
PREPARED BY,

Mrs.C.RADHA,

ASSOCIATE PROFESSOR/MCA,

MEC.

MCA – SEMESTER – I REGULATION 2019

20MC102 / COMPUTER ORGANIZATION AND

ARCHITECTURE

Objectives:

 To impart the knowledge in the field of digital electronics

 To impart knowledge about the various components of a computer

and its internals.

 To design and realize the functionality of the computer hardware with

basic gates and other components using combinational and sequential

logic.

 To understand the importance of the hardware-software interface

UNIT-I DIGITAL FUNDAMENTALS

Number Systems and Conversions – Boolean Algebra and Simplification

– Minimization of Boolean Functions – Karnaugh Map, Logic Gates –

NAND – NOR Implementation.

UNIT-II COMBINATIONAL AND SEQUENTIAL CIRCUITS

Design of Combinational Circuits – Adder - Subtractor – Encoder –

Decoder – MUX - DEMUX – Comparators, Flip Flops – Triggering

– Master – Slave Flip Flop – State Diagram and Minimization –

Counters – Registers.

UNIT-III BASIC STRUCTURE OF COMPUTERS

Functional units – Basic operational concepts – Bus structures –

Performance and Metrics – Instruction and Instruction sequencing –

Addressing modes – ALU Design – Fixed point and Floating point

operations.

UNIT-IV PROCESSOR DESIGN

Processor basics – CPU Organization – Data path design – Control

design – Basic concepts – Hardwired control – Micro programmed

control – Pipeline control – Hazards – Super scalar operations.

UNIT-V MEMORY, I/O SYSTEM AND PARALLEL

PROCESSING

Memory technology – Memory systems – Virtual memory –

Caches – Design methods – Associative memories – Input/output

system – Programmed I/O – DMA and Interrupts – I/O Devices

and Interfaces - Multiprocessor Organization – Symmetric

multiprocessors – Cache Coherence.

Outcomes:

 Able to design digital circuits by simplifying the Boolean functions

 Able to Understand the organization and working principle of

computer hardware components

 Able to understand mapping between virtual and physical memory

 Acquire knowledge about multiprocessor organization and parallel

processing

 Able to trace the execution sequence of an instruction through the

processor

TEXT BOOKS :

1. Morris Mano, “Digital Design”, Prentice Hall of India, Fourth Edition

2010.

2. Carl Hamacher, Zvonko Vranesic, SafwatZaky and

Naraig Manjikian, “Computer organization and Embedded Systems”,

Sixth Edition, Tata McGraw Hill, 2012.

3. William Stallings, “Computer Organization & Architecture–

Designing for Performance” 9th Edition 2012.

REFERENCES:

1. Charles H. Roth, Jr., “Fundamentals of Logic

Design” , Jaico Publishing House, Mumbai, Fourth Edition, 2002.

2. David A. Patterson and John L. Hennessy, “Computer

Organization and Design: The Hardware/Software Interface”, Fourth

Edition, Morgan Kaufmann /Elsevier,2009.

3. John P. Hayes, “Computer Architecture and Organization”, Third

Edition, Tata McGraw Hill, 2000

What is COA(Computer Organization and

Architecture)?

• It is the study of internal working, structuring and

implementation of a computer system.

• Architecture in computer system refers to the externally

visual attributes of the system.

• Organization of computer system results in realization of

architectural specifications of a computer system.

Overview

 Computer organization

 physical aspects of computer systems.

 E.g., circuit design, control signals, memory types.

 How does a computer work?

 Computer architecture

 Logical aspects of system as seen by the programmer.

 E.g., instruction sets, instruction formats, data types,

addressing modes.

 How do I design a computer?

Why study computer organization and architecture?

• Design better programs, including system software such

as compilers, operating systems, and device drivers.

• Optimize program behavior.

• Evaluate (benchmark) computer system performance.

• Understand time, space, and price tradeoffs.

Computer Architecture VS Computer Organization

Computer Architecture Computer Organization

Concerned with the way hardware components are

connected together to form a computer system.

Concerned with the structure and behaviour of a

computer system as seen by the user.

