathrm{j}<=$ high $)$) do
$\quad\{$ if $(\mathrm{a}[\mathrm{h}]<=\mathrm{a}[\mathrm{j}])$ then
$\{\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{h}] ; \mathrm{h}:=\mathrm{h}+1 ;\}$
else
$\{\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{j}] ; \mathrm{j}:=\mathrm{j}+1 ;\}$
$\mathrm{i}:=\mathrm{i}+1 ;\}$

if $(h>m i d)$ then
for $k:=j$ to high do
$\{b[i]:=a[k] ; i:=i+1 ;\}$
else
for $k:=h$ to mid do
$\{b[i]:=a[k] ; i:=i+1 ;\}$
for $k:=l o w ~ t o ~ h i g h ~ d o ~$
$a[k]:=b[k] ;$
$\}$

Complexity

$$
\begin{gathered}
\mathrm{T}(\mathrm{n})=2 * \mathrm{~T}(\mathrm{n} / 2)+\mathrm{c} \text { for } \mathrm{n}>1 \\
\mathrm{a} \quad \text { for } \mathrm{n}=1
\end{gathered}
$$

- Unfolding recurrence

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \\
& =2^{2} \mathrm{~T}(\mathrm{n} / 4)+2 \mathrm{cn} \\
& =2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\mathrm{kcn} \\
& =2^{\mathrm{k}} \mathrm{~T}(1)+\mathrm{kcn}=\mathrm{an}+\mathrm{cn} \log \mathrm{n} \\
& =\mathrm{O}(\mathrm{n} \log \mathrm{n})
\end{aligned}
$$

Refinements

- $2 n$ locations - Extra n locations
- Associate an extra field with key
- For small values of n recursion inefficient
- Much time is wasted on stacking.
- Use an efficient nonrecursive sort for small n

Refinement 1

For $\mathrm{n}<16$ insertion sort is used.
Algorithm insertion sort(a,n)
\{for $\mathrm{j}:=2$ to n do
\{ item := a[j]; $\mathrm{i}:=\mathrm{j}-1$;
while ($(\mathrm{i}>=1)$ and (item<a[j])) do
$\{\mathrm{a}[\mathrm{i}+1]:=\mathrm{a}[\mathrm{i}] ; \mathrm{i}:=\mathrm{i}-1$; \}
a[i+1] := item; \} \}

Complexity

- Insertion sort for worst case
$-{ }_{2} \varepsilon^{\mathrm{n}} \mathrm{j}=\mathrm{n}(\mathrm{n}+1) / 2-1=\theta\left(\mathrm{N}^{2}\right)$.
- In the best case
- $\theta(\mathrm{N})$.

Algorithm2

```
algorithm mergesort2(low,high)
{if (high-low)<15 then ///when size is <16
return insertionsort1(a,link,low,high)
else
{ mid := L(low+high)/2 }\square\mathrm{ ///divides into 2
q:=mergesort(low,mid);
r:=mergesort(mid+1,high);
return merge1(q,r);}}
```


Refinement 2

- An auxillary array with values $0 .$. n used
- Each index points to the original array
- Interpreted as pointers to elements of a

0	0	0	0	0	0	0	0
25	11	18	17	13	45	28	30

Demonstration

- Interpreted as pointers to elements of a

link
value

0	0	0	0	0	0	0	0
25	11	18	17	13	45	28	30
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{5}$	$\mathbf{6}$	7	$\mathbf{8}$

0	1	0	3	6	0	8	0
25	11	18	17	13	45	28	30

Demonstration Contd..

0	1	0	3	6	0	8	0
25	11	18	17	13	45	28	30
1	2	3	4	5	6	7	8

0	4	1	3	7	0	$\underline{8}$		$\underline{6}$
25	11	18	17	13	45	28		30
		\uparrow			\uparrow			

Demonstration Contd..

0	4	1	3	7	0	8	6
25	11	18	17	13	45	28	30
1	2	3	4	5	6	7	8

$\mathbf{7}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{3}$
25	11	18	17
\uparrow			

4	0	8	6
13	45	28	30

Sorting Over

Algorithm3

```
Algorithm merge1(q,r)
{i:=q;j:=r;k:=0;
while ((i<>0) and j<>0)) do
{if (a[i] \leq a[j]) then
{link[k]:=i;k:=i;i:=link[i];}
else {link[k]:=j;k:=j;j:=link[j];}}
If (i=0) then link[k]:=j; else link[k]:=i;
return link[0];}
```


ALGORITHM ANALYSIS AND DESIGN

GREEDY STRATEGY

Introduction

- Solution to problems with n inputs
- Required to obtain a subset that satisfies some constraints
- Optimization meassure
- Best choice at any moment

Terminology

- Objective function
- Function representing the optimization measure
- Feasible solution
- Any subset that satisfies the given constraints
- Optimal solution
- Feasible solution that either maximizes or minimizes a given objective function.

