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Abstract Data Types
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Array Representation
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Structures
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Stack Operations
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Applications of Stack
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Circular Queue
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Applications of Queue
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Doubly Linked List
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Prey Fach Link of a linked list contains a link to the previous link
called Prey,

Linkedl ist A linked | ist contains the connection link to the first
Unk called First and to the last link called | ast,




Applications of Linked List
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Polynomial Addition.




UNIT-II

TREE STRUCTURES



Need for non-linear structures
— Trees and its representation —
Binary Tree — expression trees —
Binary tree traversals — left
child right sibling data
structures for general trees —
applications of trees — Huffman
Algorithm - Binary search tree.



What s a Tree?

oot

node edge

[S S (SIS «A tree consists of;
« aset of nodeg

Yy
i

b a set of edges, each of which connects a pair of nodes

kEach node may have one or more data items.

- each data item consists of one or more fields

 key field = the field used when searching for a data item

- multiple data items with the same key are referred to as duplicates

The node at the “top” of the tree is called the root of the tree.

Relationships Between Nodes
T
@/ 4

L i8] -:!_‘,'

« If anode N is connected to other nodes that are directly below it
in the tree, N is referred to as their parent and they are referred
to as its children.

« example: node 5 is the parent of nodes 10, 11, and 12

» Each node is the child of at most one parent.

» Other family-related terms are also used:

* nodes with the same parent are siblings

* anode’s ancestors are its parent, its parent’s parent, etc.
» example: node 9’s ancestors are 3 and 1

* anode’s descendants are its children, their children, etc.
« example: node 1’s descendants are all of the other nodes




Types of Nodes

«A leaf node is a node without children.

«An interior node is a node with one or more children.

A Tree is a Recursive Data Structure

*Each node in the tree is the root of a smaller
tree!
« refer to such trees as subtrees to distinguish them from the
tree as a whole
» example: node 2 is the root of the subtree circled above
« example: node 6 is the root of a subtree with only one node

*We'll see that tree algorithms often lend
themselves to recursive implementations.




Path, Depth, Level, and Height

<«— level 0
@ <« levell

depth=2 —» £ [ S [ ] <+«— level 2

There is exactly one path (one sequence of edges) connecting
each node to the root.

depth of a node = # of edges on the path from it to the root
» Nodes with the same depth form a level of the tree.

The height of a tree is the maximum depth of its nodes.
« example: the tree above has a height of 2

Binary Trees

In a binary tree, nodes have at most two children.
« Recursive definition: a binary tree is either:
1) empty, or
2) anode (the root of the tree) that has
* one or more data items
« a left child, which is itself the root of a binary tree
« aright child, which is itself the root of a binary tree
+ Example:

N
|2_6)
26's left child %L@z‘{ .( 32% 26's right child
! ./ .. :
CATN NN o
Q@
26'sleftsubtree " 26’s right subtree
M

* How are the edges of the tree represented?




Representing a Binary Tree Using Linked Nodes

public class LinkedTree { private class Node {
private int key;

private LLList data; // list of data items

private Node left; // reference to left child
private Node right; // reference to right child
}
private Node root; =
3 root| L |"‘
3z
2 FEEN

4 18 38

" GURY

7

e see ~csciell9/examples/trees/LinkedTree.java

Traversing a Binary Tree

*Traversing a tree involves visiting all of the nodes
in the tree.
* visiting a node = processing its data in some way
« example: print the key

*We will look at four types of traversals. Each of
them visits the nodes in a different order.

*To understand traversals, it helps to remember
the recursive definition of a binary tree, in which
every node is-the root of a subtree.

| )

A 26

N
12 is the root of n"12:| . (32\‘~ -~ 32is the root of
26’s left subtree )" -\ -’< 26’s right subtree
£ \ .

4 is the root of ‘\1/4\I\\*{2Lé) /38-"
i Nl W\ L)
12's left subtree \ \\ N




Preorder Traversal

*preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N’s left subtree
3) recursively perform a preorder traversal of N’s right subtree

5 9 / <@\>
Vs s
i ®

2 8

4 /
\
«Preorder traversal of the tree above:
7524698
*Which state-space search strategy visits nodes in this order?

Implementing Preorder Traversal
public class LinkedTree {

private Node root;

public void preorderprint() { if (root !=
null)
preorderPrintTree(root) ;

}

private static void preorderPrintTree(Node
root) { System.out.print(root.key + “ ™

if (root.left != null) Jgieastﬁf

preorderPrintTree(root.left); if root of the

(root.right !'= null) entire tree.
} preorderPrintTree(root.right);

}

-preorderPrintTree() is a static, recursive method that takes as a
parameter the root of the tree/subtree that you want to print.

-preorderPrint() is a non-static method that makes the initial call.
It passes in the root of the entire tree as the parameter.




Tracing Preorder Traversal

void preorderPrintTree(Node
root) { \>\
System.out.print(root.key + “ 7 ’

"); if (root.left != null) (Q

pr'eor'der'Pr"intTr'ee(r'oot.1eft);/\
if (root.right != null) .

preorderprintTree(root.right, . & (\Bj
: b
I-i-"
root: 4
) print .4'__" o ~
root: 2 root: 2| root: 2 ro0t: 6
o ! ey P oy i ]
o print&_J W W W printbd
i root: ?_\_ root: § rogt: § rol::oil::I § root: 5-"". root: E::___.
- print & " A -
root: 7 root: 7 root: 7 root: 7, root:7  root: 7 root: 7
print 7 — 1>
time

Postorder Traversal

*postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N's left subtree
2) recursively perform a postorder traversal of N’s right subtree

3) visit the root, N
5 9 { )\D

(,
\
’\\
2 Le
4 b
-Postorder traversal of the tree above:
42 65897




Implementing Postorder Traversal
public class LinkedTree {

private Node root;

public void postorderprint() { if (root != null)
postorderPrintTree(root);

}

private static void postorderpPrintTree(Node root) { if (root.left
I= null)
postorderPrintTree(root.left);

if (root.right != null) postorderPrintTree(root.right);
System.out.print(root.key + “ DH

}

}

*Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal

void postorderPrintTree(Node root)

{ if (root.left != null) (i>\\\\\

postorderPrintTree(root.left); 7 (

if (root.right != null) //» l/‘
5 o Q__; QWQé

L)
postorderPrintTree(root.right);
System.out.print(root.key + *

"y,
y 2 6o 8
N
W
T T T 4 ]
e = i .
root: 4
print
O—o-0 O O—&
roof: 2| root: 2| oot 2 root: 6
- - - - - - -
Wt o v W print§ } [ print b}
root: § root: 5 root: 5 root: § root: 5 root: 5
—>
root: 7 root: 71 root: 7| root: 7| root: 7 root: 7 root: 7

time




Inorder Traversal

sinorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N
3) recursively perform an inorder traversal of N’s right subtree

f?

(4)
« Inorder traversal of the tree above:
2456789

N

|.2

Implementing Inorder Traversal
public class LinkedTree {

private Node root;

public void inorderprint() { if (root != null)
inorderPrintTree(root);

private static void inorderPrintTree(Node root) {
if (root.left != null)
inorderPrintTree(root.left);
System.out.print(root.key + “ ”y; if
(root.right != null)
inorderPrintTree(root.right);

}

}

*Note that the root is printed between the two recursive
calls.




Tracing Inorder Traversal

void inorderPrintTree(Node

root) { if (root.left I= %&

null) 7 .

inorderPrintTree(root.left); (Q

System.out.print(root.key + “ /% /
b PN,

"); if (root.right != null>
inorderPrintTree(root.right. ./

3 2

I-i-"
root:4
o print .4__" o ~
root: 2 root: 2| root: 2 ro0t: 6
o ! ey P oy i ]
L] print€_} L L] b print b4
P, rol?gi_.ls root: § rogt: § ro{of_:l §  root5_ root: E::__\_.
- . e Dr\mt'?“" I
root: 7 root: 7 root: 7] root: 7] root:7  root: 7 root: 7
—t
time

Level-Order Traversal

+Visit the nodes one level at a time, from top to
bottom and left to right.

O\f

4 ~
)

*Level-order traversal of the tree above: 759
2684

*Which state-space search strategy visits
nodes in this order?

How could we imnplement this tyvoe of
T ca)

traversal?




Tree-Traversal Summary

preorder: root, left subtree, right
subtree postorder: left subtree, right
subtree, root inorder: left subtree,
root, right subtree level-order: top to
bottom, left to right

*Perform each type of traversal on
¢ Tythe tree below:

A .

=N
~< e o
P Pt
@ |"\-' A0S 13
P R
A v § 58 10
N 4 35 o
.\E}l .:\9 «‘i 1.\:_15-,,1 -\ZE}) 18
(7
L

Using a Binary Tree for an Algebraic Expression

*We'll restrict ourselves to fully parenthesized expressions and to
the following binary operators: +, —, *, /

*Example expression: ((a + (b * ¢)) - (d / e))

Tree representation: -

«Leaf nodes are variables or constants; interior nodes are
operators.

*Because the operators are binary, either a node has two
children or it has none.




Traversing an Algebraic-Expression Tree

-

Inorder gives conventional /'
algebraic notation. gt 0
+ print ‘(" before the recursive / ’\
call on the left subtree ia) i+

call on the right subtree

print )" after the recursive - é i

for tree atright: ((a + (b * ©)) - (d / e))

Preorder gives functional notation.

print ‘('s and ‘)’s as for inorder, and commas after the recursive
call on the left subtree

for tree above: subtr(add(a, mult(b, c)), divide(d, e))

Postorder gives the order in which the computation must be
carried out on a stack/RPN calculator.

for tree above: push a, push b, push c, multiply, add,..

see ~csciell9/examples/trees/ExprTree.java

Fixed-Length Character Encodings

*A character encoding maps each character to a number.

*Computers usually use fixed-length character encodings.

* ASCII (American Standard Code for Information Interchange)
uses 8 hits per character.

example: MW the following sequence of bits:

0110001p Gi1godh 01 HRRPOL

b 98 01100010
c 99 01100011

+ Uhieode-naea-de-bite-perehekacter to accommodate foreign-
language characters. (ASCII codes are a subset.)

*Fixed-length encodings are simple, because

« all character encodings have the same length
* agiven character always has the same encoding




Variable-Length Character Encodings
« Problem: fixed-length encodings waste space.

» Solution: use a variable-length encoding.
» use encodings of different lengths for different characters
« assign shorter encodings to frequently occurring characters

+ Example: e |01 “test” would be encoded as
o l100| 000111100 - 000111100
s |[111
t |00

» Challenge: when decoding/decompressing an encoded document,
how do we determine the boundaries between characters?
« example: for the above encoding, how do we know whether the
next character is 2 bits or 3 bits?

* One requirement: no character’s encoding can be the prefix of another
character’s encoding (e.g., couldn’t have 00 and 001).

Huffman Encoding

*Huffman encoding is a type of variable-length encoding that is based
on the actual character frequencies in a given document.

*Huffman encoding uses a binary tree:
 to determine the encoding of each character
 to decode an encoded file —i.e., to decompress a compressed
file, putting it back into ASCII
*Example of a Huffman tree (for a text with only six chars):
Leaf nodes are characters.
2

0 |
/ Left branches are labeled with

a 0, and right branches are
labeled with a 1.

If you follow a path from root
to leaf, you get the encoding
of the character in the leaf
example: 101 =’




Building a Huffman Tree

1)Begin by reading throug
the frequencies.

2)Create a list of nodes th

h the text to determine

at contain (character,

fi ncylpairs fareach chatacier glhat=a ppears in
‘0’ t Nl 7 lav ‘g’ rr ‘e’
21 23 25 26 27 40
- [ L ] [ T
3) Remove and “merge” the nodes with =
the two lowest frequencies, forming a 4
new node that is their parent.
« left child = lowest frequency node | -
« right child = the other node — o
« frequency of parent = sum of the o1 23

frequencies of its children
« inthiscase, 21 +23 =44

Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes:

= o = e -
25 26 27 40 44
\ I PSS T

Y

g

23

5) Repeat steps 3 and 4 until there is only a single node in the list,

which will be the root of the Huffman tree.




Completing the Huffman Tree Example |

Merge the two remaining nodes with the lowest frequencies:

oy o oy oy —
25 26 27 40 44
[ il P I | [
K
o’ i
21 23
| |
I e = =
27 40 44 51
l il [ e
i ‘B \
‘o i a s
21 23 25 26

Completing the Huffman Tree Example

» Merge the next two nodes:
g o -
27 40 44 51

[ il - B

i A
o 3 Y .
21 23 25 26
| | | |
44 51 67
[ [ [
E ‘ 5 x
oy g Y o v Y

21 23 25 26 27 40




Completing the Huffman Tree Example llI

» Merge again:

SRS

Completing the Huffman Tree Example IV

» The next merge creates the final tree:

» Characters that appear more frequently end up higher in the tree,
and thus their encodings are shorter.




Using Huffman Encoding to Compress a File
1)Read through the input file and build its Huffman tree.

2)Write a file header for the output file.

—include an array containing the frequencies so that the tree
can be rebuilt when the file is decompressed.

3)Traverse the Huffman tree to create a table containing the
encoding of each character:

|0 |
)

100
111
00

~|un |0

4) Read through the inputjfile a second time, and write the

Huffman code for each character to the output file.

