Introduction to Algorithms

Greedy Algorithms

Dr.N.Naveenkumar ASP/CSE,
MEC (Autonomous)

Greedy Algorithms

- Similar to dynamic programming, but simpler approach
- Also used for optimization problems
- Idea: When we have a choice to make, make the one that looks best right now
- Make a locally optimal choice in hope of getting a globally optimal solution
- Greedy algorithms don't always yield an optimal solution
- Makes the choice that looks best at the moment in order to get optimal solution.

Fractional Knapsack Problem

- Knapsack capacity: W
- There are n items: the i-th item has value v_{i} and weight W_{i}
- Goal:
- find x_{i} such that for all $0 \leq x_{i} \leq 1, i=1,2, \ldots, n$

$$
\begin{aligned}
& \sum w_{i} x_{i} \leq W \text { and } \\
& \sum x_{i} v_{i} \text { is maximum }
\end{aligned}
$$

Fractional Knapsack - Example

- E.g.:

		Item 3
	Item 2	
Item 1 \square 10	\square	30
\$60	\$100	\$120

\$6/pound \$5/pound \$4/pound

Fractional Knapsack Problem

- Greedy strategy 1 :
- Pick the item with the maximum value
- E.g.:
- $W=1$
- $w_{1}=100, v_{1}=2$
- $w_{2}=1, v_{2}=1$
- Taking from the item with the maximum value:

Total value taken $=v_{1} / w_{1}=2 / 100$

- Smaller than what the thief can take if choosing the other item

Total value $($ choose item 2$)=v_{2} / w_{2}=1$

Fractional Knapsack Problem

Greedy strategy 2 :

- Pick the item with the maximum value per pound v_{i} / w_{i}

If the supply of that element is exhausted and the thief can carry more: take as much as possible from the item with the next greatest value per pound

It is good to order items based on their value per pound

$$
\frac{v_{1}}{w_{1}} \geq \frac{v_{2}}{w_{2}} \geq \ldots \geq \frac{v_{n}}{w_{n}}
$$

Fractional Knapsack Problem

Alg.: Fractional-Knapsack (W, v[n], w[n])

1. While $w>0$ and as long as there are items remaining pick item with maximum v_{i} / w_{i} $x_{i} \leftarrow \min \left(1, w / w_{i}\right)$ remove item i from list

$$
w \leftarrow w-x_{i} w_{i}
$$

w - the amount of space remaining in the knapsack ($w=W$)
Running time: $\Theta(n)$ if items already ordered; else $\Theta(n \lg n)$

Huffman Code Problem

- Huffman's algorithm achieves data compression by finding the best variable length binary encoding scheme for the symbols that occur in the file to be compressed.

Huffman Code Problem

- The more frequent a symbol occurs, the shorter should be the Huffman binary word representing it.
- The Huffman code is a prefix-free code.
- No prefix of a code word is equal to another codeword.

Overview

- Huffman codes: compressing data (savings of 20\% to 90\%)
- Huffman's greedy algorithm uses a table of the frequencies of occurrence of each character to build up an optimal way of representing each character as a binary string

	a	b	c	d	e	£	
	C: Alphabet						
Frequency (in thousands)	45	13	12	16	9	5	
Fixed-length codeword	000	001	010	011	100	101	
	Variable-length codeword	0	101	100	111	1101	1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the characters $a-f$, with the frequencies indicated. If each character is assigned a 3-bit codeword, the file can be encoded in 300,000 bits. Using the variable-length code shown, the file can be encoded in 224,000 bits.

Example

- Assume we are given a data file that contains only 6 symbols, namely a, b, c, d, e, f With the following frequency table:

	a	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Find a variable length prefix-free encoding scheme that compresses this data file as much as possible?