Working

- Works in stages - One input at a time
- At each stage, decision about a particular input
- Inputs one at a time based on selection procedure
- Discarded if Inclusion results in an infeasible solution

Selection Procedure

- Based on the optimization measure
- Different Optimization measures possible for a problem.

Example

- Taking change a particular amount given a collection of coins
- Minimise the number of coins used
- Example Case
- Amount to be raised
- 68 paise
- Coins available
- $1,1,1,2,2,2,5,5,5,10,10,10,20,20,20,50,50,50$

Greedy Solution

- Selection procedure
- value of the coin
- highest one first
- Feasibility of partial solution
- Sum of coins <=68

Demonstration

Coin values $1,1,1,2,2,2,5,5,5,10,10,10,20,20,20,50,50,50$
(1) (1) 2 22353

Control Abstraction

$$
\begin{aligned}
& \text { Algorithm Greedy(a,n) } \\
& \{\text { solution := } \\
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{n} \text { do } \\
& \{\mathrm{x}:=\operatorname{select}(\mathrm{a}) \\
& \text { if(feasible(solution, } \mathrm{x}) \text { then } \\
& \text { solution:=union(solution, } \mathrm{x}) ;\} \\
& \text { return solution; }\}
\end{aligned}
$$

Different Paradigms

- Subset Paradigm
- Ordering Paradigm

Subset Paradigm

- Determine a subset of the given n inputs

Ordering Paradigm

- Determine an ordering of all the inputs
(1) $2(3)(4)$
(4) 2$)_{1}(5)$

Knapsack Problem

There are n objects to be placed in a knapsack of capacity M. Each object i contributes a profit Pi and weight Wi. The total profit $\sum_{1 \leq i \leq n} P_{i} X_{i}$ should be maximized subject to the constraint that total weight $\sum W_{i} X_{i} \leq M$ where M is the capacity of the Knapsack. Pi And Wi are positive numbers where $\quad 0 \leq X_{i} \leq 1$ and $1 \leq i \leq n$

Knapsack Problem

general knapsack problem with $\mathrm{n}=3 \mathrm{~m}=20$				
$\mathrm{Pi}=\{25,24,15\} \mathrm{Wi}=\{18,15,10\}$ for $\mathrm{i}=1,2,3$				
I	,	2	3	
Pi	25	24	15	
Wi	18	15	10	
PiXi	25	$2 / 15 * 24=3.2$	0	tot=28.2
PiXi	0	10/15*24=16	15	tot $=31$
$P i$	$\underline{25}$	24	15	
${ }_{\text {Wi }}$	18	$\overline{15}$	$\overline{10}$	
	$=1.11$	$=1.6$	$=1.5$	
PiXi		24	$5 / 10 * 15=7.5$	tot=31.5
Solution Xi $=\{0,1,0.5\}$				

Algorithm

```
Algorithm greedy knapsack(M,n,P,W)
{for i=1 to n do
x(i) := 0; Re := M;
Full := false; i := 1;
While(i<=n and not(full))
{ if(Wi<=Re) then
    {Xi=1;Re:=Re-Wi; i++; }
    else (full=true)}
if(i<=n) then Xi=Re/Wi;} }
```


Spanning Tree

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected connected graph.
- A sub-graph $T=\left(V, E^{\prime}\right)$ of G is a spanning tree of G if T is a tree

Conditions - Spanning Tree

- For T a subgraph of G to be a spanning tree.
-T should contain all vertices V in G
- T should be a tree- there are no cycles

Minimum Cost Spanning Tree

- A Spanning tree which has minimum cost
- Sum of edge costs

PRIMS Algorithm

- Constraint
- Each vertex once
- Tree

- Selection Principle
- Vertex not present in Tree
- Vertex which can be connected with lowest cost to the spanning tree is next vertex selected

