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Signals and systems overview

What is Signal?

It is representation of physical quantity (Sound, temperature, intensity, Pressure, etc..,)
which varies with respect to time or space or independent or dependent variable.

or

of Amplitude,It is single valued func tion whic h c a rries information by means
Frequency and Phase.

Example: voice signal, video signal, signals on telephone wires etc.
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Signalsand systems overview
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SignalwithdifferentPhases,Amplitudesand Frequencies



Classification of Signals

Typesof Signalswith respect tono. of variables or dimensions

▶ One Dimensional or 1-D Signal: If the signal is function of only one variable or If

Signal value varies with respect to only one variable then it is cal led “One
Dimensional or 1-D Signal”

Examples: Audio Signal, Biomedical Signals, temperature Signal etc.., in which
signal is function “time”
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Classification of Signals

▶ Two Dimensional or 2-D Signal: If the signal is function of two variable or If Signal

value varies with respect to two variable then it is cal led “Two Dimensional or 2-D
Signal”

Examples: Image Signal in which intensity is function of two spatial co-ordinates “X”
& “Y” i,.e I (X,Y)

▶ Three Dimensional or 3-D Signal: If the signal is function of 

three variable or If Signal value varies with respect to three 

variab le then it is c a lled “Three Dimensional or 3-D Signal”  

Examples: Video Signal in which intensity is function of two 

spatial co-ordinates “X” & “Y” and also time “t” i.e v(x,y,t)
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Classification of Signals

Typesof Signal with respect tonature of the signal

Continuous Time Signal (CTS) or Analog Signal :

If the signal values continuously varies with respect to time then it is called “Continuous Time
Signal (CTS) or Analog Signal “. It contains infinite set of values and it is represented as
shown below.

Digital Signal: If the signal contains only two values then it is called “Digital Signal”.

Discrete Time Signal (DTS):

If signal contain discrete set of values with respect to time then it is called “Discrete Time
Signal (DTS)”. It contains finite set of values. Sampling process converts Continuous time
signal in to Discrete time signal.
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Representation of Discrete Time Signal (DTS)
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Basic Types of Signals

▶ Unit Step Function

Unit step function is denoted by u(t). It is defined as u(t) = 1 when t ≥0
and 0 when t < 0

▶ It is used as best test signal.

▶ Area under unit step function is unity.
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Basic Types of Signals
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Unit Impulse Function
Impulse function is denoted by δ(t). and it is defined as δ(t) ={ 0;

∞;

𝑡 ≠0
𝑡 =0 }



Basic Types of Signals

▶ Ramp Signal

Ramp signal is denoted by r(t), and it is defined as r(t) =

Area under unit ramp is unity.
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Basic Types of Signals

▶ Parabolic Signal

Parabolic signal can be defined as x(t) =
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Basic Types of Signals

▶ Signum Function

Signum function is denoted as sgn(t). It is defined as sgn(t) =
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Basic Types of Signals

▶ Exponential Signal

Exponential signal is in the form of x(t) = eαt

The shape of exponential can be defined by α.

Case i: if α =0 → x(t) = e0=1

Case ii: if α< 0 i.e. -ve then x(t) = e−αt,

The shape is c a lled de caying exponentia l.

Case iii: if α>0 i.e. +ve then x(t) = eαt,

The shape is c a lled raising exponentia l.
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Basic Types of Signals
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Rectangular Signal

Let it be denoted a s x(t) a nd it is defined a s



Basic Types of Signals
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Triangular Signal

Let it be denoted as x(t),

Sinusoidal Signal

Sinusoidal signal is in the form of x(t) =A cos(w0±ϕ) or A sin(w0±ϕ)

Where T0 =2π/w0



Classification of Signals

Signals are classified into the following categories:

▶ Continuous Time and Discrete Time Signals

▶ Deterministic and Non-deterministic Signals

▶ Even and Odd Signals

▶ Periodic and Aperiodic Signals

▶ Energy and Power Signals

▶ Real and Imaginary Signals
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Classification of Signals
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▶ Continuous Time and Discrete Time Signals

A signal is said to be continuous when it is defined for all instants of time.

A signal is said to be discrete when it is defined at only discrete instants of time.



Classification of Signals
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Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any
instant of time. Or, signals which can be defined exactly by a mathematical formula are
known as deterministic signals.

A signa l is said to be non-deterministic if

there is uncertainty with respect to its value

at some instant of time. Non-deterministic signals 

are random in nature hence they are cal led 

random signals. Random signa ls c annot be  

described by a mathematical equation.

They are modelled in probabilistic terms.



Classification of Signals

Even and Odd signals

A signal is said to be even when it satisfies the condition x(t) =x(-t)

Example 1: t2, t4… c ost e tc .

