
19CAB02 –
Data Structures and Algorithms

UNIT-I

• Introduction - Abstract Data Types (ADT) – Arrays
and its representation –Structures – Stack –
Queue– Circular Queue - Applications of stack –
Infix to postfix conversion – evaluation of
expression – Applications of Queue - Linked Lists –
Doubly Linked lists – Applications of linked list –
Polynomial Addition.

Introduction

• Data Structure can be defined as the group of data elements
which provides an efficient way of storing and organizing data in
the computer so that it can be used efficiently.

• Some examples of Data Structures are arrays, Linked List, Stack,
Queue, etc.

• Data Structure is a way of organizing all data items that considers
not only the elements stored but also. their relationship to each
other.

Abstract Data Types

• Abstract Data type (ADT) is a type (or class) for objects whose
behaviour is defined by a set of value and a set of operations.

• The definition of ADT only mentions what operations are to be
performed but not how these operations will be implemented.

ADT Diagram

Array

• Array is a container which can hold a fix number of items and
these items should be of the same type.

• Most of the data structures make use of arrays to implement their
algorithms.

• Following are the important terms to understand the concept of
Array.

 Element − Each item stored in an array is called an element.

 Index − Each location of an element in an array has a
numerical index, which is used to identify the element.

Array Representation

• Arrays and its representation is given below Array Index: The
location of an element in an array has an index, which identifies
the element. Array index starts from 0.

Array Index: The location of an element in an array has an

index, which identifies the element. Array index starts

from 0.

Array element: Items stored in an array is called an

element. The elements can be accessed via its index.

Array Length: The length of an array is defined based on

the number of elements an array can store. In the above

example, array length is 6 which means that it can store 6

elements.

Structures

• Data Structure can be defined as the group of data elements

which provides an efficient way of storing and organizing data in

the computer so that it can be used efficiently.

• The arrangement of data in a sequential manner is known as a

linear data structure.

• It plays a vital role in enhancing the performance of a software or

a program as the main function of the software is to store and

retrieve the user's data as fast as possible.

• The data structures used for this purpose are Arrays, Linked list,

Stacks, and Queues.

Stack

• Stack is a linear data structure which follows a particular order
in which the operations are performed. The order may be
LIFO(Last In First Out) or FILO(First In Last Out). ...

• So, it can be simply seen to follow LIFO(Last In First
Out)/FILO(First In Last Out) order.

Stack Operations

• Stack operations may involve initializing the stack, using it and then de-

initializing it.

• Apart from these basic stuffs, a stack is used for the following two primary

operations −

• push() − Pushing (storing) an element on the stack.

• pop() − Removing (accessing) an element from the stack.

• When data is PUSHed onto stack.

• To use a stack efficiently, we need to check the status of stack as well. For the

same purpose, the following functionality is added to stacks −

• peek() − get the top data element of the stack, without removing it.

• isFull() − check if stack is full.

• isEmpty() − check if stack is empty.

Applications of Stack

• Stacks can be used for expression evaluation.

• Stacks can be used to check parenthesis matching in an
expression.

• Stacks can be used for Conversion from one form of expression to
another.

• Stacks can be used for Memory Management.

• Stack data structures are used in backtracking problems

Queue

• Queue is a linear data structure where the first element is
inserted from one end called REAR and deleted from the other end
called as FRONT.

• Queue follows the FIFO (First - In - First Out) structure.

Circular Queue

• In a circular queue, all nodes are treated as circular. Last node is
connected back to the first node.

• Circular queue is also called as Ring Buffer.

• It is an abstract data type.

• Circular queue contains a collection of data which allows insertion of data at the

end of the queue and deletion of data at the beginning of the queue.

Infix to Postfix Conversion

• Infix expressions are readable and solvable by humans. We can
easily distinguish the order of operators, and also can use the
parenthesis to solve that part first during solving mathematical
expressions. The computer cannot differentiate the operators and
parenthesis easily, that’s why postfix conversion is needed.

• To convert infix expression to postfix expression, we will use the
stack data structure. By scanning the infix expression from left to
right, when we will get any operand, simply add them to the
postfix form, and for the operator and parenthesis, add them in
the stack maintaining the precedence of them.

Applications of Queue

• Cashier line in any store.

• Waiting on hold for tech support.

• People on an escalator.

• Check out any book store.

Linked List

• A linked list is a sequence of data structures, which are connected
together via links.

• Linked List is a sequence of links which contains items.

• Each link contains a connection to another link. Linked list is the
second most-used data structure after array.

Doubly Linked List

• Doubly Linked List is a variation of Linked list in which navigation
is possible in both ways, either forward and backward easily as
compared to Single Linked List. Following are the important terms
to understand the concept of doubly linked list.

•

• Link − Each link of a linked list can store a data called an
element.

• Next − Each link of a linked list contains a link to the next link
called Next.

Prev − Each link of a linked list contains a link to the previous link

called Prev.

LinkedList − A Linked List contains the connection link to the first

link called First and to the last link called Last.

Applications of Linked List

• Polynomial Manipulation representation.

• Addition of long positive integers.

• Representation of sparse matrices.

• Addition of long positive integers.

• Symbol table creation.

• Mailing list.

• Memory management.

• Linked allocation of files.

Polynomial Addition.

• Addition of two polynomials involves combining like terms present
in the two polynomials.

•
By like terms we mean the terms having same variable and same
exponent.
For example two terms are like only if:

• The two terms have same variable

• The two terms have same power of the variable

UNIT-II

TREE STRUCTURES

Need for non-linear structures
– Trees and its representation –
Binary Tree – expression trees –
Binary tree traversals – left
child right sibling data
structures for general trees –
applications of trees – Huffman
Algorithm - Binary search tree.

What Is a Tree?

root

node edge

•A tree consists of:

• a set of nodes

• a set of edges, each of which connects a pair of nodes

•Each node may have one or more data items.

• each data item consists of one or more fields

• key field = the field used when searching for a data item

• multiple data items with the same key are referred to as duplicates

•The node at the “top” of the tree is called the root of the tree.

• If a node N is connected to other nodes that are directly below it

in the tree, N is referred to as their parent and they are referred

to as its children.

• example: node 5 is the parent of nodes 10, 11, and 12

• Each node is the child of at most one parent.

• Other family-related terms are also used:

• nodes with the same parent are siblings

• a node’s ancestors are its parent, its parent’s parent, etc.

• example: node 9’s ancestors are 3 and 1

• a node’s descendants are its children, their children, etc.
• example: node 1’s descendants are all of the other nodes

Relationships Between Nodes
1

2 3 4 5 6

7 8 9 10 11 12

Types of Nodes
1

2 3 4 5 6

7 8 9 10 11 12

13

•A leaf node is a node without children.

•An interior node is a node with one or more children.

A Tree is a Recursive Data Structure
1

2 3 4 5 6

7 8 9 10 11 12

13

•Each node in the tree is the root of a smaller

tree!

• refer to such trees as subtrees to distinguish them from the

tree as a whole

• example: node 2 is the root of the subtree circled above

• example: node 6 is the root of a subtree with only one node

•We’ll see that tree algorithms often lend

themselves to recursive implementations.

Path, Depth, Level, and Height

• There is exactly one path (one sequence of edges) connecting

each node to the root.

• depth of a node = # of edges on the path from it to the root

• Nodes with the same depth form a level of the tree.

• The height of a tree is the maximum depth of its nodes.

• example: the tree above has a height of 2

depth= 2

level 0

level 1

level 2

Binary Trees

• In a binary tree, nodes have at most two children.

• Recursive definition: a binary tree is either:

1) empty, or

2) a node (the root of the tree) that has

• one or more data items

• a left child, which is itself the root of a binary tree

• a right child, which is itself the root of a binary tree

• Example:

• How are the edges of the tree represented?

26’s right child26’s left child

26’s left subtree 26’s right subtree

26

12 32

4 18 38

7

Representing a Binary Tree Using Linked Nodes

public class LinkedTree { private class Node {
private int key;

// list of data items
// reference to left child
// reference to right child

private LLList data;
private Node left;
private Node right;
…

}

}

4

7

• see ~cscie119/examples/trees/LinkedTree.java

26

32

null

12

18

null null

38

null null

4

null

private Node root;
…

root

26

12 32

18 38

7

null null

32 is the root of

26’s right subtree

12 is the root of

26’s left subtree

Traversing a Binary Tree

•Traversing a tree involves visiting all of the nodes

in the tree.

• visiting a node = processing its data in some way

• example: print the key

•We will look at four types of traversals. Each of

them visits the nodes in a different order.

•To understand traversals, it helps to remember

the recursive definition of a binary tree, in which

every node is the root of a subtree.

26

12 32

4 18 38

7

4 is the root of

12’s left subtree

Preorder Traversal

•preorder traversal of the tree whose root is N:

1) visit the root, N

2) recursively perform a preorder traversal of N’s left subtree

3) recursively perform a preorder traversal of N’s right subtree

7

5 9

2 6 8

4

•Preorder traversal of the tree above:

7 5 2 4 6 9 8

•Which state-space search strategy visits nodes in this order?

Implementing Preorder Traversal

public class LinkedTree {
…
private Node root;

public void preorderPrint() { if (root !=
null)
preorderPrintTree(root);
}

private static void preorderPrintTree(Node
root) { System.out.print(root.key + “
”);

if (root.left != null)
preorderPrintTree(root.left); if
(root.right != null)
preorderPrintTree(root.right);}

}

•preorderPrintTree() is a static, recursive method that takes as a

parameter the root of the tree/subtree that you want to print.

•preorderPrint() is a non-static method that makes the initial call.

It passes in the root of the entire tree as the parameter.

Not always the
same as the

root of the

entire tree.

Tracing Preorder Traversal

void preorderPrintTree(Node
root) {
System.out.print(root.key + “
”); if (root.left != null)

preorderPrintTree(root.left);
if (root.right != null)

preorderPrintTree(root.right);

} 2

7

5 9

6 8

4

root: 4

print 4

root: 2

print 2

root: 2 root: 2 root: 6

print 6

root: 5

print 5

root: 5 root: 5 root: 5 root: 5 root: 5
...

root: 7
print 7

root: 7 root: 7 root: 7 root: 7 root: 7 root: 7

time

Postorder Traversal

•postorder traversal of the tree whose root is N:

1) recursively perform a postorder traversal of N’s left subtree

2) recursively perform a postorder traversal of N’s right subtree

3) visit the root, N

7

5 9

2 6 8

4

•Postorder traversal of the tree above:

4 2 6 5 8 9 7

Implementing Postorder Traversal

public class LinkedTree {
…
private Node root;

public void postorderPrint() { if (root != null)
postorderPrintTree(root);
}

private static void postorderPrintTree(Node root) { if (root.left
!= null)
postorderPrintTree(root.left);
if (root.right != null) postorderPrintTree(root.right);
System.out.print(root.key + “ ”);
}
}

•Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal

void postorderPrintTree(Node root)
{ if (root.left != null)

postorderPrintTree(root.left);

if (root.right != null)

5

postorderPrintTree(root.right);

System.out.print(root.key + “

”);

} 2

4

6

7

8

9

root: 4

print 4

root: 2 root: 2 root: 2

print 2

root: 6

print 6

...

root: 5 root: 5 root: 5 root: 5 root: 5 root: 5

root: 7 root: 7 root: 7 root: 7 root: 7 root: 7 root: 7

time

2 6

4

• Inorder traversal of the tree above:

2 4 5 6 7 8 9

Inorder Traversal

•inorder traversal of the tree whose root is N:

1) recursively perform an inorder traversal of N’s left subtree

2) visit the root, N

3) recursively perform an inorder traversal of N’s right subtree

7

5 9

8

Implementing Inorder Traversal

public class LinkedTree {
…
private Node root;

public void inorderPrint() { if (root != null)
inorderPrintTree(root);
}

private static void inorderPrintTree(Node root) {
if (root.left != null)
inorderPrintTree(root.left);
System.out.print(root.key + “ ”); if
(root.right != null)
inorderPrintTree(root.right);
}
}

•Note that the root is printed between the two recursive

calls.

Tracing Inorder Traversal

void inorderPrintTree(Node
root) { if (root.left !=
null)
inorderPrintTree(root.left);
System.out.print(root.key + “
”); if (root.right != null)

inorderPrintTree(root.right);

} 2

7

5 9

6 8

4

root: 4

print 4

root: 2

print 2

root: 2 root: 2 root: 6

print 6

...

root: 5 root: 5 root: 5 root: 5 root: 5

print 5

root: 5

root: 7 root: 7 root: 7 root: 7 root: 7 root: 7 root: 7

time

Level-Order Traversal

•Visit the nodes one level at a time, from top to

bottom and left to right.

7

5 9

2 6 8

4

•Level-order traversal of the tree above: 7 5 9

2 6 8 4

•Which state-space search strategy visits

nodes in this order?

•How could we implement this type of

traversal?

6

7

Tree-Traversal Summary

preorder: root, left subtree, right

subtree postorder: left subtree, right

subtree, root inorder: left subtree,

root, right subtree level-order: top to

bottom, left to right

•Perform each type of traversal on

the tree below:

9

5 13

3 8 10

182 15 26

Using a Binary Tree for an Algebraic Expression

•We’ll restrict ourselves to fully parenthesized expressions and to

the following binary operators: +, –, *, /

•Example expression: ((a + (b * c)) – (d / e))

•Tree representation:
–

+ /

a * e

b c

•Leaf nodes are variables or constants; interior nodes are

operators.

•Because the operators are binary, either a node has two

children or it has none.

d

Traversing an Algebraic-Expression Tree

• Inorder gives conventional

algebraic notation.

• print ‘(’ before the recursive

call on the left subtree

• print ‘)’ after the recursive

call on the right subtree

• for tree at right: ((a + (b * c)) – (d / e))

• Preorder gives functional notation.

• print ‘(’s and ‘)’s as for inorder, and commas after the recursive

call on the left subtree

• for tree above: subtr(add(a, mult(b, c)), divide(d, e))

• Postorder gives the order in which the computation must be

carried out on a stack/RPN calculator.

• for tree above: push a, push b, push c, multiply, add,…

• see ~cscie119/examples/trees/ExprTree.java

–

+

a *

b c

/

ed

Fixed-Length Character Encodings

•A character encoding maps each character to a number.

•Computers usually use fixed-length character encodings.

• ASCII (American Standard Code for Information Interchange)

uses 8 bits per character.

example: “bat” is stored in a text file as the following sequence of bits:

01100010 01100001 01110100

• Unicode uses 16 bits per character to accommodate foreign-

language characters. (ASCII codes are a subset.)

•Fixed-length encodings are simple, because

• all character encodings have the same length

• a given character always has the same encoding

char dec binary

a 97 01100001

b 98 01100010

c 99 01100011

… … …

Variable-Length Character Encodings

• Problem: fixed-length encodings waste space.