Informal Algorithm

ST: $=\varnothing$
$\mathrm{Y}:=\{\mathrm{u}, \mathrm{v}\}$, where $<\mathrm{u}, \mathrm{v}>$ is the edge with lowest cost
$\mathrm{ST}:=\{(\mathrm{u}, \mathrm{v})\}$
While the instance is not solved do
\{Select a vertex in V-Y that is nearest to Y
Add the corresponding edge to ST
If Y=V then mark instance 'solved' // included all
$\}$
the vertices

Near Array

- For every un included a vertex j which is not in the spanning Tree, near[j] represents a vertex which is nearest to vertex j in the spanning tree.
- Edge(j,near[j]) represents the shortest path of connecting j to the current spanning tree

Example

Solution

ALGORITHM ANALYSIS AND DESIGN

BACKTRACKING

A Short List Of Categories

- Algorithm types we will consider include:
- Simple recursive algorithms
- Divide and conquer algorithms
- Greedy algorithms
- Dynamic programming algorithms
\Rightarrow Backtracking algorithms
- Branch and bound algorithms

Introduction

- Backtracking is used to solve problems in which a sequence of objects is chosen from a specified set so that the sequence satisfy some criterion.

Backtracking- When

- There is a sequence of decisions to be made, from a number of available choices, where
- suffient information is not available on the best choice
- Each decision leads to a new set of choices
- Some sequence of choices (possibly more than one) may be a solution to your problem

Backtracking- How

- Backtracking is a systematic method of trying out various sequences of decisions, until you find one that "works"

Solving A Maze

- Given a maze, find a path from start to finish
- At each intersection, you have to decide between three or fewer choices:
- Go straight
- Go left
- Go right

- Sufficient information not available on the best choice
- Each choice leads to another set of choices
- One or more sequences of choices may (or may not) lead to a solution

Coloring A Map

- You wish to color a map with not more than four colors
- red, yellow, green, blue
- Adjacent countries must be in different colors
- You don't have enough information to choose colors
- Each choice leads to another set of choices
- One or more sequences of choices may (or may not) lead to a solution

Solving A Puzzle

- All holes except the middle filled with white pes○○○
- We can jump over one peg with another
- Jumped pegs are removed
- The aim is to remove all but the last peg
- Sufficient information not available on correct juimp
- Each choice leads to another set of choices
- One or more sequences of choices may (or may not) lead to a solution

Backtracking- Demonstration

Representation

The decision sequences can be represented by a tree

Three kinds of nodes:

The (one) root node

Internal nodes

- Leaf nodes

Backtracking can be thought of as searching a tree for a particular "goal" leaf node

Types Of Nodes

- Live node
- A node which has been generated, and all of its children have not yet been generated
- Dead node
- A generated node which is not to be expanded further or all of whose children have been generated.
- E-node
- The live node whose children are being generated.

Types Of Nodes - Demonstration

Constraints

- Explicit constraints
- Rules that restrict each element to be chosen from the given set
- Only tuples that satisfy explicit constraints will appear in the tree
- Implicit constraints
- Rules that specify how each elements in a tuple should be related
- Tuples in the tree that satisfy the implicit constraints represent a goal state

Constraints-Example

- Let x_{i} represents i th decision
- Explicit constraints
- Restrict the possible values of xi
- Eg:- $\mathrm{x}_{\mathrm{i}}=0$ or $1 ; \mathrm{x}_{\mathrm{i}} \varepsilon\{$ li..ui $\}$
- Implicit constraints
- Specify how the differentryi's are related
- Eg:- $\mathrm{x}_{\mathrm{i}}<\mathrm{x}_{\mathrm{i}+1} ; \quad N=\sum_{k=1} X_{k}$

Solution Space

- Set of all tuples that satisfy the explicit constraints
- Represented using a permutation tree- state space tree
- The edges labeled by possible values of xi
- Edges from level 1 to level 2 nodes specify the values for x 1
- Defined by all paths from the root to a leaf node

State Space Tree

Solution Space Contd..

- Each level in the tree defines a problem state
- Paths from root to other nodes are known as state spaces
- Solution states- problem states s for which the path from the root to s defines a tuple in the solution space
- Answer states - solution states s for which the path from the root defines a solution from the set of solutions

State Space Tree -Organization

- A problem can be specified in 2 ways
- Fixed tuple formulation
- The state space organization is called static trees
- Variable tuple formulation
- State space tree of this type is known as dynamic tree

Fixed Tuple Formulation

- Edges from level i nodes to level $i+1$ nodes are labeled with the value of xi, which is either 0 or 1
- All paths from root to leaf node define the solution space

Variable Tuple Size Formulation

- Size of solution tuples is not fixed.
- Each tuple will contain a subset of the xi's in the order in which they are included instead of specifying xi=0 or 1 .

