
MUTHAYAMMAL ENGINEERING COLLEGE

Rasipuram - 637 408

COURSE CODE & TITLE - 19GES24 /DIGITAL

PRINCIPLES AND SYSTEM DESIGN

UNIT-1

BOOLEAN ALGEBRA AND LOGIC GATES

Presentation by

Mrs.V.Hema

AP-ECE

SYLLABUS

 UNIT I: BOOLEAN ALGEBRA AND LOGIC GATES

Review of Number Systems –Arithmetic Operations -Binary Codes–
Boolean Algebra and Theorems –Boolean Functions–Simplification
of Boolean Functions using Karnaugh Map and Tabulation Methods
–Logic Gates–NAND and NOR Implementations.

 UNIT II :COMBINATIONAL LOGIC

Combinational Circuits –Analysis and Design Procedures–Circuits
for Arithmetic Operations, Code Conversion –Decoders and
Encoders –Multiplexers and Demultiplexers –Introduction to HDL –
HDL Models of Combinational circuits.

 UNIT III:SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits –Latches and Flip Flops –Analysis and Design
Procedures –State Reduction and State Assignment –Shift
Registers–Counters –HDL for Sequential Logic Circuits.

SYLLABUS

 UNIT IV:ASYNCHRONOUS SEQUENTIAL LOGIC

Analysis and Design of Asynchronous Sequential Circuits–
Reduction of State and Flow Tables –Race-free State Assignment–
Hazards.

 UNIT V:MEMORY AND PROGRAMMABLE LOGIC

RAM and ROM –Memory Decoding –Error Detection and
Correction –Programmable Logic Array –Programmable Array
Logic –Sequential Programmable Devices –Application Specific
Integrated Circuits.

 TEXT BOOKS:

1.“Digital Design”, Pearson Education Publication, IV

Edition 2008 by Morris Mano M. and Michael D. Ciletti

2. “Digital Design Principles and Practices”, Pearson Education

Publication, IV Edition 2008 by John F. Wakerly

INTRODUCTION

Basically there are two types of signals in electronics,

i) Analog

ii) Digital

 The term digital refers to any process that is accomplished

using discrete units

 Digital computer is the best example of a digital system.

 Almost all digital circuits are really logic circuits because it is

much easier to manipulate and process multiple voltage levels

ADVANTAGES AND DISADVANTAGES

The usual advantages of digital circuits when compared to

analog circuits are:

 Information storage can be easier

 Robustness

The Disadvantages of digital circuits are:

 Digital circuits are sometimes more expensive

 Digital systems must translate from continuous analog signals

to discrete digital signals. This causes quantization errors.

NUMBER SYSTEMS

 A system for representing number of certain type is called

“Number System”.

 Integers are normally written using positional numbering

number system, in which each digit represents the coefficient

in a power series.

 Where n is the number of digit, r is the radix or base and

is the coefficient

REVIEW OF NUMBER SYSTEMS

 Many number systems are in use in digital technology.

 The decimal system is clearly the most familiar to us because

it is tools that we use every day.

 Types of Number Systems are

 Decimal Number system

 Binary Number system

 Octal Number system

 Hexadecimal Number system

DECIMAL NUMBER SYSTEM

 Decimal system is composed of 10 numerals or symbols.

These 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

 Using these symbols as digits of a number, we can express

any quantity.

 The decimal system is also called the base-10 system because

it has 10 digits.

 Even though the decimal system has only 10 symbols, any

number of any magnitude can be expressed by using our

system of positional weighting.

BINARY SYSTEM

 In the binary system, there are only two symbols or possible

digit values, 0 and 1.

 This base-2 system can be used to represent any quantity that

can be represented in decimal or other base system.

 Binary quantities can be represented by any device that has

only two operating states or possible conditions.

 E.g.. A switch is only open or closed. We arbitrarily (as we

define them) let an open switch represent binary 0 and a

closed switch represent binary 1. Thus we can represent any

binary number by using series of switches.

OCTAL NUMBER SYSTEM

 The octal number system has a base of eight, meaning that it

has eight possible digits: 0,1,2,3,4,5,6,7.

 An older computer-based number system is "octal" or base

eight. The digits in octal math are 0, 1, 2, 3, 4, 5, 6, and 7.

The value "eight" is written as "1 eight and 0 ones” or 108.

 Since, the octal numbers uses less number of digits as

compared to decimal numbers and hexadecimal numbers

therefore it is easy to do computations in fewer steps and also

less chances of occurrence of error.

HEXADECIMAL NUMBER SYSTEM

 The hexadecimal system uses base 16. Thus, it has 16

possible digit symbols. It uses the digits 0 through 9 plus the

letters A, B, C, D, E, and F as the 16 digit symbols.

 Hexadecimal numbering system is often used by

programmers to simplify the binary numbering system. Since

16 is equivalent to 24, there is a linear relationship between

the numbers 2 and 16.

 Computers use binary numbering system while humans use

hexadecimal numbering system to shorten binary and make it

easier to understand.

8421 CODE

CODE CONVERSION

 Coding is the process of translating the input information

which can be understandable by the machine or a particular

device.

 Coding can be used for security purpose to protect the

information from steeling or interrupting.

 Converting from one code form to another code form is

called code conversion, like converting from binary to

decimal or converting from hexadecimal to decimal.

BINARY TO DECIMAL COVERSION

 Any binary number can be converted to its decimal

equivalent simply by summing together the weights of the

various positions in the binary number which contain a 1.

 The decimal number is equal to the sum of binary digits (dn)

times their power of 2 (2n):

 decimal = d0×20 + d1×21 + d2×22 + ...

Example

Find the decimal value of 1110012:

 1110012 = 1⋅25+1⋅24+1⋅23+0⋅22+0⋅21+1⋅20 = 5710

DECIMAL TO BINARY CONVERSION

There are 2 methods:

• Reverse of Binary-To-Decimal Method

• Repeat Division

Contd,.

Conversion steps:

 Divide the number by 2.

 Get the integer quotient for the next iteration.

 Get the remainder for the binary digit.

 Repeat the steps until the quotient is equal to 0.

EXAMPLE

BINARY TO OCTAL

The following are the steps to convert a binary number into

octal number.

 Take binary number

 Divide the binary digits into groups of three (starting from

right) for integer part and start from left for fraction part.

 Convert each group of three binary digits to one octal digit.

Example-1 − Convert binary number 1010111100 into octal

number. Since there is no binary point here and no fractional

part. So,

Contd,.

 Therefore, Binary to octal is.

= (001 010 111 100)2

= (1 2 7 4)8

Example-2 Convert binary number 0110 011.1011 into octal
number. Since there is binary point here and fractional part.
So,

 Therefore, Binary to octal is.

= (0110 011.1011)2

= (0 110 011 . 101 1)2

= (110 011 . 101 100)2

= (6 3 . 5 4)8

Contd,.

OCTAL TO BINARY

This method is simple and also works as reverse of Binary to

Octal Conversion. The algorithm is explained as following

below.

 Take Octal number as input

 Convert each digit of octal into binary.

 That will be output as binary number.

Example: Convert octal number 540 into binary number.