Acts as the interface between hardware and

software.

Deals with the components of a connection in a

system.

Helps us to understand the functionalities of a

system.

Tells us how exactly all the units in the system are

arranged and interconnected.

A programmer can view architecture in terms of

instructions, addressing modes and registers.

Whereas Organization expresses the realization of

architecture.

While designing a computer system architecture is

considered first.

An organization is done on the basis of

architecture.

Deals with high-level design issues. Deals with low-level design issues.

Architecture involves Logic (Instruction sets,

Addressing modes, Data types, Cache

optimization)

Organization involves Physical Components

(Circuit design, Adders, Signals, Peripherals)

NUMBER SYSTEM

 It is defined as a system of writing to express numbers.

 It is the mathematical notation for representing numbers of

a given set by using digits or other symbols in a consistent

manner.

 The value of any digit in a number can be determined by:

 The digit

 Its position in the number

 The base of the number system

Characteristics of Numbering Systems

1) The digits are consecutive.

2) The number of digits is equal to the size of the base.

3) Zero is always the first digit.

4) The base number is never a digit.

5) When 1 is added to the largest digit, a sum of zero and a
carry of one results.

6) Numeric values are determined by the implicit positional
values of the digits.

Base-N Number System

 Base N

 N Digits: 0, 1, 2, 3, 4, 5, …, N-1

 Example: 1045N

• Positional Number System

1 4 3 2 1 0

1 4 3 2 1 0

n

n

N N N N N N

d d d d d d

• Digit do is the least significant digit (LSD).

• Digit dn-1 is the most significant digit (MSD).

• The most common number systems used in digital

technology. They are,

Decimal number system

Binary number system

Octal number system

Hexadecimal number system

Decimal Number System

 Composed of ten symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) known
as Base 10 system. Example: 104510

 Positional Value System in which value of digit depends on
its position.

 Example: 8247.324 is represented as

(8x103)+(2x102)+(4x101)+(7x100)+(3x10-1)+(2x10-2)+(4x10-3)

Binary Number System

 Composed of two symbols (0,1) also called as “Base 2
system”

 Used to model the series of electrical signals computers use
to represent information

 0 represents no voltage or an off state and 1 represents the
presence of voltage or an on state. Binary numbers o and 1
known as bits.

 Example: 1011.101 is represented as
(1x23)+(0x22)+(1x21)+(1x20)+(1x2-1)+(0x2-2)+(1x2-3)

Octal Number System

 Composed of eight symbols (0,1,2,3,4,5,6,7) also
known as the Base 8 System

 Groups of three (binary) digits can be used to
represent each octal digit

 Compared with binary system this is compact and
occupies less space for data.

 Example: 5432 is represented as

5x83)+(4x82)+(3x81)+(2x80)

Hexa Decimal Number System

 Base 16 system

 Uses 16 symbols (digits 0-9 & letters A,B,C,D,E,F)

 Groups of four bits represent each base 16 digit

Example: 306B.1C is represented as

(3x163)+(0x162)+(6x161)+(Bx160)+(1x16-1)+(Cx16-2)

FOUR BASIC NUMBER SYSTEM DIGITS

TABLE
Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

CONVERSIONS

 Conversion of a number system are, decimal to any
base , any base to decimal, binary to any base, any base
to binary, octal to hexa, hexa to octal.

Decimal to any base conversion

a) Decimal to binary conversion

i) Converting a decimal number by 2 until quotient of
o is obtained.

ii) Binary number is obtained by taking reminder after
each division in reverse order. (double-dabble
method)

 Example: 89.625 Fraction Part

Integer Part

 Binary number is obtained by multiplying number
continuously by 2, recording a carry each time is
known as fraction conversion.

b) Decimal to Octal conversion

 Procedure is same as that of double dabble method

Example: (1032.6875)10

(1032.6875)10→(?)8

For Real Part-

 We convert the real part from base 10 to base 8 using
division method same as above.

 So, (1032)10 = (2010)8

For Fractional Part-

 We convert the fractional part from base 10 to base 8
using multiplication method.

Step-01:

 Multiply 0.6875 with 8. Result = 5.5.