Let x(t) = t2

x(-t) = (-t)2 = t2 =x(t)

∴ t2 is even func tion

Example 2: As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even function.

A signal is said to be odd when it satisfies the condition x(t) = -x(-t)
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Classification of Signals
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Periodic and Aperiodic Signals

A signal is said to be periodic if it satisfies the condition x(t) =x(t +T) or x(n) =x(n + N).

Where, T= fundamenta l time period,

1/T = f = fundamenta l frequenc y.

The above signal will repeat for every time interval T0 hence it is periodic with period T0.



Classification of Signals
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Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

A signal is said to be power signal when it has finite power.

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be  
neither energy nor power signal.

Power of energy signal = 0 and Energy of power signal =∞



Classification of Signals
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Real and Imaginary Signals

A signal is said to be real when it satisfies the condition x(t) =x*(t)

A signal is said to be odd when it satisfies the condition x(t) = -x*(t)

Example:

If x(t)= 3 then x*(t)=3*=3, here x(t) is a real signa l.

If x(t)= 3j then x*(t)=3j* = -3j = -x(t), henc e x(t) is a odd signa l.

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, 
real part should be zero.



Basic Operationson Signals
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There are two variable parameters in general:

▶ Amplitude

▶ Time

The following operation can be performed with amplitude:

Amplitude Scaling

C x(t) is a amplitude scaled version of x(t) whose amplitude is scaled by a
factor C.



Basic Operationson Signals
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Addition

Addition of two signals is nothing but addition of their corresponding amplitudes. This
can be best explained by using the following example:

As seen from the previous diagram,

-10 < t <-3 am plitude of z(t) =x1(t) +x2(t) = 0 +2 =2

-3 < t <3 amplitude of z(t) =x1(t) +x2(t) = 1 +2 =3

3 < t <10 am plitude of z(t) =x1(t) +x2(t) = 0 +2 =2



Basic Operationson Signals
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Subtraction

subtraction of two signals is nothing but subtraction of their corresponding amplitudes.

This can be best explained by the following example:

As seen from the diagram above,

-10 < t <-3 amplitude of z (t) =x1(t) - x2(t) =0 - 2 =-2

-3 < t < 3 amplitude of z (t) =x1(t) - x2(t) = 1 - 2 =-1 

3 < t <10 amplitude of z (t) =x1(t) - x2(t) = 0 - 2 =-2



Basic Operationson Signals
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two signals is nothing but multiplication of their corresponding

Multiplication

Multip lic a tion of
amplitudes.

This c a n be best expla ined by the following example:

As seen from the diagram above,

-10 < t <-3 am plitude of z (t) =x1(t) ×x2(t) =0 ×2 =0

-3 < t <3 amplitude of z (t) =x1(t) - x2(t) = 1 ×2 =2

3 < t <10 am plitude of z (t) = x1(t) - x2(t) =0 ×2 =0



Basic Operationson Signals
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The following operations can be performed with time:

Time Shifting

x(t ±t0) is time shifted version of the signal x(t).

x (t + t0)→negative shift  

x (t - t0)→positive shift



Basic Operationson Signals

Time Scaling

x(At) is time scaled version of the signal x(t). where A is always positive.

| A | >1 → C ompression of the signa l

| A | <1 → Expansion of the signal

Note: u(at) = u(t) time scaling is not applicable for unit step function.
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Basic Operationson Signals

Time Reversal

x(-t) is the time reversal of the signa l x(t).
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Basic Operationson Signals

Convolution: Convolution between two continuous time signals can be written as

The following operations are required to compute convolution

1. Time reversal

2. Time Shifting ( Delay & Advance)

3. Signal Multiplication

4. Integration

Note: If two signals are finite duration then Graphical Method is used and Else Function
Method is employed to compute Convolution
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What is System?

System is a device or combination of devices, which can operate on signals and
produces corresponding response. Input to a system is cal led as excitation and
output from it is c a lled as response.

For one or more inputs, the system can have one or more outputs.

Example: Communication System

35
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Classification of Systems

Systems are classified into the following categories:

▶ linea r a nd Non-linea r Systems

▶ Time Variant and Time Invariant Systems

▶ linear Time variant and linear Time invariant systems

▶ Static a nd Dynamic Systems

▶ Causal and Non-causal Systems

▶ Invertib le a nd Non-Invertib le Systems

▶ Stab le a nd Unstab le Systems
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Classification of Systems
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Linear and Non-linear Systems

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two
systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the
superposition and homogenate principles,

T[a1 x1(t) +a2 x2(t)] =a1 T[x1(t)] +a2 T[x2(t)]

∴ T[a1 x1(t) +a2 x2(t)] = a1 y1(t) + a2 y2(t)

From the above expression, is clear that response of overall system is equal to response of individual
system.

y(t) =x2(t)Example:

Solution:

y1 (t) =T[x1(t)] = x12(t)

y2 (t) = T[x2(t)] = x22(t)

T[a 1 x1(t) + a 2 x2(t)] = [ a 1 x1(t) + a 2 x2(t)]2

Which is not equal to a1 y1(t) + a2 y2(t). Hence the system is said to be non linear.