• Solution: use a variable-length encoding.

• use encodings of different lengths for different characters

• assign shorter encodings to frequently occurring characters

• Example: “test” would be encoded as

00 01 111 00  000111100

• Challenge: when decoding/decompressing an encoded document,

how do we determine the boundaries between characters?

• example: for the above encoding, how do we know whether the

next character is 2 bits or 3 bits?

• One requirement: no character’s encoding can be the prefix of another

character’s encoding (e.g., couldn’t have 00 and 001).

e 01

o 100

s 111

t 00

Left branches are labeled with

a 0, and right branches are

labeled with a 1.

If you follow a path from root

to leaf, you get the encoding

of the character in the leaf

example: 101 = ‘i’
o

Huffman Encoding

•Huffman encoding is a type of variable-length encoding that is based

on the actual character frequencies in a given document.

•Huffman encoding uses a binary tree:

• to determine the encoding of each character

• to decode an encoded file – i.e., to decompress a compressed

file, putting it back into ASCII

•Example of a Huffman tree (for a text with only six chars):

Leaf nodes are characters.
0 1

0

1

0 1

a s

0 1

t e

1

i

0

Building a Huffman Tree

1)Begin by reading through the text to determine

the frequencies.

2)Create a list of nodes that contain (character,

frequency) pairs for each character that appears in

the text.

3) Remove and “merge” the nodes with

the two lowest frequencies, forming a

new node that is their parent.

• left child = lowest frequency node

• right child = the other node

• frequency of parent = sum of the

frequencies of its children

• in this case, 21 + 23 = 44

‘o’

21

‘i’

23

‘a’

25

‘s’

26

‘t’

27

‘e’

40

‘o’

21

‘i’

23

-

44

Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes:

5) Repeat steps 3 and 4 until there is only a single node in the list,

which will be the root of the Huffman tree.

‘a’

25

‘s’

26

‘t’

27

‘e’

40

‘o’

21

‘i’

23

-

44

Completing the Huffman Tree Example I

• Merge the two remaining nodes with the lowest frequencies:

‘a’

25

‘s’

26

‘t’

27

‘e’

40

‘o’

21

‘i’

23

-

44

‘t’

27

‘e’

40

‘o’

21

‘i’

23

-

44

‘a’

25

‘s’

26

-

51

Completing the Huffman Tree Example II

• Merge the next two nodes:

‘t’

27

‘e’

40

‘o’

21

‘i’

23

-

44

‘a’

25

‘s’

26

-

51

‘o’

21

‘i’

23

-

44

‘a’

25

‘s’

26

-

51

‘t’

27

‘e’

40

-

67

Completing the Huffman Tree Example III

• Merge again:

21

‘o’

23

‘i’

44

-

25

‘a’

26

‘s’

51

-

27

‘t’

40

‘e’

67

-

27

‘t’

40

‘e’

67

-

95

-

21

‘o’ ‘i’

23

44

-

‘a’

25

‘s’

26

51

-

Completing the Huffman Tree Example IV

• The next merge creates the final tree:

• Characters that appear more frequently end up higher in the tree,

and thus their encodings are shorter.

‘t’

27

‘e’

40

-

67 95

-

‘o’

21

‘i’

23

44

-

‘a’

25

‘s’

26

51

-

162

-

o

0 1

0

t

0

1

0 1

a s

1

e

1

i

0

4) Read through the input file a second time, and write the

Huffman code for each character to the output file.

a ?

e ?

i 101

o 100

s 111

t 00

Using Huffman Encoding to Compress a File

1)Read through the input file and build its Huffman tree.

2)Write a file header for the output file.

– include an array containing the frequencies so that the tree

can be rebuilt when the file is decompressed.

3)Traverse the Huffman tree to create a table containing the

encoding of each character:

0 1

0

t

0

1

0 1

a s

1

e

1

o

i

0

Using Huffman Decoding to Decompress a File

1)Read the frequency table from the header and rebuild the tree.

2)Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child

when you read a bit of 0, go to the left child

when you reach a leaf node, record the character, return to the root,

and continue reading bits

The tree allows us to easily overcome the challenge of determining

the character boundaries!

example: 101111110000111100

left,left = t
left,right = e
right,right,right= s

101 = right,left,right = i
111 = right,right,right= s
110 = right,right,left = a 00
=
01 =
111 =

00 = left,left = t
o

0 1

0

1

0 1

a s

0 1

t e

1

i

0

Binary Search Trees

•Search-tree property: for

each node k:

• all nodes in k’s left subtree are < k

• all nodes in k’s right subtree are >= k
• Our earlier binary-tree example is a

search tree:

26

38

k

< k

<26 

26

<12
7



k

12 32

12

4 18

Searching for an Item in a Binary Search Tree

•Algorithm for searching for an item with a key k: if k == the

root node’s key, you’re done

else if k < the root node’s key, search the left subtree else

search the right subtree

•Example: search for 7

26

12 32

4 18 38

7

// Nodes have keys that are ints
…

Implementing Binary-Tree Search

public class LinkedTree { private Node root;

public LLList search(int key) { Node n =
searchTree(root, key);
return (n == null ? null : n.data);
}

private static Node searchTree(Node root, int key) {
// write together

}
}

•If we find a node that has the specified key, we return its data

field, which holds a list of the data items for that key.

Inserting an Item in a Binary Search Tree

• We want to insert an item whose key is k.

• We traverse the tree as if we were

searching for k.

• If we find a node with key k, we add the

data item to the list of items for that node.

• If we don’t find it, the last node we

encounter will be the parent P of the new

node.

• if k < P’s key, make the new node P’s

left child

• else make the node P’s right child

• Special case: if the tree is empty,

make the new node the root of the tree.

• The resulting tree is still a search tree.

4 18

7 35

38 P

example: insert

35

26

12

32

Implementing Binary-Tree Insertion

• We'll implement part of the insert()method together.

• We'll use iteration rather than recursion.

• Our method will use two references/pointers:

• trav: performs the traversal down to the

point of insertion

• parent: stays one behind trav

• like the trail reference that we sometimes

use when traversing a linked list

26

12 32

4 18 38

7

parent

trav

Implementing Binary-Tree Insertion

public void insert(int key, Object data)
{ Node parent = null;

Node trav = root; while (trav !=
null) {
if (trav.key == key) {
trav.data.addItem(data, 0); return;
}

26

12 32

4 18 38

7

}

Node newNode = new Node(key, data);
if (parent == null) // the tree was empty
root = newNode;
else if (key < parent.key)
parent.left = newNode; else
parent.right = newNode;
}

ex: delete 4

ex: delete 12

Deleting Items from a Binary Search Tree

• Three cases for deleting a node x

• Case 1: x has no children.

Remove x from the tree by setting its parent’s reference to null.

26 26

12 32 12 32

18 38

4 18 38 18 38

• Case 2: x has one child.

Take the parent’s reference to x and make it refer to x’s child.

26 26

12 32 18 32

38

Deleting Items from a Binary Search Tree (cont.)

•Case 3: x has two children

• we can't just delete x. why?

• instead, we replace x with a node from elsewhere in the tree

• to maintain the search-tree property, we must choose the

replacement carefully

• example: what nodes could replace 26 below?

26

12 32

4 18 38

7 35

18 45

35

35 35

Deleting Items from a Binary Search Tree (cont.)

•Case 3: x has two children (continued):

• replace x with the smallest node in x’s right subtree— call it y

– y will either be a leaf node or will have one right child. why?

•After copying y’s item into x, we delete y using case 1 or 2. ex:

delete 26

26 x 30 x 30

18 45 18 45

30 y 30 y

Implementing Binary-Tree Deletion

public LLList delete(int key) {
// Find the node and its parent. Node
parent = null;

Node trav = root;
while (trav != null && trav.key != key) {
parent = trav;
if (key < trav.key)
trav = trav.left; else

trav = trav.right;
}

// Delete the node (if any) and return the removed items.
if (trav == null) // no such key
return null;
else {
LLList removedData = trav.data; deleteNode(trav, parent);
return removedData;
}
}

•This method uses a helper method to delete the node.

26

12 32

4 18 38

trav

parent

Implementing Case 3

private void deleteNode(Node toDelete,
Node parent) {
if (toDelete.left != null &&
toDelete.right != null) {
// Find a replacement – and
// the replacement's parent. Node
replaceParent = toDelete;// Get the smallest item

// in the right subtree.
Node replace = toDelete.right;
// What should go here?

// Replace toDelete's key and data
// with those of the replacement item.
toDelete.key = replace.key;
toDelete.data = replace.data;

// Recursively delete the replacement
// item's old node. It has at most one
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);

} else {
...

}

26

18 45

35

toDelete

30

toDeleteChild = toDelete.right;
// Note: in case 1, toDeleteChild
// will have a value of null.

if (toDelete == root) root =
toDeleteChild;

else if (toDelete.key < parent.key)
parent.left = toDeleteChild;

else
parent.right = toDeleteChild;

}
}

Implementing Cases 1 and 2

private void deleteNode(Node toDelete, Node parent)
{
if (toDelete.left != null && toDelete.right != null)
{

...
} else {

Node toDeleteChild;
if (toDelete.left != null)

toDeleteChild = toDelete.left; 30
else 18 45

35

toDelete

parent

30

toDeleteChild

Efficiency of a Binary Search Tree

•The three key operations (search, insert, and delete) all have the same time

complexity.

• insert and delete both involve a search followed by a constant

number of additional operations

•Time complexity of searching a binary search tree:

• best case: O(1)

• worst case: O(h), where h is the height of the tree

• average case: O(h)

•What is the height of a tree containing n items?

• it depends! why?

Balanced Trees

•A tree is balanced if, for each node,

the node’s subtrees have the same

height or have heights that differ by

1.• For a balanced tree with n nodes:

• height = O(log2n).

• gives a worst-case time complexity

that is logarithmic (O(log2n))

• the best worst-case time complexity for

a binary tree

26

12 32

4 30 38

• We’ll look next at search-tree

variants that take special measures

to ensure balance.

• height = n - 1
4

• worst-case

time complexity = O(n) 12

What If the Tree Isn't Balanced?

• Extreme case: the tree is equivalent to a linked list

26

32

36

38

UNIT-III

Graphs

Definitions – Representation of graph -

Graph Traversals - Depth-first traversal –

Breadth-first traversal - Applications of graphs -

Topological sort – Shortest-path algorithms –

Minimum spanning tree – Prim's and Kruskal's

algorithms – Biconnectivity – Euler circuits.

Where We Are

We have learned about the essential ADTs
and data structures:

 Regular and Circular Arrays (dynamic sizing)

 Linked Lists

 Stacks, Queues, Priority Queues

 Heaps

 Unbalanced and Balanced Search Trees

We have also learned important algorithms

 Tree traversals

 Floyd's Method

 Sorting algorithms

Where We Are Going

Less generalized data structures and ADTs

More on algorithms and related problems
that require constructing data structures
to make the solutions efficient

Topics will include:

 Graphs

 Parallelism

Graphs

A graph is a formalism for representing
relationships among items

 Very general definition

 Very general concept

A graph is a pair: G = (V, E)

 A set of vertices, also known
as nodes: V = {v1,v2,…,vn}

 A set of edges E = {e1,e2,…,em}

 Each edge ei is a pair of vertices (vj,vk)

 An edge "connects" the vertices

Graphs can be directed or undirected

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),

(Han,Leia),
(Leia,Han)}

A Graph ADT?

We can think of graphs as an ADT

 Operations would inlude isEdge(vj,vk)

 But it is unclear what the "standard operations"
would be for such an ADT

Instead we tend to develop algorithms over
graphs and then use data structures that are
efficient for those algorithms

Many important problems can be solved by:

1. Formulating them in terms of graphs

2. Applying a standard graph algorithm

Some Graphs

For each example, what are the vertices and
what are the edges?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

Core algorithms that work across such domains
is why we are CSE

Scratching the Surface

Graphs are a powerful representation and
have been studied deeply

Graph theory is a major branch of research
in combinatorics and discrete mathematics

Every branch of computer science involves
graph theory to some extent

GRAPH TERMINOLOGY

To make formulating graphs easy and standard,
we have a lot of standard terminology for graphs

Undirected Graphs

In undirected graphs, edges have no specific
direction

Edges are always "two-way"

Thus, (u, v) ∊ E implies (v, u) ∊ E.

Only one of these edges needs to be in the set

The other is implicit, so normalize how you
check for it

Degree of a vertex: number of edges
containing that vertex

Put another way: the number of adjacent vertices

A

B

C

D

Directed Graphs

In directed graphs (or digraphs), edges have direction

Thus, (u, v) ∊ E does not imply (v, u) ∊ E.

Let (u, v)  E mean u → v

Call u the source and v the destination

In-Degree of a vertex: number of in-bound edges
(edges where the vertex is the destination)

Out-Degree of a vertex: number of out-bound edges
(edges where the vertex is the source)

or
A

B
C

D

2 edges here

A

B
C

D

Self-Edges, Connectedness

A self-edge a.k.a. a loop edge is of the form (u, u)

 The use/algorithm usually dictates if a graph has:

 No self edges

 Some self edges

 All self edges

A node can have a(n) degree / in-degree / out-
degree of zero

A graph does not have to be connected

 Even if every node has non-zero degree

 More discussion of this to come

More Notation

For a graph G = (V, E):

|V| is the number of vertices

|E| is the number of edges

 Minimum?

 Maximum for undirected?

 Maximum for directed?

If (u, v) ∊ E , then v is a neighbor of u (i.e., v
is adjacent to u)

Order matters for directed edges:
u is not adjacent to v unless (v, u)  E

A

B

C

V = {A, B, C, D}
E = {(C, B), (A, B),

(B, A), (C, D)}

D

More Notation

For a graph G = (V, E):

|V| is the number of vertices

|E| is the number of edges

 Minimum? 0

 Maximum for undirected? |V||V+1|/2  O(|V|2)

 Maximum for directed? |V|2  O(|V|2)

If (u, v) ∊ E , then v is a neighbor of u (i.e., v
is adjacent to u)

Order matters for directed edges:
u is not adjacent to v unless (v, u)  E

A

B

C

D

Examples Again

Which would use directed edges?

Which would have self-edges?

Which could have 0-degree nodes?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

Weighted Graphs

In a weighted graph, each edge has a weight or cost

 Typically numeric (ints, decimals, doubles, etc.)

 Orthogonal to whether graph is directed

 Some graphs allow negative weights; many do not

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Examples Again

What, if anything, might weights represent for
each of these?

Do negative weights make sense?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

Paths and Cycles

We say "a path exists from v0 to vn" if there is a
list of vertices [v0, v1, …, vn] such that (vi,vi+1) ∊ E for
all 0  i<n.

