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Greedy Algorithms 

 Similar to dynamic programming, but simpler approach 

 Also used for optimization problems 

 Idea: When we have a choice to make, make the one 

that looks best right now 

 Make a locally optimal choice in hope of getting a globally optimal 

solution 

 Greedy algorithms don’t always yield an optimal solution 

 Makes the choice that looks best at the moment in order 

to get optimal solution. 



Fractional Knapsack Problem 

 Knapsack capacity: W 

 There are n items: the i-th item has value vi and weight 

wi 

 Goal:  

 find xi such that for all 0  xi  1,   i = 1, 2, .., n 

   wixi  W and  

   xivi is maximum 
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Fractional Knapsack - Example 
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Fractional Knapsack Problem 
 Greedy strategy 1: 

 Pick the item with the maximum value 

 E.g.: 

 W = 1 
 w1 = 100,  v1 = 2 
 w2 = 1, v2 = 1 

 Taking from the item with the maximum value: 

   Total value taken = v1/w1 = 2/100 
 Smaller than what the thief can take if choosing the 

other item 

   Total value (choose item 2) = v2/w2 = 1 



Fractional Knapsack Problem 
Greedy strategy 2: 

 Pick the item with the maximum value per pound vi/wi 

 If the supply of that element is exhausted and the thief can 

carry more: take as much as possible from the item with the 

next greatest value per pound 

 It is good to order items based on their value per pound 
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Fractional Knapsack Problem 
Alg.: Fractional-Knapsack (W, v[n], w[n]) 

1.  While w > 0 and as long as there are items remaining 

2.   pick item with maximum vi/wi 

3.   xi  min (1, w/wi) 

4.   remove item i from list 

5.   w  w – xiwi 

 

 w – the amount of space remaining in the knapsack (w = W) 

 Running time: (n) if items already ordered; else (nlgn)  



Huffman Code Problem 

 Huffman’s algorithm achieves data 
compression by finding the best variable 

length binary encoding scheme for the 

symbols that occur in the file to be 

compressed. 



Huffman Code Problem 

 The more frequent a symbol occurs, the 

shorter should be the Huffman binary word 

representing it. 

 

 The Huffman code is a prefix-free code.  

 No prefix of a code word is equal to another 

codeword. 

 



Overview 
 Huffman codes: compressing data (savings of 20% to 

90%) 

 Huffman’s greedy algorithm uses a table of the 
frequencies of occurrence of each character to build 

up an optimal way of representing each character as 

a binary string 

C: Alphabet 



Example 
 Assume we are given a data file that contains only 6 symbols, 

namely a, b, c, d, e, f With the following frequency table: 

 

 

 

 

 

 

 Find a variable length prefix-free encoding scheme that 

compresses this data file as much as possible? 



Huffman Code Problem 
 Left tree represents a fixed length encoding scheme 

 Right tree represents a Huffman encoding scheme 

 



Example 



Constructing A Huffman Code 

O(lg n) 

O(lg n) 

O(lg n) 

Total computation time = O(n lg n) 

// C is a set of n characters 

// Q is implemented as a binary min-heap O(n) 



Cost of a Tree T 

 For each character c in the alphabet C 

 let f(c) be the frequency of c in the file 

 let dT(c) be the depth of c in the tree 

 It is also the length of the codeword.  Why? 

 Let B(T) be the number of bits required to 

encode the file (called the cost of T) 

    
B(T )  f (c)dT (c)

cC




Huffman Code Problem 
In the pseudocode that follows: 

 we assume that C is a set of n characters and that 

each character c €C is an object with a defined 

frequency f [c]. 

 The algorithm builds the tree T corresponding to the 

optimal code 

 A min-priority queue Q, is used to identify the two 

least-frequent objects to merge together. 

 The result of the merger of two objects is a new 

object whose frequency is the sum of the 

frequencies of the two objects that were merged. 



Running time of Huffman's algorithm 
 The running time of Huffman's algorithm assumes 

that Q is implemented as a binary min-heap.  
 

 For a set C of n characters, the initialization of Q in 

line 2 can be performed in O(n) time using the 

BUILD-MINHEAP 
 

 The for loop in lines 3-8 is executed exactly n - 1 

times, and since each heap operation requires 

time O(lg n), the loop contributes O(n lg n) to the 

running time. Thus, the total running time of 

HUFFMAN on a set of n characters is O(n lg n). 



Prefix Code 
 Prefix(-free) code: no codeword is also a prefix of some other 

codewords (Un-ambiguous) 

 An optimal data compression achievable by a character code can 
always be achieved with a prefix code 

 Simplify the encoding (compression) and decoding 

 Encoding: abc  0 . 101. 100 = 0101100 

 Decoding: 001011101 = 0. 0. 101. 1101  aabe 

 Use binary tree to represent prefix codes for easy decoding 

 An optimal code is always represented by a full binary tree, in which 
every non-leaf node has two children 

 |C| leaves and |C|-1 internal nodes Cost:  


Cc

T cdcfTB )()()(

Frequency of c 

Depth of c (length of the codeword) 



Huffman Code 
 Reduce size of data by 20%-90% in general 

 

 If no characters occur more frequently than others, 
then no advantage over ASCII 

 

 Encoding: 
 Given the characters and their frequencies, perform the 

algorithm and generate a code. Write the characters 
using the code 

 

 Decoding: 
 Given the Huffman tree, figure out what each character 

is (possible because of prefix property) 



Application on Huffman code 

 Both the .mp3 and .jpg file formats use 

Huffman coding at one stage of the 

compression 



Dynamic Programming vs. Greedy Algorithms 

 Dynamic programming 

 We make a choice at each step 

 The choice depends on solutions to subproblems 

 Bottom up solution, from smaller to larger subproblems 

 Greedy algorithm 

 Make the greedy choice and THEN 

 Solve the subproblem arising after the choice is made  

 The choice we make may depend on previous choices, 

but not on solutions to subproblems 

 Top down solution, problems decrease in size 