Classification of Systems
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Time Variant and Time Invariant Systems

A system is said to be time variant if its input and output characteristics vary with time.

Otherwise, the system is considered as time invariant. The condition for time invariant system is: 

y (n , t) = y(n-t)

The condition for time va ria nt system is:

y (n , t) ≠y(n-t)

Where y (n , t) = T[x(n-t)] = input cha nge

y (n-t) = output cha nge

Example:

y(n) =x(-n)

y(n, t) =T[x(n-t)] =x(-n-t)

y(n-t) =x(-(n-t)) = x(-n + t)

∴ y(n, t) ≠y(n-t). Hence, the system is time variant.



Classification of Systems
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Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems

If a system is both liner and time variant, then it is cal led liner time variant (LTV) system.

If a system is both liner and time Invariant then that system is cal led liner time invariant (LTI)
system.

Static and Dynamic Systems

Static system is memory-less whereas dynamic system is a memory system.

Example 1: y(t) =2 x(t)

For present value t=0, the system output is y(0) =2x(0). Here, the output is only dependent
upon present input. Hence the system is memory less or static.

Example 2: y(t) =2 x(t) + 3 x(t-3)

For present value t=0, the system output is y(0) =2x(0) +3x(-3).

Here x(-3) is past value for the present input for which the system requires memory to get
this output. Hence, the system is a dynamic system.



Classification of Systems
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Causal and Non-Causal Systems

A system is said to be causal if its output depends upon present and past inputs, and does 
not depend upon future input.

For non causal system, the output depends upon future inputs also.

Example 1: y(n) =2 x(t) +3 x(t-3)

For present value t=1, the system output is y(1) =2x(1) +3x(-2).

Here, the system output only depends upon present and past inputs. Hence, the system is
causal.

Example 2: y(n) =2 x(t) + 3 x(t-3) +6x(t + 3)

For present value t=1, the system output is y(1) =2x(1) +3x(-2) +6x(4) Here, the system
output depends upon future input. Hence the system is non-causal system.



Classification of Systems

Invertible and Non-Invertible systems

A system is said to invertible if the input of the system appears at the output.

Y(S) =X(S) H1(S) H2(S)

=X(S) H1(S) · 1(H1(S))

Since H2(S) =1/( H1(S) )

∴ Y(S) =X(S)

→ y(t) =x(t)

Henc e, the system is invertib le.

If y(t) ≠x(t), then the system is said to be non-invertible.
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Classification of Systems

Stable and Unstable Systems

The system is said to be stable only when the output is bounded for bounded input. For a  
bounded input, if the output is unbounded in the system then it is said to be unstable.

Note: For a bounded signal, am p litude is finite.

Example 1: y (t) =x2(t)

Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) = bounded 
output.

Henc e, the system is sta b le.

Example 2: y (t) =∫x(t)dt

Let the input is u (t) (unit step bounded input) then the output y(t) = ∫u(t)dt =ramp signal 
(unbounded because amplitude of ramp is not finite it goes to infinite when t →
infinite).

Henc e, the system is unsta b le.
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
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Convolution and correlation of signals
59



Analogy between vectors and signals
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There is a perfect analogy between vectors and signals.

Vector

A vector contains magnitude and direction. The name of the vector is denoted by
bold face type and their magnitude is denoted by light face type.

Example: V is a vector with magnitude V. Consider two vectors V1 and V2 as shown in
the following diagram. Let the component of V1 along with V2 is given by C12V2.
The component of a vector V1 along with the vector V2 can obtained by taking a
perpendicular from the end of V1 to the vector V2 as shown in diagram:

The vector V1 can be expressed in terms of vector V2 

V1=C 12V2 +Ve

▶

▶ Where Ve is the error vector.



Analogy between vectors and signals
61

But this is not the only way of expressing vector V1 in terms of V2. The alternate
possibilities are:

V1=C1V2+Ve1

V2=C2V2+Ve2

The error signal is minimum for large component value. If C12=0, then two signals are said to be
orthogonal.

Dot Product of Two Vectors V1 . V2 =V1.V2 co sθ
SUB:ES UNIT:2

θ = Angle between V1 a nd V2 V1. V2 =V2.V1



Analogy between vectors and signals
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The error signal is minimum for large component value. If C12=0, then two signals are said to
be orthogonal.