A cycle is a path that begins and ends at the
same node (v0==vn)

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example path (that also happens to be a cycle):

[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

Path length: Number of edges in a path

Path cost: Sum of the weights of each edge

Example where

P= [Seattle, Salt Lake City, Chicago, Dallas,
San Francisco, Seattle]

Seattle

San Francisco Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) = 5
cost(P) = 11.5

Length is sometimes
called "unweighted cost"

Simple Paths and Cycles

A simple path repeats no vertices (except the
first might be the last):

[Seattle, Salt Lake City, San Francisco, Dallas]

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

A cycle is a path that ends where it begins:

[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

A simple cycle is a cycle and a simple path:

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

 Is there a path from A to D?

 Does the graph contain any cycles?

No

No

A

B

C

D

Undirected Graph Connectivity

An undirected graph is connected if for all

pairs of vertices u≠v, there exists a path
from u to v

An undirected graph is complete,
or fully connected, if for all pairs
of vertices u≠v there exists an
edge from u to v

Connected graph Disconnected graph

Directed Graph Connectivity

A directed graph is strongly connected
if there is a path from every vertex to
every other vertex

A directed graph is weakly connected
if there is a path from every vertex to
every other vertex ignoring direction
of edges

A direct graph is complete or fully
connected, if for all pairs of vertices

u≠v , there exists an edge from u to v

Examples Again

For undirected graphs: connected?
For directed graphs: strongly connected?

weakly connected?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

Trees as Graphs

When talking about graphs, we
say a tree is a graph that is:

 undirected

 acyclic

 connected

All trees are graphs, but NOT all
graphs are trees

How does this relate to the trees
we know and "love"?

A

B

D E

C

F

HG

Rooted Trees

We are more accustomed to rooted trees where:

 We identify a unique root

 We think of edges as directed: parent to
children

Picking a root gives a unique
rooted tree

 The tree is simply drawn
differently and with
undirected edges

A

B

D E

C

F

HG

A

B

D E

C

F

HG

Rooted Trees

We are more accustomed to rooted trees where:

 We identify a unique root

 We think of edges as directed: parent to
children

Picking a root gives a unique
rooted tree

 The tree is simply drawn
differently and with
undirected edges

A

B

D E

C

F

HG

F

G H C

A

B

D E

Directed Acyclic Graphs (DAGs)

A DAG is a directed graph with no directed cycles

 Every rooted directed tree is a DAG

 But not every DAG is a rooted directed tree

 Every DAG is a directed graph

 But not every directed graph is a DAG

Examples Again

Which of our directed-graph examples do you
expect to be a DAG?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

Density / Sparsity

Recall:
In an undirected graph, 0≤|E|< |V|2

Recall:
In a directed graph, 0≤|E|≤|V|2

So for any graph, |E| is O(|V|2)

Another fact:
If an undirected graph is connected,
then |E| ≥ |V|-1 (pigeonhole principle)

Density / Sparsity

|E| is often much smaller than its maximum size

We do not always approximate as |E| as O(|V|2)

 This is a correct bound, but often not tight

If |E| is (|V|2) (the bound is tight), we say the

graph is dense

 More sloppily, dense means "lots of edges"

If |E| is O(|V|) we say the graph is sparse

 More sloppily, sparse means "most possible
edges missing"

GRAPH DATA STRUCTURES

Insert humorous statement here

What’s the Data Structure?

Graphs are often useful for lots of data and questions

 Example: "What’s the lowest-cost path from x to y"

But we need a data structure that represents graphs

Which data structure is "best" can depend on:

 properties of the graph (e.g., dense versus sparse)

 the common queries about the graph ("is (u ,v) an
edge?" vs "what are the neighbors of node u?")

We will discuss two standard graph representations

 Adjacency Matrix and Adjacency List

 Different trade-offs, particularly time versus space

Adjacency Matrix

Assign each node a number from 0 to |V|-1

A |V| x |V| matrix of Booleans (or 0 vs. 1)

 Then M[u][v] == true means there is an
edge from u to v

A

B

C

D A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix Properties

Running time to:

 Get a vertex’s out-edges:

 Get a vertex’s in-edges:

 Decide if some edge exists:

 Insert an edge:

 Delete an edge:

Space requirements:

Best for sparse or dense graphs?

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix Properties

Running time to:

 Get a vertex’s out-edges: O(|V|)

 Get a vertex’s in-edges: O(|V|)

 Decide if some edge exists: O(1)

 Insert an edge: O(1)

 Delete an edge: O(1)

Space requirements:

O(|V|2)

Best for sparse or dense graphs? dense

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix Properties

How will the adjacency matrix vary for an
undirected graph?

 Will be symmetric about diagonal axis

 Matrix: Could we save space by using only
about half the array?

 But how would you "get all neighbors"?

A B C D

A F T F F

B T F F F

C F T F T

D F F T F

Adjacency Matrix Properties

How can we adapt the representation for
weighted graphs?

 Instead of Boolean, store a number in each cell

 Need some value to represent ‘not an edge’

 0, -1, or some other value based on how you
are using the graph

 Might need to be a separate field if no
restrictions on weights

Adjacency List

Assign each node a number from 0 to |V|-1

 An array of length |V| in which each

entry stores a list of all adjacent vertices
(e.g., linked list)

A

B

C

D

A

B

C

D

B /

A /

B /

/

D

Adjacency List Properties

Running time to:

 Get a vertex’s out-edges:

 Get a vertex’s in-edges:

 Decide if some edge exists:

 Insert an edge:

 Delete an edge:

Space requirements:

Best for sparse or dense graphs?

A

B

C

D

B /

A /

B /

/

D

Adjacency List Properties

Running time to:

 Get a vertex’s out-edges:
O(d) where d is out-degree of vertex

 Get a vertex’s in-edges:
O(|E|) (could keep a second adjacency list for this!)

 Decide if some edge exists:
O(d) where d is out-degree of source

 Insert an edge:
O(1) (unless you need to check if it’s already there)

 Delete an edge:
O(d) where d is out-degree of source

Space requirements: O(|V|+|E|)

Best for sparse or dense graphs? sparse

Undirected Graphs

Adjacency lists also work well for
undirected graphs with one caveat

 Put each edge in two lists to support
efficient "get all neighbors"

A

B

C

D
A

B

C

D

B /

C /

B /

/

D

C /

A /

Which is better?

Graphs are often sparse

 Streets form grids

 Airlines rarely fly to all cities

Adjacency lists should generally be your
default choice

 Slower performance compensated by
greater space savings

APPLICATIONS OF
GRAPHS: TRAVERSALS

Might be easier to list what isn't a graph application…

Application: Moving Around WA State

What’s the shortest way to get from
Seattle to Pullman?

Application: Moving Around WA State

What’s the fastest way to get from
Seattle to Pullman?

Application: Reliability of Communication

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

Application: Reliability of Communication

If Tacomas’s phone exchange goes down,
can Olympia still talk to Spokane?

Applications: Bus Routes Downtown

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

How about 4th and Seneca?

Graph Traversals

For an arbitrary graph and a starting node v,
find all nodes reachable from v (i.e., there
exists a path)

 Possibly "do something" for each node (print to
output, set some field, return from iterator, etc.)

Related Problems:

 Is an undirected graph connected?

 Is a digraph weakly/strongly connected?

 For strongly, need a cycle back to starting node

Graph Traversals

Basic Algorithm for Traversals:

 Select a starting node

 Make a set of nodes adjacent to current node

 Visit each node in the set but "mark" each
nodes after visiting them so you don't revisit
them (and eventually stop)

 Repeat above but skip "marked nodes"

In Rough Code Form

traverseGraph(Node start) {

Set pending = emptySet();

pending.add(start)

mark start as visited

while(pending is not empty) {

next = pending.remove()

for each node u adjacent to next

if(u is not marked) {

mark u

pending.add(u)

}

}

}

}

Running Time and Options

Assuming add and remove are O(1), entire
traversal is O(|E|) if using an adjacency list

The order we traverse depends entirely on how
add and remove work/are implemented

 DFS: a stack "depth-first graph search"

 BFS: a queue "breadth-first graph search"

DFS and BFS are "big ideas" in computer science

 Depth: recursively explore one part before going
back to the other parts not yet explored

 Breadth: Explore areas closer to start node first

Recursive DFS, Example with Tree

A tree is a graph and DFS and BFS are particularly
easy to "see" in one

Order processed: A, B, D, E, C, F, G, H

 This is a "pre-order traversal" for trees

 The marking is unneeded here but because we
support arbitrary graphs, we need a means to
process each node exactly once

A

B

D E

C

F

HG

DFS(Node start) {

mark and process start

for each node u adjacent to start

if u is not marked

DFS(u)

}

DFS with Stack, Example with Tree

Order processed: A, C, F, H, G, B, E, D

 A different order but still a perfectly fine
traversal of the graph

A

B

D E

C

F

HG

DFS2(Node start) {

initialize stack s to hold start

mark start as visited

while(s is not empty) {

next = s.pop() // and "process"

for each node u adjacent to next

if(u is not marked)

mark u and push onto s

}

}

BFS with Queue, Example with Tree

Order processed: A, B, C, D, E, F, G, H

 A "level-order" traversal

A

B

D E

C

F

HG

BFS(Node start) {

initialize queue q to hold start

mark start as visited

while(q is not empty) {

next = q.dequeue() // and "process"

for each node u adjacent to next

if(u is not marked)

mark u and enqueue onto q

}

}

DFS/BFS Comparison

BFS always finds the shortest path (or
"optimal solution") from the starting node
to a target node

Storage for BFS can be extremely large

A k-nary tree of height h could result in a queue
size of kh

DFS can use less space in finding a path

If longest path in the graph is p and highest
out-degree is d then DFS stack never has more
than d⋅p elements

Implications

For large graphs, DFS is hugely more
memory efficient, if we can limit the
maximum path length to some fixed d.

If we knew the distance from the start to the
goal in advance, we could simply not add any
children to stack after level d

But what if we don’t know d in advance?

Iterative Deepening (IDFS)

Algorithms

 Try DFS up to recursion of K levels deep.

 If fails, increment K and start the entire
search over

Performance:

 Like BFS, IDFS finds shortest paths

 Like DFS, IDFS uses less space

 Some work is repeated but minor
compared to space savings

Saving the Path

Our graph traversals can answer the standard
reachability question:

"Is there a path from node x to node y?"

But what if we want to actually output the path?

Easy:

 Store the previous node along the path:
When processing u causes us to add v to the
search, set v.path field to be u)

 When you reach the goal, follow path fields back to
where you started (and then reverse the answer)

 What's an easy way to do the reversal? A Stack!!

Example using BFS

What is a path from Seattle to Austin?

 Remember marked nodes are not re-enqueued

 Note shortest paths may not be unique

Seattle

San Francisco

Dallas

Salt Lake City

Chicago

Austin

1

1

1

2

3

0

Topological Sort

Problem: Given a DAG G=(V, E), output all the

vertices in order such that if no vertex appears
before any other vertex that has an edge to it

Example input:

Example output:

 142, 126, 143, 311, 331, 332, 312, 341, 351,
333, 440, 352

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Disclaimer: Do not use for official advising purposes!
(Implies that CSE 332 is a pre-req for CSE 312 – not true)

Questions and Comments

Terminology:
A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

Why do we perform topological sorts only on DAGs?

 Because a cycle means there is no correct answer

Is there always a unique answer?

 No, there can be one or more answers depending
on the provided graph

What DAGs have exactly 1 answer?

 Lists

Uses Topological Sort

Figuring out how to finish your degree

Computing the order in which to
recalculate cells in a spreadsheet

Determining the order to compile files with
dependencies

In general, use a dependency graph to
find an allowed order of execution

Topological Sort: First Approach

1. Label each vertex with its in-degree

 Think "write in a field in the vertex"

 You could also do this with a data structure on
the side

2. While there are vertices not yet outputted:

a) Choose a vertex v labeled with in-degree of 0

b) Output v and "remove it" from the graph

c) For each vertex u adjacent to v, decrement in-
degree of u

- (i.e., u such that (v,u) is in E)

Example

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-deg:

Example

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 0 0 0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 0 0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 0 0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0

0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0

0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0

0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0 0

0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0 0

0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0 0

0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

352

Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

1 0 1 0 0 1 0 0 0 0

0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

352

440

Running Time?

What is the worst-case running time?

 Initialization O(|V| + |E|) (assuming adjacency list)

 Sum of all find-new-vertex O(|V|2) (because each O(|V|))

 Sum of all decrements O(|E|) (assuming adjacency list)

 So total is O(|V|2 + |E|) – not good for a sparse graph!

labelEachVertexWithItsInDegree();

for(i=0; i < numVertices; i++) {

v = findNewVertexOfDegreeZero();

put v next in output

for each w adjacent to v

w.indegree--;

}

Doing Better

Avoid searching for a zero-degree node every time!

 Keep the “pending” zero-degree nodes in a list, stack, queue,
bag, or something that gives O(1) add/remove

 Order we process them affects the output but not
correctness or efficiency

Using a queue:

 Label each vertex with its in-degree,

 Enqueue all 0-degree nodes

 While queue is not empty

 v = dequeue()

 Output v and remove it from the graph

 For each vertex u adjacent to v, decrement the in-degree
of u and if new degree is 0, enqueue it

Running Time?

labelAllWithIndegreesAndEnqueueZeros();

for(i=0; i < numVertices; i++) {

v = dequeue();

put v next in output

for each w adjacent to v {

w.indegree--;

if(w.indegree==0)

enqueue(w);

}

}

 Initialization: O(|V| + |E|) (assuming adjacency list)

 Sum of all enqueues and dequeues: O(|V|)

 Sum of all decrements: O(|E|) (assuming adjacency list)

 So total is O(|E| + |V|) – much better for sparse graph!

More Graph Algorithms

Finding a shortest path is one thing

 What happens when we consider
weighted edges (as in distances)?

Next time we will discuss shortest path
algorithms and the contributions of a
curmudgeonly computer scientist

Unit- IV

Introduction to Algorithms

Introduction – Notion of Algorithm –

Fundamentals of Algorithmic problem

solving – Important problem types –

Mathematical analysis for recursive & non

recursive algorithms – Brute Fore –

Selection Sort – Bubble Sort.

L1.132

L1.133

What is course about?

The theoretical study of design and

analysis of computer algorithms

Basic goals for an algorithm:

• always correct

• always terminates

• This class: performance

• Performance often draws the line between

what is possible and what is impossible.

L1.134

Design and Analysis of Algorithms

• Analysis: predict the cost of an algorithm in

terms of resources and performance

• Design: design algorithms which minimize the

cost

L1.136

The problem of sorting

Input: sequence a1, a2, …, an of numbers.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation a'1, a'2, …, a'n such

that a'1  a'2 
…  a'n .