Using Huffman Decoding to Decompress a File

1)Read the frequency table from the header and rebuild the tree.
2)Read one bit at a time and traverse the tree, starting from the root:
when you read a bit of 1, go to the right child

when you read a bit of 0, go to the left child

when you reach a leaf node, record the character, return to the root,
and continue reading bits

The tree allows us to easily overcome the challenge of determining
the character boundaries!

example: 19,11\11110000111100

y e 101 = rightleftright = i
o 111 = rightrightright= s
L 110 = right,right,left = a 00
o\ Y = leftleft

e ) 01= leftright
tlie) = left,rig

111 = right,right,right

° ° 00 = left,left

t
e
S
t




Binary Search Trees

*Search-tree property: for
each node k: (x
« all nodes in k’s left subtree are < k
« all nodes in k’s right subtree are >= k
* Our earlier binary-tree example is a
search tree:

26
s (127732 .
S w120 B
i 4 18 38
<12 ’
7

Searching for an Item in a Binary Search Tree

*Algorithm for searching for an item with a key k: if k == the
root node’s key, you're done

else if k < the root node’s key, search the left subtree else
search the right subtree

*Example: search for 7

¥ (

( :12 (32

4 18 38
DR




Implementing Binary-Tree Search

public class LinkedTree {//Wad’@%meld)?é’tﬁhat are ints

public LLList search(int key) { Node n =
searchTree(root, key);
return (n == null ? null : n.data);

private static Node searchTree(Node root, int key) {
// write together

}
}

«If we find a node that has the specified key, we return its data
field, which holds a list of the data items for that key.

Inserting an Item in a Binary Search Tree

* Wewant to insert an item whose key is k.

. example: insert
* Wetraverse the tree as if we were P

searching for k. Q;
e

+ If we find a node with key k, we add the >
data item to the list of items for that node. L1 Q

+ If we don't find it, the last node we < \ :‘
encounter will be the parent P of the new (‘L (@ ‘3’8 P
node. L

« if k < P’s key, make the new node P’s 7 @9
left child

+ else make the node P’s right child

» Special case: if the tree is empty,
make the new node the root of the tree.

* The resulting tree is still a search tree.




Implementing Binary-Tree Insertion

« We'llimplement part of the insert() method together.
» We'll use iteration rather than recursion.

* Our method will use two references/pointers:
* trav: performs the traversal down to the
point of insertion
* parent: stays one behind trav

+ likethe trail reference that we sometimes
use when traversing a linked list

Implementing Binary-Tree Insertion

public void insert(int key, Object data)
{ Node parent = null;
Node trav = root; while (trav !=
null) {
if (trav.key == key) {
trav.data.additem(data, 0); return;

\\7
}
Node newNode = new Node(key, data);
if (parent == null) // the tree was empty

root = newNode;

else if (key < parent.key)
parent.left = newNode; else
parent.right = newNode;




Deleting ltems from a Binary Search Tree

» Three cases for deleting a node x

» Case 1: x has no children.
Remove x from the tree by setting its parent’s reference to null.

/?6\ 26‘
ex: delete 4 12 /%\ =) (12 (32
Dw @ ®

* Case 2: x has one child.
Take the parent’s reference to x and make it refer to x’s child.

(26 @6
ex: delete 12 éﬂ (2 ) @ (32
ALY ,
@ = S

Deleting Items from a Binary Search Tree (cont)

*Case 3: x has two children
* we can't just delete x. why?

instead, we replace x with a node from elsewhere in the tree

to maintain the search-tree property, we must choose the
replacement carefully

« example: what nodes could replace 26 below?




Deleting Items from a Binary Search Tree (cont)

*Case 3: x has two children (continued):
« replace x with the smallest node in X’s right subtree— call ity
—y will either be a leaf node or will have one right child. why?

After copying y’s item into x, we delete y using case 1 or 2. ex:
delete 26

26 X 30X 30
<§?® — 0 D) = (s
31y 301y (3)

Implementing Binary-Tree Deletion

public LLList delete(int key) {
// Find the node and its parent. Node
parent = null;

Node trav = root; (ée
while (trav != null & trav.key != key) { ~ parent
parent = trav;
if (key < trav.key) (12 32 ]
trav = trav.left; else ,Z/\
e Y ~ 7

trav = trav.right; (4) K}%) (38
}
// Delete the node (if any) and return the removed 1items.
if (trav == null) // no such key
return null;
else {

LLList removedData = trav.data; deleteNode(trav, parent);
return removedData;

}
*This method uses a helper method to delete the node.




Implementing Case 3

private void deleteNode(Node toDelete,
Node parent) {
if (tobelete.left != null &&
toDelete.right != null) {
// Find a replacement - and toDelete
// the replacement's parent. Node /
// Get the smadllegtpikent = toDelete; 26
// in the right subtree.
Node replace = toDelete.right;
” >
// what should go here? 18 (45
7

<
(30

// Replace toDelete's key and data ‘/ N

// with those of the replacement 1item. 39

toDelete.key = replace.key;

toDelete.data = replace.data;

// Recursively delete the replacement
// item's old node. It has at most one
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);
} else {

Implementing Cases 1 and 2
private void deleteNode(Node toDelete, Node parent)

if (tobDelete.left != null & toDelete.right != null)
{

} e]sé-%
Node toDeletechild; g W
if (tobelete.left != null) parent
toDdPRedeRs i Ld rosoRete tei Ynftt: S
//eNote: in case 1, tobeletechild 18 (45
// will have a value of null. ~ v toDelete
/AX/
if (tobelete == root) root = (30 L
tobeletechild; - N
else if (tobDelete.key < parent.key) 39

parent.left = toDeletechild;
else
parent.right = tobDeletechild; toDeleteChild




Efficiency of a Binary Search Tree

*The three key operations (search, insert, and delete) all have the same time
complexity.

« insert and delete both involve a search followed by a constant

number of additional operations

*Time complexity of searching a binary search tree:

* best case: O(1)

« worst case: O(h), where h is the height of the tree

« average case: O(h)

*What is the height of a tree containing n items?
« it depends! why?

Balanced Trees

«A tree is balanced if, for each node,
the node’s subtrees have the same
height or have heights that differ by
+ For a balanced tree with n nodes: 2
« height = O(log,n). D\
(12 (32
« gives a worst-case time complexity /
that is logarithmic (O(log.n)) (}D 39 '\38)
« the best worst-case time complexity for h
a binary tree




What If the Tree Isn't Balanced?

Extreme case: the tree is equivalent to a linked list
* height=n- 1

4
» worst-case
time complexity = O(n) 12
We'lllook next at search-tree éze
variants that take special measures -
to ensure balance. 30




UNIT-IIT
Graphs



Definitions — Representation of graph -
Graph Traversals - Depth-first traversal -
Breadth-first traversal - Applications of graphs -
Topological sort — Shortest-path algorithms -
Minimum spanning tree — Prim's and Kruskal's

algorithms — Biconnectivity — Euler circuits.



Where We Are

We have learned about the essential ADTs
and data structures:

= Reqgular and Circular Arrays (dynamic sizing)

= Linked Lists

= Stacks, Queues, Priority Queues

= Heaps

= Unbalanced and Balanced Search Trees

We have also learned important algorithms

= Tree traversals
= Floyd's Method
= Sorting algorithms



Where We Are Going
Less generalized data structures and AD

More on algorithms and related problems
that require constructing data structures
to make the solutions efficient

Topics will include:
= Graphs
= Parallelism



Graphs

A graph is a formalism for representing
relationships among items
= Very general definition ian Luke

= Very general concept _
Leia

A graphis a pair: G = (V, E) v=(HanLeiaLuke}

= A set of vertices, also known E =H {(L]ljk-e’Leia)’
as nodes: V = {vy,Vy,...,V} (Han,Leia),

(Leia,Han)}
= A set of edges E = {ey,e,,...,.e}
= Each edge e, is a pair of vertices (v;,vy)
= An edge "connects" the vertices

Graphs can be directed or undirected



A Graph ADT?

We can think of graphs as an ADT
= Operations would inlude isEdge(v,v)

= But it is unclear what the "standard operations”
would be for such an ADT

Instead we tend to develop algorithms over
graphs and then use data structures that are
efficient for those algorithms

Many important problems can be solved by:
1. Formulating them in terms of graphs
2. Applying a standard graph algorithm



Some Graphs

For each example, what are the vertices and
what are the edges?

= Web pages with links

= Facebook friends

= "Tnput data" for the Kevin Bacon game

= Methods in a program that call each other
= Road maps

= Airline routes

= Family trees

= Course pre-requisites

Core algorithms that work across such domains
is why we are CSE



Scratching the Surface

Graphs are a powerful representation and
have been studied deeply

Graph theory is a major branch of research
iIN combinatorics and discrete mathematics

Every branch of computer science involves
graph theory to some extent



To make formulating graphs easy and standard,
we have a lot of standard terminology for graphs

GRAPH TERMINOLOGY




Undirected Graphs

In undirected graphs, edges have no specific
direction D

*Edges are always "two-way" A O B:)C
Thus, (u,v) € Eimplies (v,u) €E. B
=Only one of these edges needs to be in the set

*The other is implicit, so normalize how you
check for it

Degree of a vertex: number of edges
containing that vertex
=Put another way: the number of adjacent vertices



Directed Graphs

In directed graphs (or digraphs), edges have direction

b O D O
A
B B
/
2 edges here

Thus, (u,v) € Edoes not imply (v,u) €E.

Let (u,v) eEmeanu-v
sCall u the source and v the destination

=[n-Degree of a vertex: number of in-bound edges
(edges where the vertex is the destination)

=Qut-Degree of a vertex: number of out-bound edges
(edges where the vertex is the source)



Self-Edges, Connectedness

A self-edge a.k.a. a loop edge is of the form (u, u)

= The use/algorithm usually dictates if a graph has:
= No self edges
= Some self edges
= All self edges

A node can have a(n) degree / in-degree / out-
degree of zero

A graph does not have to be connected
= Even if every node has non-zero degree
= More discussion of this to come



More Notation

For a graph G = (V, E): A@C
=|V| is the number of vertices
=|E| is the number of edges 5

= Minimum? V={A B,C D}

= Maximum for undirected? E = {(C, B), (A B),
= Maximum for directed? (B, A), (G, D)}

If (u,v) €eE,then vis a neighbor of u (i.e., v
is adjacent to u)

=Order matters for directed edges:
u is not adjacent to v unless (v,u) € E



More Notation

For a graph G = (V, E): A O .
=|V| is the number of vertices
B

=|E| is the number of edges

= Minimum?? 0
= Maximum for undirected? |V||V+1|/2 € O(|V|?)
= Maximum for directed? V|2 € O(|V]?)

If (u,v) €eE,then vis a neighbor of u (i.e., v
is adjacent to u)

=Order matters for directed edges:
u is not adjacent to v unless (v,u) € E



Examples Again

W
W
W

nich would use directed edges?
nich would have self-edges?
nich could have 0-degree nodes?

Web pages with links

Facebook friends

"Input data" for the Kevin Bacon game
Methods in a program that call each other
Road maps

Airline routes

Family trees

Course pre-requisites



Weighted Graphs

In a weighted graph, each edge has a weight or cost
= Typically numeric (ints, decimals, doubles, etc.)

= Orthogonal to whether graph is directed

= Some graphs allow negative weights; many do not

Clinton 20
Mukilteo
Kingston O\&O Edmonds

Bainbridge 35 Seattle

Bremerton



Examples Again

What, if anything, might weights represent for
each of these?

Do negative weights make sense?

= Web pages with links

= Facebook friends

= "Input data" for the Kevin Bacon game

= Methods in a program that call each other
= Road maps

= Airline routes

= Family trees

= Course pre-requisites



Paths and Cycles

We say "a path exists from v, to v." if there is a
list of vertices [v,, vy, .., v,] such that (v,v,,,) € E for
all 0 <i<n.

A cycle is a path that begins and ends at the
same node (v,==v,)

Seattle

Chicago

San Francisco

Dallas

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]



Path Length and Cost

Path length: Number of edges in a path
Path cost: Sum of the weights of each edge

Example where

P= [ Seattle, Salt Lake City, Chicago, Dallas,
San Francisco, Seattle]

3.5 Chicago
Seattleug

2 g length(P) = 5
cost(P) = 11.5

Salt Lake City

2.5 2.3 Length is sometimes

called "unweighted cost"

San Francisco Dallas



Simple Paths and Cycles

A simple path repeats no vertices (except the
first might be the last):

[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

A cycle is a path that ends where it begins:
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

A simple cycle is a cycle and a simple path:
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]



Paths and Cycles in Directed Graphs

Example: D
"Q__

= Is there a path from A to D? No

= Does the graph contain any cycles? No



Undirected Graph Connectivity

An undirected graph is connected if for all

pairs of vertices u#v, there exists a
fromutov

e o e

Connected graph Disconnected graph

An undirected graph is complete,

or fully connected, if for all pairs
of vertices u#v there exists an
fromutov



Directed Graph Connectivity

A directed graph is strongly connected

if there is a path from every vertex to

every other vertex ‘\k
A directed graph is weakly connected

if there is a path from every vertex to
every other vertex '\‘

A direct graph is complete or fully
connected, if for all pairs of vertices
u¥v , there exists an fromutov




Examples Again

For undirected graphs:
For directed graphs:

= Web pages with links

= Facebook friends

= "Input data" for the Kevin Bacon game

= Methods in a program that call each other
= Road maps

= Airline routes

= Family trees

= Course pre-requisites



Trees as Graphs

When talking about graphs, we

say a tree is a graph that is: (D)
= undirected B
= acyclic

= connected

® ©

All trees are graphs, but NOT all
graphs are trees j

How does this relate to the trees
we know and "love"?

(E)



Rooted Trees

We are more accustomed to rooted trees where:
= We identify a unique root

= We think of edges as directed: parent to
children

® (E)
Picking a root gives a unique B

rooted tree

= The tree is simply drawn
differently and with CCb

undirected edges ®




Rooted Trees

We are more accustomed to rooted trees where:

= We identify a unique root

= We think of edges as directed: parent to

children

® (E)
Picking a root gives a unique B

rooted tree

= The tree is simply drawn
differently and with
undirected edges

®
©

o o

®

B

® @




Directed Acyclic Graphs (DAGS)

A DAG is a directed graph with no directed cycles
= Every rooted directed tree is a DAG
= But not every DAG is a rooted directed tree

»
|

= Every DAG is a directed graph
= But not every directed graph is a DAG

>




Examples Again

Which of our examples do you
expect to be a ?