According to above algorithm, equivalent binary number will

be,

= (540)8

= (101 100 000)2

= (101100000)2

DECIMAL TO OCTAL

Follow the steps given below to learn the decimal to octal

conversion:

 Write the given decimal number

 If the given decimal number is less than 8 the octal number is the

same.

 If the decimal number is greater than 7 then divide the number by 8.

 Note the remainder we get after division

 Repeat step 3 and 4 with the quotient till it is less than 8

 Now, write the remainders in reverse order(bottom to top)

 The resultant is the equivalent octal number to the given decimal

number.

OCTAL TO DECIMAL

 To convert an octal number (base-8) to the decimal (base-10)

number system, we need to use octal place value to add the

base-10 value of each digit.

 In the octal place value system, each time you move a place

to the left, the value increases eight-fold.

HEXADECIMAL TO DECIMAL

Here are the steps to convert hex to decimal:

 Get the decimal equivalent of hex from table.

 Multiply every digit with 16 power of digit location.

 Sum all the multipliers.

Example:

 7DE = (7 * 162) + (13 * 161) + (14 * 160)

= (7 * 256) + (13 * 16) + (14 * 1)

= 1792 + 208 + 14

7DE = 2014

DECIMAL TO HEXADECIMAL

 Take decimal number as dividend.

 Divide this number by 16 (16 is base of hexadecimal so divisor

here).

 Store the remainder in an array (it will be: 0 to 15 because of

divisor 16, replace 10, 11, 12, 13, 14, 15 by A, B, C, D, E, F

respectively).

 Repeat the above two steps until the number is greater than zero.

 Example − Convert decimal number 540 into hexadecimal

number.

 Since given number is decimal integer number, so by using

above algorithm performing short division by 16 with

remainder.

Contd,.

 Now, write remainder from bottom to up (in reverse order),

this will be 021C (or only 21C) which is equivalent

hexadecimal number of decimal integer 540.

BINARY TO HEXADECIMAL

 Hexadecimal number system provides convenient way of

converting large binary numbers into more compact and smaller

groups.

 First, we need to convert a binary into other base system (e.g., into

decimal, or into octal). Then we need to convert it hexadecimal

number.

Example − Convert binary number 1101010 into hexadecimal
number.

 First convert this into decimal number:

 (1101010)2 = 1x26+1x25+0x24+1x23+0x22+1x21+0x20

= 64+32+0+8+0+2+0 = (106)10

 Then, convert it into hexadecimal number

(106)10 =106/16=6.625=0.625*16=10(A)

=6/16=0.35=0.35*16= 6

= (6A)16 which is answer.

HEXADECIMAL TO BINARY

 Step 1: Write down the hex number. If there are any, change

the hex values represented by letters to their decimal

equivalents.

 Step 2: Each hex digit represents four binary digits and

therefore is equal to a power of 2.

 Step 3: Determine which powers of two (8, 4, 2 or 1) sum up

to your hex digits.

 Step 4: Write down 1 below those 8, 4, 2 and 1’s that are

used. Write down 0 below those that are not used.

 Step 5: Read the 1’s and 0’s from left to right to get the

binary equivalent of the given hex number.

Contd,.

 Example 1:

(2C1)16 = ?

2 C 1

2 12 1 (using 8421 code)

0010 1100 0001 ------- binary number

Example 2:

(9DB2)16 = ?

9 D B 2

9 13 11 2 (using 8421 code)

1001 1101 1011 0010 ------- binary number

COMPLEMENT OF NUMBERS

 Complements are used in digital computers to simplify the

subtraction operation and for logical manipulation.

 There are TWO types of complements for each base-r system:

the radix complement and the diminished radix complement.

 The first is referred to as the r's complement and the second

as the (r - 1)'s complement.

 The two types are referred to as

 2's complement and

 1's complement for binary numbers

and the 10’s complement a complement for decimal

numbers.

1’s and 2’s COMPLEMENT

 The 1’s complement of a binary number is the number that

results when we change all1’s to zeros and the zeros to ones.

 The 2’s complement is the binary number that results when

we add 1 to the 1’s complement. It is used to represent

negative numbers.

ARITHMETIC OPERATIONS

 The basic arithmetic operations for real numbers are addition,

subtraction, multiplication, and division.

 The basic arithmetic properties are the commutative,

associative, and distributive properties.

Commutative Property

 The commutative property describes equations in which

the order of the numbers involved does not affect the result.

Addition and multiplication are commutative operations:

2+3=3+2=5

5⋅2=2⋅5=10

Subtraction and division, however, are not commutative.

Associative Property

 The associative property describes equations in which

the grouping of the numbers involved does not affect the

result.

ARITHMETIC OPERATIONS

 As with the commutative property, addition and

multiplication are associative operations:

(2+3)+6 = 2+(3+6)=11

(4⋅1)⋅2 = 4⋅(1⋅2)=8

Subtraction and division are not associative.

Distributive Property

 The distributive property can be used when the sum of two

quantities is then multiplied by a third quantity.

(2+4)⋅3 =2⋅3+4⋅3 = 18

RULES FOR ARTHIMETIC OPERATIONS

1. Rules of Binary Addition

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0, and carry 1 to the next more significant bit

RULES FOR ARTHIMETIC OPERATIONS

2. Rules of Binary Subtraction

0 - 0 = 0

0 - 1 = 1, and borrow 1 from the next more significant bit

1 - 0 = 1

1 - 1 = 0

EXAMPLE

RULES FOR ARTHIMETIC OPERATIONS

3) Rules of Binary Multiplication

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1, and no carry or borrow bits

RULES FOR ARTHIMETIC OPERATIONS

4) Rules of Binary Division

• The process of binary division does not have any specific

rules to follow. Though this process is quite similar to the

decimal division.

Example:

BINARY DIVISION

BINARY CODES
 The digital data is represented, stored and transmitted as

group of binary bits. This group is also called as binary code.

 Binary codes are codes which are represented in binary

system with modification from the original ones.

 The types of binary codes are:

1) Weighted codes.

2) Non-Weighted codes.

3) Binary Coded Decimal Code

4) Alphanumeric Codes

5) Error Detecting Codes

6) Error Correcting Codes

ADVANTAGES OF BINARY CODES

Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.

 Binary codes are suitable for the digital communications.

 Binary codes make the analysis and designing of digital

circuits if we use the binary codes.

 Since only 0 & 1 are being used, implementation becomes

easy.

WEIGHTED BINARY CODES

 Weighted binary codes are those binary codes which obey the

positional weight principle.

 Each position of the number represents a specific weight.

 Several systems of the codes are used to express the decimal

digits 0 through 9.

 In these codes each decimal digit is represented by a group of

four bits.

NON-WEIGHTED CODES

 In this type of binary codes, the positional weights are not

assigned.

 The examples of non-weighted codes are

Excess-3 code and Gray code.

Excess-3 code

 The Excess-3 code is also called as XS-3 code. It is non-

weighted code used to express decimal numbers.

 The Excess-3 code words are derived from the 8421 BCD

code words adding (0011)2 or (3)10 to each code word in

8421.

EXCESS-3 CODE

 The excess-3 codes are obtained as follows −

GRAY CODE

 It is the non-weighted code and it is not arithmetic codes. That

means there are no specific weights assigned to the bit position.

 As only one bit changes at a time so the gray code is called as a

unit distance code. The gray code is also called as a cyclic code.