L1.137

Insertion sort

INSERTION-SORT (A, n) ⊳ A[1 . . n]

for j ← 2 to n

do key ← A[j]

i ← j – 1

while i > 0 and A[i] > key

do A[i+1] ← A[i]

i ← i – 1

A[i+1] = key

“pseudocode”

i j

key
sorted

A:
1 n

L1.138

Example of insertion sort

8 2 4 9 3 6

L1.139

Example of insertion sort

8 2 4 9 3 6

L1.140

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

L1.141

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

L1.142

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

L1.143

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

L1.144

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

L1.145

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

L1.146

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

L1.147

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

L1.148

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

L1.149

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

• Major Simplifying Convention:
Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

TA(n) = time of A on length n inputs

• Generally, we seek upper bounds on the
running time, to have a guarantee of
performance.

L1.150

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm
on any input of size n.

Average-case: (sometimes)

• T(n) = expected time of algorithm
over all inputs of size n.

• Need assumption of statistical
distribution of inputs.

Best-case: (NEVER)

• Cheat with a slow algorithm that
works fast on some input.

L1.151

Machine-independent time

What is insertion sort’s worst-case time?

BIG IDEAS:

• Ignore machine dependent constants,

otherwise impossible to verify and to compare algorithms

• Look at growth of T(n) as n → ∞ .

“Asymptotic Analysis”

L1.152

-notation

• Drop low-order terms; ignore leading constants.

• Example: 3n3 + 90n2 – 5n + 6046 = (n3)

DEF:
(g(n)) = { f (n) : there exist positive constants c1, c2, and

n0 such that 0  c1 g(n)  f (n)  c2 g(n)

for all n  n0 }

Basic manipulations:

L1.153

Asymptotic performance

n

T(n)

n0

.

• Asymptotic analysis is a
useful tool to help to
structure our thinking
toward better algorithm

• We shouldn’t ignore

asymptotically slower

algorithms, however.

• Real-world design

situations often call for a

careful balancing

When n gets large enough, a (n2) algorithm

always beats a (n3) algorithm.

L1.154

Insertion sort analysis

Worst case: Input reverse sorted.

 



n

j

njnT
2

2)()(

Average case: All permutations equally likely.

 



n

j

njnT
2

2)2/()(

Is insertion sort a fast sorting algorithm?

• Moderately so, for small n.

• Not at all, for large n.

[arithmetic series]

L1.155

Example 2: Integer

Multiplication

• Let X = A B and Y = C D where A,B,C

and D are n/2 bit integers

• Simple Method: XY = (2n/2A+B)(2n/2C+D)

• Running Time Recurrence

T(n) < 4T(n/2) + 100n

• Solution T(n) = q(n2)

L1.156

Better Integer Multiplication

• Let X = A B and Y = C D where A,B,C and D

are n/2 bit integers

• Karatsuba:

XY = (2n/2+2n)AC+2n/2(A-B)(C-D) + (2n/2+1) BD

• Running Time Recurrence

T(n) < 3T(n/2) + 100n

• Solution: q(n) = O(n log 3)

L1.157

Example 3:Merge sort

MERGE-SORT A[1 . . n]

1. If n = 1, done.

2. Recursively sort A[1 . . n/2]
and A[n/2+1 . . n] .

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

L1.158

Merging two sorted arrays

20

13

7

2

12

11

9

1

L1.159

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

L1.160

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

L1.161

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

L1.162

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

L1.163

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

L1.164

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

L1.165

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

L1.166

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

L1.167

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

L1.168

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

L1.169

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

L1.170

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = (n) to merge a total

of n elements (linear time).

L1.171

Analyzing merge sort

MERGE-SORT A[1 . . n]

1. If n = 1, done.

2. Recursively sort A[1 . . n/2]
and A[n/2+1 . . n] .

3. “Merge” the 2 sorted lists

T(n)

(1)

2T(n/2)

(n)

Sloppiness: Should be T(n/2) + T(n/2) ,

but it turns out not to matter asymptotically.

L1.172

Recurrence for merge sort

T(n) =
(1) if n = 1;

2T(n/2) + (n) if n > 1.

• We shall usually omit stating the base
case when T(n) = (1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

• Lecture 2 provides several ways to find a
good upper bound on T(n).

L1.173

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

L1.174

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

L1.175

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

L1.176

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

L1.177

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

L1.178

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

L1.179

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

L1.180

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

L1.181

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

cn

…

L1.182

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

cn

#leaves = n (n)

…

L1.183

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

(1)

h = lg n

cn

cn

cn

#leaves = n (n)

Total (n lg n)

…

L1.184

Conclusions

• (n lg n) grows more slowly than (n2).

• Therefore, merge sort asymptotically
beats insertion sort in the worst case.

• In practice, merge sort beats insertion
sort for n > 30 or so.

18

5

ALGORITHM ANALYSIS

AND DESIGN

INTRODUCTION

18

6

Algorithm Analysis – Asymptotic Notations - Divide

and Conquer – Merge Sort – Binary Search - Greedy

Algorithms – Knapsack Problem – Dynamic

Programming – Warshall’s Algorithm for Finding

Transitive Closure – Backtracking – Sum of Subset

Problem – Branch and Bound – Travelling Salesman

Problem.

18

7

* Algorithm Analysis and Design

Algorithm

• An algorithm is a step by step procedure for

solving the given problem.

• An algorithm is independent of any

programming language and machine.

18

8

* Algorithm Analysis and Design

Definition

• An Algorithm is a finite sequence of

effective steps to solve a particular problem

where each step is unambiguous(definite)

and which terminates for all possible inputs

in a finite amount of time.

• An Algorithm accepts zero or more inputs

and produces one or more outputs.

18

9

* Algorithm Analysis and Design

Properties

• Definiteness

• Effectiveness

• Finiteness

19

0

* Algorithm Analysis and Design

Definiteness

• Each instruction should be clear and
unambiguous.

• It must be perfectly clear what should be done.

• Example Directions which are not permitted

– “add 6 or 7 to x”

– compute x/0

– remainder of m/n when m and n are –ve numbers

• it is not clear which of the 2 possibilities should be
done.

19

1

* Algorithm Analysis and Design

Definiteness Contd..

• Achievement using programming language

for algorithms

– designed such that each legitimate sentence has

a unique meaning

19

2

* Algorithm Analysis and Design

Effectiveness

• Each step must be such that it can at least in

principle be done by a person using paper and

pencil in a finite amount of time.

• Example -Effective

– Performing arithmetic on integers

• Example not effective

– Some arithmetic with real numbers.

– if k is the largest integer n such that x^n + y^n = z^n in

all positive integers then go to step 4

19

3

* Algorithm Analysis and Design

Finiteness

• The algorithm should terminate after a finite

number of steps in all the cases.

• The time for termination should be

reasonably short.

19

4

* Algorithm Analysis and Design

Example Algorithm

• An algorithm to find the maximum in array

of n numbers

Algorithm max(a,n)

// a is an array of size n

{ result:= a[1];

for i = 2 to n do

{ if (a[i] > result)

then result :=a[i];

}

return result;

}

19

5

* Algorithm Analysis and Design

Development of an algorithm

• Steps Involved

– Devise

– Validate

– Analyse

– Test

19

6

* Algorithm Analysis and Design

Devise the algorithm

• An art which cannot be fully automated

• Design techniques

– Yields good algorithms for known problems

– Helps to devise new useful algorithms

19

7

* Algorithm Analysis and Design

General Techniques

• Provide directions for algorithmic problem

solutions

• Help programmers thinking in designing an

algorithm

• Types - depending on applied problems

– Solve almost all variety problems.

– Solve only to specific type of problems.

19

8

* Algorithm Analysis and Design

Devise Algorithm For

New Problems

• Requires exploration of the specific features

of the problem discussed

• General design techniques can be applied

to a much extend.

• The best technique has to be selected from

the possible set of techniques.

• It should be applied in the right way.

19

9

* Algorithm Analysis and Design

Example Sorting

Approaches

• Incremental

– Insertion sort

• Divide-and-conquer

– Quick sort

– Merge sort etc.

20

0

* Algorithm Analysis and Design

Validating the algorithm

• To show that algorithm computes the

correct answer for all possible legal inputs.

• Need not be expressed as a program.

– sufficient to state it any precise way.

• Assurance of correctness of algorithm

– Independent of the issues concerning the

programming language

20

1

* Algorithm Analysis and Design

Validating the algorithm

• A proof of correctness is more valuable than 100
tests.

• Mathematical proof

– solution stated in two forms

• Program
– The program is expressed as a set of predicate calculus

assertions in input and output variables.

• Specification

– specifications are also expressed as predicate calculus
assertions

20

2

* Algorithm Analysis and Design

Analyse algorithms

• This phase performs performance analysis

• Execution requires CPU time and memory

• Task of determining time and space
requirements.

• Performance in cases considered separately

– Best case

– Worst case

– Average case etc.

20

3

* Algorithm Analysis and Design

Good algorithm

• One which works correctly

– should give the desired output

• Readable

– Steps are clear and understandable

• Efficient in terms of time and memory utilization .

– give the desired output faster

– utilize less resources.

• Given multiple solutions, finding out the better one.

20

4

* Algorithm Analysis and Design

Performance Measures

• Quality of the solution

– How much time does the solution take?.

– How much space does the solution occupy?

• Simplicity of the solution

• Performance Improvement

– Improving the algorithm design.

– Continuous improvements in hardware and
communication infrastructure

20

5

* Algorithm Analysis and Design

Testing

• Two phases

– Debugging

– Profiling (performance measurement)

20

6

* Algorithm Analysis and Design

Debugging

• Process of executing programs on sample

data sets to determine whether faulty results

occur and if so to correct them.

• Requirement

– A proof of correctness prove that the algorithm

will correctly for all cases.

– Not easy to obtain mathematical proofs.

20

7

* Algorithm Analysis and Design

Profiling

• Executing programs with sample data sets

to measure the time and space requirements.

• It is helpful for optimization since it can

point out logical places that require

optimization.

20

8

* Algorithm Analysis and Design

Basic Mathematical Principles

A few formulae
1 + 2 + … + n = n * (n + 1) / 2

1 + 22 + … + n2 = n * (n + 1) * (2n + 1) / 6

1 + a + a2 + … + an = (a(n+1) – 1) / (a – 1)

a+ar+ar2+ar3+……….+arn=a(rn+1-1)/(r-1)

20

9

* Algorithm Analysis and Design

Mathematical Formulae

Contd..

• Floor(x) or is the largest integer less

than or equal to x

• Ceil(x) or is the smallest integer

greater than or equal to x
⎡⎤

x

21

0

* Algorithm Analysis and Design

Mathematical Formulae

Contd..
loga xy=log a x+loga y

log a(x/y) = loga x- loga y

log a x^n = n log a x

log a 1=0

log x x=1

log a x=1/log x a

loga(x) = loga(b) * logb(x)

log a x= log b x/ log b a

alog
a

x=x

if 2k=n then k=log 2 n

xlog
b

y=ylog
b

x

21

1

* Algorithm Analysis and Design

Mathematical Formulae

Contd..

for n>=k>=0

21

2

* Algorithm Analysis and Design

Mathematical Formulae

Contd..

• A.P.
– Nth term - a + (n − 1)d

– Sum - Sn =n/2*(2a + (n − 1)d)

• G.P.

– Nth term - ar(n−1)

– Sum - Sn = a(1 − rn)/(1 − r) (valid only if r ‡ 1)

21

3

* Algorithm Analysis and Design

A Commonly Used Result

During Analysis

• How many times should we half the number

n (discarding reminders if any) to reach 1?

• two cases.

• Case – 1: n is a power of 2

• Case – 2: n is not a power of 2

21

4

* Algorithm Analysis and Design

A Commonly Used Result

Contd..

Case – 1: n is a power of 2 → n = 2m

Example n = 8

16 8 4 2 1

8 must be halved 3 times to reach 1

8 4 2 1

16 must be halved 4 times to reach 1

21

5

* Algorithm Analysis and Design

A Commonly Used Result

Contd..

• Case – 2: n is not a power of 2 ; n > 2m

Example n = 9

9 must be halved 3 times to reach 1

9 4 2 1

15 must be halved 3 times to reach 1

15 7 3 1

21

6

* Algorithm Analysis and Design

A Commonly Used Result Contd..

General Case 2m ≤ n < 2(m+1)

n must be halved m times to reach 1

n must be halved m times if 2m ≤ n < 2(m+1)

So m ≤ log2(n) < m+1

m = floor(log2n) or

Number n must be halved times to reach 1⎡⎤

log2

n

⎡⎤

log2

n

21

7

* Algorithm Analysis and Design

A Corollary to the result Contd..

• A number n must be halved

floor(log2n) + 1 times

• To reach 0

21

8

* Algorithm Analysis and Design

Performance Analysis

• to improve existing algorithms

• to choose among several available algorithms

• Two types

– Apriori Analysis

– Aposteriori Analysis

21

9

* Algorithm Analysis and Design

Apriori Analysis - Example

• Doing an analysis of the solutions before
performing the action.

• Physical Example- Find path from P to Q

• Criteria for selection

– Path length, road conditions, type of vehicle, speed

22

0

* Algorithm Analysis and Design

Apriori Analysis

• Doing an analysis of the solutions before

coding the algorithms

• Given two or more algorithms for a problem

– Doing a machine independent analysis to find

better algorithm

22

1

* Algorithm Analysis and Design

Space Time Tradeoff

Example

Store Employee information

• Solutions

– Array

– Linked list

• Which locates a particular employee faster?

• Which provides better utilization of memory?

• Which is easy to code?

• Which is easier to test?

22

2

* Algorithm Analysis and Design

Space Complexity

• Amount of memory the algorithm needs to

run to completion

• Requirements

– Fixed part

– Variable part

• S(P)=c+Sp

22

3

* Algorithm Analysis and Design

Example Algorithm

Algorithm abc(a,b,c)

{return a+b+b*c+(a-c)/(a+b) +2.0;

}

S(P) = c + Sp

Sp = 0 S(P)>3

22

4

* Algorithm Analysis and Design

Example Algorithm

Algorithm sum(a,n)

{s = 0.0;

for i:=1 to n do s:=s+a[i];

return s; }

one word for each integer n,i,s,a[]

s(n) >= n+3

22

5

* Algorithm Analysis and Design

Example Algorithm

algorithm rsum(a,n)

{ if (n<=0) then return 0.0

else return rsum(a,n-1)+a[n]; }

• Instance characterized by n

• Recursive stack space required at each level

•(n,return address,*a[]) 3 words

• Depth of recursion considering first invocation - (n+1)

• S(n)>=3*(n+1)

22

6

* Algorithm Analysis and Design

Time Complexity

• Amount of computer time needed for the

algorithm to run to completion

• T(P) = C(P) + R(P)

• C(P) is independent of problem instance

and is always not required (recompilation)

• So usually only R(P) is considered

22

7

* Algorithm Analysis and Design

Apriori Measures

• Instruction count

– Basic operations

– Basic steps

• Size of input.