= Web pages with links

= Facebook friends

= "Input data" for the Kevin Bacon game

= Methods in a program that call each other
= Road maps

= Airline routes

= Family trees

= Course pre-requisites



Density / Sparsity
Recall:
In an undirected graph, 0<|E|< |V]?

Recall:
In a directed graph, 0<|E|<|V|?

So for any graph, |E| is O(|V|?)

Another fact:
If an undirected graph is connected,
then |E| > |V]-1 (pigeonhole principle)



Density / Sparsity

|E| is often much smaller than its maximum size

We do not always approximate as |E| as O(|V|?)
= This is a correct bound, but often not tight

If |[E| is ®(|V|?) (the bound is tight), we say the
graph is dense

= More sloppily, dense means "lots of edges”

If |E| is O(|]V|) we say the graph is sparse

= More sloppily, sparse means "most possible
edges missing”



Insert humorous statement here

GRAPH DATA STRUCTURES




What'’s the Data Structure?

Graphs are often useful for lots of data and questions
= Example: "What's the lowest-cost path from x to y"

But we need a data structure that represents graphs

Which data structure is "best" can depend on:
= properties of the graph (e.g., dense versus sparse)
= the common queries about the graph (

We will discuss two standard graph representations
= Adjacency Matrix and Adjacency List
= Different trade-offs, particularly time versus space



Adjacency Matrix

Assign each node a number from 0 to |V|-1
A |V]| x |V| matrix of Booleans (or O vs. 1)

= Then M[u][v] == true means there is an
edge fromutov

C
B

O O m >

o I e I e N B B A
M| | |H]|T
M| M| MmO
M| |mMm|™Mm| O




Adjacency Matrix Properties

Running time to:

= Get a vertex’s out-edges:

= Get a vertex’s in-edges:

= Decide if some edge exists:
= Insert an edge:

= Delete an edge:

Space requirements:

O W X
MMM >

D

M| |||

M| m|m| O

M| | |™M| T

Best for sparse or dense graphs?




Adjacency Matrix Properties

Running time to:
= Get a vertex’s out-edges: O(|V])

= Get a vertex’'s in-edges: O(|V])
= Decide if some edge exists: O(1)
= Insert an edge: 0(1) A B
= Delete an edge: 0(1)
AlF [T
Space requirements: ST F
O(|V|?) CI|F | T
D|F|F

M| MmO
M| | |™M| T

Best for sparse or dense graphs? dense



Adjacency Matrix Properties

How will the adjacency matrix vary for an
undirected graph?

= Will be symmetric about diagonal axis

= Matrix: Could we save space by using only

about half the array? A B C D
A T|F|F
B F|F
C T
D

= But how would you "get all neighbors"?



Adjacency Matrix Properties

How can we adapt the representation for
weighted graphs?

= [nstead of Boolean, store a number in each cell
= Need some value to represent ‘not an edge’

= 0, -1, or some other value based on how you
are using the graph

= Might need to be a separate field if no
restrictions on weights



Adjacency List

Assign each node a number from 0 to |V|-1

= An array of length |V| in which each

entry stores a list of all adjacent vertices
(e.g., linked list)

C
B

o O W >»r
O
o
~




Adjacency List Properties

Running time to:
= Get a vertex’s out-edges:

Get a vertex’s in-edges:

Decide if some edge exists:

O O W X

Insert an edge:

Delete an edge:

Space requirements:

Best for sparse or dense graphs?



Adjacency List Properties

Running time to:
= Get a vertex’s out-edges:

O(d) where d is out-degree of vertex

= Get a vertex’s in-edges:

O(|E]) (could keep a second adjacency list for this!)

= Decide if some edge exists:

O(d) where dis out-degree of source

= Insert an edge:

0(1) (unless you need to check if it's already there)

= Delete an edge:

O(d) where d is out-degree of source

Space requirements: O(|V|+

Best for sparse or dense gra

E])

Dhs? sparse



Undirected Graphs
Adjacency lists also work well for
undirected graphs with one caveat

= Put each edge in two lists to support
efficient "get all neighbors”

. A Bl/
AQC B Cl/—1Al/
B C D Bl/

D| /—1Cl/




Which is better?

Graphs are often sparse
= Streets form grids
= Airlines rarely fly to all cities

Adjacency lists should generally be your
default choice

= Slower performance compensated by
greater space savings



Might be easier to list what isn't a graph application...

APPLICATIONS OF

GRAPHS: TRAVERSALS



Application: Moving Around WA State

Bellingham

Seattle Wenatchee Spokane

I Tacoma

Enumeclaw I

Yakima Richland Pullman

Olympia

Vancouver

What's the shortest way to get from
Seattle to Pullman?



Application: Moving Around WA State

Bellingham

Seattle Wenatchee Spokane

I Tacoma

Enumeclaw I

Yakima Richland Pullman

Olympia

Vancouver

What's the fastest way to get from
Seattle to Pullman?



Application: Reliability of Communication

Bellingham

Seattle Wenatchee Spokane

I Tacoma

Enumeclaw I

Yakima Richland Pullman

Olympia

Vancouver

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?



Application: Reliability of Communication

Bellingham

Seattle Wenatchee Spokane

I Tacoma

Enumeclaw I

Yakima Richland Pullman

Olympia

Vancouver

If Tacomas’s phone exchange goes down,
can Olympia still talk to Spokane?



Applications: Bus Routes Downtown

Ath

yuan

s

N

. .

U
= e
') (D

uolu
eD2UDS

ALISIDAIUN

If we're at 3rd and Pine, how can we get to
1st and University using Metro?
How about 4th and Seneca?



Graph Traversals

For an arbitrary graph and a starting node v,
find all nodes reachable from v (i.e., there
exists a path)

= Possibly "do something" for each node (print to
output, set some field, return from iterator, etc.)

Related Problems:
= [s an undirected graph connected?

= Is a digraph weakly/strongly connected?
= For strongly, need a cycle back to starting node



Graph Traversals

Basic Algorithm for Traversals:
= Select a starting node
= Make a set of nodes adjacent to current node

= Visit each node in the set but "mark" each
nodes after visiting them so you don't revisit
them (and eventually stop)

= Repeat above but skip "marked nodes"



In Rough Code Form

traverseGraph(Node start) {
Set pending = emptySet();
pending.add(start)
mark start as visited
while(pending is not empty) {
next = pending.remove()
for each node u adjacent to next
if(u is not marked) {
mark u
pending.add(u)



Running Time and Options

Assuming add and remove are 0(1), entire
traversal is O(|E|) if using an adjacency list

The order we traverse depends entirely on how
add and remove work/are implemented

= DFS: a stack "depth-first graph search"
= BFS: a queue "breadth-first graph search"

DFS and BFS are "big ideas" in computer science

= Depth: recursively explore one part before going
back to the other parts not yet explored

= Breadth: Explore areas closer to start node first



Recursive DFS, Example with Tree

A tree is a graph and DFS and BFS are particularly
easy to "see" in one

DFS(Node start) {
mark and process start
for each node u adjacent to start

- if uis not marked
® ® DFS(u)
)

Order processed: A, B, D, E,C, F G, H
= This is a "pre-order traversal" for trees

= The marking is unneeded here but because we
support arbitrary graphs, we need a means to
process each node exactly once




DFS with Stack, Example with Tree

DFS2(Node start) {
initialize stack s to hold start
mark start as visited
while(s is not empty) {
next = s.pop() // and "process”

Y for each node u adjacent to next
® (F if(u is not marked)
mark u and push onto s
by

Order processed: A, C, F, H, G, B, E, D

= A different order but still a perfectly fine
traversal of the graph




BFS with Queue, Example with Tree

BFS(Node start) {
initialize queue q to hold start
mark start as visited
while(q is not empty) {
next = gq.dequeue() // and "process”

X for each node u adjacent to next
® (£ if(u is not marked)
mark u and enqueue onto q
b

Order processed: A, B, C,D, E, F, G, H
= A "level-order" traversal




DFS/BFS Comparison

BFS always finds the shortest path (or
"optimal solution") from the starting node
to a target node

=Storage for BFS can be extremely large

*A k-nary tree of height h could result in a queue
size of k"

DFS can use less space in finding a path

=If longest path in the graph is p and highest
out-degree is d then DFS stack never has more
than d-p elements



Implications

For large graphs, DFS is hugely more
memory efficient, if we can limit the
maximum path length to some fixed d.

If we knew the distance from the start to the
goal in advance, we could simply not add any
children to stack after level d

But what if we don’t know d in advance?



Iterative Deepening (IDFS)

Algorithms
= Try DFS up to recursion of K levels deep.

= If fails, increment K and start the entire
search over

Performance:
= Like BFS, IDFS finds shortest paths
= Like DFS, IDFS uses less space

= Some work is repeated but minor
compared to space savings



Saving the Path

Our graph traversals can answer the standard
reachability question:

"Is there a path from node x to node y?"
But what if we want to actually output the path?

Easy:
= Store the previous node along the path:

When processing v causes us to add v to the
search, set v.path field to be u)

= When you reach the goal, follow path fields back to
where you started (and then reverse the answer)

= What's an easy way to do the reversal? A Stack!!



Example using BFS

What is a path from Seattle to Austin?
= Remember marked nodes are not re-enqueued
= Note shortest paths may not be unique

San Francisco



Topological Sort

Problem: Given a DAG G=(V,E), output all the
vertices in order such that if no vertex appears
before any other vertex that has an edge to it

Example input:

CSE 332

) 4

CSE 312

CSE 351 » CSE 333

Example output: @

= 142,126, 143, 311, 331, 332, 312, 341, 351,

333, 440, 352 Disclaimer: Do not use for official advising purposes!

(Implies that CSE 332 is a pre-req for CSE 312 - not true)




Questions and Comments

Terminology:

A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

Why do we perform topological sorts only on DAGs?
= Because a cycle means there is no correct answer

Is there always a unique answer?

= No, there can be one or more answers depending
on the provided graph

What DAGs have exactly 1 answer?
= Lists



Uses Topological Sort
Figuring out how to finish your degree

Computing the order in which to
recalculate cells in a spreadsheet

Determining the order to compile files with
dependencies

In general, use a dependency graph to
find an allowed order of execution



Topological Sort: First Approach

1. Label each vertex with its in-degree
= Think "write in a field in the vertex"

= You could also do this with a data structure on
the side

2. While there are vertices not yet outputted:
a) Choose a vertex v labeled with in-degree of O
b) Output v and "remove it" from the graph

c) For each vertex u adjacent to v, decrement in-
degree of u

- (i.e., u such that (v,u) is in E)



Example

Output:
CSE 332
Ese 142+Cse 1a3f~Ese 31 ]
@ »(CSE 333
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-deg:



Example

Output:
CSE 332
Ese 142+Cse 1a3f~Ese 31 ]
@ »(CSE 333
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?
In-deg: O 0 2 1 2 1 1 2 1 1 1 1



Example
Output:
126

CSE 332

@ @ @ ) 4

@ »(CSE 333

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-deg: O 0 2 1 2 1 1 2 1 1 1 1




Example

Node:

In-deg:

120 142 143 311

Removed? x

0

X
0

CSE 332

\ 4

CSE 312

—(CSE 333

312 331 332 333 341

Output:
126
142

351 352 440



Example
Output:
126

ST R I
CSE 332 143

@ @ @ ) 4

@ »(CSE 333

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X
In-deg: O 0 1 2 1 2 1 1

2
1
0



Example

Node:

Removed? x

In-deg:

0

X
0

120 142 143 311

X

2
1
0

CSE 332

\ 4

CSE 312

X

—(CSE 333

312 331 332 333 341

Output:
126
142
143
311

351 352 440



Example
Output:

126

ST R I
CSE 332 143

st 199G 14345t 311 o
< 331

@ »(CSE 333

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x X X X X

In-deg: O 0 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0
0




Example
Output:
126
Coe 331 Ceary 142
CSE 332 143

st 199G 14345t 311 o
< 331

@ @ CSE 312 332

@ »(CSE 333

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X

In-deg: O 0 2 1 2 1 1 2 1 1 1

1 0 1 0 0 1 0

0




Example
Output:

126
CSE 332 143

G5z 199Gt a9y se 313 o
v 331

@ CSE 312 332
@ 312

@ »(CSE 333

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X X

In-deg: O 0 2 1 2 1 1 2 1 1 1

1 0 1 0 0 1 0

0 0




Example
Output:

126

ST R I
CSE 332 143

v 331
@ CSE 312 332

@ —~(CSE 333 341

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X X X
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1 0 1 0 0 1 0 0

0 0
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Output:

126
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CSE 332 143

v 331
@ CSE 312 332
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Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X X X X

In-deg: O 0 2 2 1 1 2 1 1 1 1
1 0 1 0 0 1 0 0 0 0
0 0




Example
Output:
126

& —ew
CSE 332 143

st 143t 143{+Cse 311 o
v 331

@ CSE 312 332

@ 312

@ —~(CSE 333 341
==
333

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X X X X X

In-deg: O 0 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 1 0 0 0 0
0 0 0




Example

Node:

Removed? x

In-deg:

CSE 332

v

—(CSE 333

Output:
126 352
142
143
311
331
332
312
341
351
333

120 142 143 311 312 331 332 333 341 351 352 440

0

X
0

X

2
1
0

X
1
0

X

2
1
0

X
1
0

X
1
0

X

2
1
0

X X X
1 1 1 1
0 0 0 0



Example

Node:

Removed? x

In-deg:

CSE 332

v

—(CSE 333

Output:
126 352
142 440
143
311
331
332
312
341
351
333

120 142 143 311 312 331 332 333 341 351 352 440

0

X
0

X

2
1
0

X
1
0

X

2
1
0

X
1
0

X
1
0

X

2
1
0

X X X X
1 1 1 1
0 0 0 0



Running Time?

labelEachVertexWithItsInDegree();

for(i=0; i < numVertices; i++) {
v = findNewVertexOfDegreeZero();
put v next in output
for each w adjacent to v
w.indegree--;

What is the worst-case running time?