Comparison

Fixed tuple formulation

- Solution size is fixed
- Only the leaf nodes can be solution states

Variable tuple formulation

- Solution size is variable
- Any intermediate node can be the solution state

Solving The Problem

- Fix a state space tree organization
- Systematically generate the problem states starting from the root
- Verify each problem state whether it is a solution state or an answer state

State Space Tree Generation

- Backtracking uses depth first generation of the state space tree with some bounding function
- Bounding functions are used to kill live nodes without generating all their children
- Killing should be done after ensuring that all the required answer states are generated

The Backtracking Algorithm

Backtracking algorithm is quite simple it requires "exploring" each node, as follows:

- To "explore" node N :

1. If N is a goal node, return "success"
2. If N is a leaf node, return "failure"
3. For each unbounded child C of N ,
3.1. Explore C
3.1.1. If C is successful, return "success"
4. Return "failure"

Backtracking -Impementation

- Generating Function
- Generate next child, given the parent
- Bounding function
- Check whether the particular path can lead to an answer state and returns false If it cannot.

Control Abstraction

```
Algorithm backtrack(n)
{k=1;
while (k#0) do
{
if (there remains an untried x[k] & T(x[1],x[2],. . . x[k-1]) and
    B
{
if x[1]. ...x[k] is a path to an answer node) then write x[1:k]);
k:=k+1;}
else k:=k-1;}}
```


Recursive Formulation

Algorithm Backtrack(k)

//This schema describes the backtracking process using $/ /$ recursion. On entering, the first $\mathrm{k}-1$ values $/ / \mathrm{x}[1], \mathrm{x}[2], \ldots, \mathrm{x}[\mathrm{k}-1]$ of the solution vector $/ / \mathrm{x}[1: \mathrm{n}]$ have been assigned. x[] and n are global.
\{ for (each $x[k] \& T(x[1], \ldots \ldots, x[k-1])$ do $\left\{\operatorname{if}\left(B_{k}(x[1], x[2], \ldots \ldots x[k] \neq 0)\right.\right.$ then $\{\operatorname{if}(\mathrm{x}[1], \mathrm{x}[2], \ldots, \mathrm{x}[\mathrm{k}]$ is a path to an answer node) then write ($\mathrm{x}[1: \mathrm{k}]$);
$\operatorname{if}(\mathrm{k}<\mathrm{n})$ then Backtrack $(\mathrm{k}+1) ;\}\}\}$

Efficiency Of Backtracking

- Time taken to generate next x_{k}
- Number of x_{k} satisfying the explicit constraints
- Time required for computing the bounding function
- A bounding function is said to be good if it reduces the number of nodes drastically.
- A good bounding function may take much computing time
- Number of x_{k} satisfying b_{k}
- Trade off between the number of nodes removed and computing time requirement.
- The ultimate aim is to reduce the total time requirement

Analysis

- For some problem instances, if the order of generation of children is changed, the number of nodes to be generated before finding the solution can be drastically reduced.
- Depending on the problem instance, the backtracking algorithm will generate $\mathrm{O}(\mathrm{n})$ nodes to n ! nodes.
- The importance of backtracking lies in its ability to solve some instances with large n in a very small amount of time.

Estimate Of Nodes Generated

The idea is to generate a random path in the state space tree
Monte carlo method

Random Path Generation

- Let x be a node at level i in the random path
- Generate children of x
- Apply bounding functions to each child.
- Let mi be number of unbounded children of x .
- unbounded children at level 1 is m 1 , level 2 m 2 ...
- Find an estimate of the number of unbounded nodes at level i+1

Estimate of Unbounded Nodes

- Estimate of the number of unbounded nodes at level i+1
- estimate of unbounded nodes at level $1=\mathrm{m} 1$
- estimate of unbounded nodes at level $2=$ m1*m2
- Estimate of unbounded nodes at level $\mathrm{i}+1=$ m1*m2*- - -*mi