 Gray code cannot be used for arithmetic operation.

EXOR OPERATION

BINARY CODED DECIMAL (BCD) CODE

 In this code each decimal digit is represented by a 4-bit

binary number.

 BCD is a way to express each of the decimal digits with a

binary code.

 In the BCD, with four bits we can represent sixteen numbers

(0000 to 1111).

BCD CODES

Advantages of BCD Codes

 It is very similar to decimal system.

 We need to remember binary equivalent of decimal numbers

0 to 9 only.

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the

decimal number. So BCD is less efficient than binary.

ALPHANUMERIC CODES

 The alphanumeric codes are the codes that represent numbers

and alphabetic characters.

 Mostly such codes also represent other characters such as

symbol and various instructions necessary for conveying

information.

 An alphanumeric code should at least represent 10 digits.

 The following three alphanumeric codes are very commonly

used for the data representation.

1.American Standard Code for Information Interchange (ASCII).

2.Extended Binary Coded Decimal Interchange Code

(EBCDIC).

ERROR CODES

 There are binary code techniques available to detect and

correct data during data transmission.

Error detecting codes

 When data is transmitted from one point to another, there are

chances that data may get corrupted. To detect these data

errors, we use special codes, which are error detection codes.

Error-correcting codes

 It not only detect errors, but also correct them. This is used

normally in Satellite

 communication, where turn-around delay is very high as is

the probability of data getting corrupt.

ERROR CODES

Hamming Codes

 Hamming code adds a minimum number of bits to the data

transmitted in a noisy channel, to be able to correct every

possible one-bit error.

 Two types of parity are:

Even parity: Checks if there is an even number of ones; if

so, parity bit is zero. When the number of one’s is odd then

parity bit is set to 1.

Odd Parity: Checks if there is an odd number of ones; if so,

parity bit is zero. When the number of one’s is even then

parity bit is set to 1.

CODE CONVERSION

 There are many methods or techniques which can be used to

convert code from one format to another.

 Binary to BCD Conversion

 BCD to Binary Conversion

 BCD to Excess-3

 Excess-3 to BCD

BINARY TO BCD CONVERSION

 Step 1 -- Convert the binary number to decimal.

 Step 2 -- Convert decimal number to BCD.

Example − convert (11101)2 to BCD.

Step 1 − Convert the given number to Decimal

BINARY TO BCD CONVERSION

 Step 2 − Convert to BCD

BCD TO BINARY CONVERSION

 Step 1 -- Convert the BCD number to decimal.

 Step 2 -- Convert decimal to binary.

Example − convert (00101001)BCD to Binary.

Step 1 - Convert to BCD

BCD TO BINARY CONVERSION

 Step 2 - Convert to Binary

Use long division method for decimal to binary conversion.

Decimal Number − 2910

Result

 (00101001)BCD = (11101)2

BCD TO EXCESS-3

EXCESS-3 TO BCD

BINARY CODE CONVERSION

BINARY CODE CONVERSION

Example 3:Gray code to Binary code

BOOLEAN ALGEBRA

 Boolean algebra is an algebraic structure defined by a set of

elements, B, together with two binary operators, + and.,

provider that the following postulates are satisfied.

Principle of Duality

 It states that every algebraic expression is deducible from the

postulates of Boolean algebra, and it remains valid if the

operators & identity elements are interchanged.

 1. Interchanging the OR and AND operations of the

expression.

 2. Interchanging the 0 and 1 elements of the expression.

 3. Not changing the form of the variables.

BOOLEAN THEOREM

 The theorems of Boolean algebra can be used to simplify many a

complex Boolean expression and also to transform the given expression

into a more useful and meaningful equivalent expression.

 The theorems are presented as pairs, with the two theorems in a given

pair being the dual of each other.

 These theorems can be very easily verified by the method of perfect

induction.

T1: Commutative Law

(a) A + B = B + A

(b) A B = B A

T2: Associative Law

(a) (A + B) + C = A + (B + C)

(b) (A B) C = A (B C)

BOOLEAN THEOREM

T3: Distributive Law

(a) A (B + C) = A B + A C

(b) A + (B C) = (A + B) (A + C)

T4: Identity Law

(a) A + A = A

(b) A A = A

T5: Negation Law

T6: Redundancy

(a) A + A B = A

(b) A (A + B) = A

Contd,.

T7: Operations with ‘0’ & ‘1’

(a) 0 + A = A

(b) 1 A = A

(c) 1 + A = 1

(d) 0 A = 0

T8 : Complement laws

Contd,.

T10: De Morgan's Theorem

It States that ―The complement of the sum of the variables is

equal to the product of the complement of each variable This

theorem may be expressed by the following Boolean

expression.

 It states that the ―Complement of the product of variables is

equal to the sum of complements of each individual variable.

Boolean expression for this theorem is

GATES

VERIFICATION OF DEMORGAN’S LAW

De Morgan's First Theorem states:

 The complement of a product of variables is equal to the sum

of the complements of the individual variables .

De Morgan's Second Theorem states:

 The complement of sum of variables is equal to the product

of the complements of the dividable variables

PROBLEMS

Example 1: Using theorems, find A+A’B.

A + A’ B = A l + A’ B

= A (l + B) + A’B

=A + AB + A’B

=A + B (A + A’)

= A + B

ORDER OF PRECEDENCE

 NOT operations have the highest precedence, followed by

AND operations, followed by OR operations.

 Brackets can be used as with other forms of algebra.

 e.g. X.Y + Z and X.(Y + Z) are not the same function.

 Truth tables are a means of representing the results of a logic

function using a table.

Contd,.

MINTERM AND MAXTERM

 A minterm is the product of N distinct literals where each

literal occurs exactly once.

 A maxterm is the sum of N distinct literals where each literal

occurs exactly once.

Contd,.

BOOLEAN FUNCTION

 A Boolean expression is an expression which consists of

variables, constants and logical operators which results in true

or false.

 A Boolean function is an algebraic form of Boolean

expression.

 The different ways of representing a Boolean function is

shown below.

1. Sum-of-Products (SOP) Form

2. Product-of-sums (POS) form

3.Canonical forms

SOP

 The Sum of Product (SOP) expression comes from the fact

that two or more products (AND) are summed (OR) together.

 The outputs from two or more AND gates are connected to

the input of an OR gate so that they are

effectively OR’ed together to create the final AND-OR

logical output.

SOP

 The short form of the sum of the product is SOP, and it is one

kind of Boolean algebra expression.

 The min term can be defined as, when the minimum

combinations of inputs are high then the output will be high.

SOP

The sum of products is available in three different

forms which include the following.

1). Canonical Sum of Products

2). Non-Canonical Sum of Products

3). Minimal Sum of Products

CANONICAL SUM OF PRODUCTS

 This is a normal form of SOP.

 The expression of the canonical SOP is denoted with sign

summation (∑), and the minterms in the bracket are taken

when the output is true.

 The truth table of the canonical sum of the product is shown

below.

Contd,.

 For the above table, the canonical SOP form can be written as

F = ∑ (m1, m2, m3, m5)

By expanding the above summation we can get the following

function.