22

8

* Algorithm Analysis and Design

Computing Instruction Count

• Initialization instructions

• Loops.

– Number of passes of the loops

• Count the basic operations/steps

22

9

* Algorithm Analysis and Design

Basic Steps - Example

• Search

– Basic operation is compare x and y

• Matrix multiplication

– Basic operation is multiplication of real numbers

23

0

* Algorithm Analysis and Design

Step in Algorithm

• Step is a meaningful segment of program or

computational unit that is independent of the

instance characteristics

• Example

– 10 or 100 additions can be one step

– 200 multiplications can be another step

– but not n additions

23

1

* Algorithm Analysis and Design

Example 1

Algorithm sum(a,n)
{s=0.0;
count:=count+1;
for i: =1 to n do

{count:=count+1;
s:=s+a[I];
count:=count+1;}

count:=count+1;
count:count+1;

return s;}

count = 2n+3

23

2

* Algorithm Analysis and Design

Example 2

algorithm rsum(a,n)

{

count:=count+1;

if (n<=0) then

{ count:=count+1;

return 0.0; }

else

{ count:=count+1;

return rsum(a,n-1)+a[n];} }

Count ?

23

3

* Algorithm Analysis and Design

Computing Step Count from s/e

• Each statement will have an (s/e) steps/execution

depending on the type of statement

• Frequency of each statement is multiplied with the

corresponding s/e of that statement to get the step count

for that statement.

• Statement Step counts are added to give the total count

23

4

* Algorithm Analysis and Design

Example 1

s/e freq total

1 1 1

1 n+1 n+1

1 n n

1 1 1

2n+3

Algorithm sum(a,n)

{ s=0.0;

for i: =1 to n do

{ s:=s+a[i]; }

return s; }

23

5

* Algorithm Analysis and Design

Example 2

algorithm add(a,b,b,m,n)

{for i:=1 to m do

for j:=1 to n do

c[i,j]:=a[i,j]+b[i,j]; }

S/e freq Total

1 m+1 m+1

1 m(n+1) m(n+1)

1 mn mn

2mn+2m+1

23

6

* Algorithm Analysis and Design

Example 3

algorithm rsum(a,n)

{if (n<=0) then

{ return 0.0; }

else

{return rsum(a,n-1)+a[n];
}}

s/e freq freq total total

n=0 n>0 n=0 n>0

1 1 1 1 1

1 1 0 1 0

1+x 0 1 0 1+x

2 2+x

23

7

* Algorithm Analysis and Design

Computing Complexity

X = trsum(n-1)

trsum(n)= { 2
2+ trsum(n-1)

if
if

n=0
n>0

Known as a recurrence relation.

23

8

* Algorithm Analysis and Design

Solving the Recurrence

trsum(n)=2+ trsum(n-1)

= 2+2+ trsum(n-2)

= 2*2+ trsum(n-2)

= 2*3+ trsum(n-3)

- - - - - - - - - -

=2*n + trsum(n-n)

= 2n+2 n>=0

23

9

* Algorithm Analysis and Design

Complexity - Representation

• when the step count cannot be uniquely

represented, the step count for the best,

worst and average cases can be separately

listed.

24

0

* Algorithm Analysis and Design

Worst Case Complexity

• Dn be the set of inputs of size n

• i ε Dn.

• Let T(i) be the number of basic operations

performed by the algorithm on input i.

• Worst case complexity W can be defined as

–W(n)= max{ T(i) / i ε Dn}

24

1

* Algorithm Analysis and Design

Best Case Complexity

• Dn be the set of inputs of size n

• i ε Dn.

• Let T(i) be the number of basic operations

performed by the algorithm on input i.

• Best case complexity B can be defined as

–B(N)= min{ T(i) / i ε Dn}

24

2

* Algorithm Analysis and Design

Average Case Complexity

• Dn be the set of inputs of size n

• T(i) be the number of basic operations

performed by the algorithm on input i.

• P(i) be the probability for input I to occur

• Average behavior can be defined as

• A(n) =

24

3

* Algorithm Analysis and Design

Computing

Average Case Complexity

• Two steps

– An understanding of the average nature of the

input

– Performing a run-time analysis of the algorithm

for different cases

• Difficult to estimate the statistical behavior

of the input

24

4

* Algorithm Analysis and Design

Expressing Complexity

• Goodness of an algorithm often expressed in

terms of its worst-case running time.

• Two reasons for this:

– the need for a bound on one’s pessimism

– ease of calculation of worst-case

24

5

* Algorithm Analysis and Design

Example Algorithm

Algorithm insert(A,i,k)

//To insert k at position i in a[1..n]

{Copy a[i…n-1] to a[i + 1…n]

Copy k to a[i] }

24

6

* Algorithm Analysis and Design

Worst Case Complexity

Algorithm insert(A,i,k)

//To insert k at position i in a[1..n]

{Copy a[i…n-1] to a[i + 1…n]

Copy k to a[i] }
1 copy

n-1 copies

total number of copy operations is n-1+1=n.

worst case complexity of array insertion is n steps

24

7

* Algorithm Analysis and Design

Best Case Complexity

Algorithm insert(A,i,k)

//To insert k at position i in a[1..n]

{Copy a[i…n-1] to a[i + 1…n]

Copy k to a[i] }
1 copy

0 copies

total number of copy operations is 0+1=1

worst case complexity of array insertion is 1 steps

24

8

* Algorithm Analysis and Design

Average Case Complexity

Algorithm insert(A,i,k)

//To insert k at position i in a[1..n]

{Copy a[i…n-1] to a[i + 1…n]

Copy k to a[i] }

((n-1)/2) + 1 steps.

Probability for 0 copy – 1/n

Probability for 2 copy – 1/n

- - - - - -

Probability for n-1 copy – 1/n

Average Complexity =

= (1/n) + (2/n) + … + (n-1)/n = (n-1)/2.

Step count for 1 copy – 1

Step count for 2 copy – 2

- - - - - -

Step count for n-1 copy – n-1

24

9

* Algorithm Analysis and Design

Compare Algorithms

• Analysis to get an idea about the fastness

• Exact step count is not required

• Example

• An algorithm with step count 10 n+10 <
100n+10.

• Constant associated is not much relevant

– 100n but it is 40 or 80n.

• c3n < c1n
2+c2n

25

0

* Algorithm Analysis and Design

Break Even Point

• Normally c3n < c1n
2+c2n

• Irrelevant of c1, c2 and c3 there will be a
value of n beyond which c3n will run faster.

• Exact value of break even point by running

• Sufficient condition for existence

• Compare c1n
2+c2n & c3n

– break even point exist irrelevant of c1, c2 and
c3

25

1

* Algorithm Analysis and Design

Algorithm Analysis

• Precise mathematical analysis is difficult

• Steps to simplify the analysis

– Identify fastest growing term

– Neglect the slow growing terms

– Neglect the constant factor in the fastest growing term
are performed.

• Simplification result

– algorithm’s time complexity.

• Focuses on the growth rate of the algorithm with
respect to the problem size

25

2

* Algorithm Analysis and Design

Running Times- Comparison

25

3

* Algorithm Analysis and Design

Asymptotic Notations

• Describing complexity

25

4

* Algorithm Analysis and Design

Upper Bound

• A set of numbers ranging from a to b.

• Upper bound for the set

• Any number greater than or equal to b

– Could be b or b+1, or b+2, …

• Moves closer as the number increases

• No point of time it is greater than upper bound.

25

5

* Algorithm Analysis and Design

O-Notation (Upper Bound)

• f(n) = O(g(n)) if there are positive constants

n0 and c such that to the right of n0, the

value of f(n) always lies on or below cg(n)

or f(n)<=c*g(n) for all n> n0.

n

0

25

6

* Algorithm Analysis and Design

O-Notation Contd..

• If f(n)=O(g(n)) →f(n) is at least as good as

g(n).

• Informally O(g(n)) denotes the set of all

functions with a smaller or same order of

growth as g(n).

• n2 belongs O(n3).

25

7

* Algorithm Analysis and Design

O-Notation Examples

• n2+10n = O(n2)

• 5n3+6 =O(n3)

• 3logn+8 = O(logn)

• n2+10n = O(n3)

25

8

* Algorithm Analysis and Design

General Rules for analysis

• In expressing running times, each

elementary step such as an assignment, an

addition or an initialization is counted as

one unit of time

• Leading constants and lower order terms are

ignored

25

9

* Algorithm Analysis and Design

Analysis Rules Loops

• The running time of a for loop, is at most the

running time of the statements inside the for loop

(including tests) multiplied by the number of

iterations

• Nested loops should be analyzed inside out.

• The total running time for a statement inside

innermost loop is given by its running time

multiplied by the product of the sizes of all for

loops

26

0

* Algorithm Analysis and Design

Analysis Rules If

• The running time of an if/else statement is

not more than the running time of the test,

plus the larger of the running times of

statements contained inside then and else

conditions .

26

1

* Algorithm Analysis and Design

Properties of O notation.

• Constant factors can be omitted

– 2n3+6 ε O(n3) , 2 and 6 are omitted

• Growth rate of a sum is given by the rate of its fastest
growing term.
– 5n3+3n+8 ε O(n3)

• if f(n)>g(n), g(n)>b(n) then f(n)>b(n)

– O(n2)>O(n), O(n)>O(logn)so O(n2)>O(logn)

• Higher powers of n grows faster than lower powers

– O(n3)> O(n2)

26

2

* Algorithm Analysis and Design

Example Problem 1

any segment for which each statement is

executed only once will have a total number of

statements executed that is independent of n.

Time complexity will be O(1)

Read(A)

X:= A*A

- - - - - - -

Write(X)

26

3

* Algorithm Analysis and Design

Example Problem2

• complexity n*n =O(n2)

for i :=1 to n do

for j:=1 to n do

{

}

26

4

* Algorithm Analysis and Design

Example Problem3

complexity is 1+2+3+4+ -- --+n=n*(n+1)/2=O(n2)

for i:=1 to n do

for j:=1 to i do

{

}

26

5

* Algorithm Analysis and Design

Example Problem4

• Values of i=1, 2,4, ---,2k, 2 k+1if 2k <=n <2 k+1

• If n is a proper power of 2

– Loop executed k+1 times where k=

i=1;
While (i<=n) do
{ ---

i:= 2*i;
--- }

⎡⎤

log2

n

⎡⎤

log2

n

log2

n•if n is not a proper power of 2

–Loop executed k+1 times where k =

•Complexity is 1+ so O(logn)

26

6

* Algorithm Analysis and Design

Example Problem2

• Complexity = O(logn)

Algorithm power(b,n)

{p:=1; q:=b;

While (n>0) do

{If n is odd, then p:=p*q;

n:=n /2;

q:=q*q;}

Return (p); }

26

7

* Algorithm Analysis and Design

Example Problem2

• Time complexity as a recurrence relation

• T(n)=a for n=1

• T(n)=T(n-1)+c for n>1

– Where a and c are contstants

Algorithm fact(n)

{ if n=1 then return(1);

else return(n*fact(n-1)); }

26

8

* Algorithm Analysis and Design

Solving Recurrences

• 3 methods

– using iteration

– using recurrence trees

– using master theorem

26

9

* Algorithm Analysis and Design

Method of substitution / lteration

• Method expanding recurrence to see a pattern.

• Expand (iterate) the recurrence and express it

as a summation of terms dependent only on n

and the initial conditions

27

0

* Algorithm Analysis and Design

Iteration Method Contd..

• Key focus on 2 parameters
– the number of times the recurrence needs to be iterated

to reach the boundary condition

– the sum of terms arising from each level of the iteration
process

• Techniques for evaluating summations can then be
used to provide bounds on solution

27

1

* Algorithm Analysis and Design

Example Problem1

• T(n) = T(n-1) + c

= T(n-2) + c + c

= T(n-(n-1) + (n-1) c

= T(1) + (n-1) c

= a + c(n-1)

= O(n)

27

2

* Algorithm Analysis and Design

Example Problem2

• T(1) = 1

• T(n) = T(n-1) + n

= [T(n-2) + n-1] + n

= T(n-2) + n-1 + n

- - - - - - - - - - - - -

= T(n-(n-1) + 2+3+. . .+n-1+ n

= T(1) + 2+3+. . .+n-1+ n

= n*(n+1)/2

= O(n2)

27

3

* Algorithm Analysis and Design

Example Problem3

• T(1) = 1

• T(n) = T(n/2)+1

= T(n/4)+1+1

= T(n/22)+1+1

- - - - - - - - -

= T(n/2k)+1+1+1--- k times

= T(1)+k where k =log2(n)

= logn+1

= O(logn)

27

4

* Algorithm Analysis and Design

Example Problem4

• T(1) = 0

• T(n) = T(n/2) + n

= T(n/22)+n/2+n

- - - - - - - - -

= T(n/2k)+2+4+---+n/2+n

= T(1)+ (21)+ (22)+---+ (2k-1)+ (2k)

where k =log2(n)

= 0+2*(2k-1)/(2-1)

= 2*(n-1)

= O(n)

27

5

* Algorithm Analysis and Design

Example Problem5

• Example of algorithm that ------ into 2 values and
seeks to solve both

• T(n) = 2 T(n/2) + an

= 22 T(n/4) + an + an

= 2k T(n/2k) + akn

= n + an log n

= O(n log n)

27

6

* Algorithm Analysis and Design

Example Problem6

• T(n) = 2 T(√n) + log n for n > 2

Substitute m = log n

T(2m) = 2T(2 m/2) + m
when n=2 m=1 Termination condn is m=1

Substitute T(2m) with S(m)

= 2*S(m/2)+m

= 22S(m/4) + 2*m

= 2k S(1) + k*m where k=logm

= m + m log m

= O(log n * log(log n))

27

7

* Algorithm Analysis and Design

Example Problem7

Show that

T(n) = T(⎡n/2⎤) + 1 is O(log n)

T(n) = T(n/2) + 1

= T(n/4) + 1 + 1

= T(n/2k) + k where k=log2 n

= a + k

= a + log n

= O(log n)

27

8

* Algorithm Analysis and Design

Example Problem8

• T(n) = 3T(⎣n/4⎦) + n

= n + 3T (n/4)

= n + 3[(n/4) + 3T (n/42)]

= n[1 + ¾ +32/42] + 33 T(n/43)

= n[1 + ¾ +32/42+……+3k-1/4k-1] + 3k T(n/4k) where k = log4n

= n[(1*(3/4) k -1)/3/4-1] + 3 ka

= c * n(3/4)log
4
n +4n + 3 log

4
n * a

= c * n * nlog
4

3/4 + a*nlog
4

3 +b*n

= c * n log
4
4+ log

4
3- log

4
4 + a n log

4
3 +b*n = O(n log

4
3)+O(n)

= O(n)

27

9

* Algorithm Analysis and Design

Recurrence Tree

• A convenient way to visualize what happens
when a recursion is iterated

• It is good for generating guesses for the
substitution method.