Initialization O(|V| + |E|) (assuming adjacency list)

Sum of all find-new-vertex O(|V]|2) (because each O(|V]))
Sum of all decrements O(|E|) (assuming adjacency list)
So total is O(|V|2 + |E|) - not good for a sparse graph!



Doing Better

Avoid searching for a zero-degree node every time!

= Keep the “"pending” zero-degree nodes in a list, stack, queue,
bag, or something that gives O(1) add/remove

= Order we process them affects the output but not
correctness or efficiency

Using a queue:
= Label each vertex with its in-degree,
= Enqueue all 0-degree nodes
= While queue is not empty
= v = dequeue()
= Qutput v and remove it from the graph

= For each vertex u adjacent to v, decrement the in-degree
of u and if new degree is 0, enqueue it



Running Time?

labelAllWithIndegreesAndEnqueueZeros();

for(i=0; i < numVertices; i++) {
v = dequeue();
put v next in output
for each w adjacent to v {
w.indegree--;
if(w.indegree==0)
enqueue(w);
b
b

= Initialization: O(|V| + |E|) (assuming adjacency list)

= Sum of all enqueues and dequeues: O(|V])

= Sum of all decrements: O(|E|) (assuming adjacency list)
= So total is O(|E| + |V|) — much better for sparse graph!



More Graph Algorithms

Finding a shortest path is one thing

= What happens when we consider
weighted edges (as in distances)?

Next time we will discuss shortest path
algorithms and the contributions of a
curmudgeonly computer scientist



Unit- 1V

Introduction to Algorithms



Introduction — Notion of Algorithm —
Fundamentals of Algorithmic problem
solving — Important problem types —
Mathematical analysis for recursive & non
recursive algorithms — Brute Fore —

Selection Sort — Bubble Sort.
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What 1s course about?

The theoretical study of design and
analysis of computer algorithms

Basic goals for an algorithm:

» always correct

» always terminates

» This class: performance

 Performance often draws the line between
what Is possible and what is impossible.

L1.133



Design and Analysis of Algorithms

» Analysis: predict the cost of an algorithm in
terms of resources and performance

* Design: design algorithms which minimize the
cost
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The problem of sorting

Input: sequence (a,, a,, ..., a,) of numbers.

Output: permutation (a';,a’,, ..., a’,) such
that all S alz S S aln .

Example:
Input: 8 2 4 9 36

Output: 2 346 38 9
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Insertion sort

[ INSERTION-SORT (A, n) & A[l..n]

forj < 2ton
do key < A[ |]
i—j—1
while i = 0 and A[i] > key
do A[i+1] < A[i]
i—i—-1

N A[i+1] = key

“pseudocode” <
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Example of insertion sort

8 2 4 9 3 6
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Example of insertion sort

3 2 4 9 3 6
N
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Example of insertion sort
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Example of insertion sort
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Example of insertion sort
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Example of insertion sort
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Example of insertion sort

3 2 4 9 3 9
N
2 3 4 9 3 9
N
2 4 3 9 3 9
o/
2 4 3 9 3 9
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Example of insertion sort

3 2 4 9 3 6

N

2 8 4 9 3 6
N

2 4 8 9 3 6

o/

2 4 8 9 3 6

N— -

L1.145



Example of insertion sort

3 2 4 9 3 6
N

2 3 4 9 3 9
N

2 4 3 9 3 9

o/

2 4 3 9 3 9
N— -

2 3 4 3 9 9
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Example of insertion sort

e o)

AN (N (N «
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Example of insertion sort

e o)

AN (N (N «

9 done

8
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Running time

* The running time depends on the Input: an
already sorted sequence Is easler to sort.

« Major Simplifying Convention:
Parameterize the running time by the size of
the Input, since short sequences are easier to
sort than long ones.

> T,(n) = time of A on length n inputs

 Generally, we seek upper bounds on the
running time, to have a guarantee of
performance.
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Kinds of analyses

Worst-case: (usually)

* T(n) = maximum time of algorithm
on any Input of size n.

Average-case: (sometimes)

* T(n) = expected time of algorithm
over all inputs of size n.

* Need assumption of statistical
distribution of inputs.

Best-case: (NEVER)

 Cheat with a slow algorithm that
works fast on some input.
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Machine-independent time

What is insertion sort’s worst-case time?

Bi1G IDEAS:

 Ignore machine dependent constants,
otherwise impossible to verify and to compare algorithms

 Look at growth of T(n) asn — oo .

“Asymptotic Analysis”
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®-notation

DEF:
®(g(n)) ={ f (n) : there exist positive constants c,, ¢,, and

nysuchthat 0 <c,g(n) <f(n)<c,g(n)
foralln>n,}

Basic manipulations:

* Drop low-order terms; ignore leading constants.

« Example: 3n®+ 90n? — 5n + 6046 = ©(n°)
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Asymptotic performance

When n gets large enough, a ®(n?) algorithm
always beats a ®(n?) algorithm.

» Asymptotic analysis Is a
useful tool to help to
structure our thinking
toward better algorithm

- We shouldn’t ignore
asymptotically slower
algorithms, however.

,  Real-world design

. situations often call for a

careful balancing
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Insertion sort analysis

Worst case: Input reverse sorted.
n
T(n)=>0(j)=6(n2) [arithmetic series]
j=2

Average case: All permutations equally likely.
n
T(n)=>0(j/2)=0(n2)
j=2
Is Insertion sort a fast sorting algorithm?

» Moderately so, for small n.
 Not at all, for large n.
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Example 2: Integer
Multiplication

Let X=AB landY =C |D|where A,B,C
and D are n/2 bit integers

Simple Method: XY = (2"2A+B)(2"2C+D)
Running Time Recurrence
T(n) <4T(n/2) + 100n

Solution T(n) = 6(n?)
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Better Integer Multiplication

Let X=A|BlandY =C |D where A,B,C and D
are n/2 bit integers

Karatsuba:
XY = (2V2+2MAC+2"2(A-B)(C-D) + (2V2+1) BD
Running Time Recurrence

T(n) <3T(n/2) + 100n

Solution: ©(n) = O(n '093)
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Example 3:Merge sort

MERGE-SORT A[l .. n]
1. Ifn=1, done.

2. Recursively sort A[ 1. .[n/21]
and Al [n/21+1..n].

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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Merging two sorted arrays

20 12
13 11
7 9
2 1
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Merging two sorted arrays

20 12
13 11
7 9

-

1
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Merging two sorted arrays

20 12 20 12
13 11 13 11
7 9 7 9

2 2

1
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Merging two sorted arrays

20 12 20 12
13 11 13 11
7 9 7 9

0|

1 2
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Merging two sorted arrays

20 12 20 12 20 12
13 11 13 11 13 11
7 9 7 9 7 9

0|

1 2
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Merging two sorted arrays

20 12 20 12 20 12
13 11 13 11 13 11

1o [¢

1 2 I
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Merging two sorted arrays

20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11

Z9K9 9

1 2 I
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Merging two sorted arrays

20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11

sla (¢

1 2 I 9
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Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 11

sla (¢

1 2 I 9
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Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 @

sla (¢

1 2 I 9 11
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Merging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 12
13 11 13 11 13 11 13 11 13 @ 13

sla (¢

1 2 I 9 11
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Merging two sorted arrays

20 12 | 20 12 || 20 12 | 20 12 | 20 12 20@
13 11 | 13 11 || 13 11 | 13 11 13 13

sl 5191 I

1 2 I 9 11 12
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Merging two sorted arrays

20 12 | 20 12 || 20 12 | 20 12 | 20 12 20@
13 11 | 13 11 || 13 11 | 13 11 13 13

sl 5191 I

1 2 I 9 11 12

Time = ®(n) to merge a total
of n elements (linear time).
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Analyzing merge sort

T(n) MERGE-SORT A[l .. n]
O(1) 1. Ifn=1, done.
2T(n/2) | 2. Recursively sort A[ 1..[n/27]

and A[[n/2+1..n].
/ O(n) 3. “Merge” the 2 sorted lists
Sloppiness: Should be T([n/21) + T([n/2]),
but It turns out not to matter asymptotically.
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Recurrence for merge sort

(@) ifn=1;
T = {ZT(n/Z) + @) ifn> 1.

* We shall usually omit stating the base
case when T(n) = ®(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

 Lecture 2 provides several ways to find a
good upper bound on T(n).
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.
T(n)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

/ e \
T(n/2) T(n/2)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.
ch

\
cn/2 cn/2

/. VN
T(/4)  T(n/4) TM/4)  T(n/4)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.
ch

\
cn/2 cn/2

/. VAN
cn/4 cn/4 cn/4 cn/4
/

@61)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

ch
\
cn/2 cn/2
/. VAN

h=lgn o cn/4 cn/4 cn/4
/

@21)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2 cn/2
/. VAN

h=lgn o cn/4 cn/4 cn/4
/

@él)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2 CN/2 cn
RN RN

h=lgn o cn/4 cn/4 cn/4
/

@él)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2 CN/2 cn
RN RN

h=lgn o cn/4 cn/4 cn/4 —— ¢n
/

@él)
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

L — cn
\
cn/2 Cn/2 cn
. 2N /N
N=1g9n g4 cnia cnia cenia——cn
/
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Recursion tree

Solve T(n) = 2T(n/2) + cn, where ¢ > 0 IS constant.

cn/2
/N

h=lgn o cn/4 cn/4
/

Total = ®(n Ig n)

L1.183



Conclusions

« O(n lg n) grows more slowly than ®(n?).

* Therefore, merge sort asymptotically
beats insertion sort in the worst case.

* In practice, merge sort beats insertion
sort for n > 30 or so.
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ALGORITHM ANALYSIS
AND DESIGN

INTRODUCTION



Algorithm Analysis — Asymptotic Notations - Divide
and Conquer — Merge Sort — Binary Search - Greedy
Algorithms — Knapsack Problem — Dynamic
Programming — Warshall's Algorithm for Finding
Transitive Closure — Backtracking — Sum of Subset

Problem — Branch and Bound — Travelling Salesman

Problem.



Algorithm Analysis and Design

Algorithm

 An algorithm Is a step by step procedure for
solving the given problem.

« An algorithm is independent of any
programming language and machine.



Algorithm Analysis and Design

Definition

n Algorithm is a finite sequence of
effective steps to solve a particular problem
where each step Is unambiguous(definite)
and which terminates for all possible inputs
In a finite amount of time.

« An Algorithm accepts zero or more inputs
and produces one or more outputs.



Algorithm Analysis and Design

Properties

e Definiteness
e Effectiveness
e FiIniteness



Algorithm Analysis and Design

Definiteness

Each instruction should be clear and
unambiguous.

It must be perfectly clear what should be done.

Example Directions which are not permitted
— “add 6 or 7 to x”

— compute x/0

— remainder of m/n when m and n are —ve numbers

It Is not clear which of the 2 possibilities should be
done.



Algorithm Analysis and Design

Definiteness Contd..

« Achievement using programming language
for algorithms

— designed such that each legitimate sentence has
a unigue meaning



Algorithm Analysis and Design

Effectiveness

« Each step must be such that it can at least in
principle be done by a person using paper and
pencil in a finite amount of time.

« Example -Effective
— Performing arithmetic on integers

« Example not effective
— Some arithmetic with real numbers.

— If k Is the largest integer n such that x*n + y*n = z*n In
all positive integers then go to step 4



Algorithm Analysis and Design

Finiteness

 The algorithm should terminate after a finite
number of steps in all the cases.

e The time for termination should be
reasonably short.



Algorithm Analysis and Design

Example Algorithm

 An algorithm to find the maximum In array
of n numbers

Algorithm max(a,n)

/[ a1s an array of size n

{ result:=a[1];
fori=2tondo

{ if (a[i] > result)

then result :=a[i];

¥
¥

return result;




Algorithm Analysis and Design

Development of an algorithm

 Steps Involved
— Devise
— Validate
— Analyse
— Test



Algorithm Analysis and Design

Devise the algorithm

 An art which cannot be fully automated

 Design technigues
— Yields good algorithms for known problems
— Helps to devise new useful algorithms



Algorithm Analysis and Design

General Technigues

 Provide directions for algorithmic problem
solutions

« Help programmers thinking in designing an
algorithm

* Types - depending on applied problems
— Solve almost all variety problems.
— Solve only to specific type of problems.




Algorithm Analysis and Design

Devise Algorithm For
New Problems

Requires exploration of the specific features
of the problem discussed

General design technigues can be applied
to a much extend.

he best technigue has to be selected from
the possible set of techniques.

It should be applied in the right way.




Algorithm Analysis and Design

Example Sorting
Approaches

 |Incremental
— Insertion sort
 Divide-and-conquer
— Quick sort
— Merge sort etc.



Algorithm Analysis and Design

Validating the algorithm

 To show that algorithm computes the
correct answer for all possible legal inputs.

* Need not be expressed as a program.
— sufficient to state It any precise way.

 Assurance of correctness of algorithm

— Independent of the Issues concerning the
programming language



Algorithm Analysis and Design

Validating the algorithm

A proof of correctness is more valuable than 100
tests.

Mathematical proof

— solution stated in two forms

Program

— The program is expressed as a set of predicate calculus
assertions in input and output variables.

Specification

— specifications are also expressed as predicate calculus
assertions



Algorithm Analysis and Design

Analyse algorithms

This phase performs performance analysis
Execution requires CPU time and memory

Task of determining time and space
requirements.

Performance in cases considered separately
— Best case

— Worst case
— Average case etc.