Huffman Code Problem

- Left tree represents a fixed length encoding scheme
- Right tree represents a Huffman encoding scheme

Example

$0-49$

(0

Constructing A Huffman Code

HUFFMAN $(C) / / \mathbf{C}$ is a set of \mathbf{n} characters
$1 n \leftarrow|C|$
$2 \quad Q \leftarrow C \quad / / \mathbf{Q}$ is implemented as a binary min-heap $\mathbf{O}(\mathbf{n})$
3 for $i \leftarrow 1$ to $n-1 \quad$ Total computation time $=0(n \lg n)$
4 do allocate a new node z
left $[z] \leftarrow x \leftarrow$ EXTRACT-Min $(Q) \quad \mathbf{O}(\boldsymbol{l g} \mathbf{n})$
$\operatorname{right}[z] \leftarrow y \leftarrow$ EXTRACT- $\operatorname{Min}(Q) \quad \mathbf{O}(\mathbf{l g} \mathbf{n})$
$f[z] \leftarrow f[x]+f[y]$
$\operatorname{INSERT}(Q, z) \quad \mathbf{O}(\boldsymbol{\operatorname { l g }} \mathbf{n})$
9 return Extract-Min (Q)
\triangleright Return the root of the tree.

Cost of a Tree T

- For each character c in the alphabet C
- let $f(c)$ be the frequency of c in the file
- let $d_{T}(\mathrm{c})$ be the depth of c in the tree
- It is also the length of the codeword. Why?
- Let $B(T)$ be the number of bits required to encode the file (called the cost of T)

$$
B(T)=\sum_{c \in C} f(c) d_{T}(c)
$$

Huffman Code Problem

In the pseudocode that follows:

- we assume that C is a set of n characters and that each character $\mathrm{c} € \mathrm{C}$ is an object with a defined frequency f [c].
- The algorithm builds the tree T corresponding to the optimal code
- A min-priority queue Q, is used to identify the two least-frequent objects to merge together.
- The result of the merger of two objects is a new object whose frequency is the sum of the frequencies of the two objects that were merged.

Running time of Huffman's algorithm

- The running time of Huffman's algorithm assumes that Q is implemented as a binary min-heap.
- For a set C of n characters, the initialization of Q in line 2 can be performed in $O(n)$ time using the BUILD-MINHEAP
- The for loop in lines 3-8 is executed exactly $n-1$ times, and since each heap operation requires time $O(\lg n)$, the loop contributes $O(n \lg n)$ to the running time. Thus, the total running time of HUFFMAN on a set of n characters is $O(n \lg n)$.

Prefix Code

- Prefix(-free) code: no codeword is also a prefix of some other codewords (Un-ambiguous)
- An optimal data compression achievable by a character code can always be achieved with a prefix code
- Simplify the encoding (compression) and decoding
- Encoding: $\mathrm{abc} \rightarrow 0.101 .100=0101100$
- Decoding: $001011101=0.0 .101 .1101 \rightarrow$ aabe
- Use binary tree to represent prefix codes for easy decoding
- An optimal code is always represented by a full binary tree, in which every non-leaf node has two children
- |C| leaves and |C|-1 internal nodes Cost:

$$
B(T)=\sum_{c \in C} f(c) d_{T}(c)=\text { Depth of } \mathrm{c} \text { (length of the codeword) }
$$

Huffman Code

- Reduce size of data by 20\%-90\% in general
- If no characters occur more frequently than others, then no advantage over ASCII
- Encoding:
- Given the characters and their frequencies, perform the algorithm and generate a code. Write the characters using the code
- Decoding:
- Given the Huffman tree, figure out what each character is (possible because of prefix property)

Application on Huffman code

- Both the .mp3 and .jpg file formats use Huffman coding at one stage of the compression

Dynamic Programming vs. Greedy Algorithms

- Dynamic programming
- We make a choice at each step
- The choice depends on solutions to subproblems
- Bottom up solution, from smaller to larger subproblems
- Greedy algorithm
- Make the greedy choice and THEN
- Solve the subproblem arising after the choice is made
- The choice we make may depend on previous choices, but not on solutions to subproblems
- Top down solution, problems decrease in size