F = m1 + m2 + m3 + m5

By substituting the minterms in the above equation we can get the

below expression

F = X’Y’Z + X’YZ’ + X’YZ + XY’Z

 The product term of the canonical form includes both

complemented and non-complimented inputs

NON-CANONICAL SUM OF PRODUCTS

 In the non-canonical sum of product form, the product terms

are simplified. For example, let’s take the above canonical

expression

 F = X’Y’Z + X’YZ’ + X’YZ + XY’Z

F = X’Y’Z + X’Y (Z’+Z) + XY’Z

Here Z’+Z =1 (Standard function)

F = X’Y’Z + X’Y (1) + XY’Z

F = X’Y’Z + X’Y + XY’Z

This is still in the form of SOP, but it is the non-canonical

form

MINIMAL SUM OF PRODUCTS

 This is the most simplified expression of the sum of the

product, and It is also a type of non-canonical.

 This type of can is made simplified with the Boolean

algebraic theorem although it is simply done by using K-map

(Karnaughmap).

 This form is chosen due to the number of input lines & gates

are used in this is minimum.

K-MAP

 Let’s take an example of canonical form function, and the

minimal Sum of Products K map is

The expression of this based on the K-map will be

F = Y’Z + X’Y

SCHEMATIC DESIGN

 The expression of the sum of product executes two-level

AND-OR design, and this design requires a collection of

AND gates and one OR gate.

MINIMAL TO CANONICAL SOP FORM

 Conversion from minimal or any sort of non-canonical form

to canonical form is very simple.

 Example of conversion for minimal SOP form is given below.

F = A̅B + B̅C (Minimal SOP form)

 The term A̅B is missing input C. So we will

multiply A̅B with (C+C̅) because (C+C̅ = 1). The term B̅C is

missing input A. so it will be multiplied with (A+A̅)

F = A̅B(C + C̅) + B̅C(A + A̅)

F = A̅BC + A̅BC̅ +AB̅C + A̅B̅C (Canonical SOP)

PRODUCT OF SUM(POS)

 The product of Sum form is a form in which products of

different sum terms of inputs are taken.

 These are not arithmetic product and sum but they are logical

Boolean AND and OR respectively.

Max Term

 Maxterm means the term or expression that is true for a

maximum number of input combinations or that is false for

only one combination of inputs.

MAX TERM

TYPES OF POS

The product of the sum is classified into three types which

include the following.

 Canonical Product of Sums

 Non – Canonical Product of Sums

 Minimal Product of Sums

CANONICAL PRODUCT OF SUM

 The canonical POS is also named as a product of max term.

 The expression this is denoted by ∏ and the max terms in the

bracket are taken when the output is false.

Contd,.

 For the above table, the canonical POS can be written as

F = ∏ (M0, M4, M6, M7)

By expanding the above equation we can get the following

function.

F = M0, M4, M6, M7

By substituting the max terms in the above equation we can

get the below expression

F = (X+Y+Z) (X’+Y+Z)(X’+Y’+Z)(X’+Y’+Z’)

The product term of the canonical form includes both

complemented and non-complimented inputs

NON – CANONICAL PRODUCT OF SUM

 The expression of the product of sum (POS) is not in normal form is

named as non-canonical form. For example, let’s take the above expression

F = (X+Y+Z) (X’+Y+Z)(X’+Y’+Z)(X’+Y’+Z’)

F = (Y+Z) (X’+Y+Z) (X’+Y’+Z’)

Similar although reversed terms remove from two Max terms & forms only

term to show it here is an instance.

= (X+Y+Z) (X’+Y+Z)

= XX’+XY+XZ+X’Y+YY+YZ+X’Z+YZ+ZZ

= 0+XY+XZ+X’Y+YY+YZ+X’Z+YZ+Z

= X (Y+Z) + X’ (Y+Z) + Y(1+Z) +Z

= (Y+Z) (X+X’) + Y (1) +Z

= (Y+Z) (0) +Y+Z

= Y+Z

The above expression is in the form of non-canonical.

MINIMAL PRODUCT OF SUM

 This type of can is made simplified with the Boolean algebraic

theorems although it is simply done by using K-map (Karnaugh

map).

 Let’s take an example of canonical form function, and the Product

of sums K map is

 POS K-mapThe expression of this based on the K-map will be

F = (Y+Z) (X’+Y’)

SCHEMATIC DESIGN

 The expression of the product of the sum executes two levels

OR- AND design and this design requires a collection of OR

gates and one AND gate.

UNIT-2 COMBINATIONAL CIRCUITS

Combinational Logic

 Logic circuits for digital systems may be combinational

or sequential.

 A combinational circuit consists of input variables, logic

gates, and output variables.

97

4-2. Analysis procedure

 To obtain the output Boolean functions from a logic

diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with

arbitrary symbols. Determine the Boolean functions for each

gate output.

2. Label the gates that are a function of input variables and

previously labeled gates with other arbitrary symbols. Find the

Boolean functions for these gates.

98

4-2. Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of the

circuit are obtained.

4. By repeated substitution of previously defined functions, obtain

the output Boolean functions in terms of input variables.

99

Example

F2 = AB + AC + BC; T1 = A + B + C; T2 = ABC; T3 = F2’T1;

F1 = T3 + T2

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC

100

Derive truth table from logic diagram

 We can derive the truth table in Table 4-1 by using the

circuit of Fig.4-2.

101

4-3. Design procedure

1. Table4-2 is a Code-Conversion example, first, we can

list the relation of the BCD and Excess-3 codes in the

truth table.

102

Karnaugh map

2. For each symbol of the Excess-3 code, we use 1’s to

draw the map for simplifying Boolean function.

103

Circuit implementation

z = D’; y = CD + C’D’ = CD + (C + D)’

x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’

w = A + BC + BD = A + B(C + D)

104

4-4. Binary Adder-Subtractor

 A combinational circuit that performs the addition of two bits is

called a half adder.

 The truth table for the half adder is listed below:

S = x’y + xy’

C = xy

105

S: Sum
C: Carry

Implementation of Half-Adder

106

Full-Adder

 One that performs the addition of three bits(two

significant bits and a previous carry) is a full adder.

107

Simplified Expressions

S = x’y’z + x’yz’ + xy’z’ + xyz

C = xy + xz + yz

108

C

Full adder implemented in SOP

109

Another implementation

 Full-adder can also implemented with two half adders
and one OR gate (Carry Look-Ahead adder).

S = z ⊕ (x ⊕ y)

= z’(xy’ + x’y) + z(xy’ + x’y)’
= xy’z’ + x’yz’ + xyz + x’y’z

C = z(xy’ + x’y) + xy = xy’z + x’yz + xy

110

Binary adder

 This is also called

Ripple Carry

Adder ,because of the

construction with full

adders are connected

in cascade.

111

Carry Propagation

 Fig.4-9 causes a unstable factor on carry bit, and produces a

longest propagation delay.

 The signal from Ci to the output carry Ci+1, propagates through

an AND and OR gates, so, for an n-bit RCA, there are 2n gate

levels for the carry to propagate from input to output.

112

Carry Propagation

 Because the propagation delay will affect the output signals on

different time, so the signals are given enough time to get the

precise and stable outputs.

 The most widely used technique employs the principle of carry

look-ahead to improve the speed of the algorithm.