Dot Product of Two Vectors 

V1 . V2 =V1.V2 c osθ

θ =Angle between V1 and V2 V1. V2 =V2.V1

From the diagram, components of V1 a long V2 = C 12 V2



Analogy between vectors and signals
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Signal

The concept of orthogonality can be applied to signals. Let us consider two signals f1(t) and f2(t).

Similar to vectors, you can approximate f1(t) in terms of f2(t) as

f1(t) =C 12 f2(t) + fe(t) for (t1 < t < t2)

⇒ fe(t) = f1(t) – C 12 f2(t)

One possible way of minimizing the error is integrating over the interval t1 to t2.

However, this step also does not reduce the error to appreciable extent. This can be corrected by taking 
the square of error function.



Analogy between vectors and signals
64

Where ε is the mean square value of error signal. The value of C12 which minimizes the 
error, you need to calculate dε/dC12=0

Derivative of the terms which do not have C12 term are zero.

Put C 12 =0 to get condition for orthogonality.



Analogy between vectors and signals
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Orthogonal Vector Space

A complete set of orthogonal vectors is referred to as orthogonal vector space. Consider
a three dimensional vector space as shown below:

Consider a vector A at a point (X1, Y1, Z1). Consider three unit vectors (VX, VY, VZ) in the
direction of X, Y, Z axis respectively. Since these unit vectors are mutually orthogonal, it
satisfies that



SUB:ES UNIT:2

Analogy between vectors and signals
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The vector A can be represented in terms of its components and unit vectors as

Any vectors in this three dimensional space can be represented in terms of these three unit
vectors only.

If you consider n dimensional space, then any vector A in that space can be represented 
as

As the magnitude of unit vectors is unity for any vector A

The c omponent of A a long x a xis = A.VX

The c omponent of A along Y axis =A.VY

The c omponent of A a long Z a xis = A.VZ

Similarly, for n dimensional space, the component of A along some G axis

=A.VG (3)



Analogy between vectors and signals
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Substitute equation 2 in equation 3.



Analogy between vectors and signals
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Orthogonal Signal Space

Let us consider a set of n mutually orthogonal functions x1(t), x2(t)... xn(t) over the interval
t1 to t2. As these functions are orthogonal to each other, any two signals xj(t), xk(t) have
to satisfy the orthogonality condition. i.e.

Let a function f(t), it can be approximated with this orthogonal signal space by adding the
components along mutually orthogonal signals i.e.



Analogy between vectors and signals
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The component which minimizes the mean square error can be found by

All terms that do not contain Ck is zero. i.e. in summation, r=k term remains and all other terms are zero.



Analogy between vectors and signals
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Mean Square Error

The average of square of error function fe(t) is cal led as mean square error. It is denoted
by ε (epsilon).



Fourier Series
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To represent any periodic signal x(t), Fourier developed an expression cal led Fourier
series. This is in terms of an infinite sum of sines and cosines or exponentials. Fourier
series uses orthoganality condition.

Fourier Series Representation of Continuous Time Periodic Signals

A signal is said to be periodic if it satisfies the condition x (t) = x (t +T) or x (n) = x (n +N).
Where T=fundamenta l time period,

ω0=fundamenta l frequenc y = 2π/T

There are two basic periodic signals: x(t)=cosω0t(sinusoidal) & x(t)=ejω0t(complex
exponential)

These two signals are periodic with period T=2π/ω0

A set of harmonically related complex exponentials can be represented as {ϕk(t)}

All these signals are periodic with period T



Fourier Series
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According to orthogonal signal space approximation of a function x (t) with n, mutually
orthogonal functions is given by

Where ak =Fourier coefficient =coefficient of approximation.

This signal x(t) is also periodic with period T.

Equation 2 represents Fourier series representation of periodic signal x(t).

The term k = 0 is constant.

▶ The term k=±1 having fundamental frequency ω0 , is cal led as 1st harmonics.

▶ The term k=±2 having fundamental frequency 2ω0 , is cal led as 2nd harmonics, and so

on...

▶ The term k=±nhaving fundamental frequency nω0, is cal led as nth harmonics.



Fourier Series
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Deriving Fourier Coefficient

We know that

Multiply e−jnω0t on both sides. Then

Consider integral on both sides.



Fourier Series
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by Euler's formula,

Hence in equation 2, the integral is zero for all values of k except at k = n. Put k = n in
equation 2.