Monte Carlo Method

- Random path
- starts from the root of the tree and
- is continued till
- a leaf node is reached
- or a node with all bounded children is reached
- Each time a child node of the current node is selected as the random node at the next level.
- The total nodes considering all levels is equal to $1+\mathrm{m}_{1}+\mathrm{m}_{1} \mathrm{~m}_{2}+--+\mathrm{m}_{1} * \mathrm{~m}_{2} *--\mathrm{m}_{\mathrm{n}}$

Algorithm

```
Algorithm Estimate
\{ // r is the children at a particular level; m -total nodes; k -level
\(\mathrm{k}:=1 ; \mathrm{m}:=1 ; \mathrm{r}:=1\);
repeat
\(\{T k=\{x[k] / x[k] \& T(x[1], \ldots \ldots, x[k-1]\) and \(\operatorname{Bk}(x[1], . ., x[k])\) is true
    \};
If ( \(\operatorname{size}(\mathrm{Tk})=0\) ) then return m ;
\(\mathrm{r}:=\mathrm{r}^{*} \operatorname{size}(\mathrm{tk}) ; \mathrm{m}:=\mathrm{m}+\mathrm{r}\);
\(\mathrm{X}[\mathrm{k}]:=\) choose(Tk); \(\mathrm{k}:=\mathrm{k}+1\);
\}until (false); \}
```


4 Queens Problem

- There are 4 queens that are to be placed on a 4×4 chessboard
- Queens should be placed on the chessboard such that
 no two queens can attack each other.
- Two queens attack each other when they are in the
- Same row
- Same column or
- Same diagonal.

Attacking Positions

Two queens attack each other when they are in the

- Same row
- Same column or
- Same diagonal.

Rule 1

Rule 2

Rule 3.a.

Rule 3.b.

Problem Specification

- The queens are numbered from 1 to 4 .
- Rows and columns in the chess board are also numbered from 1 to 4 .
- Each row can contain exactly one queen.
- So it is assumed that queen i is placed in row i .

Queen 1 is placed in row 1
Queen 2 is placed in row 2
Queen 3 is placed in row 3
Queen 4 is placed in row 4

Solution Space

- The solution space consists of $4^{4} 4$ tuples.
- The implicit constraint
- no two queens are in the same column
- No two xi's can be the same
- no two queens can be on the same diagonal.
- Column constraint restricts the solution space to consist of combinations of 4 tuples.
- So the solution space gets reduced to 4 ! Tuples.
- Second constraint specify that no two xi's should be on the same diagonal.

Solution Space

- Number of tuples generated after considering column constraint - 4! Tuples

Problem State-representation

Queen i is represented by the number i

- represents an unsuccessful attempt

4 Queens Problem- Tree Formation

4 Queens - Formation Of Solution

N Queens Problem

- Queens problem can be generalized to n queens problem.
- N queens
- N X N chess board
- Solution a sequence of n decisions

Bounding Function

- The bounding function should return a value true if the current queen can be placed at a particular position.
- $\mathrm{i}^{\text {th }}$ queen can be placed at position k if none of the previous queens are in the same column or in the same diagonal.
- Same column verification by checking whether xi=k for all previous queens.

Same Diagonal Verification

- QUEENS at (i, j) and ($\mathrm{k}, \mathrm{l})$
- same forward diagonal if $\mathrm{i}-\mathrm{j}=\mathrm{k}-\mathrm{l} \quad$ or $\mathrm{j}-\mathrm{l}=\mathrm{i}-\mathrm{k}$ (1)
- same backward diagonal if $\mathrm{i}+\mathrm{j}=\mathrm{k}+1$ or $\mathrm{j}-\mathrm{l}=\mathrm{k}-\mathrm{i}$ (2)
- combining $1 \& 2$ we can write

$$
|\mathrm{j}-1|=|\mathrm{i}-\mathrm{k}|
$$

- so two queens lies on the same diagonal if and only if

$$
|\mathrm{j}-1|=|\mathrm{i}-\mathrm{k}|
$$

Formation Of Bounding Function

- same column verification by checking whether $x i=k$ for all previous queens.
- so two queens lies on the same diagonal if and only if

$$
|j-1|=|i-k|
$$

Each queen $\mathrm{j}, \mathrm{x}[\mathrm{j}]$ with queen (i, k)
if $((\mathrm{x}[\mathrm{j}]=\mathrm{i})$ or $(\operatorname{abs}(\mathrm{x}[\mathrm{j}]-\mathrm{i})=\operatorname{abs}(\mathrm{j}-\mathrm{k})))$