113

Boolean functions

Pi = Ai⊕ Bi steady state value

Gi = AiBi steady state value

Output sum and carry

Si = Pi⊕ Ci

Ci+1 = Gi + PiCi

Gi : carry generate Pi : carry propagate

C0 = input carry

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

 C3 does not have to wait for C2 and C1 to propagate.

114

Logic diagram of

carry look-ahead generator

 C3 is propagated at the same time as C2 and C1.

115

4-bit adder with carry lookahead

 Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

116

Binary subtractor

M = 1subtractor ; M = 0adder

117

Overflow

 It is worth noting Fig.4-13 that binary numbers in the signed-

complement system are added and subtracted by the same basic

addition and subtraction rules as unsigned numbers.

 Overflow is a problem in digital computers because the number

of bits that hold the number is finite and a result that contains

n+1 bits cannot be accommodated.

118

Overflow on signed and unsigned

 When two unsigned numbers are added, an overflow is detected

from the end carry out of the MSB position.

 When two signed numbers are added, the sign bit is treated as

part of the number and the end carry does not indicate an

overflow.

 An overflow cann’t occur after an addition if one number is

positive and the other is negative.

 An overflow may occur if the two numbers added are both

positive or both negative.

119

4-5 Decimal adder

BCD adder can’t exceed 9 on each input digit. K is the carry.

120

Rules of BCD adder

 When the binary sum is greater than 1001, we obtain a non-valid

BCD representation.

 The addition of binary 6(0110) to the binary sum converts it to

the correct BCD representation and also produces an output

carry as required.

 To distinguish them from binary 1000 and 1001, which also have a

1 in position Z8, we specify further that either Z4 or Z2 must have

a 1.

C = K + Z8Z4 + Z8Z2

121

Implementation of BCD adder

 A decimal parallel

adder that adds n

decimal digits needs n

BCD adder stages.

 The output carry

from one stage must

be connected to the

input carry of the

next higher-order

stage.

122

If =1

0110

4-6. Binary multiplier

 Usually there are more bits in the partial products and it is necessary to use
full adders to produce the sum of the partial products.

123

And

4-bit by 3-bit binary multiplier

 For J multiplier bits and K

multiplicand bits we need (J X

K) AND gates and (J − 1) K-

bit adders to produce a

product of J+K bits.

 K=4 and J=3, we need 12

AND gates and two 4-bit

adders.

124

4-7. Magnitude comparator

 The equality relation of each pair

of bits can be expressed logically

with an exclusive-NOR function

as:

A = A3A2A1A0 ; B = B3B2B1B0

xi=AiBi+Ai’Bi’ for i = 0, 1, 2, 3

(A = B) = x3x2x1x0

125

Magnitude comparator

 We inspect the relative magnitudes

of pairs of MSB. If equal, we

compare the next lower significant

pair of digits until a pair of unequal

digits is reached.

 If the corresponding digit of A is 1

and that of B is 0, we conclude that

A>B.

(A>B)=

A3B’3+x3A2B’2+x3x2A1B’1+x3x2x1A0B’0

(A<B)=

A’3B3+x3A’2B2+x3x2A’1B1+x3x2x1A’0B0

126

4-8. Decoders

 The decoder is called n-to-m-line decoder,

where m≤2n .

 the decoder is also used in conjunction with

other code converters such as a BCD-to-

seven_segment decoder.

 3-to-8 line decoder: For each possible input

combination, there are seven outputs that are

equal to 0 and only one that is equal to 1.

127

Implementation and truth table

128

Decoder with enable input

 Some decoders are constructed with NAND gates, it becomes

more economical to generate the decoder minterms in their

complemented form.

 As indicated by the truth table , only one output can be equal to 0

at any given time, all other outputs are equal to 1.

129

Demultiplexer

 A decoder with an enable input is referred to as a

decoder/demultiplexer.

 The truth table of demultiplexer is the same with

decoder.

130

Demultiplexer

D0

D1

D2

D3

E

A B

3-to-8 decoder with enable implement

the 4-to-16 decoder

131

Implementation of a Full Adder with a

Decoder
 From table 4-4, we obtain the functions for the combinational circuit in sum of

minterms:

S(x, y, z) = ∑(1, 2, 4, 7)

C(x, y, z) = ∑(3, 5, 6, 7)

132

4-9. Encoders

 An encoder is the inverse operation of a decoder.

 We can derive the Boolean functions by table 4-7

z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7

133

Priority encoder

 If two inputs are active simultaneously, the output

produces an undefined combination. We can establish an

input priority to ensure that only one input is encoded.

 Another ambiguity in the octal-to-binary encoder is

that an output with all 0’s is generated when all the

inputs are 0; the output is the same as when D0 is equal

to 1.

 The discrepancy tables on Table 4-7 and Table 4-8 can

resolve aforesaid condition by providing one more

output to indicate that at least one input is equal to 1.

134

Priority encoder

V=0no valid inputs

V=1valid inputs

X’s in output columns represent

don’t-care conditions

X’s in the input columns are

useful for representing a truth

table in condensed form.

Instead of listing all 16

minterms of four variables.

135

4-input priority encoder

 Implementation of

table 4-8

x = D2 + D3

y = D3 + D1D’2

V = D0 + D1 + D2 + D3

136

0

0

0

0

4-10. Multiplexers

S = 0, Y = I0 Truth Table S Y Y = S’I0 + SI1

S = 1, Y = I1 0 I0

1 I1

137

4-to-1 Line Multiplexer

138

Quadruple 2-to-1 Line Multiplexer

 Multiplexer circuits can be combined with common selection inputs to provide

multiple-bit selection logic. Compare with Fig4-24.

139

I0

I1

Y

Boolean function implementation

 A more efficient method for implementing a Boolean function of

n variables with a multiplexer that has n-1 selection inputs.

F(x, y, z) = (1,2,6,7)

140

4-input function with a multiplexer

F(A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15)

141

Three-State Gates

 A multiplexer can be constructed with three-state gates.

142

4-11. HDL for combinational circuits

 A module can be described in any one of the

following modeling techniques:

1. Gate-level modeling using instantiation of primitive

gates and user-defined modules.

2. Dataflow modeling using continuous assignment

statements with keyword assign.

3. Behavioral modeling using procedural assignment

statements with keyword always.

143

Gate-level Modeling

 A circuit is specified by its logic gates and their interconnection.

 Verilog recognizes 12 basic gates as predefined primitives.

 The logic values of each gate may be 1, 0, x(unknown), z(high-impedance).

144

Gate-level description on Verilog code

The wire declaration is for internal connections.

145

 There are two basic types of design methodologies: top-down

and bottom-up.

 Top-down: the top-level block is defined and then the sub-

blocks necessary to build the top-level block are

identified.(Fig.4-9 binary adder)

 Bottom-up: the building blocks are first identified and then

combined to build the top-level block.(Example 4-2 4-bit adder)

146

Design methodologies

A bottom-up hierarchical description

147

Full-adder

148

4-bit adder

149

Three state gates

Gates statement: gate name(output, input, control)

>> bufif1(OUT, A, control);

A = OUT when control = 1, OUT = z when control = 0;

>> notif0(Y, B, enable);

Y = B’ when enable = 0, Y = z when enable = 1;

150

2-to-1 multiplexer

 HDL uses the keyword tri to

indicate that the output has

multiple drivers.

module muxtri (A, B, select, OUT);

input A,B,select;

output OUT;

tri OUT;

bufif1 (OUT,A,select);

bufif0 (OUT,B,select);

endmodule

151

Dataflow modeling

 It uses a number of operators that act on operands to produce
desired results. Verilog HDL provides about 30 operator types.