 Write 5 in real part and 0.5 in fractional part.

Step-02:

 Multiply 0.5 with 8. Result = 4.0.

 Write 4 in real part and 0.0 in fractional part.

 Since fractional part becomes 0, so we stop.

 From here, (0.6875)10 = (0.54)8

 Combining the result of real and fractional parts, we
have,

(1032.6875)10 = (2010.54)8

Real part
Fractional Part

0.6875 x 8 5 0.5

0.5 x 8 4 0.0

c) Decimal to Hexa conversion

Same as double-dabble method.

Example: (2020)10

 Using division method, we have-

Any base to Decimal conversion

a) Binary to Decimal

Example: (101111.1101)2 → (?)10

 Converted into decimal by multiplying 1 or 0 by their
weight adding the two integer conversion.

Integer Part : 101111

= (1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20)

= (32 + 0 + 8 + 4 + 2 + 1)

= (47)

Fraction Part

1101

=(1 x 2-1 + 1 x 2-2+ 0 x 2-3 +1 x 2-4)
=(0.5000+0.2500+0.0000+0.0625)

= 0.8125

Result= (101111.1101)2 → (47.8125)10

b) Octal to Decimal

Example:

(36.4)8

Integer Conversion : 36

=3x81+6x80

=24+6

=30

Fraction Conversion : 0.4

=4x8-1

=4x0.125

=0.500

Result : (36.4)8 = (30.5)10

c) Hexa to Decimal

Example:

(A3B)16

=Ax162+3x161+Bx160

=2560+048+011

=2619

Result : (A3B)16 = (2619)10

Binary to any Base Conversion

a) Binary to Octal

Reverse of Octal to Binary

Procedure: Form 3-bit combination moving from right
most position to left position

Example: (10011010101)2

010 011 010 101

2 3 2 5

(10011010101)2 = (2325)8

b) Binary to Hexa

Procedure: Write binary number starting from right

most position, the group binary number into groups of four

bits.

Example:

(10100110)2

1010 0110

A 6

(10100110)2 = (A6)16

Any Base to Binary Conversion

a) Octal to Binary

Reverse method of binary to octal.

Example:

(532)8

5 3 2

101 011 010

(532)8 = (101011010)2

b) Hexa to Binary

Reverse method of binary to hexa conversion.

Example:

(2D6)16

2 D 6

0010 1101 0110

(2D6)= (001011010110)2

Hexadecimal Conversion

a) Hexa to Octal

Convert the given hexa decimal number to binary
equivalent and then from binary to octal.
Example:

(5C2)16

(Hexa to Binary) 5 C 2

0101 1100 0010

(Binary to Octal) 010 111 000 010

2 7 0 2

(5C2)= (2702)8

b) Octal to Hexa

 Convert octal to binary number and binary into
equivalent hexadecimal number.

Example:

(321)8

Octal to Binary 3 2 1

011 010 001

Binary to Hexa 1101 0001

D 1

(321)8 = (D1)16

BOOLEAN ALGEBRA

 The boolean algebra is used to simplify the design the
logic circuits and involves lengthy mathematical
operations.

 Binary logic deals with two values 0 and 1.(0-False, 1-
True)

 Karnaugh Map- Simplification of boolean equation
upto four equations. (Difficult if more than five input
variables).

 Quine Mcclusky method- Tabular method of
minimization(reduces the requirement of hardware)

Boolean Logic Operations

 Boolean Function- Algebraic expression formed using
constant, binary variables and basic logic operation
symbols.

 Logical Operation

 AND (Multiplication)

 OR (Addition)

 NOT (Logical Complementation)

Logical AND

Y=A.B

Truth Table

Input Output

A B Y=A.B

0 0 0

0 1 0

1 0 0

1 1 1

Logical OR

Y=A+B

Truth Table

Input Output

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

Logical NOT (Inverter)

Convert logical 1 to 0 and vice versa.