Replace n by k



Fourier Series Properties
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Properties of Fourier series:

Linearity Property

Time Shifting Property



Fourier Series Properties
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Frequency Shifting Property

Time Reversal Property

Time Scaling Property



Fourier Series Properties
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Differentiation and Integration Properties

Multiplication and Convolution Properties



Fourier Series Properties
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Conjugate and Conjugate Symmetry Properties



Trigonometric Fourier Series
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Trigonometric Fourier Series (TFS)

sinnω0t and sinmω0t are orthogonal over the interval (t0,t0+2πω0). So sinω0t,sin2ω0t forms 
an orthogonal set. This set is not complete without {cosnω0t } because this cosine set is 
also orthogonal to sine set. So to complete this set we must include both cosine and sine 
terms. Now the complete orthogonal set contains all cosine and sine terms i.e.
{sinnω0t,cosnω0t }where n=0, 1, 2...

The above equation represents trigonometric Fourier series representation of x(t).



Trigonometric Fourier Series
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Exponential Fourier Series
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Exponential Fourier Series (EFS):

Consider a set of complex exponential functions

which is orthogonal over the interval (t0,t0+T). Where T=2π/ω0 . This is a complete set so it is
possible to represent any function f(t) as shown below

Equation 1 represents exponential Fourier series representation of a signal f(t) over the
interval (t0, t0+T).



Exponential Fourier Series
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Exponential Fourier Series
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Relation Between Trigonometric and Exponential Fourier Series:

Consider a periodic signal x(t), the TFS & EFS representations are given below respectively



ContinuousTime Fourier Transform

INTRODUCTION:

The main drawback of Fourier series is, it is only applicable to periodic signals. There are
some naturally produced signals such as nonperiodic or aperiodic, which we cannot
represent using Fourier series. To overcome this shortcoming, Fourier developed a
mathematical model to transform signals between time (or spatial) domain to
frequency domain & vice versa, which is cal led 'Fourier transform'.

Fourier transform has many applications in physics and engineering such as analysis of LTI
systems, RADAR, astronomy, signal processing etc.

Deriving Fourier transform from Fourier series:

Consider a periodic signal f(t) with period T. The complex Fourier series representation of
f(t) is given a s
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ContinuousTime Fourier Transform
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ContinuousTime Fourier Transform
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In the limit as T→∞,Δf approaches differential df, kΔf becomes a continuous variable f,
and summation becomes integration

Fourier transform of a signal

Inverse Fourier Transform is



Fourier Transform of Basic functions
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FTof GATEFunction

FTof Impulse Function:



Fourier Transform of Basic functions
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FTof Unit Step Function:

FTof Exponentials:

FTof Signum Function :



ContinuousTime Fourier Transform
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Conditions for Existence of Fourier Transform:

Any function f(t) can be represented by using Fourier transform only when the function
satisfies Dirichlet’s conditions. i.e.

▶The function f(t) has finite number of maxima and minima.

▶There must be finite number of discontinuities in the signal f(t),in the

given interval of time.

▶ It must be absolutely integrable in the given interval of time i.e.



Fourier Transform Properties
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Linearity Property:

Then linearity property states that

Time Shifting Property:

Then Time shifting property states that



Fourier Transform Properties
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Frequency Shifting Property:

Then frequency shifting property states that

Time Reversal Property:

Then Time reversal property states that



Fourier Transform Properties
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Time Scaling Property:

Then Time scaling property states that

Differentiation and Integration Properties:

Then Differentiation property states that

and integration property states that



Fourier Transform Properties
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Multiplication and Convolution Properties:

Then multiplication property states that

and convolution property states that



Sampling theorem of low pass signals

Statement of Sampling Theorem:

A band limited signal can be reconstructed exactly if it is sampled at a rate atleast twice
the maximum frequency component in it.“

The following figure shows a signal g(t) that is band limited.

Figure1: Spectrum of band limited signal g(t)

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from 
its samples it has to be sampled at a rate fs ≥2fm.

The minimum required sampling rate fs =2fm is cal led “Nyquist rate”.
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Figure 2: (a) Original signal g(t) (b) Spectrum G(ω)



Sampling theorem of low pass signals
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Let g s(t) be the sampled signal. Its Fourier Transform Gs(ω) is given by



Sampling theorem of low pass signals
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Sampling theorem of low pass signals
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Aliasing:

Aliasing is a phenomenon where the high frequency components of the sampled signal 
interfere with each other because of inadequate sampling ωs <ωm

Aliasing leads to distortion in recovered signal. This is the reason why sampling frequency
should be atleast twice the bandwidth of the signal.



Sampling theorem of low pass signals

Oversampling:

In practice signal are oversampled, where fs is significantly higher than Nyquist rate to
avoid aliasing.
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Discrete Time Fourier Transform
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Discrete Time Fourier Transforms (DTFT)

Here we take the exponential signals to be where ‘w’is a real number. The
representation is motivated by the Harmonic analysis, but instead of following the
historical development of the representation we give directly the
defining equation.