Table 4-10

Symbol Operation

+ binary addition

− binary subtraction

& bit-wise AND

| bit-wise OR

^ bit-wise XOR

~ bit-wise NOT

== equality

> greater than

< less than

{ } concatenation

?: conditional

152

Dataflow modeling

 A continuous assignment is a

statement that assigns a value

to a net.

 The data type net is used in

Verilog HDL to represent a

physical connection between

circuit elements.

 A net defines a gate output

declared by an output or wire.

153

Dataflow description of 4-bit adder

154

HDL Example 4-4

//Dataflow description of 4-bit adder

module binary_adder (A,B,Cin,SUM,Cout);

input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout,SUM} = A + B +Cin;

endmodule

Data flow description of a 4-bit

comparator

155

Dataflow description of 2-1 multiplexer

 Conditional operator(? :)

 Condition? true-expression : false-expression;

156

Behavioral modeling

 It is used mostly to describe sequential circuits, but can be used

also to describe combinational circuits.

 Behavioral descriptions use the keyword always followed by a list

of procedural assignment statements.

 The target output of procedural assignment statements must be

of the reg data type. Contrary to the wire data type, where the

target output of an assignment may be continuously updated, a

reg data type retains its value until a new value is assigned.

157

Behavioral description of 2-1 multiplexer

158

4-to-1-line Multiplexer

159

Unit-III & IV

Synchronous and Asynchronous

Sequential Circuits

Combinational Logic

 Combinational Logic:

◦ Output depends only on current input

◦ Has no memory

2022/5/22 Sequential Circuits

PJF
-

161

Sequential Logic

 Sequential Logic:

◦ Output depends not only on current input

but also on past input values, e.g., design a

counter

◦ Need some type of memory to remember

the past input values

2022/5/22 Sequential Circuits

PJF
-

162

Sequential Circuits

2022/5/22 Sequential Circuits

PJF
-

163

Circuits that we
have learned
so far

Information Storing
Circuits

Timed “States”

Sequential Logic: Concept

 Sequential Logic circuits remember past

inputs and past circuit state.

 Outputs from the system are

“fed back” as new inputs

◦ With gate delay and wire delay

 The storage elements are circuits that are

capable of storing binary information:

memory.

2022/5/22 Sequential Circuits

PJF
-

164

2022/5/22 Sequential Circuits

PJF
-

165

Synchronous vs. Asynchronous

There are two types of sequential circuits:

 Synchronous sequential circuit: circuit output
changes only at some discrete instants of time.
This type of circuits achieves synchronization by
using a timing signal called the clock.

 Asynchronous sequential circuit: circuit
output can change at any time (clockless).

2022/5/22 Sequential Circuits

PJF
-

166

Synchronous Sequential Circuits:

Flip flops as state memory

2022/5/22 Sequential Circuits

PJF
-

167

 The flip-flops receive their inputs from the
combinational circuit and also from a clock signal
with pulses that occur at fixed intervals of time,
as shown in the timing diagram.

Clock Period

2022/5/22 Sequential Circuits

PJF
-

168

FF FFCombinational

Circuit

Smallest clock period = largest combinational

circuit delay between any two directly connected FF,

subjected to impact of FF setup time.

FF

CLOCK SIGNAL

2022/5/22 Sequential Circuits

PJF
-

169

TYPES OF TRIGGERING

2022/5/22 Sequential Circuits

PJF
-

170

EDGE TRIGERRING

 There are two types of transitions that occur in clock signal.

That means, the clock signal transitions either from Logic Low

to Logic High or Logic High to Logic Low.

 Following are the two types of edge triggering based on the

transitions of clock signal.

 Positive edge triggering

 Negative edge triggering

2022/5/22 Sequential Circuits

PJF
-

171

POSITIVE EDGE TRIGGERING

 If the sequential circuit is operated with the clock signal that is

transitioning from Logic Low to Logic High, then that type of

triggering is known as Positive edge triggering. It is also called as

rising edge triggering. It is shown in the following figure.

2022/5/22 Sequential Circuits

PJF
-

172

NEGATIVE EDGE TRIGGERING

 If the sequential circuit is operated with the clock signal that is

transitioning from Logic High to Logic Low, then that type of triggering is

known as Negative edge triggering. It is also called as falling edge

triggering. It is shown in the following figure.

2022/5/22 Sequential Circuits

PJF
-

173

LATCH
 Latch is one kind of a logic circuit, and it is also known as

a bistable-multivibrator.

 Latches are useful for the design of the asynchronous sequential

circuit

 The working of these circuits can be done in 2-states based on the

enable signal being high or else low.

 When the latch circuit is the in an active high state, then both the

i/ps are low.

 Similarly, when the latch circuit is then an active low state, then

both the i/ps are high.

 The latches can be classified into different types which include

 SR Latch, Gated S-R Latch, D latch, Gated D Latch, JK Latch, and

T Latch.

2022/5/22 Sequential Circuits

PJF
-

174

https://www.elprocus.com/different-types-of-digital-logic-circuits/
https://www.elprocus.com/bistable-multivibrator-using-555-timer/
https://www.geeksforgeeks.org/digital-logic-asynchronous-sequential-circuits/

2022/5/22 Sequential Circuits

PJF
-

175

FLIPFLOP

 Flip flops are also considered as sequential logic
circuits as their present output value depends on
present and past input and past output.

 when input is changed from one value to
another then the stored bit changes only when
there is a change in the clock signal either from
low level to high or high to a low level.

 Therefore, we can say a flip changes the output
according to input but with respect to the clock
signal.

2022/5/22 Sequential Circuits

PJF
-

176

2022/5/22 Sequential Circuits

PJF
-

177

2022/5/22 Sequential Circuits

PJF
-

178

S.No. FLIP LATCHES

1 Flip-flop is a bistable device i.e., it has

two stable states that are represented

as 0 and 1.

Latch is also a bistable device whose states

are also represented as 0 and 1.

2 It is a edge triggered device. It is a level triggered device.

3 Gates like NOR, NOT, AND, NAND are

building blocks of flip flops.
These are also made up of gates.

4 They are classified into asynchronous

or synchronous flipflops.
There is no such classification in latches.

5 It checks the inputs but changes the

output only at times defined by the

clock signal or any other control signal.

It checks the inputs continuously and

responds to the changes in inputs

immediately.

6 More power is consumed by the Flip-

Flop.
Less power is consumed by the Latches.

7 ex:D Flip-flop, JK Flip-flop ex:SR Latch, D Latch

2022/5/22 Sequential Circuits

PJF
-

179

SR LATCH

 A bistable multivibrator has two stable states, as indicated by the

prefix bi in its name.

 Typically, one state is referred to as set and the other as reset. The

simplest bistable device, therefore, is known as a set-reset, or S-R,

latch.