Algorithm Analysis and Design

Good algorithm

One which works correctly
— should give the desired output

Readable
— Steps are clear and understandable

Efficient in terms of time and memory utilization .
— give the desired output faster
— utilize less resources.

Given multiple solutions, finding out the better one.



Algorithm Analysis and Design

Performance Measures

 Quality of the solution

— How much time does the solution take?.

— How much space does the solution occupy?
« Simplicity of the solution

» Performance Improvement
— Improving the algorithm design.

— Continuous improvements in hardware and
communication infrastructure



Algorithm Analysis and Design

Testing

» Two phases
— Debugging
— Profiling (performance measurement)



Algorithm Analysis and Design

Debugging

 Process of executing programs on sample
data sets to determine whether faulty results

occur and If so to correct them.

* Reguirement

— A proof of correctness prove that the algorithm
will correctly for all cases.

— Not easy to obtain mathematical proofs.



Algorithm Analysis and Design

Profiling

 EXxecuting programs with sample data sets
to measure the time and space requirements.

* |t i1s helpful for optimization since it can
point out logical places that require
optimization.



Algorithm Analysis and Design

Basic Mathematical Principles
A few formulae

1+2+...+n=n*(n+1)/2
1+2°2+...+n°=n*(n+1)*2n+1)/6
l+a+a?+..+a"=(@"mD-1)/(a-1)

atar+ars+ari+.......... +ar"=a(r"*1-1)/(r-1)
i Iﬁc — 1 - T2 < + 1

7 — 1 < +— 1

<

> i< 27 = (kK —1)><2"T 4 2

=1



Algorithm Analysis and Design

Mathematical Formulae
Contd..

 Floor(x) or L);L Is the largest integer less
than or equal

« Cell(Xx) or rx—‘ IS the smallest integer
greater than or equal to X



Algorithm Analysis and Design

Mathematical Formulae
Contd..

log, xy=log , x+log, y
log a(X/y) = Ioga X- Ioga y
log ., X n =nlog , X

log , 1=0

log , x=1

log , x=1/log , a

Ioga(x) = Ioga(b) * Iogb(x)
log , x=1log , X/ log , a
alog aX:X

if 2k=n then k=log , n
Xlogby:ylogbx



Algorithm Analysis and Design

Mathematical Formulae
Contd..

C(n,k)=(”k)= nx(n_l)x‘k'—x(f?—kﬂ)

n!

T (n—k)xk!

for n>=k>=0

C(n k) =(":)

i C(n,k)=2"
k=0



Algorithm Analysis and Design

Mathematical Formulae
Contd..

« A.P.

— Nthterm -a+ (n - 1)d

— Sum - Sn =n/2*(2a + (n — 1)d)
« G.P.

— Nth term - ar"1)

— Sum-Sn=a(l - M1 -r) (valid only if r 1)



Algorithm Analysis and Design

A Commonly Used Result
During Analysis

How many times should we half the number
n (discarding reminders If any) to reach 1?

two cases.
Case — 1: nis a power of 2
Case — 2: n Is not a power of 2



Algorithm Analysis and Design

A Commonly Used Result
Contd..

Case —1:ni1sapower of 2 —» n=2"
Example n =8

8 must be halved 3 times to reach 1

84 2 1
16 must be halved 4 times to reach 1
16 8 4 2 1



Algorithm Analysis and Design

A Commonly Used Result
Contd..

» Case—2:nisnotapowerof2;n>2m
Examplen=9

O must be halved 3 times to reach 1
042 1

15 must be halved 3 times to reach 1
15 7 3 1



Algorithm Analysis and Design

A Commonly Used Result Contd..

General Case 2™M <n < 2(m+1)
n must be halved m times to reach 1
n must be halved m times if 2™ <n < 2(m+1)
So m <log,(n) < m+1
m = floor(log,n) or log,
Number n must be hatwed ﬂog J times to reach 1
2



Algorithm Analysis and Design

A Corollary to the result Contd..

A number n must be halved
floor(log,n) + 1 times
e Toreach 0



Algorithm Analysis and Design

Performance Analysis

* to Improve existing algorithms
 to choose among several available algorithms

* Two types
— Apriori Analysis
— Aposteriori Analysis



Algorithm Analysis and Design

Apriori Analysis - Example

> [

 Doing an analysis of the solutions before
performing the action.
* Physical Example- Find path from P to Q

 Criteria for selection
— Path length, road conditions, type of vehicle, speed




Algorithm Analysis and Design

Apriori Analysis

 Doing an analysis of the solutions before
coding the algorithms
 Glven two or more algorithms for a problem

— Doing a machine independent analysis to find
better algorithm



Algorithm Analysis and Design

Space Time Tradeoff
Example

Store Employee information

Solutions
— Array
Inked list

S ===

NIC
NIC
NIC

NIC

n locates a particular employee faster?
N provides better utilization of memory?
N IS easy to code?

N 1S easler to test?



Algorithm Analysis and Design

Space Complexity

« Amount of memory the algorithm needs to
run to completion

» Requirements
— Fixed part
— Variable part
« S(P)=c+Sp



Algorithm Analysis and Design

Example Algorithm

Algorithm abc(a,b,c)
{return a+b+b*c+(a-c)/(a+b) +2.0;

}

S(P)=c+ Sp
Sp=0S(P)>3




Algorithm Analysis and Design

Example Algorithm

Algorithm sum(a,n)

{s =0.0;

for i:=1 to n do s:=s+a[i];
returns; }

one word for each integer n,i,s,a][]
s(n) >=n+3




Algorithm Analysis and Design

Example Algorithm

algorithm rsum(a,n)
{ if (n<=0) then return 0.0
else return rsum(a,n-1)+a[n]; }

* Instance characterized by n
» Recursive stack space required at each level
*(n,return address,*a[]) 3 words
 Depth of recursion considering first invocation - (n+1)
e S(N)>=3*(n+1)



Algorithm Analysis and Design

Time Complexity

Amount of computer time needed for the
algorithm to run to completion

T(P) = C(P) + R(P)
C(P) 1s independent of problem instance
and 1s always not required (recompilation)

So usually only R(P) i1s considered



Algorithm Analysis and Design

Apriori Measures

* |nstruction count
— Basic operations
— Basic steps

 Size of Iinput.



Algorithm Analysis and Design

Computing Instruction Count

* [nitialization instructions
 Loops.

— Number of passes of the loops
« Count the basic operations/steps



Algorithm Analysis and Design

Basic Steps - Example

 Search
— Basic operation is compare x and y

« Matrix multiplication
— Basic operation Is multiplication of real numbers



Algorithm Analysis and Design

Step In Algorithm

 Step Is a meaningful segment of program or
computational unit that is independent of the
Instance characteristics

« Example
— 10 or 100 additions can be one step
— 200 multiplications can be another step
— but not n additions



Algorithm Analysis and Design

Example 1

Algorithm sum(a,n)

{s=0.0;

count:=count+1;

fori: =1tondo
{count:=count+1;
s:=s+a[l];
count:=count+1;}

count:=count+1;

count:count+1;
return s;}

count = 2n+3




Algorithm Analysis and Design

Example 2

algorithm rsum(a,n)
1
count:=count+1;
If (n<=0) then
{ count:=count+1;
return 0.0; }
else
{ count:=count+1;
return rsum(a,n-1)+a[n];} }

Count ?




Algorithm Analysis and Design

Computing Step Count from s/e

« Each statement will have an (s/e) steps/execution
depending on the type of statement

 Frequency of each statement is multiplied with the
corresponding s/e of that statement to get the step count

for that statement.
« Statement Step counts are added to give the total count

> 7 =<Cs/e)



Algorithm Analysis and Design

Example 1

Algorithm sum(a,n) s/e freq total

fori:=1tondo : 2 2
-=s+3[il:
{s:=s+a[i]; } - 1

returns;  }



Algorithm Analysis and Design

Example 2

algorithm add(a,b,b,m,n)
{for ;=1 to m do
forj:=1tondo

clr)]:=alrjl+b[1]; }

S/e freq Total

1 m+l m+1
1 m(n+l) m(n+l)
1 mn mn

2mn+2m+1



Algorithm Analysis and Design

Example 3
s/e freq freq total total
algorithm rsum(a,n) n=0 n>0 n=0 n>0
{if (n<=0) then 1 L : ! !
{ return 0.0; } 1 ! y ! y
else
freunrsum@n-D+an]; |{14x 0 1 0 14x
3 S
2 2+X

23
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Computing Complexity

X = trsum(n'l)

—J2 If  n=0
1:rsum(n)_{ 2+ trsum(n-1)  if n>0

Known as a recurrence relation.
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Solving the Recurrence

trsum(n)zz'l' tr:~:um(n'1)
= 2+2+ trsum(n'z)
= 27%2+ 1:rsum(n'z)
= 2*3+ 1:rsum(”'3)
=2xN + 1:rsum(ﬂ'ﬂ)
= 2n+2 n>=0
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Complexity - Representation

« when the step count cannot be uniquely
represented, the step count for the best,
worst and average cases can be separately
listed.
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=+ Worst Case Complexity

* Dn be the set of inputs of size n
e 1& Dn.

* Let T(1) be the number of basic operations
performed by the algorithm on input I.

 \Worst case complexity W can be defined as

—W(mn)=max{ T(1) /1€ Dn}
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Best Case Complexity

* Dn be the set of inputs of size n
e 1& Dn.

* Let T(1) be the number of basic operations
performed by the algorithm on input I.

» Best case complexity B can be defined as

—B(N)=min{ T(1) /1 € Dn}
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g Average Case Complexity

* Dn be the set of inputs of size n

 T(I) be the number of basic operations
performed by the algorithm on input I.

 P(1) be the probability for input | to occur
 Average behavior can be defined as

. A(n) = > P>A)xT()
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Computing
Average Case Complexity

* Two steps
— An understanding of the average nature of the
Input
— Performing a run-time analysis of the algorithm
for different cases

e Difficult to estimate the statistical behavior
of the input
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Expressing Complexity

« Goodness of an algorithm often expressed in
terms of its worst-case running time.

e Two reasons for this:
— the need for a bound on one’s pessimism
— ease of calculation of worst-case
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Example Algorithm

Algorithm insert(A,1,k)

//To Insert k at position 1 in a[1..n]
{Copy a[1...n-1]to a[1 + 1...n]
Copy kto a[i] }
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Worst Case Complexity

Algorithm insert(A,1,k)
//To Insert k at position 1 in a[1..n]

{Copy a[1...n-1]toa[1+ 1...n] n-1 copies
Copy kto a[i] }

1 copy

total number of copy operations is n-1+1=n.

worst case complexity of array insertion is n steps
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Best Case Complexity

Algorithm insert(A,1,k)
//To Insert k at position 1 in a[1..n]

{Copy a[i...n-1]toaJ1+ 1...n] 0 copies
Copy kto a[i] }

1 copy

total number of copy operations is 0+1=1

worst case complexity of array insertion is 1 steps
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Average Case Complexity

Algorithm insert(A,1,k)
//To insert k at position 1 in a[1..n]
{Copy a[1...n-1]to a[i+ 1...n]

Probability for 0 copy — 1/n
Probability for 2 copy — 1/n

Probability for n-1 copy — 1/n

Copy ktoa[i] }

Step count for 1 copy — 1
Step count for 2 copy — 2

Step count for n-1 copy — n-1

Average Complexity = 2. P(1)xT(i)
= (1/n) + (2/n) + ... + (n-1)/n = (n-1)/2.

((n-1)/2) + 1 steps.
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Compare Algorithms

Analysis to get an idea about the fastness
Exact step count Is not required
Example

An algorithm with step count 10 n+10 <
100n+10.

Constant assoclated 1s not much relevant
— 100n but 1t 1s 40 or 80n.

C5N < C,N%+C,N
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Break Even Point

Normally c;n < ¢,n?+c,n

Irrelevant of ¢, ¢, and ¢, there will be a
value of n beyond which c;n will run faster.
Exact value of break even point by running
Sufficient condition for existence

Compare ¢,n*+c,n & 4N

— break even point exist irrelevant of ¢,, ¢, and
Cs
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Algorithm Analysis

Precise mathematical analysis is difficult

Steps to simplify the analysis
— Identify fastest growing term
— Neglect the slow growing terms

— Neglect the constant factor in the fastest growing term
are performed.

Simplification result

— algorithm’s time complexity.

Focuses on the growth rate of the algorithm with
respect to the problem size
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Running Times- Comparison

:Gﬂ

s 2 =

‘so §..

‘T 30

2p

(41

" logn

25



Algorithm Analysis and Design

Asymptotic Notations

» Describing complexity
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Upper Bound

A set of numbers ranging from a to b.
Upper bound for the set

Any number greater than or equal to b
— Could be b or b+1, or b+2, ...

Moves closer as the number Increases
No point of time It Is greater than upper bound.
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O-Notation (Upper Bound)

 f(n) = O(g(n)) If there are positive constants
N, and c such that to the right of n,, the
value of f(n) always lies on or below cg(n)
or f(n)<=c*g(n) for all n> n,,.

S}y = C(g(n))

U
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O-Notation Contd..

o If f(n)=0O(g(n)) —1(n) 1s at least as good as
g(n).
 |Informally O(g(n)) denotes the set of all

functions with a smaller or same order of
growth as g(n).

« n?belongs O(n3).
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O-Notation Examples

n%+10n = O(n?)
5n3+6 =0O(n3)
3logn+8 = O(logn)
n%+10n = O(n3)
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General Rules for analysis

* |n expressing running times, each
elementary step such as an assignment, an

addition or an initialization 1s counted as
one unit of time

 Leading constants and lower order terms are
ignored
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Analysis Rules Loops

 The running time of a for loop, Is at most the
running time of the statements inside the for loop
(including tests) multiplied by the number of
Iterations

» Nested loops should be analyzed inside out.