Let {x[n]} be discrete time signal such that , that is sequence is absolutely
summable.

The sequence {x[n]} can be represented by a Fourier integral of the form,

Where,



Discrete Time Fourier Transform
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Equation (1) and (2) give the Fourier representation of the signal.

Equation (1) is referred as synthesis equation or the inverse discrete time Fourier transform 
(IDTFT) and equation (2)is Fourier transform in the analysis equation.

Fourier transform of a signal in general is a complex valued function, we can write,

is cal led

where is magnitude and is the pha se.

We also use the term Fourier spectrum or simply, the spectrum to refer to. Thus
the magnitude spectrum and is cal led the phase spectrum.

Interchanging the order of integration,



Discrete Time Fourier Transform
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Example: Let

Fourier transform of this sequence will exist if it is absolutely summable. We have



Discrete Time Fourier Transform
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Fourier transform of Periodic Signals

For a periodic discrete-time signal,

its Fourier transform of this signal is periodic in w with period 2∏ , and is given

Now consider a periodic sequence x[n] with period N and with the Fourier series
representation

The Fourier transform is,
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Properties of the Discrete Time Fourier Transform:

Let {x[n]}and {y[n]} be two signal, then their DTFT is denoted by and. The notation

is used to say that left hand side is the signal x[n] whose DTFT is given a t right hand side.

1.Periodicity of the DTFT:
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2. Linearity of the DTFT:

3.Time Shifting and Frequency Shifting:



Discrete Time Fourier Transform

4.Conjugation and Conjugate Symmetry:

From this, it follows that Re{X(e jw )} is an even function of w and Im{X (e jw )} is an odd 
function of w . Similarly, the magnitude of X(e jw ) is an even function and the phase 
angle is an odd function. Furthermore,
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5.Differencing and Accumulation

The impulse train on the right-hand side reflects the d c or average value that can result
from summation.
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6.Time Reversal

7.Time Expansion

For continuous-time signal, we have

For discrete-time signals, however, a should be an integer. Let us define a signal with k a
positive integer,
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For k >1, the signal is spread out and slowed down in time, while its Fourier transform is
compressed.
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8.Differentiation in Frequency

The right-hand side of the above equation is the Fourier transform of - jnx[n] . Therefore, 
multip lying both sides by j , we see tha t

9.Parseval’s Relation
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SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

Linear Systems:

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two
systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the
superposition and homogenate principles,

T[a1 x1(t) +a2 x2(t)] =a1 T[x1(t)] +a2 T[x2(t)]

∴ T[a1 x1(t) +a2 x2(t)] = a1 y1(t) + a2 y2(t)

From the above expression, is clear that response of overall system is equal to response of individual
system.

Example: y(t) =2x(t)

Solution:

y1 (t) =T[x1(t)] = 2x1(t)

y2 (t) =T[x2(t)] = 2x2(t)

T[a1 x1(t) +a2 x2(t)] =2[ a1 x1(t) +a2 x2(t)]

Which is equal to a1y1(t) +a2 y2(t). Hence the system is said to be liSnUeB:aESr.
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Impulse Response:

The impulse response of a system is its response to the input δ(t) when the system is initially
at rest. The impulse response is usually denoted h(t). In other words, if the input to an
initially at rest system is δ(t) then the output is named h(t).

Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems

▶ If a system is both liner and time variant, then it is cal led liner time variant (LTV) system.

▶ If a system is both liner and time Invariant then that system is cal led liner time invariant

(LTI) system.
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Response of a continuous-time LTIsystem and the convolution integral

Impulse Response:

The impulse response h(t) of a continuous-time LTIsystem (represented by T) is defined to 
be the response of the system when the input is δ(t), that is,

h(t)= T{δ(t)} (1)

Response to an Arbitrary Input:

▶ The input x( t) c a n be expressed as

(2)

Since the system is linear, the response y( t of the system to an arbitrary input x( t ) can be
expressed as

------(3)
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Since the system is time-invariant, we have

(4)

Substituting Eq. (4) into Eq. (3), we obtain

(5)

Equation (5) indicates that a continuous-time LTIsystem is completely characterized by its 
impulse response h( t).

Convolution Integral:

Equation (5) defines the convolution of two continuous-time signals x ( t ) and h(t) denoted

By -----(6)
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Equa tion (6) is c ommonly c a lled the c onvolution integral.

Thus, we have the fundamental result that the output of any continuous-time LTI system is 
the c onvolution of the input x ( t ) with the impulse response h(t) of the system.

The following figure illustrates the definition of the impulse response h(t) a nd the  
relationship of Eq. (6).