 To create an S-R latch, we can wire two NOR gates in such a way

that the output of one feeds back to the input of another, and vice

versa, like this:

2022/5/22 Sequential Circuits

PJF
-

180

https://www.allaboutcircuits.com/textbook/digital/chpt-3/gate-universality/

LOGIC SYMBOL

2022/5/22 Sequential Circuits

PJF
-

181

NOR BASED SR LATCH

2022/5/22 Sequential Circuits

PJF
-

182

CIRCUIT DIAGRAM-SR Latch

2022/5/22 Sequential Circuits

PJF
-

183

TRUTH TABLE

2022/5/22 Sequential Circuits

PJF
-

184

SR FLIPFLOP
 The S and R in SR flip – flop means ‘SET’ and ‘RESET’

respectively. Hence it is also called Set – Reset flip –

flop. The symbolic representation of the SR Flip Flop

is shown below.

2022/5/22 Sequential Circuits

PJF
-

185

UNCLOCKED S-R FLIP-FLOP USING NAND

GATE

 SR flip flop can be designed by cross coupling

of two NAND gates. It is an active low input

SR flip – flop. The circuit of SR flip – flop using

NAND gates is shown in below figure

2022/5/22 Sequential Circuits

PJF
-

186

UNCLOCKED S R FLIP-FLOP USING NOR

GATE

 SR flip flop can also be designed by cross coupling of

two NOR gates. It is an active high input SR flip –

flop. The circuit of SR flip – flop using NOR gates is

shown in below figure.

2022/5/22 Sequential Circuits

PJF
-

187

CLOCKED SR FLIP – FLOPS

2022/5/22 Sequential Circuits

PJF
-

188

D Latch

 There is one drawback of SR Latch. That is the next

state value can’t be predicted when both the inputs S &

R are one. So, we can overcome this difficulty by D

Latch. It is also called as Data Latch. The circuit

diagram of D Latch is shown in the following figure.

2022/5/22 Sequential Circuits

PJF
-

189

TRUTH TABLE-D LATCH

2022/5/22 Sequential Circuits

PJF
-

190

Flip-Flops

 Latches are “transparent” (= any change

on the inputs is seen at the outputs

immediately when C=1).

 This causes synchronization problems.

 Solution: use latches to create flip-flops

that can respond (update) only on specific

times (instead of any time).

 Types: RS flip-flop and D flip-flop

2022/5/22 Sequential Circuits

PJF
-

191

Master-Slave FF configuration

using SR latches

2022/5/22 Sequential Circuits

PJF
-

192

2022/5/22 Sequential Circuits

PJF
-

193

S R CLK Q Q’

0 0 1 Q0 Q0’ Store
0 1 1 0 1 Reset
1 0 1 1 0 Set
1 1 1 1 1 Disallowed
X X 0 Q0 Q0’ Store

Master-Slave FF configuration
using SR latches (cont.)

•When C=1, master is enabled and
stores new data, slave stores old
data.
•When C=0, master’s state passes
to enabled slave, master not
sensitive to new data (disabled).

D Flip-Flop

2022/5/22 PJF - 194Sequential Circuits

Characteristic Tables

 Defines the logical properties of a flip-flop (such

as a truth table does for a logic gate).

 Q(t) – present state at time t

 Q(t+1) – next state at time t+1

2022/5/22 Sequential Circuits

PJF
-

195

Characteristic Tables (cont.)

SR Flip-Flop

S R Q(t+1) Operation

0 0 Q(t) No change/Hold

0 1 0 Reset

1 0 1 Set

1 1 ? Undefined/Invalid

2022/5/22

PJF
-

196Sequential Circuits

Characteristic Tables (cont.)

D Flip-Flop

D Q(t+1) Operation

0 0 Set

1 1 Reset

2022/5/22

PJF
-

197Sequential Circuits

Characteristic Equation: Q(t+1) = D(t)

D Flip-Flop Timing Parameters

2022/5/22 Sequential Circuits

PJF
-

198

Setup time

Sequential Circuit Analysis

 Analysis: Consists of obtaining a suitable description
that demonstrates the time sequence of inputs, outputs,
and states.

 Logic diagram: Boolean gates, flip-flops (of any kind), and
appropriate interconnections.

 The logic diagram is derived from any of the following:

◦ Boolean Equations (FF-Inputs, Outputs)

◦ State Table

◦ State Diagram

2022/5/22 Sequential Circuits

PJF
-

199

Example

 Input: x(t)

 Output: y(t)

 State: (A(t), B(t))

 What is the Output Function?

 What is the Next State
Function?

2022/5/22 Sequential Circuits

PJF
-

20
0

AC

D Q

Q

C

D Q

Q

y

x
A

B

CP

Example (continued)

 Boolean equations

for the functions:

◦ A(t+1) = A(t)x(t)

+ B(t)x(t)

◦ B(t+1) = A’(t)x(t)

◦ y(t) = x’(t)(B(t) + A(t))

2022/5/22 Sequential Circuits

PJF
-

201

C

D Q

Q

C

D Q

Q'

y

x
A

A’

B

CP

Next State

Output

State Table Characteristics
 State table – a multiple variable table with the following

four sections:

◦ Present State – the values of the state variables for each allowed
state.

◦ Input – the input combinations allowed.

◦ Next-state – the value of the state at time (t+1) based on the
present state and the input.

◦ Output – the value of the output as a function of the present state
and (sometimes) the input.

 From the viewpoint of a truth table:

◦ the inputs are Input, Present State

◦ and the outputs are Output, Next State

2022/5/22 Sequential Circuits

PJF
-

20
2

Example: State Table

 The state table can be filled in using the next state and output equations:

◦ A(t+1) = A(t)x(t) + B(t)x(t)

◦ B(t+1) =A (t)x(t);

◦ y(t) =x (t)(B(t) + A(t))

2022/5/22 Sequential Circuits

PJF
-

20
3

Present State Input Next State Output
A(t) B(t) x(t) A(t+1) B(t+1) y(t)

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

State Diagrams

 The sequential circuit function can be represented in
graphical form as a state diagram with the following
components:

◦ A circle with the state name in it for each state

◦ A directed arc from the Present State to the Next State for each
state transition

◦ A label on each directed arc with the Input values which causes
the state transition, and

◦ A label:

 On each circle with the output value produced, or

 On each directed arc with the output value produced.

2022/5/22 Sequential Circuits

PJF
-

20
4

Example: State Diagram

 Diagram gets
confusing for
large circuits

 For small circuits,
usually easier to
understand than
the state table

2022/5/22 Sequential Circuits

PJF
-

20
5

A B
0 0

0 1 1 1

1 0

x=0/y=1 x=1/y=0

x=1/y=0

x=1/y=0

x=0/y=1

x=0/y=1

x=1/y=0

x=0/y=0

UNIT-5 MEMORY AND

PROGRAMMABLE LOGIC

207

PLAs

Programmable Logic Array

◦ Pre-fabricated building block of many

AND/OR gates (or NOR, NAND)

"Personalized" by making/ breaking

connections among the gates.

◦ General purpose logic building blocks.

208

PLA

Inputs

Dense array of
AND gates Product

terms

Dense array of
OR gates

Outputs

209

PLA

210

PLA

• A 3×2 PLA with 4 product terms.