• We may describe the execution of a
recursive program on a given input by a
rooted tree, which is known as recurrence
tree

28

0

The steps involved in

building the Recurrence Tree

• Determine height of tree and the size(sum)

of each level as a function of input size

• Add the sizes of each level and

Multiply by the height of the tree

28

1

* Algorithm Analysis and Design

Recurrence Tree Example

lg n

T(n)

T(n/2)

T(n/4)

T(n/2)

T(n/4) T(n/4) T(n/4)

28

2

* Algorithm Analysis and Design

Recurrence Tree Example

• Tree corresponding to T(n)=2*T(n/2)+n for n=8

lg 8

T(8)

T(4)

T(2)

T(4)

T(2) T(2) T(2)

T(1) T(1) T(1) T(1) T(1)T(1) T(1)

T(1)

8

4+4

2+2+2+2

1+1…+1

28

3

* Algorithm Analysis and Design

Recurrence Tree T(n)=2*T(n/2)+n

n

lg n

T(n)

T(n/2)

T(n/4)

T(n/2) 2*(n/2) = n

Total: n lg n

T(n/4) T(n/4) T(n/4) 4*(n/4) = n

28

4

* Algorithm Analysis and Design

Example Problem

• T(n) = 3T(n/2) + n

= n* [1 + 3/2+............. + (3/2)k]

= n* [1-(3/2) k+1] / [(3/2)-1]

= 2n[1-(3/2) k+1]

= 3n *(3/2) log
2

n

=3n *(3) log
2

n / 2 log
2

n

=3 *(n) log
2

(3) = O(n1.6)Θ(1

)

T(n/4)

T(n/2)

T(n)

T(n/2)

Θ(1

)

T(n/4)

. . . .
T(n/2)

. . . .
n

3/2 n

(3/2)2 n

(3/2)k n

28

5

* Algorithm Analysis and Design

Example Problem

• T(n) = 2T(n/2) + n2

n2 + n2/2 + n2/4 +

= n 2 [1 + ½ +.........................…(1/2k)]

= n2 [1-(1/2) k+1] /(1/2)

= 2n2[1-(1/2 k+1)]

= 2 n2[1-1/2n]

= O(n2)

(n/4)
2

(n/4)
2

(n/4)2

(n/2)2

Θ(1

)

n2

(n/2)
2

Θ(1

)

(n/4)
2

. . . .

28

6

* Algorithm Analysis and Design

…

Total =

= Θ(n2)

Example Problem

…

Solve T(n) = T(n/4) + T(n/2) + n2

(n/8)
2

. . . .

(n/16)
2

(n/8)
2

(n/4)
2

(n/4)
2

Θ(1

)

n
2 (n/2)

2

Θ(1

)

28

7

* Algorithm Analysis and Design

Example Problem

n=(3/2)k

So k = log (3/ 2) n

So recurrence is atmost c*n*log (3/ 2) n=O(n*log (3/ 2) n)

c*n*log (3/ 2) n

Solve T(n) = T(n/3) + T(2n/3) + n

28

8

* Algorithm Analysis and Design

Master Theorem

T(1)= d

T(n)=aT(n/b)+cn

T(n) = O(n) if a<b

T(n) = O(nlogn) If a=b

T(n) = O(n log
b

a) if a>b

Has solution

28

9

* Algorithm Analysis and Design

Verification Example 1

T(1)= 0

T(n)=4T(n/2)+cn for n=2

a = 4; b = 2; a>b

T(n) = O(n log
b

a) if a>b

T(n) = O(n log
2

4) = O(n2)

29

0

* Algorithm Analysis and Design

Verification Example 2

T(1)= 0

T(n)=3T(n/2)+n for n=2

a = 3; b = 2; a>b

T(n) = O(n log
b

a) if a>b

T(n) = O(n log
2

3) = O(n1.6)

29

1

* Algorithm Analysis and Design

Verification Example 3

T(1) = 0

T(n) = T(n/2) + n

a = 1; b = 2; a<b

T(n) = O(n) if a<b

T(n) = O(n)

29

2

* Algorithm Analysis and Design

Verification Example 4

• T(1) = 1

• T(n) = 2T(n/2) + n

a = 2; b = 2; a=b

T(n) = O(nlogn) If a=b

T(n) = O(nlogn)

29

3

* Algorithm Analysis and Design

Ω-Notation (Lower Bound)

• f(n) = Ω(g(n)) if there are positive constants

n0 and c such that to the right of n0, the

value of f(n) always lies on or above cg(n).

n

0

29

4

* Algorithm Analysis and Design

θ -Notation

• f(n) = θ(g(n)) if there exist positive
constants n0, c1 and c2 such that to the right
of n0 the value of f(n) always lies between
c1g(n) and c2g(n) inclusive.

29

5

* Algorithm Analysis and Design

Other notations

• for every positive real constant c there exists a

nonnegative integer N such that for all n>= N

• f(n)<=c*g(n)

• so 5n is o(n2) 6 log(n) is o(n) and 8n is o(nlogn)

• The asymptotic upper bound provided by O may

or may not be asymptotically tight. But o small is

used to denote an upeer bound that is not

asymptotically tight.

29

6

* Algorithm Analysis and Design

Other notations Contd..

• Similarly ω(small omega) notation is used

to denote a lower bound that is not

asymptotically tight

29

7

* Algorithm Analysis and Design

Examples

O(n2) θ (n2) Ω (n2)

2logn+3 6 n2

5n+7 4n2+6

8nlogn 3n2+5n

3n3+ 4n2

7n6+ 4n4

2n+ 6n

29

8

* Algorithm Analysis and Design

Examples Contd..

o(n2) = O(n2) - θ (n2)

2logn+3 6 n2

5n+7 4n2+6

8nlogn 3n2+5n

29

9

* Algorithm Analysis and Design

General Master Theorem

T(1)= θ (1)

T(n)=aT(n/b)+θ (nα)

T(n) = θ (nα) if α•β

T(n) = θ (nα)logbn if α=β

T(n) = θ (nβ) if α•β

Has solution

30

0

* Algorithm Analysis and Design

Posterior Analysis

• Technique of coding a given solution and

then measuring its efficiency.

• Provides the actual time taken by the

program.

• Draw back

– Depends upon the programming language, the

processor and a lot of other external parameters.

30

1

* Algorithm Analysis and Design

Comparison

• Gettime() is a function that returns the
current time in milli seconds.

• The issues

– What value of n to be selected

– Which data set is to be used

• best,average or worst case

– What is the accuracy required.

– How many values of n are required.

30

2

* Algorithm Analysis and Design

Comparison Contd..

• If asymptotic behaviour is already known

then 2 or 3 values can generate the curve.

• Asymptotic behaviour omits initial values

of n and constant terms involved

– For an accurate estimate more values of n

– More samples needed from small vales of n.

30

3

* Algorithm Analysis and Design

Example Case

• A reasonable set of values for n for the

sequential search algorithm is

10, 20, 30, 40, 50, 60, 70, 80, 90,

100, 200, 300, 400, 500, ----- .

30

4

* Algorithm Analysis and Design

Example Algorithm

Algorithm seqsearch(a,x,n)

{

i:=n; a[0]:=x;

while (a[i]<>x) do i:=i-1;

return i;

}

worst case when x is which is not present in a.

for definiteness set a[i]=i for 1 to n and x=0

30

5

* Algorithm Analysis and Design

Profiling Example- Search

• For definiteness element searched is taken as 0

• Search is performed with different array sizes

• Search is repeated many times for more accuracy

• array n stores different sizes of a for search

30

6

* Algorithm Analysis and Design

Algorithm for Profiling

Algorithm timesearch()

{ for j:=1 to 1000 do a[j]:=j;

for j:=1 to 10 do /*array n stores different sizes of a for search */

{ n[j]:= 10*(j-1);

n[j+10]:=100*j; } /* generating different n*/

for j:=1 to 20 do

{ h:= gettime();

k:=seqsearch(a,0,n[j]); /* x is taken as 0*/

h1:=gettime();

t:=h1-h;

write(n[j],t); } }

30

7

* Algorithm Analysis and Design

Worst Case analysis

• For smaller values of n , repetition factor

should be large.

• Generating data

– Difficult to find all possible cases and its

maximum

– Usually available maximum is chosen as the

worst case.

30

8

* Algorithm Analysis and Design

Average Case analysis

• More difficult than worst case.

• For n inputs there will n! combinations

• Determining all cases and their average is a

very difficult task.

• Average of a limited subset is usually

determined.

30

9

* Algorithm Analysis and Design

Assignment 1 Problem1

Solve T(n) = 3T(⎣n/4⎦) + n

31

0

* Algorithm Analysis and Design

Assignment 1 Problem2

Solve

a for n<=2
T(n) =

8 T(n/2)+bn2 for n>2

31

1

* Algorithm Analysis and Design

Solve a for n<=2
T(n) =

8 T(n/2)+bn2 for n>2

Assignment 1 Problem2

31

2

* Algorithm Analysis and Design

Example Problem1

• T(n) = T(n-1) + c

= T(n-2) + c + c

= T(n-(n-1) + (n-1) c

= T(1) + (n-1) c

= a + c(n-1)

= O(n)

31

3

* Algorithm Analysis and Design

Example Problem1

• T(n) = T(n-1) + c

= T(n-2) + c + c

= T(n-(n-1) + (n-1) c

= T(1) + (n-1) c

= a + c(n-1)

= O(n)

31

4

* Algorithm Analysis and Design

O-Notation (Upper Bound)

• f(n) = O(g(n)) if there are positive constants

n0 and c such that to the right of n0, the

value of f(n) always lies on or below cg(n)

or f(n)<=c*g(n) for all n> n0. cg(n)

f(n)

f(n) = O(g(n))n

0

31

5

* Algorithm Analysis and Design

Running Times- Comparison

Computer Science and Engineering, M.A.College of Engineering, Kothamangalam 31

6

ALGORITHM ANALYSIS AND

DESIGN

DIVIDE AND CONQUER

31

7

Algorithm Analysis and Design

Problem

Strategy

• Given a function on n inputs

– input splitted into k disjoint subsets

– yielding k subproblems.

• Solve subproblems

• Combine the subsolutions into a
solution

solution

Problem

solution

31

8

Algorithm Analysis and Design

Solving Subproblems

• Large Subproblems

– Solved by reapplication of divide and conquer.

– Subproblems same type as the original problem

implemented using recursive algorithm

• Smaller subproblems solved independently.

31

9

Algorithm Analysis and Design

Control Abstraction

• Procedure whose flow of control is clear.

• Primary operations are specified by other

procedures whose precise meanings are left

undefined

32

0

Algorithm Analysis and Design

Control Abstraction for DandC

Algorithm DandC(P)

{ if small(P) then return(P);

else

{divide P into smaller instances P1,P2,- - -, Pk for k>1

apply DandC to each subproblem ;

return combine(DandC(P1),- - - ,DandC(Pk));}}

32

1

Algorithm Analysis and Design

Time Complexity

T(n) = g(n) when n is small

T(n1)+T(n2)+- - -+T(nk)+f(n)

• when subproblems are similar, complexity

can be represented by a recurrence

T(n) = T(1) n=1

a* T(n/b) +f(n) n>1

32

2

Algorithm Analysis and Design

Time Complexity Contd..

• In general

• T(n)=n logba [t(1)+u(n)] where u(n)= j=1ε
k h(bj)

• H(n)=f(n)/ n logba

• If h(n) is O(nr) for r>0 then u(n) is O(1)

• If h(n) is θ(lognr) for r=>0 then u(n) is θ(lognr+1 / (r+1))

• If h(n) is Ω (nr) for r>0 then u(n) is θ(h(n))

32

3

Algorithm Analysis and Design

Example

T(n) = 1 for n=1

T(n/2)+c for n>1

h(n)=f(n)/nlog b a=c*(logn)0

So u(n)= θ(logn)

T(n)=n log 1 [c+ θ (logn)] = θ (logn)

32

4

Algorithm Analysis and Design

Binary Search

Algorithm binsearch(a,i,j,x)

{if (i=j) then

{ if (x=a[i]) then return i;

else return 0; }

else

{mid:= (i+j) div 2;

if (x=a[mid] then return mid;

else if (x<a[mid]) then

return binsearch(a,i,mid-1,x);

else return binsearch(a,mid+1,j,x); }}

32

5

Algorithm Analysis and Design

Computing Complexity

1 3 5 7 9 11 13

Unsuccessfull cases

Example

32

6

Algorithm Analysis and Design

Binary Search Complexity

• unsuccessful search θ (logn)

• Successful

– best - θ (1)

– worst – when leaf node is reached - θ(logn)

32

7

Algorithm Analysis and Design

Average Case Complexity

T(n)= 20*1+2 1*2+- - - + 2 k-1 * k

= [21*1+2 2*2+- - - + 2 k-1 *(k-1)] +[20+2 1+- - - + 2 k-1]

= [(k-2)* 2 k-1+2] + [2(k+1)-1]

since we have i=1 ε
k i*2i =(k-1)*2(k+1)+2

=k*2 k+2

=θ (nlogn)

so average case complexity θ(logn)

32

8

Algorithm Analysis and Design

Finding Max & Min

Algorithm smaxmin(i,j,n,max,min)

{max:=a[1]; min:=a[1];

For i:= 2to n do

{if (a[i]>max) then max:=a[i];

if (a[i]<min) then min:=a[i];

}}

2(n-1) Comparisons

32

9

Algorithm Analysis and Design

Improvement

Algorithm smaxmin(i,j,n,max,min)

{max:=a[1]; min:=a[1];

For i:= 2to n do

{if (a[i]>max) then max:=a[i];

else if (a[i]<min) then min:=a[i];

}}

Worst case- sorted in descending order - 2(n-1) Comparisons

Best case- sorted in ascending order - n-1Comparisons

Average case – half cases a[i] is greater - n/2+(n-1) =3n/2 -1

33

0

Algorithm Analysis and Design

Divide and Conquer Approach

• Split input into smaller subsets

• Repeat until input size is 1 or 2

33

1

Algorithm Analysis and Design

MAXMIN

Algorithm maxmin(i,j,max,min)

{if (i=j) then max:=min:=a[i];

else if (i=j-1) then

if (a[i]<a[j]) then

{max:=a[j];min:=a[i];}

else {max:=a[i];min:=a[j];}}

else

{ mid:= L(i+j)/2 ;

maxmin(i,mid,max,min);

maxmin(mid+1,j,max1,min1);

if (max<max1) then max:=max1;

if (min>min1) then min:= min1;}}

about:blank

33

2

Algorithm Analysis and Design

Time Complexity

T(n)= T(n/2)+T(n/2)+2 for n>2; =1 for n=2

When n is a power of 2, T(n) = 2*T(n/2) +2

= - - - - -

= 2 k-1 *T(2) +2* (2 k-1 –1) = 2 k-1 +2 k –2

= 3*n/2 –2

it is the best, average and worst case complexity.