Fig. : Continuous-time LTl system.
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Properties of the Convolution Integral:

The convolution integral has the following properties.
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Step Response:

The step response s(t) of a continuous-time LTI system (represented by T) is defined to
be the response of the system when the input is u(t); that is,

S(t)=T{u(t)}

In many applications, the step response s(t) is also a useful characterization of the 
system.

The step response s(t) can be easily determined by,

Thus, the step response s(t) can be obtained by integrating the impulse response h(t).
Differentiating the above equation with respect to t, we get

Thus, the impulse response h(t) can be determined by differentiating the step response
s(t).
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Distortion less transmission through a system:

Transmission is said to be distortion-less if the input and output have identical wave
shapes. i.e., in distortion-less transmission, the input x(t) and output y(t) satisfy the
condition:

y (t) =Kx(t - td)

Where td =dela y time and

k =constant.

Take Fourier transform on both sides

FT[ y (t)] =FT[Kx(t - td)]

=K FT[x(t - td)]
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A physical transmission system may have amplitude and phase responses as shown below:

124

According to time shifting property,

Thus, distortion less transmission of a signal x(t) through a system with impulse response h(t) is achieved when

|H(ω)|=K and (a mplitude response)
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FILTERING

One of the most basic operations in any signal processing system is filtering.

Filtering is the process by which the relative amplitudes of the frequency components in
a signal are changed or perhaps some frequency components are suppressed.

For continuous-time LTI systems, the spectrum of the output is that of the input multiplied
by the frequency response of the system.

Therefore, an LTI system acts as a filter on the input signal. Here the word "filter" is used to
denote a system that exhibits some sort of frequency-selective behavior.

Ideal Frequency-Selective Filters:

An idea l frequenc y-selec tive filter is one tha t exac tly pa sses signa ls at one set of
frequencies and completely rejects the rest.

The band of frequencies passed by the filter is referred to as the pass band, and the
band of frequencies rejected by the filter is cal led the stop band.
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The most co mmon types of idea l frequenc y-selective filters a re the
following.

Ideal Low-PassFilter:

An ideal low-pass filter (LPF) is specified by

The frequency wc is cal led the cutoff frequency.

IdealHigh-PassFilter:

An ideal high-pass filter (HPF) is specified by
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Ideal BandpassFilter:

An ideal bandpass filter (BPF) is specified by

Ideal Bandstop Filter:

An ideal bandstop filter (BSF) is specified by
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The following figures shows the magnitude responses of ideal filters

Fig: Magnitude responses of ideal filters (a) Ideal Low-Pass Filter (b)Ideal High-Pass Filter

©Idea l Bandpa ss Filter (d) Idea l Bandstop Filter
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LAPLACETRANSFORM

THE LAPLACE TRANSFORM

We know that for a continuous-time LTI system with impulse response h(t), the output y(t)of
the system to the complex exponential input of the form est is,

Definition:

The function H(s) is referred to as the Laplace transform of h(t). For a general continuous-
time signal x(t), the Laplace transform X(s) is defined as,

The variable s is generally complex-valued and is expressed as,
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Relation between Laplace and Fourier transforms:

Laplace transform of x(t)
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Inverse Laplace Transform:

We know that
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Conditions for Existence of Laplace Transform:

Dirichlet's conditions are used to define the existence of Laplace transform. i.e.

▶The function f has finite number of maxima and minima.

▶There must be finite number of discontinuities in the signal f ,in the given interval of

time.

▶ It must be absolutely integrable in the given interval of time. i.e.

Initial and Final Value Theorems

If the Laplace transform of an unknown function x(t) is known, then it is possible to determine
the initial and the final values of that unknown signal i.e. x(t) at t=0+ and t=∞.

Initial Value Theorem

Statement: If x(t) and its 1st derivative is Laplace transformable, then the initial value of x(t) is 
given by
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Final Value Theorem

Statement: If x(t) and its 1st derivative is Laplace transformable, then the final value of x(t) is 
given by,

Properties of Laplace transform:

The properties of Laplace transform are:

Linearity Property
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Time Shifting Property

Frequency Shifting Property

Time Reversal Property
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Time Scaling Property

Differentiation and Integration Properties
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Multiplication and Convolution Properties
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Region of convergence

The range variation of σ for which the Laplace transform converges is cal led region of 
convergence.

Properties of ROC of Laplace Transform

▶ROC contains strip lines parallel to jω axis in s-plane.

▶ If x(t) is absolutely integral and it is of finite duration, then ROC is entire s-plane.

▶ If x(t) is a right sided sequence then ROC : Re{s} >σo.

▶ If x(t) is a left sided sequence then ROC : Re{s} <σo.