211

Design for PLA:

Example
◦ Implement the following functions using PLA

F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

Personality Matrix

1 = asserted in term
0 = negated in term
- = does not participate

Input Side:

1 = term connected to output
0 = no connection to output

Output Side:
Outputs Inputs Product

t erm

Reuse
of

t erms

A

1

-

1

-

1

B

1

0

-

0

-

C

-

1

0

0

-

F
0

0

0

0

1

1

F
1

1

0

1

0

0

F
2

1

0

0

1

0

F
3

0

1

0

0

1

A B

B C

A C

B C

A

212

Example: Continued

F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

Personality Matrix

Outputs Inputs Product
t erm

Reuse
of

t erms

A

1

-

1

-

1

B

1

0

-

0

-

C

-

1

0

0

-

F 0

0

0

0

1

1

F 1

1

0

1

0

0

F 2

1

0

0

1

0

F 3

0

1

0

0

1

A B

B C

A C

B C

A

A B C

F0 F1 F2 F3

AB

B’C

AC’

B’C’

A

213

Constants

◦ Sometimes a PLA output must
be programmed to be a
constant 1 or a constant 0.
 P1 is always 1 because its

product line is connected to
no inputs and is therefore
always pulled HIGH;

 this constant-1 term drives
the O1 output.

◦ No product term drives the
O2 output, which is therefore
always 0.

◦ Another method of obtaining
a constant-0 output is shown
for O3.

214

BCD to Gray Code Converter

W = A + B D + B C
X = B C'
Y = B + C
Z = A'B'C'D + B C D + A D' + B' C D'

Minimized Functions:

A
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

B
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

C
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

D
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

W
0
0
0
0
0
1
1
1
1
1
X
X
X
X
X
X

X
0
0
0
0
1
1
0
0
0
0
X
X
X
X
X
X

Y
0
0
1
1
1
1
1
1
0
0
X
X
X
X
X
X

Z
0
1
1
0
0
0
0
1
1
0
X
X
X
X
X
X

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 0 X 1

0 1 X 1

0 1 X X

0 1 X X

K-map for W

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 1 X 0

0 1 X 0

0 0 X X

0 0 X X

K-map for X

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 1 X 0

0 1 X 0

1 1 X X

1 1 X X

K-map for Y

AB

CD 00 01 11 10

00

01

11

10

D

B

C

A

0 0 X 1

1 0 X 0

0 1 X X

1 0 X X

K-map for Z

215

4 product terms per each OR gate

A B C D

A

BD

BC

W X Y Z

BC’

B

C

BCD

AD’

BCD’

Product terms cannot be shared !

PLA achieves higher flexibility
at the cost of lower speed!

216

PALs

 Programmable Array Logic

◦ a fixed OR array.

Inputs

Dense array of
AND gates Product

terms

Dense array of
OR gates

Outputs

217

PAL

inputs

1st output
section

2nd output
section

3rd output
section

4th output
section

Only functions with
at most four
products can be
implemented

218

PAL

W = ABC + CD

X = ABC + ACD + ACD + BCD

Y = ACD + ACD + ABD

x

x

x

219

220

Helper Terms

◦ If an I/O pin’s output-control
gate produces a constant 1,
the output is always enabled,
but the pin may still be used as
an input too.

◦ outputs can be used to
generate first-pass “helper
terms” for logic functions that
cannot be performed in a single
pass with the limited number of
AND terms available for a
single output.

221

Read Only Memory (ROM)

A ‘B’C’D’

A ‘B’C’D

A ‘B’CD’

A ‘B’CD

A ‘BC’D’

A ‘BC’D

A ‘BCD’

A ‘ BCD

A B’C’D’

A B’C’D

A B’CD’

A B’CD

A B C’D’

A B C’D

A B C D’

A B C D

F 1

F
3

F
2

A

B

C

D

S2

S1

S0

S3

0

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

4:16
dec

Enb

• Decoder
 Produces minterms

• ORs
 Produce SOP’s

222

ROM

D7
D6

D5
D4
D3
D2
D1
D0

A2

A1

A0

A

B

C

F0F1F2F3

X XX

X
X

X

X
X

X
X

• ROM
 A decoder

 A set of programmable

OR’s

223

ROM vs. PLA/PAL

(a) Programmable read-only memory (PROM)

Inputs
Fixed

AND array
(decoder)

Programmable
OR array

Outputs
Programmable

Connections

(b) Programmable array logic (PAL) device

Inputs Programmable
AND array

Fixed
OR array

Outputs
Programmable

Connections

(c) Programmable logic array (PLA) device

Inputs Programmable
OR array

Outputs
Programmable

Connections

Programmable

Connections
Programmable

AND array

225

Example

 Find a ROM-based circuit
implementation for:
◦ f(a,b,c) = a’b’ + abc

◦ g(a,b,c) = a’b’c’ + ab + bc

◦ h(a,b,c) = a’b’ + c

 Solution:
◦ Express f(), g(), and h() in m() format (use

truth tables)

◦ Program the ROM based on the 3 m()’s

226

Example

◦ There are 3 inputs and 3 outputs, thus we

need a 8x3 ROM block.

 f = m(0, 1, 7)

 g = m(0, 3, 6, 7)

 h = m(0, 1, 3, 5, 7)

3-to-8
decoder

0
1
2
3
4
5
6
7

a

b

c

f g h

227

ROM as a Memory

 Read Only Memories (ROM) or Programmable Read

Only Memories (PROM) have:

◦ N input lines,

◦ M output lines, and

◦ 2N decoded minterms.

 Can be viewed as a memory with the inputs as

addresses of data (output values),

◦ hence ROM or PROM names!

228

(Memories)

 Volatile:
◦ Random Access Memory (RAM):

 SRAM "static"

 DRAM "dynamic"

 Non-Volatile:
◦ Read Only Memory (ROM):

 Mask ROM "mask programmable"

 EPROM "electrically programmable"

 EEPROM “electrically erasable electrically programmable"

 FLASH memory - similar to EEPROM with programmer
integrated on chip

229

ROM as Memory

0 1 1 0 1

1 0 0 0 0

2 1 0 0 1

3 0 0 1 0

4 0 0 0 0

5 1 0 0 0

6 0 0 1 1

7 0 1 0 0

Address

3 4

8x4 ROM

D0
D1

D2
D3
D4
D5
D6
D7

A2

A1

A0

A

B

C

F3F2F1F0

X XX

X
X

X

X
X

X
X

•Read Example: For input (A2,A1,A0) = 011, output is (F0,F1,F2,F3) =
0010.

•What are functions F3, F2 , F1 and F0 in terms of (A2, A1, A0)?

A[2:0] F[3:0]

230

Design by ROM: Example

 BCD to 7 Segment Display Controller
A B C D

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
0 1 1 1

C0 C1 C2 C3 C4 C5 C6

1 1 1 1 1 1 0
0 1 1 0 0 0 0
1 1 0 1 1 0 1
1 1 1 1 0 0 1
0 1 1 0 0 1 1
1 0 1 1 0 1 1
1 0 1 1 1 1 1
1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 0 0 1 1
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

231

Standard Devices

◦ Vpp and PGM are used when

programming
2764 EPROM

8K x 8

2764

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

O0
O1
O2
O3
O4
O5
O6
O7

OE
CS

PGM
VPP

A10
A11
A12

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

O0
O1
O2
O3
O4
O5
O6
O7

OE
CS

PGM
VPP

A10
A11
A12

THANK YOU