» The total running time for a statement inside
Innermost loop Is given by Its running time
multiplied by the product of the sizes of all for
loops
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Analysis Rules If

* The running time of an if/else statement is
not more than the running time of the test,
plus the larger of the running times of
statements contained inside then and else
conditions .
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Properties of O notation.

Constant factors can be omitted

— 2n3+6 £ O(n?®) , 2 and 6 are omitted

Growth rate of a sum is given by the rate of its fastest
growing term.

— 5n3+3n+8 £ O(n3)

If f(n)>g(n), g(n)>b(n) then f(n)>b(n)

— O(n?)>0(n), O(nN)>0O(logn)so O(n%)>0O(logn)

Higher powers of n grows faster than lower powers

— O(n%> O(n?)
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Example Problem 1

Read(A)
X:= A*A

Write(X)

any segment for which each statement is
executed only once will have a total number of
statements executed that is independent of n.

Time complexity will be O(1)
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Example Problem?2

fori1:=1tondo

forj:=1tondo

{

L

« complexity n*n =0(n?)
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Example Problem3

fori:=1tondo
forj:=1to1do
{
)

complexity is 1+2+3+4+ -- --+n=n*(n+1)/2=0(n?)
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Example Problem4

1=1;
While (i<=n) do
€ -
;= 27%I;

¥
« Valuesofi=1, 24, ---,2% 2 k1jf 2k <=n <2 k*1
« |Ifnisaproper power of 2

—  Loop executed k+1 times where k= Iog2

*if n is not a proper power of 2

—Loop executed k+1 times where k = LD
«Complexity Is 1+ L1092 so M (log
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Example Problem?2

Algorithm power(b,n)
{p:=1; q:=b;

While (n>0) do

{If nis odd, then p:=p*q;
n:=n/2,

0:=q*0;}

Return (p); }

« Complexity = O(logn)
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Example Problem?2

Algorithm fact(n)
{ if n=1 then return(1);
else return(n*fact(n-1)); }

Time complexity as a recurrence relation
"(n)=a for n=1

(nN)=T(n-1)+c for n>1

— Where a and ¢ are contstants
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Solving Recurrences

« 3 methods
— using Iteration
— using recurrence trees
— using master theorem
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Method of substitution / lteration

* Method expanding recurrence to see a pattern.

» Expand (iterate) the recurrence and express it
as a summation of terms dependent only on n
and the initial conditions
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Iteration Method Contd..

« Key focus on 2 parameters

— the number of times the recurrence needs to be iterated
to reach the boundary condition

— the sum of terms arising from each level of the iteration
process
» Techniques for evaluating summations can then be
used to provide bounds on solution



Algorithm Analysis an

Example Probleml

d Design

« T(n) = T(n-1)+c

T(n-2)+c+c
T(n-(n-1) + (n-1) c
T(1)+(n-1)c

a + c(n-1)

O(n)
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Example Problem?2

+ T(1)
* T(n)

1
T(n-1) +n

[T(n-2) + n-1] +n

T(n-2) +n-1+n

T(n-(n-1) + 2+3+. . .+n-1+n
T(1) + 2+3+. . .+n-1+n
n*(n+1)/2

O(n?)
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Example Problem3

T(1) = 1

T(n) = T(n/2)+1
= T(n/4)+1+1
=T(n/29)+1+1

= T(n/2¥+1+1+1--- k times
=T()+k  where k =log,(n)
= logn+1

= O(logn)
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Example Problem4

« T(1) = 0
« T(n) = T(n/2) +n
= T(n/2%)+n/2+n

= T(n/2X)+2+4+---+n/2+n

= T(1)+ 2D+ (22)+---+ (2)+ (2)
where k =log,(n)

= 0+2*(2k-1)/(2-1)

=2*(n-1)

= 0(n)
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Example Problem5

« Example of algorithm that ------ Into 2 values and
seeks to solve both

. T(n) = 2 T(n/2) +an

22 T(n/4) + an + an
2K T(n/2%) + akn
n+anlogn

O(n log n)
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Example Problem6

« Tn) = 2T(Hn)+logn forn>2

Substitute m = log n
T(2M) = 2T(2 ™2) + m
when n=2 m=1 Termination condn is m=1

Substitute T(2™) with S(m)

= 2*S(Mm/2)+m

= 2°S(m/4) + 2*m

= 2K 5(1) + k*m where k=logm

=m+mlogm

= O(log n * log(log n))
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Example Problem?7

Show that
Tm) =  Tdn2l)+1is0glogn)
T(n) = T(n/2) +1
= T(n/4)+1+1
= T(n/2K) + k where k=log, n
= a+k
= a+ logn

O(log n)
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Example Problem8

+ T() = 3T(n/aly+n
=n+ 3T (n/4)
= n + 3[ (n/4) + 3T ( n/42)]
= n[1 + % +3%/4°] + 33 T(n/43)
=n[1+ % +3%/4°+...... +3k-1/4K1] + 3K T(N/4K) where k = log,n
= n[(1*(3/4)k-1)/3/4-1] + 3a
= ¢ *n(3/4)'°9," +4n + 3log,n * 3
—c*n* nlog43/4 + a*nlog43 +b*n
=c*n Iog44+ Iog43- Iog44 +an Iog43 +b*n = O(n Iog43)+o(n)
= 0O(n)
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Recurrence Tree

A convenient way to visualize what happens
when a recursion Is Iterated

* |t Is good for generating guesses for the
substitution method.

» \We may describe the execution of a
recursive program on a given input by a

rooted tree, which i1s known as recurrence
tree



The steps involved In
building the Recurrence Tree

 Determine height of tree and the size(sum)
of each level as a function of input size

* Add the sizes of each level and
Multiply by the height of the tree
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Recurrence Tree Example

T(n)

T(nIZ/ T(n/2)
N /\

T(n/4)

/\ T(n/d) W T(n/4)
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Recurrence Tree Example

 Tree corresponding to T(n)=2*T(n/2)+n for n=8

8

/T(S) \

T(4) T(4) 4+4

lg 8 /\
T(2) /\ 2424242
N NN N

T(1) T1) T@) T@A) T@A) T@A) TQA)— IHl..Fl
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Recurrence Tree T(n)=2*T(n/2)+n

T(n) \
T(nIZ/ T(n/2) 2%(nf2) = n
PN /\

T(n/4)

/\ W W T(n/4) 4*(n/T) =n

Total: nlgn



Algorithm Analysis and Design

Example Problem

« T(n) = 3T(n/2) +n

=n*[1+3/2+......... + (3/2)K]

T(n n
~ | x =n* :1-(3/2)k+1]/ [(3/2)-1]

y”/Z) T(n/2) ﬂ'/z\) 2 o)

T(n/4 T(n/4\ @pn| =30 %(3/2)109,
\ - - - . =3N *(3) log_n [ 2log n
@(1 @(1 e =3 *(n) 1o, @) = O(nL6)

) )
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Example Problem

=  2T(n/2) + n?
) N2+ N22+n%/4+ oo,
4 \( 2 =N 2[1 + Yo F e (1/29]
N

/2\ = n2[1-(1/2) ¥*1] /(1/2)
= 2n?[1-(1/2 k*1)]
=2 n?[1-1/2n]
= 0(n?)
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Example Problem

Solve T(n) = T(n/4) + T(n/2) + n2
2
n H

( 2 \(ﬂ/\)xw 156]12
2 2 25 5
(ne) ()  (n8) () 256"

ANIVAN AN

o1 o
) ) Total :n2(1+1%+(156)2 +(5)3'---] )
= O(n?)
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Example Problem

Solve T(n) = T(n/3) + T(2n/3) +n

i \ e -
n= (3/2) = woeatEn
S0 k =109 (35 N / \ / \
=4 58 ——» »n
ﬁ 5 £y 3 3
P x *n*
SN SN SN N, eMlog ey

* So recurrence Is atmost c*n*log (3, ,) =0(n*log (3, n)
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Master Theorem

ign

T(1)=d
T(n)=aT(n/b)+cn

Has solution

(n) = 0O(n) If a<b
(n) = O(nlogn) If a=b

(n) = O(nleg,2) if a>b
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Verification Example 1

T(1)=0
T(n)=4T(n/2)+cn for n=2

a=4:b=2;a>b
T(n) = O(n 9. 2) if a>b
T(n) = O(n '9,* ) = O(n?)
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Verification Example 2

T(1)=0
T(n)=3T(n/2)+n for n=2

a=3;b=2;a>b
T(n) = O(n 9. 2) if a>b
T(n) = O(n °%,%) = O(n'*)
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Verification Example 3

ign

T(1) =
T(n) =

0
T(n/2) +n

a=1: b=2:a<b

T(n) =

T(n) =0(n)

O(n) if a<b
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Verification Example 4

« T(1) = 1
« T(N) = 2T(n/2) +n
a=2;b=2;a=b

T(n) = O(nlogn) If a=b
T(n) = O(nlogn)
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Q-Notation (Lower Bound)

 f(n) =Q(g(n)) If there are positive constants
ny, and c such that to the right of n,, the
value of f(n) always lies on or above cg(n).

Jlra) = O(g(r))

\V
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O -Notation

 f(n) =06(g(n)) If there exist positive
constants n,, ¢, and ¢, such that to the right
of n, the value of f(n) always lies between
c,g(n) and c,g(n) inclusive.

¢ g(n)
.pﬂ--—ﬂ"Jr‘,ﬂﬂriltn

C,E(n)

o

Jn) = Cign))
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Other notations

for every positive real constant ¢ there exists a
nonnegative integer N such that for all n>= N

f(n)<=c*g(n)

so 5n is o(n?) 6 log(n) is o(n) and 8n is o(nlogn)
The asymptotic upper bound provided by O may
or may not be asymptotically tight. But o small is

used to denote an upeer bound that is not
asymptotically tight.
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Other notations Contd..

o Similarly w(small omega) notation 1s used
to denote a lower bound that is not
asymptotically tight
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Examples

O(n?) 0 (n?) Q (n?)

2logn+3
on+/
8nlogn




Algorithm Analysis and Design

Examples Contd..

o(n?) = O(n?) - 8 (n?)

2logn+3  6n?
5n+7 4n*+6
8nlogn  3n%+5n
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General Master Theorem

T(1)=0 (1)
T(n)=aT(n/b)+6 (n%)

Has solution

T(n) =0 (n*) If a3
T(n) =0 (n%)log,n If a=f3
(n) =0 (nB) if aB
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Posterior Analysis

« Technigue of coding a given solution and
then measuring its efficiency.

* Provides the actual time taken by the
orogram.
« Draw back

— Depends upon the programming language, the
processor and a lot of other external parameters.
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Comparison

« Gettime() Is a function that returns the
current time in milli seconds.

e The 1ssues

— What value of n to be selected

— Which data set Is to be used
o best,average or worst case

— What is the accuracy required.
— How many values of n are required.
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Comparison Contd..

« |f asymptotic behaviour is already known
then 2 or 3 values can generate the curve.

« Asymptotic behaviour omits initial values
of n and constant terms involved

— For an accurate estimate more values of n
— More samples needed from small vales of n.
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Example Case

e A reasonable set of values for n for the
sequential search algorithm is

10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, ----- .
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Example Algorithm

Algorithm seqgsearch(a,x,n)
{
1:=n; a[0]:=x;

while (a[i]<>x) do 1:=I1-1;
return i;

}

worst case when X Is which Is not present in a.
for definiteness set a[i]=i for 1 to n and x=0
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Profiling Example- Search

For definiteness element searched is taken as 0
Search 1s performed with different array sizes
Search Is repeated many times for more accuracy
array n stores different sizes of a for search
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Algorithm for Profiling

Algorithm timesearch()

{ for j:=1 to 1000 do a[j]:=J;

for j:=11to 10 do /*array n stores different sizes of a for search */
{ nb]:=10*(-1);

n[j+10]:=100%*j; } /* generating different n*/
for j:=1to 20 do

{ h:= gettime();

k:=seqsearch(a,0,n[j]); /* x is taken as 0*/
hl:=gettime();

t:=h1-h;

write(n[j].t); }
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Worst Case analysis

» For smaller values of n, repetition factor
should be large.

» Generating data

— Difficult to find all possible cases and its
maximum

— Usually available maximum is chosen as the
worst case.
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Average Case analysis

More difficult than worst case.
For n inputs there will n! combinations

Determining all cases and their average Is a
very difficult task.

Average of a limited subset is usually
determined.



Algorithm Analysis and Design

Assignment 1 Problem1

Solve  T(n) = 3T(n/al) +n
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Assignment 1 Problem?2

Solve /
a for n<=2

—
T(n) = | 8 T(n/2)+bn? for n>2
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Assignment 1 Problem?2

(
Solve a for n<=2

TN =3 g1(2)+bn? for n>2

\
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Example Problem1

d Design

« T(n) = T(n-1)+c

T(n-2)+c+c
T(n-(n-1) + (n-1) c
T(1)+(n-1)c

a + c(n-1)

O(n)




Algorithm Analysis an

Example Problem1

d Design

« T(n) = T(n-1)+c

T(n-2)+c+c
T(n-(n-1) + (n-1) c
T(1)+(n-1)c

a + c(n-1)

O(n)
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O-Notation (Upper Bound)

 f(n) = O(g(n)) If there are positive constants
N, and c such that to the right of n,, the
value of f(n) always lies on or below cg(n)
or f(n)<=c*g(n) for all n> n,,.

cg(n)
/f(/n}/f(n) f(n)
" f(n) = O(g(n))

Sn) = O(g(n))
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Running Times- Comparison

g
¥ -t
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Strategy

« Given a function on n inputs

— Input splitted into k disjoint subsets
— yielding k subproblems.

« Solve subproblems

 Combine the subsolutions into a
solution

1 —

| !
Problem 4—|_ '{LLL_F:_‘
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Solving Subproblems

 Large Subproblems

— Solved by reapplication of divide and conquer.
— Subproblems same type as the original problem

Implemented using recursive algorit
« Smaller subproblems solved inde

1m

nendently.
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Control Abstraction

Procedure whose flow of control is clear.