▶ If x(t) is a two sided sequence then ROC is the combination of two regions.
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Example 1: Find the Laplace transform and ROC of x(t)=e− at u(t) x(t)=e−atu(t)
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Example 2: Find the Laplace transform and ROC of x(t)=e at u(−t)x(t)=eatu(−t)
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LAPLACETRANSFORM

Example 3: Find the Laplace transform and ROC of x(t)=e−at u(t)+e at u(−t)
x(t)=e−atu(t)+eatu(−t)

Referring to the above diagram, combination region lies from –a to a. Hence, ROC:
−a<Res<a
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Causality and Stability

For a system to be causal, all poles of its transfer function must be right half of s-plane.

A system is said to be stable when all poles of its transfer function lay on the left half of s-
plane.
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A system is said to be unstable when at least one pole of its transfer function is shifted to the
right half of s-plane.

A system is said to be marginally stable when at least one pole of its transfer function lies on 
the jω axis of s-plane
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LAPLACE TRANSFORMS OF SOME COMMON SIGNALS

Unit Impulse Function δ( t ):

Unit Step Function u(t):
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Some Laplace Transforms Pairs:

151



SUB:ES UNIT:2

Z-TRANSFORM

Z-Transform

Analysis of continuous time LTI systems can be done using z-transforms. It is a  powerful 
mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z-transform of a discrete time signal x(n) is given as

The unilateral (one sided) z-transform of a discrete time signal x(n) is given as

Z-transform may exist for some signals for which Discrete Time Fourier Transform (DTFT) does
not exist.
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Concept of Z-Transform and Inverse Z-Transform

Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as

The above equation represents the relation between Fourier transform and Z-transform
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Inverse Z-transform:

154



Z-TRANSFORM

Z-Transform Properties:

Z-Transform has following properties:

Linearity Property:
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Time Shifting Property:

Multiplication by Exponential Sequence Property:
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Time Reversal Property:

Differentiation in Z-Domain OR Multiplication by n Property:
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Convolution Property:

Correlation Property:
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Initial Value and Final Value Theorems

Initial value and final value theorems of z-transform are defined for causal signal.

Initial Value Theorem

For a causal signal x(n), the initial value theorem states that

This is used to find the initial value of the signal without taking inverse z-transform

Final Value Theorem

For a causal signal x(n), the final value theorem states that

This is used to find the final value of the signal without taking inverse z-transform
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Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is cal led region of convergence
of z- transform.

Properties of ROC of Z-Transforms

▶ ROC of z-transform is indicated with circle in z-plane.

▶ ROC does not contain any poles.

▶ If x(n) is a finite duration causal sequence or right sided sequence, then the ROC is entire z-plane except at z

= 0.

▶ If x(n) is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z-plane except 

at z = ∞.

▶ If x(n) is a infinite duration causal sequence, ROC is exterior of the circle with radius a.

i.e . | z | >a .

▶ If x(n) is a infinite duration anti-causal sequence, ROC is interior of the circle with radius

a . i.e . | z | <a .

▶ f x(n) is a finite duration two sided sequence, then the ROC is entire z-pSUlaB:nESeexcept at z =UN0IT&:2z = ∞.
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Example 1: Find z-transform and ROC of a n u[n]+a −nu[−n−1] anu[n]+a−nu[−n−1]

The plot of ROC has two conditions as a > 1 and a <1, as we do not know a.

In this case, there is no combination ROC.
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Here, the combination of ROC is from a<|z|<1/a

Hence for this problem, z-transform is possible when a < 1.
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Causality and Stability

Causality condition for discrete time LTIsystems is as follows:

A discrete time LTI system is c ausal when,

▶ RO C is outside the outermost pole.

▶ In The transfer function H[Z], the order of numerator cannot be grater than the order of 

denominator.

Stability Condition for Discrete Time LTISystems:

A discrete time LTIsystem is sta b le when

▶ its system function H[Z] include unit circle |z|=1.

▶ all poles of the transfer function lay inside the unit circle |z|=1.
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Some Properties of the Z- Transform:
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Inverse Z transform:

Three different methods are:

▶ Partial fraction method

▶ Power series method

▶ Long division method
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Example: A finite sequence x[n]is defined as  

Find X(z) and its ROC.

Sol: We know that

For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will
converge. Note that X ( z ) includes both positive powers of z and negative powers of z.
Thus, from the result we c onc lude tha t the RO C of X ( z ) is 0 < lzl <m.
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Example: Consider the sequence

Find X ( z ) and plot the poles and zeros of X(z).  

Sol:

From the above equation we see that there is a pole of ( N - 1)th order at z=0 and a pole at 
z=a . Since x[n] is a finite sequence and is zero for n <0, the ROC is IzI>0. The N roots of 
the numerator polynomial are at
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The root at k = 0 cancels the pole at z=a. The remaining zeros of X ( z ) are at

The pole-zero p lot is shown in the following figure with N=8
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