Introduction to Algorithms

Greedy Algorithms

Dr.N.Naveenkumar ASP/CSE, MEC (Autonomous)

Greedy Algorithms

- Similar to dynamic programming, but simpler approach
 - Also used for optimization problems
- Idea: When we have a choice to make, make the one that looks best right now
 - Make a locally optimal choice in hope of getting a globally optimal solution
- Greedy algorithms don't always yield an optimal solution
- Makes the choice that looks best at the moment in order to get optimal solution.

- Knapsack capacity: W
- There are n items: the i-th item has value v_i and weight w_i
- Goal:

□ find x_i such that for all $0 \le x_i \le 1$, i = 1, 2, ..., n

 $\sum \mathbf{w}_i \mathbf{x}_i \leq \mathbf{W}$ and

 $\sum \mathbf{x}_i \mathbf{v}_i$ is maximum

Fractional Knapsack - Example

\$6/pound \$5/pound \$4/pound

Greedy strategy 1:

Pick the item with the maximum value

- *E.g.*:
 - W = 1

•
$$w_1 = 100, v_1 = 2$$

- $w_2 = 1, v_2 = 1$
- Taking from the item with the maximum value:

Total value taken = v_1/w_1 = 2/100

Smaller than what the thief can take if choosing the other item

Total value (choose item 2) = $v_2/w_2 = 1$

Greedy strategy 2:

- Pick the item with the maximum value per pound v_i/w_i
- If the supply of that element is exhausted and the thief can carry more: take as much as possible from the item with the next greatest value per pound
- It is good to order items based on their value per pound

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \dots \ge \frac{v_n}{w_n}$$

Alg.: Fractional-Knapsack (W, v[n], w[n])

- 1. While w > 0 and as long as there are items remaining
- 2. pick item with maximum v_i/w_i

$$x_i \leftarrow \min(1, w/w_i)$$

4. remove item i from list

3.

5.

 $W \leftarrow W - X_i W_i$

w – the amount of space remaining in the knapsack (w = W)
 Running time: Θ(n) if items already ordered; else Θ(nlgn)

Huffman Code Problem

 Huffman's algorithm achieves data compression by finding the best variable length binary encoding scheme for the symbols that occur in the file to be compressed.

Huffman Code Problem

The more frequent a symbol occurs, the shorter should be the Huffman binary word representing it.

The Huffman code is a prefix-free code.
 No prefix of a code word is equal to another codeword.

Overview

- Huffman codes: compressing data (savings of 20% to 90%)
- Huffman's greedy algorithm uses a table of the frequencies of occurrence of each character to build up an optimal way of representing each character as a binary string

	a	b	С	d	е	f	- C: Alphabet
Frequency (in thousands)	45	13	12	16	9	5	
Fixed-length codeword	000	001	010	011	100	101	
Variable-length codeword	0	101	100	111	1101	1100	

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the characters a-f, with the frequencies indicated. If each character is assigned a 3-bit codeword, the file can be encoded in 300,000 bits. Using the variable-length code shown, the file can be encoded in 224,000 bits.

Example

Assume we are given a data file that contains only 6 symbols, namely a, b, c, d, e, f With the following frequency table:

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Find a variable length prefix-free encoding scheme that compresses this data file as much as possible?

Huffman Code Problem

- Left tree represents a fixed length encoding scheme
- Right tree represents a Huffman encoding scheme

d:16

d:16

a:45

a:45

Constructing A Huffman Code

HUFFMAN(C) // C is a set of n characters

 $n \leftarrow |C|$

4

5

6

7

8

- 2 $Q \leftarrow C$ // Q is implemented as a binary min-heap O(n)
- 3 for $i \leftarrow 1$ to n-1

Total computation time = $O(n \lg n)$ **do** allocate a new node z

- O(lg n) $left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)$
- $right[z] \leftarrow y \leftarrow EXTRACT-MIN(O)$ O(lg n)
- $f[z] \leftarrow f[x] + f[y]$
- INSERT(Q, z) O(lg n)
- 9 **return** EXTRACT-MIN(Q)

 \triangleright Return the root of the tree.

Cost of a Tree T

- For each character c in the alphabet C
 - let f(c) be the frequency of c in the file
 - □ let $d_T(c)$ be the depth of c in the tree
 - It is also the length of the codeword. Why?
- Let B(T) be the number of bits required to encode the file (called the cost of T)

$$B(T) = \sum_{\boldsymbol{c} \in \boldsymbol{C}} f(\boldsymbol{c}) d_{T}(\boldsymbol{c})$$

Huffman Code Problem

In the pseudocode that follows:

- we assume that C is a set of n characters and that each character c €C is an object with a defined frequency f [c].
- The algorithm builds the tree T corresponding to the optimal code
- A min-priority queue Q, is used to identify the two least-frequent objects to merge together.
- The result of the merger of two objects is a new object whose frequency is the sum of the frequencies of the two objects that were merged.

Running time of Huffman's algorithm

- The running time of Huffman's algorithm assumes that Q is implemented as a binary min-heap.
- For a set C of n characters, the initialization of Q in line 2 can be performed in O(n) time using the BUILD-MINHEAP
- The for loop in lines 3-8 is executed exactly n 1 times, and since each heap operation requires time O(lg n), the loop contributes O(n lg n) to the running time. Thus, the total running time of HUFFMAN on a set of n characters is O(n lg n).

Prefix Code

- Prefix(-free) code: no codeword is also a prefix of some other codewords (Un-ambiguous)
 - An optimal data compression achievable by a character code can always be achieved with a prefix code
 - Simplify the encoding (compression) and decoding
 - Encoding: abc → 0 . 101. 100 = 0101100
 - Decoding: 001011101 = 0. 0. 101. 1101 → aabe
 - □ Use binary tree to represent prefix codes for easy decoding
- An optimal code is always represented by a full binary tree, in which every non-leaf node has two children
 - □ |C| leaves and |C|-1 internal nodes Cost:

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$
Depth of c (length of the codeword) Frequency of c

Huffman Code

- Reduce size of data by 20%-90% in general
- If no characters occur more frequently than others, then no advantage over ASCII

Encoding:

 Given the characters and their frequencies, perform the algorithm and generate a code. Write the characters using the code

Decoding:

 Given the Huffman tree, figure out what each character is (possible because of prefix property)

Application on Huffman code

 Both the .mp3 and .jpg file formats use Huffman coding at one stage of the compression

Dynamic Programming vs. Greedy Algorithms

- Dynamic programming
 - We make a choice at each step
 - The choice depends on solutions to subproblems
 - Bottom up solution, from smaller to larger subproblems
- Greedy algorithm
 - Make the greedy choice and THEN
 - Solve the subproblem arising after the choice is made
 - The choice we make may depend on previous choices, but not on solutions to subproblems
 - Top down solution, problems decrease in size