Bounding Function -Place

Each queen $\mathrm{j}, \mathrm{x}[\mathrm{j}]$ with queen i, k
if $((x[j]=i)$ or $(\operatorname{abs}(x[j]-i)=\operatorname{abs}(j-k)))$

```
Algorithm place(k,i)
{
for j:=1 to k-1 do
if ((x[j]=i) or (abs(x[j]-i)= abs(j-k) ))
then return false;
return true;
}
```


Algorithm

Algorithm nqueens(k,n)
$\{$ for $\mathrm{i}:=1$ to n do
\{if place (k, i) then
\{x[k]:=i;
if $(k=n)$ then write ($\mathrm{x}[1 . . n]$);
else nqueens($\mathrm{k}+1, \mathrm{n}$);
3\}\}

Complexity

- The number of 8 tuples generated considering placement of queens in distinct rows and columns is 8 !.
- Estimated number of nodes in the state space tree

$$
1+8+8 * 7+8 * 7 * 6+--=
$$

$$
1+\sum_{j=0}^{7} \sum_{i=0}^{j}(8-i)=69,281
$$

Complexity Contd..

- In practice the number of nodes generated will be very very less than this.
- From Experiments it is seen that it will be approximately 3% on the average.

Sum Of Subsets

- Given n positive numbers/weights
- Find the combinations of numbers whose sums are m.

Sum Of Subsets - Example

$$
\begin{aligned}
\mathrm{n}=6 & \{\mathrm{w} 1, \mathrm{w} 2, \ldots \ldots \ldots \ldots \mathrm{w} 6\} \\
& =\{5,10,12,13,15,18\} \\
\mathrm{m} & =30
\end{aligned}
$$

Solution $\{5,10,15\}$
$\{5,12,13\}$
\{12,18\}

Sum Of Subsets- Formulation

Numbers are arranged and considered in the non decreasing order.
It can be formulated in 2 ways.
In fixed tuple each xi=0 or 1
In variable tuple $x i=1 . . n$ depending on the next number selected.
In fixed tuple formulation the state space tree

State Space Tree Fixed Tuple Formulation

State Space Tree

Variable Tuple Formulation

Formation Of Bounding Function

Example: $\{\mathrm{w} 1, \mathrm{w} 2, \ldots \ldots \mathrm{w} 6\}=$

$$
\{5,10,12,13,15,18\} \& m=30
$$

s : the sum of weights that have been included up to a node at level i.
r: sum of remaining weights wi +1 ,wi $+2 \ldots \ldots .$. wn

The node is nonpromising
if $\mathbf{s + w} \boldsymbol{w}_{\mathbf{i}+1}>\mathbf{m}$
 if $\mathbf{s}+\mathbf{r}<\mathbf{m}$

Bounding Function

- A node can lead to an answer state if

$$
\sum_{i=1}^{k} W_{i} X_{i}+\sum_{i=k+1}^{n} W_{i}>=m
$$

- Bk is true iff

$$
\sum_{i=1}^{k} W i X i+W_{k+1}>=m
$$

- Computation of the sums

$$
\sum_{i=1}^{k} W_{i X i} \sum_{i=k+1}^{n} W_{i}
$$

each time when it is required, can be avoided by maintaining two sums s for current aggregate and r for remaining aggregate.

Algorithm

Algorithm sumofsub(s,k,r)
\{//generate left child with $\mathrm{xk}=1$ fixed tuple formulation
$\mathrm{x}[\mathrm{k}]:=1$;
if $(\mathrm{s}+\mathrm{w}[\mathrm{k}]=\mathrm{m})$ then write $(\mathrm{x}[1: \mathrm{k}])$;
else if $(s+w[k]+w[k+1]<=m)$
then sumofsub(s+w[k],k+1,r-w[k]);
if $((s+r-w[k]>=m)$ and $(s+w[k+1]<=m))$ then
\{x[k]:=0;
sumofsub(s,k+1,r-w[k]);\}\}

Terminology II

- Each non-leaf node in a tree is a parent of one or more other nodes (its children)
- Each node in the tree, other than the root, has exactly one parent

Usually, however, we draw our trees downward, with the root at the top children

ATTACKING POSITIONS

Two queens attack each other when they are in the

- Same row
- Same column or
- Same diagonal.

Rule 1

Rule 2

Rule 3.a.

Rule 3.b.