Compared to the 2n-1 comparisons of straight maxmin

this approach is better.

But it requires logn +1 levels of stack.

33

3

Algorithm Analysis and Design

Considering Index

Comparisons

• When element and index comparisons of

the same cost

• In languages that does not support switch

statement modification required

33

4

Algorithm Analysis and Design

Improvement

Algorithm maxmin(i,j,max,min)

{if (i > j) then

if (a[i]<a[j]) then {max:=a[j];min:=a[i];}

else {max:=a[i];min:=a[j];}}

else

{ mid:= L(i+j)/2 ;

maxmin(i,mid,max,min);

maxmin(mid+1,j,max1,min1);

if max<max1) then max:=max1;

if (min>min1) then min:= min1;}}

about:blank

33

5

Algorithm Analysis and Design

Complexity

C(n)= 2* C(n/2)+3 for n>2

=2 for n=2

• unfolding recurrence

– C(n) = 2 k-1*C(2) + 3* 0ε
k-2 2i

=2 k +3* 2 k-1 –3

=5n/2 –3

33

6

Algorithm Analysis and Design

Comparison

• Better than straight maxmin 3*(n-1)

• Practically slower due the overhead of stacking

33

7

Algorithm Analysis and Design

Summary

• When element comparisons are costlier dandc yields

a better algorithm.

• Dandc always willnot give better algorithm.

– Only a design technique that will guide to better designs.

• Constants should be specified, during comparisons if

relevant(when both has same order complexity).

33

8

Algorithm Analysis and Design

Merge Sort

• Divides list into two sub lists

• Sort sub lists separately

– Recursive invocation

• Merges the sub lists

25 11 18 17 13 45 28 30

33

9

Algorithm Analysis and Design

Algorithm Mergesort

Algorithm mergesort(low,high)

{ if (low<high) then

{ mid:= L (low+high)/2

megesort(low,mid);

mergesort(mid+1,high);

mege(low,mid,high);

}}

34

0

Algorithm Analysis and Design

Algorithm Merge

Algorithm merge(low,mid,high)

{h:=low;i:=low; j:=mid+1;

while ((h<=mid) and (j<=high)) do

{if (a[h]<=a[j]) then

{b[i]:=a[h];h:=h+1;}

else

{b[i]:=a[j];j:=j+1;}

i:=i+1;}

if (h>mid) then

for k:=j to high do

{b[i]:=a[k];i:=i+1;}

else

for k:=h to mid do

{b[i]:=a[k];i := i+1;}

for k:=low to high do
a[k]:=b[k];

}

34

1

Algorithm Analysis and Design

Complexity

• Unfolding recurrence

T(n) = 2 T(n/2) + cn

= 22 T(n/4) + 2cn

= 2k T(n/2k) + kcn

= 2k T(1) +kcn = an + cn log n

= O(n log n)

T(n)= 2*T(n/2)+cn for n>1

a for n=1

34

2

Algorithm Analysis and Design

Refinements

• 2n locations – Extra n locations

– Associate an extra field with key

• For small values of n recursion inefficient

• Much time is wasted on stacking.

– Use an efficient nonrecursive sort for small n

34

3

Algorithm Analysis and Design

Refinement 1

Algorithm insertion sort(a,n)

{for j:=2 to n do

{ item := a[j]; i := j-1;

while ((i>=1) and (item<a[j])) do

{a[i+1]:= a[i]; i := i-1; }

a[i+1] := item; } }

For n<16 insertion sort is used.

34

4

Algorithm Analysis and Design

Complexity

• Insertion sort for worst case

– 2 ε n j=n(n+1)/2-1=θ(N2).

• In the best case

– θ(N).

34

5

Algorithm Analysis and Design

Algorithm2

algorithm mergesort2(low,high)

{if (high-low)<15 then ///when size is <16

return insertionsort1(a,link,low,high)

else

{ mid := L(low+high)/2 ///divides into 2

q:=mergesort(low,mid);

r:=mergesort(mid+1,high);

return merge1(q,r);}}

about:blank

34

6

Algorithm Analysis and Design

Refinement 2

• An auxillary array with values 0..n used

• Each index points to the original array

• Interpreted as pointers to elements of a

0 0 0 0 0 0 0 0

25 11 18 17 13 45 28 30

34

7

Algorithm Analysis and Design

Demonstration

• Interpreted as pointers to elements of a

0 0 0 0 0 0 0 0

25 11 18 17 13 45 28 30

25

0

11

0

link

value
1 2 3 4 5 6 7 8

1

18

0

17

0

13

0

45

0

28

0

30

03 6 8

34

8

Algorithm Analysis and Design

25

0

11

1

18

0

17

3

Demonstration Contd..

0 1 0 3 6 0 8 0

25 11 18 17 13 45 28 30
1 2 3 4 5 6 7 8

34 1

13

6

45

0

28

8

30

067 8

34

9

Algorithm Analysis and Design

Demonstration Contd..

0 4 1 3 7 0 8 6

25 11 18 17 13 45 28 30
1 2 3 4 5 6 7 8

0 4 1 3

25 11 18 17

7 0 8 6

13 45 28 30

5 4317

Sorting Over

35

0

Algorithm Analysis and Design

Algorithm3

Algorithm merge1(q,r)

{i:=q;j:=r;k:=0;

while ((i<>0) and j<>0)) do

{if (a[i] < a[j]) then

{link[k]:=i;k:=i;i:=link[i];}

else {link[k]:=j;k:=j;j:=link[j];}}

If (i = 0) then link[k]:=j; else link[k]:=i;

return link[0];}

35

1

ALGORITHM ANALYSIS AND

DESIGN

GREEDY STRATEGY

35

2

Introduction

• Solution to problems with n inputs

• Required to obtain a subset that satisfies some

constraints

• Optimization meassure

• Best choice at any moment

35

3

Terminology

• Objective function

– Function representing the optimization measure

• Feasible solution

– Any subset that satisfies the given constraints

• Optimal solution

– Feasible solution that either maximizes or minimizes a

given objective function.

35

4

Working

• Works in stages – One input at a time

• At each stage, decision about a particular input

• Inputs one at a time based on selection

procedure

• Discarded if Inclusion results in an infeasible

solution

35

5

Selection Procedure

• Based on the optimization measure

• Different Optimization measures possible for a

problem.

35

6

Example

• Taking change a particular amount given a
collection of coins

• Minimise the number of coins used

• Example Case

– Amount to be raised

– 68 paise

– Coins available

– 1 , 1 , 1 ,2,2,2,5,5,5,10,10,10,20,20,20,50,50,50

35

7

Greedy Solution

• Selection procedure

– value of the coin

– highest one first

• Feasibility of partial solution

– Sum of coins <=68

35

8

Coin values 1,1,1,2,2,2,5,5,5,10,10,10,20,20,20,50,50,50

1 21 1 2 2 5 55

2

0
1

0

1

0

1

0

2

0

2

0

5

0

5

0

5

0

5

0

Demonstration

5
1

0

2 1

Success

35

9

Control Abstraction

Algorithm Greedy(a,n)

{solution :=Ø

for i:=1 to n do

{x:=select(a)

if(feasible(solution,x) then

solution:=union(solution,x);}

return solution;}

36

0

Different Paradigms

• Subset Paradigm

• Ordering Paradigm

36

1

Subset Paradigm

• Determine a subset of the given n inputs

36

2

Ordering Paradigm

• Determine an ordering of all the inputs

1 2 3 4 5 4 2 1 5 3

36

3

Knapsack Problem

There are n objects to be placed in a knapsack of capacity M. Each

object i contributes a profit Pi and weight Wi. The total profit

.should be maximized subject to the constraint that total weight

where M is the capacity of the Knapsack . Pi And Wi are

positive numbers where and

36

4

Knapsack Problem

general knapsack problem with n=3 m=20

Pi = { 25,24,15} Wi={18,15,10} for i= 1 ,2,3

I 1 2 3

Pi 25 24 15

Wi 18 15 10

PiXi 25 2/15*24=3.2 0 tot=28.2

PiXi 0 10/15*24=16 15 tot=31

=1.11 =1.6 =1.5

PiXi 0 24 5/10*15=7.5 tot=31.5

Solution Xi = {0 , 1 , 0.5}

36

5

Algorithm

Algorithm greedy knapsack(M,n,P,W)

{for i =1 to n do

x(i) := 0; Re := M;

Full := false; i := 1;

While(i<=n and not(full))

{ if(Wi<=Re) then

{Xi=1; Re:=Re-Wi; i++; }

else (full=true)}

if(i<=n) then Xi=Re/Wi;} }

36

6

Spanning Tree

• Let G=(V,E) be an undirected connected

graph.

• A sub-graph T=(V,E’) of G is a spanning tree of

G if T is a tree

36

7

Conditions - Spanning Tree

•For T a subgraph of G to be a spanning tree.

–T should contain all vertices V in G

–T should be a tree- there are no cycles

36

8

Minimum Cost Spanning Tree

• A Spanning tree which has minimum cost

– Sum of edge costs

56

2293
48

12

2

25

20

35

36

9

PRIMS Algorithm

• Constraint

– Each vertex once

– Tree

• Selection Principle

– Vertex not present in Tree

– Vertex which can be connected with lowest cost to
the spanning tree is next vertex selected

56

2293
48

12

2

25

20

35

37

0

Informal Algorithm

ST:=∅

Y:= {u,v}, where <u,v> is the edge with lowest cost

ST:={(u,v)}

While the instance is not solved do

{Select a vertex in V-Y that is nearest to Y

Add the corresponding edge to ST

If Y= V then mark instance ‘solved’ // included all

} the vertices

37

1

Near Array

• For every un included a vertex j which is not in the

spanning Tree, near[j] represents a vertex which is

nearest to vertex j in the spanning tree.

• Edge(j,near[j]) represents the shortest path of

connecting j to the current spanning tree

12

56

2293
48

2

25

20

35

1

2
3

45 4

1

2

3

5

25
35

22
20

56

3

4

5

1 20

2 22

1 25

37

2

Example

37

3

1

6 7 3

2

5

4

28

Demonstration

1

2

3

4

5

6

7

Near Cost

--

- -

∞ ∞

∞ ∞

6
25

∞ ∞

1 28

6

25
∞

∞

37

4

1

6 7 3

2

5

4

28

22

24

Demonstration

1

2 1 28

3 ∞ ∞

4 ∞ ∞

5

6

7 ∞ ∞

Near Cost

-

-

-

-

- -

281

∞ ∞

5

2

2

5 24

5 22

37

5

1

6 7 3

2

5

4

28

24

18
12

-

Near cost

Demonstration

1

2 1 28

3 ∞ ∞

4 - -

5

6

7 5 24

-

-

-

-

- -

281

4 18

4 124 12

37

6

1

6 7 3

2

5

4

28

16

18

Demonstration

Near cost

1

2 1 28

3 - -

4 - -

5

6

7 4 18

-

-

-

-

- -

163

4 18

3 16

37

7

1

6 7 3

2

5

4

14

18

Demonstration

1

2 - -

3 - -

4 - -

5

6

7 4 18

-

-

-

-

- -

1422 14

Near cost

37

8

Solution

Computer Science and Engineering, M.A.College of Engineering, Kothamangalam 37

9

ALGORITHM ANALYSIS AND

DESIGN

BACKTRACKING

* 2:15 AM Algorithm Analysis and Design

A Short List Of Categories

• Algorithm types we will consider include:

– Simple recursive algorithms

– Divide and conquer algorithms

– Greedy algorithms

– Dynamic programming algorithms

– Backtracking algorithms

– Branch and bound algorithms

* 2:15 AM Algorithm Analysis and Design

Introduction

• Backtracking is used to solve problems in which a

sequence of objects is chosen from a specified set

so that the sequence satisfy some criterion.

* 2:15 AM Algorithm Analysis and Design

Backtracking- When

• There is a sequence of decisions to be made, from a

number of available choices, where

– suffient information is not available on the best

choice

– Each decision leads to a new set of choices

– Some sequence of choices (possibly more than

one) may be a solution to your problem

* 2:15 AM Algorithm Analysis and Design

Backtracking- How

• Backtracking is a systematic method of trying

out various sequences of decisions, until you

find one that “works”

* 2:15 AM Algorithm Analysis and Design

Solving A Maze

• Given a maze, find a path from start to finish

• At each intersection, you have to decide between three

or fewer choices:

– Go straight

– Go left

– Go right

• Sufficient information not available on the best choice

• Each choice leads to another set of choices

• One or more sequences of choices may (or may not)

lead to a solution

* 2:15 AM Algorithm Analysis and Design

Coloring A Map

• You wish to color a map with
not more than four colors

– red, yellow, green, blue

• Adjacent countries must be in
different colors

• You don’t have enough information to choose
colors

• Each choice leads to another set of choices

• One or more sequences of choices may (or may
not) lead to a solution

* 2:15 AM Algorithm Analysis and Design

Solving A Puzzle

• All holes except the middle filled with white pegs

• We can jump over one peg with another

• Jumped pegs are removed

• The aim is to remove all but the last peg

• Sufficient information not available on correct jump

• Each choice leads to another set of choices

• One or more sequences of choices may (or may not) lead

to a solution

* 2:15 AM Algorithm Analysis and Design

Backtracking- Demonstration

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead end

* 2:15 AM Algorithm Analysis and Design

Representation

Three kinds of nodes:

The decision sequences can

be represented by a tree

The (one) root node

Internal nodes

Leaf nodes

Backtracking can be thought of as searching a tree for

a particular “goal” leaf node

* 2:15 AM Algorithm Analysis and Design

Types Of Nodes

• Live node

– A node which has been generated, and all of its
children have not yet been generated

• Dead node

– A generated node which is not to be expanded
further or all of whose children have been
generated.

• E-node

– The live node whose children are being generated.

