Partial Differential Equations

1

Differential Equation Classes 1

- dimension of unknown:
 - ordinary differential equation (ODE) unknown is a function of one variable, e.g. y(t)
 - partial differential equation (PDE) unknown is a function of multiple variables, e.g. u(t,x,y)
- number of equations:
 - single differential equation, e.g. y'=y
 - system of differential equations (coupled), e.g. $y_1'=y_2$, $y_2'=-g$
- order

- *n*th order DE has *n*th derivative, and no higher, e.g. y''=-g

Differential Equation Classes 2

- linear & nonlinear:
 - *linear* differential equation: all terms linear in unknown and its derivatives

– e.g.

- x''+ax'+bx+c=0-linear
- $x'=t^2x-\text{linear}$
- x'' = 1/x nonlinear

PDE's in Science & Engineering 1

- Laplace's Equation: $\nabla^2 u = u_{xx} + u_{yy} + u_{zz} = 0$
 - unknown: u(x,y,z)
 - gravitational / electrostatic potential
- Heat Equation: $u_t = a^2 \nabla^2 u$
 - unknown: u(t,x,y,z)
 - heat conduction
- Wave Equation: $u_{tt} = a^2 \nabla^2 u$
 - unknown: u(t,x,y,z)
 - wave propagation

PDE's in Science & Engineering 2

- Schrödinger Wave Equation
 - quantum mechanics
 - (electron probability densities)

Navier-Stokes Equation
– fluid flow (fluid velocity & pressure)

2nd Order PDE Classification

- We classify conic curve $ax^2+bxy+cy^2+dx+ey+f=0$ as ellipse/parabola/hyperbola according to sign of discriminant b^2-4ac .
- Similarly we classify 2^{nd} order PDE $au_{xx}+bu_{xy}+cu_{yy}+du_x+eu_y+fu+g=0$:
 - $b^2 4ac < 0$ elliptic(e.g. equilibrium) $b^2 4ac = 0$ parabolic(e.g. diffusion) $b^2 4ac > 0$ hyperbolic(e.g. wave motion)

For general PDE's, class can change from point to point

Example: Wave Equation

- $u_{tt} = c \ u_{xx}$ for $0 \le x \le 1$, $t \ge 0$
- initial cond.: $u(0,x) = \sin(\pi x) + x + 2$, $u_t(0,x) = 4\sin(2\pi x)$
- boundary cond.: u(t,0) = 2, u(t,1)=3
- *c*=1
- unknown: u(t,x)
- simulated using Euler's method in *t*
- discretize unknown function: $u_j^k \approx u(k\Delta t, j\Delta x)$

Wave Equation: Numerical Solution

$$u_{j}^{k+1} = 2u_{j}^{k} - u_{j}^{k-1} + c \frac{\Delta t^{2}}{\Delta x^{2}} \left(u_{j+1}^{k} - 2u_{j}^{k} + u_{j-1}^{k} \right)$$

u1 = ... j-l j jfor t = 2*dt:dt:endt u2(2:n) = 2*u1(2:n)-u0(2:n) +c*(dt/dx)^2*(u1(3:n+1)-2*u1(2:n)+u1(1:n-1)); u0 = u1; u1 = u2;

end

u0 = ...

Wave Equation Results

15-859B - Introduction to Scientific Computing

Wave Equation Results

15-859B - Introduction to Scientific Computing

Wave Equation Results

15-859B - Introduction to Scientific Computing

Poor results when dt too big

15-859B - Introduction to Scientific Computing

PDE Solution Methods

- Discretize in space, transform into system of IVP's
- Discretize in space and time, finite difference method.
- Discretize in space and time, finite element method.
 - Latter methods yield sparse systems.

- Sometimes the geometry and boundary conditions are simple (e.g. rectangular grid);
- Sometimes they're not (need mesh of triangles).