Primary operations are specified by other
procedures whose precise meanings are left
undefined
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Control Abstraction for DandC

Algorithm DandC(P)
{ if small(P) then return(P);
else

{divide P into smaller instances P1,P2,- - -, Pk for k>1

apply DandC to each subproblem ;
return combine(DandC(P1),- - - ,DandC(PKk)); } }

32




T(n) = : g(n) when n is small

\

Algorithm Analysis and Design

(n1)+

(n2)+- - -+

Time Complexity

(nk)+t(n)

« when subproblems are similar, complexity
can be represented by a recurrence

f

T(n) =

.

(1)

a* T(n/b) +f(n)

n=1
n>1
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Time Complexity Contd..

* In general

* T(n)=n"'h2[t(1)+u(n)] where u(n)= -, h(bj)
« H(n)=f(n)/ n logp?

* Ifh(n)is O(n") for r>0 then u(n) is O(1)
« If h(n)is B(logn") for r=>0 then u(n) is B(logn™/ (r+1))
« Ifh(n)is Q (n") for r>0 then u(n) is B(h(n))
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Example

T(n) = < 1 forn=1
T(n/2)+c for n>1

h(n)=f(n)/nlog ba=c*(logn)°
So u(n)= B(logn)
T(n)=n"'091 [c+ B (logn)] = O (logn)
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Binary Search

Algorithm binsearch(a,l,j,X)

{if (i=)) then

{ iIf (x=a[i1]) then return i;

else return O; }

else

{mid:= (i+)) div 2;

If (x=a[mid] then return mid,;

else if (x<a[mid]) then

return binsearch(a,i,mid-1,x);

else return binsearch(a,mid+1.1.x); }}

32
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Computing Complexity

Example 1

11

13

Unsuccessfull cases
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Binary Search Complexity

» unsuccessful search 6 (logn)

* Successful
—best -0 (1)
— worst — when leaf node is reached - 8(logn)
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Average Case Complexity

T(n)= 20%142 1%2+4- - - + 2 k1 * K

— [21*1+2 2%94_ _ _ 4+ 9 k1 *( k-l)] _|_[ 2042 14 _ _ 4 2kl ]
— [( k-2)* 2 k-1_|_2] + [2(k+1)_1]

since we have ._, €K i*2! =(k-1)*2k+1)+2

=k*2 *+2

=0 (nlogn)

S0 average case complexity ©(logn)
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Finding Max & Min

Algorithm smaxmin(i,j,n,max,min)
{max:=a[1]; min:=a[1];

For I:= 2to n do

{if (a[1]>max) then max:=a[i];

If (a[i]<min) then min:=a]i];

I3

2(n-1) Comparisons




Algorithm Analysis and Design

Improvement

Algorithm smaxmin(i,j,n,max,min)
{max:=a[1]; min:=a[1];

For I:= 2to n do

{if (a[1]>max) then max:=a[i];

else If (a[i]<min) then min:=a[i];

I3

Worst case- sorted in descending order - 2(n-1) Comparisons
Best case- sorted in ascending order - n-1Comparisons
Average case — half cases a[i] is greater - n/2+(n-1) =3n/2 -1
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Divide and Conguer Approach

 Split input into smaller subsets
» Repeat until input sizeis 1 or 2
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MAXMIN

Algorithm maxmin(i,j,max,min)
{if (i=)) then max:=min:=a[i];
else if (i=J-1) then

If (a[i]<a[j]) then
{max:=a[j];min:=a[i];}

else {max:=a[i];min:=a[j];}}
else

{ i

maxmin( I,mid,max,min);
maxmin(mid+1,j,max1,minl);

If (max<max1) then max:=max1;
If (min>minl) then min:= minl:}}
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Time Complexity

T(n)=T(n/2)+T(n/2)+2 for n>2; =1 for n=2
When n iIs a power of 2, T(n) = 2*T(n/2) +2
= 2 k1 *T(Z) +2* (2 k-1 _1) =2kl32k_2
=3*n/2 -2
It Is the best, average and worst case complexity.

Compared to the 2n-1 comparisons of straight maxmin
this approach is better.

But it requires logn +1 levels of stack.
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Considering Index

Comparisons
* When element and index comparisons of
the same cost

* In languages that does not support switch
statement modification required
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Improvement

Algorithm maxmin(l,j,max,min)

{if (i > j) then

If (a[i]<a[j]) then {max:=a[j];min:=a[i];}
else {max:=a[i];min:=a[j];}}

else

{ U

maxmin( I,mid,max,min);
maxmin(mid+1,j,max1,minl);

If max<max1) then max:=max1,;

If (min>min1) then min:= min1;}}

33
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Complexity

C(n)=2* C(n/2)+3 for n>2
=2 for n=2
 unfolding recurrence
—  C(n) =2 k1*C(2) + 3* ,gk2 2
=2 K+3* 2 K13
=5n/2 -3
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Comparison

 Better than straight maxmin 3*(n-1)
 Practically slower due the overhead of stacking
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Summary

When element comparisons are costlier dandc yields
a better algorithm.

Dandc always willnot give better algorithm.
— Only a design technique that will guide to better designs.

Constants should be specified, during comparisons if
relevant( when both has same order complexity).



Algorithm Analysis and Design

Merge Sort

e Divides list into two sub lists

* Sort sub lists separately
— Recursive invocation

« Merges the sub lists

25

11

18

17

13

45

28

30

A
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Algorithm Mergesort

Algorithm mergesort(low,high)
{ if (low<high) then
{ mid:= L (low+high)/2]
megesort(low,mid);
mergesort(mid+1,high);
mege(low,mid,high);
I3

33
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Algorithm Merge

Algorithm merge(low,mid,high) If (h>mid) then
{h:=low;i:=low; j:=mid+1, for k:=j to high do
while ((h<=mid) and (j<=high)) do | | {b[i]:=a[K];i:=i+1;}
{if (a[h]<=a[j]) then else
{b[i]:=a[h];h:=h+1;} for k:=h to mid do
else {b[i]:=a[k];i :=1+1;}
{b[i]:=a[j];}:=)+1;} for k:=low to high do
I:=i+1;} alk]:=b[k];
¥

34
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Complexity

T(n)=2*T(n/2)+cn for n>1
a for n=1

 Unfolding recurrence
Tn) = 2 T(n/2)+cn
= 22 T(n/4) + 2cn
= 2KT(n/2X) + ken
= 2KT(1) +ken =an +cn log n
= O(nlogn
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Refinements

e 2n locations — Extra n locations
— Associate an extra field with key

e For small values of n recursion inefficient

« Much time Is wasted on stacking.
— Use an efficient nonrecursive sort for small n
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Refinement 1

For n<16 insertion sort Is used.

Algorithm insertion sort(a,n)
{for j:=2tondo

{ item = a[j]; 1 :=J-1;

while ((i>=1) and (item<a]j])) do
{a[i+1]:=a[i]; 1:=1-1; }

al[i+1] :=1tem; } }

34
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Complexity

* |nsertion sort for worst case
— , €M J=n(n+1)/2-1=06(N?).
 |n the best case
— B(N).
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Algorithm?2

algorithm mergesort2(low,high)

{if (high-low)<15then ///when size Is <16
return insertionsortl1(a,link,low,high)

else

{ mid ;= [ //ldivides Into 2
g.=mergesort(low,mid);
r.-=mergesort(mid+1,high);

return mergel(q,r);}}

34
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Refinement 2

 An auxillary array with values 0..n used
 Each index points to the original array

* Interpreted as pointers to elements of a

o000, 00]0]0

25|11 |18 | 17 |13 | 45| 28 | 30




Demonstration

Algorithm Analysis and Design

* Interpreted as pointers to elements of a

link 0 0 0 0 0 0 0 0
value 25111 |18 | 17 | 13 | 45 | 28 | 30
1 2 3 4 5 6 7 8
0 1 0 3 6 0 8 0
25 11 18 17 13 45 || 28 30

[

I




Demonstration Contd..

Algorithm Analysis and Design

0/1/0|3[6|0|8]0
25111118|17|13|45|28 |30
1 2 3 4 5 6 /
0 4 1 7 0 8 6
25| | 11| |18 | |27 /[l 13| [45] || 28 | | 30
| [ |1 ] t | |
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Demonstration Contd..

25

11

18

13

45

28

30

(I

25

18

17

11

45

28

30

Sorting Over
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Algorithm3

Algorithm mergel(q,r)

{1:=q;J:=r;k:=0;

while ((1<>0) and j<>0)) do

{if (a[i] < aJj]) then
{link[K]:=1;k:=1;1:=link][1]; }

else {link[Kk]:=);k:=];):=link[]]; } }

If (I = 0) then link[Kk]:=J; else link[K]:=T;
return link[0];}
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ALGORITHM ANALYSIS AND
DESIGN

GREEDY STRATEGY



Introduction

Solution to problems with n inputs

Required to obtain a subset that satisfies some
constraints

Optimization meassure

Best choice at any moment



Terminology

 Objective function

— Function representing the optimization measure

e Feasible solution

— Any subset that satisfies the given constraints

« Optimal solution

— Feasible solution that either maximizes or minimizes a
given objective function.



Working

Works In stages — One Input at a time
At each stage, decision about a particular input

Inputs one at a time based on selection
procedure

Discarded i1f Inclusion results in an infeasible
solution



Selection Procedure

« Based on the optimization measure

 Different Optimization measures possible for a
problem.



Example

» Taking change a particular amount given a
collection of coins

 Minimise the number of coins used

« Example Case
— Amount to be raised
— 68 paise
— Coins available
-1,1,1,2,2,2,55,5,10,10,10,20,20,20,50,50,50



Greedy Solution

 Selection procedure
— value of the coin
— highest one first

 Feasibility of partial solution
— Sum of coins <=68



Demonstration

Coinvalues 1,1,1,2,2,2,5,5,5,10,10,10,20,20,20,50,50,50

000 AOOBHOOO
OO O OO

35



Control Abstraction

Algorithm Greedy(a,n)
{solution :=@
for1:=1tondo

{x:=select(a)
If(feasible(solution,x) then
solution:=union(solution,x);}
return solution;}

35



Different Paradigms

 Subset Paradigm
 Ordering Paradigm



Subset Paradigm

» Determine a subset of the given n inputs

352



Ordering Paradigm

» Determine an ordering of all the inputs



Knapsack Problem |

There are n objects to be placed in a knapsack of capacity M. Each
object i contributes a profit Pi and weight Wi. The total profit 2> £
should be maximized subject to the constraint that total weight

> WX, <M where M is the capacity of the Knapsack . Pi And Wi are

I<i<m _ .

positive numbers where 0<X, <1 and 1<i<nm

TLGERITE
'l'l "‘\

2

36



Knapsack Problem

general knapsack problem with n=3 m=20
Pi={25,24,15} Wi={18,15,10} fori=1,2,3

| 1 2 3
Pi 25 24 15
Wi 18 15 10
PiXi 25  2/15*24=3.2 0 tot=28.2
PiXi 0 10/15*24=16 15 tot=31
P 2 24 15
Wi 18 15 10
=1.11 =1.6 =15
PiXi 0 24 5/10%15=7.5 tot=31.5

Solution Xi = {0,1,0.5}



Algorithm

Algorithm greedy knapsack(M,n,P,W)
{fori=1tondo
X(1) :=0; Re:=M;
Full :=false; 1:=1,
While(i<=n and not(full))
{ if(Wi<=Re) then
{Xi=1; Re:=Re-Wi; i++, }
else (full=true)}
If(i<=n) then Xi=Re/Wi;} }

36



Spanning Tree

 Let G=(V,E) be an undirected connected
graph.

» Asub-graph T=(V,E’) of G Is a spanning tree of
Gif Tisatree




Conditions - Spanning Tree

For T a subgraph of G to be a spanning tree.
—T should contain all vertices V In G
—T should be a tree- there are no cycles




Minimum Cost Spanning Tree

A Spanning tree which has minimum cost
— Sum of edge costs




PRIMS Algorithm

e Constraint
— Each vertex once
— Tree

 Selection Principle
— \ertex not present in Tree

— Vertex which can be connected with lowest cost to
the spanning tree is next vertex selected



Informal Algorithm

ST:=0

Y:={u,v}, where <u,v> Is the edge with lowest cost
ST:={(u,v)}

While the instance Is not solved do

{Select a vertex In V-Y that Is nearestto Y

Add the corresponding edge to ST

If Y=V then mark instance ‘solved’ // included all
} the vertices

37




Near Array

 For every un included a vertex j which is not in the
spanning Tree, near| j] represents a vertex which is
nearest to vertex j in the spanning tree.