Truth Table

Input Output

A Y

0 1

1 0

Basic Laws of Boolean Algebra
Logical operations expressed and minimized

mathematically using the rules, laws and theorems of
boolean algebra.
Boolean Addition:

A+0=A

A+1=1

A+A=A

A + Ā =1

Ā= Ā
1+ Ā=1

Boolean Multiplication:

A.1=A

A.0=0

A.A=A

A.Ā =0

((A)’)’=A

Properties of Boolean Algebra

 Commutative Properties

 Associative Properties

 Idempotent Properties

 Identity Properties

 Null Properties

 Distributive Properties

 Negation Properties

 Double Negation Properties

 Absorption Properties

 Demorgan’s Theorem

1) Commutative Properties

 Boolean Addition

A+B=B+A

Proof

A B A+B B+A

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 1

 Boolean Multiplication

A.B=B.A

Proof

A B A.B B.A

0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

2) Associative Properties

A+(B+C)=(A+B)+C

Proof

A B C A+B B+C (A+B)+C A+(B+C)

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

 Similarly, the associative law of multiplication is given
by,

A.(B.C)=(A.B).C

3) Distributive Properties

i) Boolean Addition

It is distributive over boolean multiplication.

A+BC=(A+B).(A+C)

 Proof
LHS:
A+BC= A.1+BC [Since A.1=A]

=A.(1+B)+BC [Since 1+B=1]
=A.1+AB+BC
=A(1+C)+AB+BC [Since 1+C=1]
=A.1+AC+AB+BC
=A+AC+AB+BC
=A.A+AC+AB+BC [Since A.A=A]
=A(A+C)+B(A+C)
=(A+C)(A+B)
=RHS

ii) Boolean Multiplication

Distributive over boolean addition

A.(B+C)=A.B+A.C

Proof

RHS

A.B+A.C =A.B.1+A.C.1

=A.B(1+C)+A.C(1+B) [Since 1+C=1,1+B=1]

=A.B+ABC+A.C+A.B.C

=A.B+A.C+ABC [Since A+A=A]

=AB(1+C)+AC [Since 1+C=1]

=AB+AC

=A.(B+C)

=LHS

4) Idempotent Properties

i) A + A = A

Proof

If A=0 then 0+0=0=A

If A=1 then 1+1=1=A

ii) A.A = A

Proof

If A=0 then 0.0=0=A

If A=1 then 1.1=1=A

5) Identity Properties

i) A.1=A

Proof

If A=0 then 0.1=0=A

If A=1 then 1.1=1=A

ii) A+1 = 1

Proof

If A=0 then 0+1=1

If A=1 then 1+1=1

6) Null Properties

i) A.0=0

Proof

If A=0 then 0.0=0

If A=1 then 1.0=0

ii) A+0 = A

Proof

If A=0 then 0+0=0=A

If A=1 then 0+1=1=A

7) Negative Properties

i) A.A’ = 0

Proof

If A=0 then 0.1=0

If A=1 then 1.0=0

ii) A + A’ = 1

Proof

If A=0 then 0+1=1

If A=1 then 1+0=1

8) Double Negation Properties

i) ((A)’)’=A

Proof

If A=0 then (A)’= 1, ((A)’)’= 0=A

If A=1 then (A)’=0, ((A)’)’=1=A

9) Absorption Properties
i) A + AB = A

Proof

LHS: A(1+B)=A.1 [Since 1+B=1]

=A [Since 1.A=A]

=RHS

ii) A(A+B)=A

Proof

LHS: A(A+B)=A(A+B)

=A.A+AB [Since A.A=A]

=A+AB

=A(1+B) [Since 1+B=1]

=A

=RHS

iii) A+A’B=A+B

Proof

LHS: A+A’B=(A+A’)(A+B) [Since A+BC=(A+B)(A+C)]

=1(A+B) [Since A+A’=1]

=A+B

=RHS

10) Demorgan’s Theorem

 First Theorem

States that complement of a product is equal to be
sum of the complements.

(A.B)’ = A’ + B’

• Second Theorem

States that complement of a sum equal to product of
the complements.

(A+B)’ = A’.B’

 DeMorgan’s First Theorem using Truth Table

(A.B)’ = A’ + B’

 DeMorgan’s Second Theorem using Truth Table

(A+B)’ = A’.B’

