
Introduction to Algorithms

Greedy Algorithms

Dr.N.Naveenkumar
ASP/CSE,

MEC (Autonomous)

Greedy Algorithms

 Similar to dynamic programming, but simpler approach

 Also used for optimization problems

 Idea: When we have a choice to make, make the one

that looks best right now

 Make a locally optimal choice in hope of getting a globally optimal

solution

 Greedy algorithms don’t always yield an optimal solution

 Makes the choice that looks best at the moment in order

to get optimal solution.

Fractional Knapsack Problem

 Knapsack capacity: W

 There are n items: the i-th item has value vi and weight

wi

 Goal:

 find xi such that for all 0 xi 1, i = 1, 2, .., n

 wixi W and

 xivi is maximum

50

Fractional Knapsack - Example

 E.g.:

10
20

30

50

Item 1

Item 2

Item 3

$60 $100 $120

10

20

$60

$100

 +

$240

$6/pound $5/pound $4/pound

20

30

$80

 +

Fractional Knapsack Problem
 Greedy strategy 1:

 Pick the item with the maximum value

 E.g.:

 W = 1
 w1 = 100, v1 = 2
 w2 = 1, v2 = 1

 Taking from the item with the maximum value:

 Total value taken = v1/w1 = 2/100
 Smaller than what the thief can take if choosing the

other item

 Total value (choose item 2) = v2/w2 = 1

Fractional Knapsack Problem
Greedy strategy 2:

 Pick the item with the maximum value per pound vi/wi

 If the supply of that element is exhausted and the thief can

carry more: take as much as possible from the item with the

next greatest value per pound

 It is good to order items based on their value per pound

 n

n

w

v

w

v

w

v
 ...

2

2

1

1

Fractional Knapsack Problem
Alg.: Fractional-Knapsack (W, v[n], w[n])

1. While w > 0 and as long as there are items remaining

2. pick item with maximum vi/wi

3. xi min (1, w/wi)

4. remove item i from list

5. w w – xiwi

 w – the amount of space remaining in the knapsack (w = W)

 Running time: (n) if items already ordered; else (nlgn)

Huffman Code Problem

 Huffman’s algorithm achieves data
compression by finding the best variable

length binary encoding scheme for the

symbols that occur in the file to be

compressed.

Huffman Code Problem

 The more frequent a symbol occurs, the

shorter should be the Huffman binary word

representing it.

 The Huffman code is a prefix-free code.

 No prefix of a code word is equal to another

codeword.

Overview
 Huffman codes: compressing data (savings of 20% to

90%)

 Huffman’s greedy algorithm uses a table of the
frequencies of occurrence of each character to build

up an optimal way of representing each character as

a binary string

C: Alphabet

Example
 Assume we are given a data file that contains only 6 symbols,

namely a, b, c, d, e, f With the following frequency table:

 Find a variable length prefix-free encoding scheme that

compresses this data file as much as possible?

Huffman Code Problem
 Left tree represents a fixed length encoding scheme

 Right tree represents a Huffman encoding scheme

Example

Constructing A Huffman Code

O(lg n)

O(lg n)

O(lg n)

Total computation time = O(n lg n)

// C is a set of n characters

// Q is implemented as a binary min-heap O(n)

Cost of a Tree T

 For each character c in the alphabet C

 let f(c) be the frequency of c in the file

 let dT(c) be the depth of c in the tree

 It is also the length of the codeword. Why?

 Let B(T) be the number of bits required to

encode the file (called the cost of T)

B(T) f (c)dT (c)

cC

Huffman Code Problem
In the pseudocode that follows:

 we assume that C is a set of n characters and that

each character c €C is an object with a defined

frequency f [c].

 The algorithm builds the tree T corresponding to the

optimal code

 A min-priority queue Q, is used to identify the two

least-frequent objects to merge together.

 The result of the merger of two objects is a new

object whose frequency is the sum of the

frequencies of the two objects that were merged.

Running time of Huffman's algorithm
 The running time of Huffman's algorithm assumes

that Q is implemented as a binary min-heap.

 For a set C of n characters, the initialization of Q in

line 2 can be performed in O(n) time using the

BUILD-MINHEAP

 The for loop in lines 3-8 is executed exactly n - 1

times, and since each heap operation requires

time O(lg n), the loop contributes O(n lg n) to the

running time. Thus, the total running time of

HUFFMAN on a set of n characters is O(n lg n).

Prefix Code
 Prefix(-free) code: no codeword is also a prefix of some other

codewords (Un-ambiguous)

 An optimal data compression achievable by a character code can
always be achieved with a prefix code

 Simplify the encoding (compression) and decoding

 Encoding: abc 0 . 101. 100 = 0101100

 Decoding: 001011101 = 0. 0. 101. 1101 aabe

 Use binary tree to represent prefix codes for easy decoding

 An optimal code is always represented by a full binary tree, in which
every non-leaf node has two children

 |C| leaves and |C|-1 internal nodes Cost:

Cc

T cdcfTB)()()(

Frequency of c

Depth of c (length of the codeword)

Huffman Code
 Reduce size of data by 20%-90% in general

 If no characters occur more frequently than others,
then no advantage over ASCII

 Encoding:
 Given the characters and their frequencies, perform the

algorithm and generate a code. Write the characters
using the code

 Decoding:
 Given the Huffman tree, figure out what each character

is (possible because of prefix property)

Application on Huffman code

 Both the .mp3 and .jpg file formats use

Huffman coding at one stage of the

compression

Dynamic Programming vs. Greedy Algorithms

 Dynamic programming

 We make a choice at each step

 The choice depends on solutions to subproblems

 Bottom up solution, from smaller to larger subproblems

 Greedy algorithm

 Make the greedy choice and THEN

 Solve the subproblem arising after the choice is made

 The choice we make may depend on previous choices,

but not on solutions to subproblems

 Top down solution, problems decrease in size