« Edge(j,near|j]) represents the shortest path of
connecting j to the current spanning tree

3 [ [20
A A VY







Demonstration

1

2 1 28
3 0 | o

'4 Q0 0.0)
o 25
6 6 | 25
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NEar Cost
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Demonstration
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Solution
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* 2:15AM Algorithm Analysis and Design

A Short List Of Categories

« Algorithm types we will consider include:
— Simple recursive algorithms
— Divide and conquer algorithms
— Greedy algorithms
— Dynamic programming algorithms
mmpBackiracking algorithms
— Branch and bound algorithms
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Introduction

 Backtracking is used to solve problems in which a
sequence of objects Is chosen from a specified set
so that the sequence satisfy some criterion.
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Backtracking- When

« There isa sequence of decisions to be made, from a
number of available choices, where

— suffient information 1s not available on the best
choice

— Each decision leads to a new set of choices

— Some seqguence of choices (possibly more than
one) may be a solution to your problem
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Backtracking- How

» Backtracking is a systematic method of trying
out various sequences of decisions, until you
find one that “works”
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Solving A Maze

Given a maze, find a path from start to finish

At each intersection, you have to decide between three
or fewer choices:

— (o straight
— Go left
— Go right

Sufficient information not available on the best choice
Each choice leads to another set of choices

One or more sequences of choices may (or may not)
lead to a solution
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Coloring A Map

 You wish to color a map with
not more than four colors

— red, yellow, green, blue

 Adjacent countries must be In
different colors

* You don’t have enough information to choose
colors

« Each choice leads to another set of choices

* One or more sequences of choices may (or may
not) lead to a solution
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Solving A Puzzle

All holes except the middle filled with white pec oo

We can jump over one peg with another ®oo
900000000

Jumped pegs are removed Seccsenne

The aim is to remove all but the last peg oo

Sufficient information not available on correct |

Each choice leads to another set of choices

( R N )
One or more seqguences of choices may (or may not) lead
to a solution
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Backtracking- Demonstration

dead end
e

Q dead end dead end
/ —

9
start—> ? — ? 4//v | ‘\;

\ A//v dead end
\\\\\‘

?

success!
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Representation

The decision sequences can /‘: .
be represented by a tree / e
. @
Three kinds of nodes: el
® ,Q<:Q
/ ®
@ The (one) root node '\‘0

O Internal nodes
® Leaf nodes

Backtracking can be thought of as searching a tree for
a particular “goal” leaf node
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Types Of Nodes

e Live node

— A node which has been generated, and all of its
children have not yet been generated

 Dead node

— A generated node which Is not to be expanded
further or all of whose children have been
generated.

* E-node
— The live node whose children are being generated.
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Types Of Nodes - Demonstration

dead end
‘?"
+~»@ deadend
/ /4//;//‘ dead end
start —O&
\ @  dead end
Child Node /" dead end
Goal Node @ Live Node success!

E-node @ Dead Node
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Constraints

 EXxplicit constraints

— Rules that restrict each element to be chosen from the
given set

— Only tuples that satisfy explicit constraints will appear
In the tree

 Implicit constraints

— Rules that specify how each elements in a tuple should
be related

— Tuples in the tree that satisfy the implicit constraints
represent a goal state
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Constraints-Example

« Let x; represents i th decision

 EXxplicit constraints
— Restrict the possible values of xi
— Eg:-x;=0o0r1; x; & {li..u}

 Implicit constraints
— Specify how the different x1’s are related
— EQ-Xi <Xy ZX

A.
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Solution Space

Set of all tuples that satisfy the explicit
constraints

Represented using a permutation tree- state
space tree

The edges labeled by possible values of xi

— Edges from level 1 to level 2 nodes specify
the values for x1

Defined by all paths from the root to a leaf node
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* 2:15AM

State Space Tree
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Solution Space Contd..

Each level in the tree defines a problem state

Paths from root to other nodes are known as
state spaces

Solution states- problem states s for which the
path from the root to s defines a tuple in the
solution space

Answer states - solution states s for which the
path from the root defines a solution from the
set of solutions
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State Space Tree -Organization

« A problem can be specified in 2 ways
 Fixed tuple formulation

— The state space organization is called static trees
 Variable tuple formulation

— State space tree of this type is known as dynamic
tree
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Fixed Tuple Formulation

« Edges from level 1 nodes to level i+1 nodes are labeled
with the value of xi, which is either 0 or 1

« All paths from root to leaf node define the solution space
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Variable Tuple Size Formulation

« Size of solution tuples is not fixed.

« Each tuple will contain a subset of the x1’s 1n the
order in which they are included instead of
specifying xi=0 or 1.

gzj f 3 x.=3‘€> @
Xz--%//' x\;:j\ﬁ:d x2=3 x2=4 l X2=4
- : = -'L
& D > 9 @@ an
X3=3 .1’3‘:4 x3=4 13=4
az a3 a3 a

X4=4

as
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Comparison

Fixed tuple formulation Variable tuple formulation
Solution size is fixed » Solution size Is variable

*Only the leaf nodes can be  <Any intermediate node can
solution states be the solution state

!
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Solving The Problem

Fix a state space tree organization
« Systematically generate the problem states starting
from the root

« \erify each problem state whether it is a solution
state or an answer state
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State Space Tree Generation

 Backtracking uses depth first generation of the state
space tree with some bounding function

« Bounding functions are used to kill live nodes without
generating all their children

 Killing should be done after ensuring that all the
required answer states are generated
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The Backtracking Algorithm

Backtracking algorithm is quite simple
it requires “exploring” each node, as follows:

e To “explore” node N:
1. If N is a goal node, return “success”
2. If N is a leaf node, return “failure”

3. For each unbounded child C of N,
3.1. Explore C

3.1.1. If Cis successful, return “success”
4, Return “failure”




* 2:15AM Algorithm Analysis and Design

Backtracking -Impementation

« (enerating Function
— Generate next child, given the parent

« Bounding function

— Check whether the particular path can lead to an answer state
and returns false If it cannot.
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Control Abstraction

Algorithm backtrack(n)
{k=1;

while (k#0) do

{

if (there remains an untried x[k] € T(x[1],x[2].,. . . ,x[k-1]) and
B.(X[1],x[2], . . .,x[K]) Is true) then

{

if x[1]. ...x[k] 1s a path to an answer node) then write x[1:k]);
kK:=k+1;}
else k:=k-1;}}
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Recursive Formulation

Algorithm Backtrack(k)

//This schema describes the backtracking process using
/[recursion. On entering, the first k-1 values
//x[1],x[2],....,x[k-1] of the solution vector
//X[1 : n] have been assigned. x[] and n are global.

{ for (each x[k] € T(x[1]....... x[k-1]) do
{if(B, x[1].x[2]....... x[k] # 0 ) then
{f(x[1],x[2],.....x[k] 1s a path to an answer node)
then write (X[1 : K]);
If(k < n) then Backtrack(k + 1);}}}
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Efficiency Of Backtracking

Time taken to generate next X,
Number of x, satisfying the explicit constraints

Time required for computing the bounding function

— A bounding function is said to be good if it reduces the number
of nodes drastically.

— A good bounding function may take much computing time
Number of x, satisfying b,

— Trade off between the number of nodes removed and computing
time requirement.

— The ultimate aim is to reduce the total time requirement
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Analysis

 For some problem instances, if the order of
generation of children Is changed, the number of
nodes to be generated before finding the solution
can be drastically reduced.

 Depending on the problem instance, the
backtracking algorithm will generate O(n) nodes
to n! nodes.

» The importance of backtracking lies In its ability
to solve some iInstances with large n In a very
small amount of time.
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Estimate Of Nodes Generated

The 1dea Is to generate a random path In the state

space tree
Monte carlo method
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Random Path Generation

 Let X be a node at level 1 In the random path
« Generate children of x
« Apply bounding functions to each child.

e Let mi be number of unbounded children of x.
— unbounded children at level 1 1sml1, level 2 m2 ...

 Find an estimate of the number of unbounded
nodes at level 1+1
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Estimate of Unbounded Nodes

e Estimate of the number of unbounded nodes

at level 1+1

— estimate of unbounded nodes at level 1 = ml

— estimate of unbounded nodes at level 2 =
ml*m?2

— Estimate of unbounded nodes at level 1+1
ml*m2*- - -*mi
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Monte Carlo Method

« Random path
— starts from the root of the tree and

— 1S continued till
 a leaf node is reached
e or a node with all bounded children is reached

e Each time a child node of the current node Is
selected as the random node at the next level.

» The total nodes considering all levels is equal to
1+m;+m;m,+- - -+m;*m,*--m_
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Algorithm

Algorithm Estimate

{ /I ris the children at a particular level; m —total nodes;k -level

K:=1;m:=1;r:=1;

repeat

{Tk={x[Kk] / x[k] € T(x[1]....... x[k-1] and Bk(x[1],.. ,x[K]) is true
¢

If (size(Tk)=0 ) then return m;

r:=r* size(tk); m:=m-+r,

X[K]:= choose(Tk); k:=k+1;

}until (false); }
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4 Queens Problem

» There are 4 queens that are

to be placed on a “%I
4x4 chessboard

* Queens should be placed on the
chessboard such that

no two queens can attack each other.

« Two queens attack each other when they are in the
— Same row
— Same column or
— Same diagonal.
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Attacking Positions

Two queens attack each other when they are in the
— Same row

— Same column or
— Same diagonal.

Rule 1 Rule2  Rule3a. Rule 3.b.
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Problem Specification

» The queens are numbered from 1 to 4.

« Rows and columns In the chess board are also
numbered from 1 to 4.

« Each row can contain exactly one gqueen.

« SO It Is assumed that queen i Is placed in row lI.
1 2 3 4

Queen 1 is placed in row 1

Queen 2 is placed in row 2

Queen 3 is placed in row 3

~ WO DN

Queen 4 is placed in row 4
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Solution Space

The solution space consists of 44 4 tuples.

The implicit constraint

— no two queens are in the same column
« No two xi’s can be the same

— no two queens can be on the same diagonal.

Column constraint restricts the solution space to
consist of combinations of 4 tuples.

So the solution space gets reduced to 4! Tuples.

Second constraint specify that no two xi’s should
be on the same diagonal.
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* 2:15AM

Solution Space

« Number of tuples generated after considering

column constraint - 4! Tuples
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Problem State-representation

Queen 1 Is represented by the number |

* represents an unsuccessful attempt
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4 Queens Problem- Tree Formation

\1
1
1 212 2 2
9 2
1
1 2
2 2 3
. 3 3
1 1 !
2 2 2
3 3 3
4
4
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4 Queens - Formation Of Solution
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N Queens Problem

* Queens problem can be generalized to n queens
problem.
— N queens
— N X N chess board
— Solution a sequence of n decisions
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Bounding Function

 The bounding function should return a value true
If the current queen can be placed at a particular
position.

» it gueen can be placed at position k if none of the
previous queens are in the same column or in the
same diagonal.

« Same column verification by checking whether
x1=k for all previous gqueens.
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Same Diagonal Verification

QUEENS at (1,)) and (k,I)
same forward diagonal If 1-j=k-1 or J-I=1-k (1)
same backward diagonal if i+j=k+| or J-l = k-1 (2)
combining 1&2 we can write
J-1T1= 1=K
so two gueens lies on the same diagonal if and only if
j-1= 1=K
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Formation Of Bounding Function

 same column verification by checking whether
x1=k for all previous queens.

50 two queens lies on the same diagonal if and
only if
J-1T1= 1=K

Each queen J,x[j] with queen(i,k)
If ((x[j]=1) or (abs(x[j]-1)= abs(j-K) ))
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Bounding Function -Place

Each queen j,x[j] with queen 1,k

If ((X[j]=1) or (abs(x[j]-1)= abs(j-k) ))

Algorithm place(k,I)
{
for j:=1to k-1 do

It ((X[j]=1) or (abs(x[j]-1)=abs(j-k) ))
then return false;

return true;

}
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Algorithm

Algorithm nqueens(k,n)
{fori:=1tondo

{If place(k,1) then

{x[K]:=r;

if (k=n) then write(x[1..n]);
else nqueens(k+1,n);

33,
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Complexity

* The number of 8 tuples generated
considering placement of queens in distinct
rows and columns is 8!,

e Estimated number of nodes In the state
space tree

1+8+8*T+8*T*6+ - - =

7 J
14+ > > (8—i7i) = 69,281

=0 i=0




Algorithm Analysis and Design

Complexity Contd..

* |n practice the number of nodes generated
will be very very less than this.

* From Experiments it is seen that it will be
approximately 3% on the average.
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Sum Of Subsets

 Glven n positive numbers/weights

e FInd the combinations of numbers whose
sums are m.
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Sum Of Subsets - Example

n=6 fwl,w2,........... wo}
= {5,10,12,13,15,18}
m = 30

Solution {5,10,15} {5,12,13} 12,18}
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Sum Of Subsets- Formulation

Numbers are arranged and considered in the
non decreasing order.

It can be formulated in 2 ways.
In fixed tuple each xi=0 or 1

In variable tuple xi=1..n depending on the
next number selected.

In fixed tuple formulation the state space tree
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State Space Tree
Fixed Tuple Formulation




* 2:15AM Algorithm Analysis and Design

State Space Tree
Variable Tuple Formulation
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Formation Of Bounding Function

Example: {wl,w2,........... wb} =
{5,10,12,13,15,18} & m= 30

s : the sum of weights that have
been included up to a node at
level 1.

r . sum of remaining weights
witl ,wit2......... wn

The node is nonpromising

If s+w,;>m

If str<m
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Bounding Function

A node can lead to an answer state iIf

Kk
. - r .
zl Wi Xi + z;‘:k—H Wi >= m
I =
k

- WiXi+ W,  >=m
l +

1=

« Bk istrue iff h L )
S mrix > Wi

« Computation of the sums and

each time when it is required, can be avoided by
maintaining two sums s for current aggregate and r for
remaining aggregate.
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Algorithm

Algorithm sumofsub(s,k,r)

{//generate left child with xk=1 fixed tuple
formulation

X[k]:=1;

If (s+tw[k]=m) then write (X[1:K]);

else if (s+w[k]+w[k+1]<=m)

then sumofsub(s+w[k],k+1,r-w[k]);

If ((s+r-w[k]>=m) and (s+w[k+1]<=m)) then
{x[Kk]:=0;

sumofsub(s,k+1,r-w[k]);}}
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Terminology Il

« Each non-leaf node in a tree Is a parent of one or
more other nodes (its children)

 Each node In the tree, other than the root, has

exactly one parent parent

O Usually, however,
we draw our trees
’O downward, with

parent the root at the top
O O OO

children children
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AT TACKING POSITIONS

Two queens attack each other when they are in the
— Same row
— Same column or
— Same diagonal.

x ” % k[
” ” x "
" »
" "
Rule 1 Rule 2 Rule 3.a. Rule 3.b.