* 2:15 AM Algorithm Analysis and Design

Types Of Nodes - Demonstration

start

dead end

dead end

dead end

dead end

?
success!

dead end

Dead Node

Live Node

E-node

Goal Node

Child Node

* 2:15 AM Algorithm Analysis and Design

Constraints

• Explicit constraints
– Rules that restrict each element to be chosen from the

given set

– Only tuples that satisfy explicit constraints will appear
in the tree

• Implicit constraints

– Rules that specify how each elements in a tuple should
be related

– Tuples in the tree that satisfy the implicit constraints
represent a goal state

* 2:15 AM Algorithm Analysis and Design

Constraints-Example

• Let xi represents i th decision

• Explicit constraints

– Restrict the possible values of xi

– Eg:- xi =0 or 1; xi ε {li..ui}

• Implicit constraints

– Specify how the different xi’s are related

– Eg:- xi < xi+1 ;

* 2:15 AM Algorithm Analysis and Design

Solution Space

• Set of all tuples that satisfy the explicit

constraints

• Represented using a permutation tree- state

space tree

• The edges labeled by possible values of xi

– Edges from level 1 to level 2 nodes specify

the values for x1

• Defined by all paths from the root to a leaf node

* 2:15 AM Algorithm Analysis and Design

State Space Tree

* 2:15 AM Algorithm Analysis and Design

Solution Space Contd..

• Each level in the tree defines a problem state

• Paths from root to other nodes are known as
state spaces

• Solution states- problem states s for which the
path from the root to s defines a tuple in the
solution space

• Answer states - solution states s for which the
path from the root defines a solution from the
set of solutions

* 2:15 AM Algorithm Analysis and Design

State Space Tree -Organization

• A problem can be specified in 2 ways

• Fixed tuple formulation

– The state space organization is called static trees

• Variable tuple formulation

– State space tree of this type is known as dynamic

tree

* 2:15 AM Algorithm Analysis and Design

Fixed Tuple Formulation

• Edges from level i nodes to level i+1 nodes are labeled

with the value of xi, which is either 0 or 1

• All paths from root to leaf node define the solution space

* 2:15 AM Algorithm Analysis and Design

• Size of solution tuples is not fixed.

• Each tuple will contain a subset of the xi’s in the

order in which they are included instead of

specifying xi=0 or 1.

Variable Tuple Size Formulation

* 2:15 AM Algorithm Analysis and Design

Comparison

Fixed tuple formulation

•Solution size is fixed

•Only the leaf nodes can be

solution states

Variable tuple formulation

• Solution size is variable

•Any intermediate node can

be the solution state

<0,1,0,1> <2,4><1,0,1,1>
<1,3,4>

* 2:15 AM Algorithm Analysis and Design

Solving The Problem

• Fix a state space tree organization

• Systematically generate the problem states starting

from the root

• Verify each problem state whether it is a solution

state or an answer state

* 2:15 AM Algorithm Analysis and Design

State Space Tree Generation

• Backtracking uses depth first generation of the state

space tree with some bounding function

• Bounding functions are used to kill live nodes without

generating all their children

• Killing should be done after ensuring that all the

required answer states are generated

* 2:15 AM Algorithm Analysis and Design

The Backtracking Algorithm

Backtracking algorithm is quite simple

it requires “exploring” each node, as follows:

• To “explore” node N:

1. If N is a goal node, return “success”

2. If N is a leaf node, return “failure”

3. For each unbounded child C of N,

3.1. Explore C
3.1.1. If C is successful, return “success”

4. Return “failure”

* 2:15 AM Algorithm Analysis and Design

Backtracking -Impementation

• Generating Function

– Generate next child, given the parent

• Bounding function

– Check whether the particular path can lead to an answer state

and returns false If it cannot.

* 2:15 AM Algorithm Analysis and Design

Control Abstraction

Algorithm backtrack(n)

{k=1;

while (k#0) do

{

if (there remains an untried x[k] ε T(x[1],x[2],. . . ,x[k-1]) and
Bk(x[1],x[2], . . .,x[k]) is true) then

{

if x[1]. …x[k] is a path to an answer node) then write x[1:k]);

k:=k+1;}

else k:=k-1;}}

* 2:15 AM Algorithm Analysis and Design

Recursive Formulation

Algorithm Backtrack(k)

//This schema describes the backtracking process using

//recursion. On entering, the first k-1 values

//x[1],x[2],….,x[k-1] of the solution vector

//x[1 : n] have been assigned. x[] and n are global.

{ for (each x[k] ε T(x[1],……,x[k-1]) do

{if(Bk (x[1],x[2],……x[k] ≠ 0) then

{if(x[1],x[2],….,x[k] is a path to an answer node)

then write (x[1 : k]);

if(k < n) then Backtrack(k + 1);}}}

* 2:15 AM Algorithm Analysis and Design

Efficiency Of Backtracking

• Time taken to generate next xk

• Number of xk satisfying the explicit constraints

• Time required for computing the bounding function

– A bounding function is said to be good if it reduces the number

of nodes drastically.

– A good bounding function may take much computing time

• Number of xk satisfying bk

– Trade off between the number of nodes removed and computing

time requirement.

– The ultimate aim is to reduce the total time requirement

* 2:15 AM Algorithm Analysis and Design

Analysis

• For some problem instances, if the order of

generation of children is changed, the number of

nodes to be generated before finding the solution

can be drastically reduced.

• Depending on the problem instance, the

backtracking algorithm will generate O(n) nodes

to n! nodes.

• The importance of backtracking lies in its ability

to solve some instances with large n in a very

small amount of time.

* 2:15 AM Algorithm Analysis and Design

Estimate Of Nodes Generated

The idea is to generate a random path in the state

space tree

Monte carlo method

* 2:15 AM Algorithm Analysis and Design

Random Path Generation

• Let x be a node at level i in the random path

• Generate children of x

• Apply bounding functions to each child.

• Let mi be number of unbounded children of x.
– unbounded children at level 1 is m1, level 2 m2 ...

• Find an estimate of the number of unbounded

nodes at level i+1

* 2:15 AM Algorithm Analysis and Design

Estimate of Unbounded Nodes

• Estimate of the number of unbounded nodes

at level i+1
– estimate of unbounded nodes at level 1 = m1

– estimate of unbounded nodes at level 2 =

m1*m2

– Estimate of unbounded nodes at level i+1 =

m1*m2*- - -*mi

* 2:15 AM Algorithm Analysis and Design

Monte Carlo Method

• Random path

– starts from the root of the tree and

– is continued till

• a leaf node is reached

• or a node with all bounded children is reached

• Each time a child node of the current node is

selected as the random node at the next level.

• The total nodes considering all levels is equal to

1+m1+m1m2+- - -+m1*m2*--mn

* 2:15 AM Algorithm Analysis and Design

Algorithm

Algorithm Estimate

{ // r is the children at a particular level; m –total nodes;k -level

k:=1;m:=1;r:=1;

repeat

{Tk= {x[k] / x[k] ε T(x[1],……,x[k-1] and Bk(x[1],. . ,x[k]) is true

};

If (size(Tk)=0) then return m;

r:= r* size(tk); m:=m+r;

X[k]:= choose(Tk); k:=k+1;

}until (false);}

* 2:15 AM Algorithm Analysis and Design

4 Queens Problem

• There are 4 queens that are

to be placed on a

4x4 chessboard

• Queens should be placed on the

chessboard such that

no two queens can attack each other.

• Two queens attack each other when they are in the

– Same row

– Same column or

– Same diagonal.

* 2:15 AM Algorithm Analysis and Design

Attacking Positions

Two queens attack each other when they are in the

*

Rule 1 Rule 2 Rule 3.a. Rule 3.b.

۩

– Same row

– Same column or

– Same diagonal.

۩

۩

۩

۩

۩۩

۩

۩

۩

۩

۩

۩

۩

۩

۩

۩

۩

۩

۩

* 2:15 AM Algorithm Analysis and Design

Problem Specification

• The queens are numbered from 1 to 4.

• Rows and columns in the chess board are also

numbered from 1 to 4.

• Each row can contain exactly one queen.

• So it is assumed that queen i is placed in row i.

1 2 3 4

1

2

3

4

Queen 2 is placed in row 2

Queen 1 is placed in row 1

Queen 3 is placed in row 3

Queen 4 is placed in row 4

* 2:15 AM Algorithm Analysis and Design

Solution Space

• The solution space consists of 44 4 tuples.

• The implicit constraint

– no two queens are in the same column

• No two xi’s can be the same

– no two queens can be on the same diagonal.

• Column constraint restricts the solution space to

consist of combinations of 4 tuples.

• So the solution space gets reduced to 4! Tuples.

• Second constraint specify that no two xi’s should

be on the same diagonal.

* 2:15 AM Algorithm Analysis and Design

Solution Space

• Number of tuples generated after considering

column constraint - 4! Tuples

* 2:15 AM Algorithm Analysis and Design

Problem State-representation

Queen i is represented by the number i

∙ represents an unsuccessful attempt

1

2

∙ 3

* 2:15 AM Algorithm Analysis and Design

1

1

2

3

1

1

2

• . . .

4 Queens Problem- Tree Formation

1

2

3

1

2

3

. . . .

1

2

• • • •

2 2 2
1

• • • •

2

1

2 2 2

4

1

2

3

4 4

1

3

2

4

3

1

2

3

4

* 2:15 AM Algorithm Analysis and Design

1 1

2
1

2

. . . .

1

2

3

1 1

. . . 2

1

2

3

. . 4

1

2

3

. . . .

4 Queens - Formation Of Solution

* 2:15 AM Algorithm Analysis and Design

N Queens Problem

• Queens problem can be generalized to n queens

problem.

– N queens

– N X N chess board

– Solution a sequence of n decisions

Algorithm Analysis and Design

Bounding Function

• The bounding function should return a value true
if the current queen can be placed at a particular
position.

• ith queen can be placed at position k if none of the
previous queens are in the same column or in the
same diagonal.

• Same column verification by checking whether
xi=k for all previous queens.

Algorithm Analysis and Design

Same Diagonal Verification

• QUEENS at (i,j) and (k,l)

• same forward diagonal if i-j=k-l or j-l = i-k (1)

• same backward diagonal if i+j=k+l or j-l = k-i (2)

• combining 1&2 we can write

|j - l |= |i – k|

• so two queens lies on the same diagonal if and only if

|j - l |= |i – k|

* 2:15 AM Algorithm Analysis and Design

Formation Of Bounding Function

• same column verification by checking whether
xi=k for all previous queens.

• so two queens lies on the same diagonal if and
only if

|j - l |= |i – k|

Each queen j,x[j] with queen(i,k)

if ((x[j]=i) or (abs(x[j]-i)= abs(j-k)))

Algorithm Analysis and Design

Bounding Function -Place

Algorithm place(k,i)

{

for j:=1 to k-1 do

if ((x[j]=i) or (abs(x[j]-i)= abs(j-k)))

then return false;

return true;

}

Each queen j,x[j] with queen i,k

if ((x[j]=i) or (abs(x[j]-i)= abs(j-k)))

Algorithm Analysis and Design

Algorithm

Algorithm nqueens(k,n)

{ for i:=1 to n do

{if place(k,i) then

{x[k]:=i;

if (k=n) then write(x[1..n]);

else nqueens(k+1,n);

}}}

Algorithm Analysis and Design

Complexity

• The number of 8 tuples generated

considering placement of queens in distinct

rows and columns is 8!.

• Estimated number of nodes in the state

space tree

1+8+8*7+8*7*6+ - - =

Algorithm Analysis and Design

Complexity Contd..

• In practice the number of nodes generated

will be very very less than this.

• From Experiments it is seen that it will be

approximately 3% on the average.

Algorithm Analysis and Design

Sum Of Subsets

• Given n positive numbers/weights

• Find the combinations of numbers whose

sums are m.

Algorithm Analysis and Design

Sum Of Subsets - Example

n=6 {w1,w2,………..w6}

= {5,10,12,13,15,18}

m = 30

Solution {5,10,15} {5,12,13} {12,18}

Algorithm Analysis and Design

Sum Of Subsets- Formulation

Numbers are arranged and considered in the

non decreasing order.

It can be formulated in 2 ways.

In fixed tuple each xi=0 or 1

In variable tuple xi=1..n depending on the

next number selected.

In fixed tuple formulation the state space tree

* 2:15 AM Algorithm Analysis and Design

State Space Tree

Fixed Tuple Formulation

X2=1

* 2:15 AM Algorithm Analysis and Design

State Space Tree

Variable Tuple Formulation

X1=1

X1=2 X1=3

X1=4

X2=2
X2=3

X2=4
X2=3

X2=4 X2=4

X3=3

X3=4

X4=4

X3=4X3=4

Algorithm Analysis and Design

Formation Of Bounding Function

The node is nonpromising

if s+w i+1 > m

if s+r < m

s : the sum of weights that have

been included up to a node at

level i.

r : sum of remaining weights

wi+1 ,wi+2………wn

X5=1
X5=1

X1=1
X1=0

X2=1 X2=0

X3=1

X4=1

X3=0

X4=0

X5=0

X2=1
X2=0

X3=1 X3=1
X3=1

X3=0
X3=0

X3=0

X4=1

X4=1 X4=1 X4=1 X4=1X4=1 X4=1

X4=0 X4=0 X4=0 X4=0 X4=0

X5=1 X5=1 X5=1 X5=1X5=1 X5=1 X5=1 X5=1 X5=1 X5=1 X5=1X5=1X5=1
X5=1

X5=0X5=0 X5=0X5=0X5=0 X5=0X5=0 X5=0 X5=0X5=0 X5=0X5=0X5=0X5=0

Example: {w1,w2,………..w6} =

{5,10,12,13,15,18} & m= 30

* 2:15 AM Algorithm Analysis and Design

Bounding Function

• A node can lead to an answer state if

• Bk is true iff

• Computation of the sums and

each time when it is required, can be avoided by
maintaining two sums s for current aggregate and r for
remaining aggregate.

* 2:15 AM Algorithm Analysis and Design

Algorithm

Algorithm sumofsub(s,k,r)

{//generate left child with xk=1 fixed tuple
formulation

x[k]:=1;

if (s+w[k]=m) then write (x[1:k]);

else if (s+w[k]+w[k+1]<=m)

then sumofsub(s+w[k],k+1,r-w[k]);

if ((s+r-w[k]>=m) and (s+w[k+1]<=m)) then

{x[k]:=0;

sumofsub(s,k+1,r-w[k]);}}

Algorithm Analysis and Design

Algorithm Analysis and Design

Terminology II

• Each non-leaf node in a tree is a parent of one or

more other nodes (its children)

• Each node in the tree, other than the root, has

exactly one parent

parent

children

parent

children

Usually, however,

we draw our trees

downward, with

the root at the top

Algorithm Analysis and Design

ATTACKING POSITIONS

Two queens attack each other when they are in the

– Same row

– Same column or

– Same diagonal.

* *

* *

*

* *

*

*

* *

*

* *

* *

* *

*

*

Rule 1 Rule 2 Rule 3.a. Rule 3.b.

۩ ۩

۩

