Number Systems

${ }^{\circ}$ The design of computers

- It all starts with numbers
- Building circuits
- Building computing machines
${ }^{\circ}$ Digital systems
${ }^{\circ}$ Understanding decimal numbers
${ }^{\circ}$ Binary and octal numbers
- The basis of computers!
${ }^{\circ}$ Conversion between different number systems

Digital Computer Systems

- Digital systems consider discrete amounts of data.
${ }^{\circ}$ Examples
- 26 letters in the alphabet
- 10 decimal digits
${ }^{\circ}$ Larger quantities can be built from discrete values:
- Words made of letters
- Numbers made of decimal digits (e.g. 239875.32)
${ }^{\circ}$ Computers operate on binary values (0 and 1)
${ }^{\circ}$ Easy to represent binary values electrically
- Voltages and currents.
- Can be implemented using circuits
- Create the building blocks of modern computers

Understanding Decimal Numbers

- Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9)
- But how many items does a decimal number represent?
- $8653=8 \times 10^{3}+6 \times 10^{2}+5 \times 10^{1+3 \times 10^{0}}$
- What about fractions?
- $97654.35=9 \times 10^{4}+7 \times 10^{3}+6 \times 10^{2}+5 \times 10^{1+} 4 \times 10^{0}+3 \times 10^{-1+5 \times 10^{-2}}$
- In formal notation -> $(97654.35)_{10}$
- Why do we use 10 digits, anyway?

Understanding Octal Numbers

- Octal numbers are made of octal digits: (0,1,2,3,4,5,6,7)
- How many items does an octal number represent?
- $(4536)_{8}=4 \times 8^{3}+5 \times 8^{2+} 3 \times 8^{1+6 \times 8^{0}=(1362)_{10}}$
- What about fractions?

- Octal numbers don't use digits 8 or 9
- Who would use octal number, anyway?

Understanding Binary Numbers

- Binary numbers are made of binary digits (bits):
- 0 and 1
- How many items does an binary number represent?
- $(1011)_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1+1 \times 2^{0}=(11)_{10}}$
- What about fractions?
- $(110.10)_{2}=1 \times 2^{2}+1 \times 2^{1+0 \times 2}+1 \times 2^{-1+0 \times 2-2}$

Groups of eight bits are called a byte

- (11001001) 2
- Groups of four bits are called a nibble.
- (1101) 2

Why Use Binary Numbers?

- Easy to represent 0 and 1 using electrical values.
- Possible to tolerate noise.
- Easy to transmit data
- Easy to build binary circuits.

Fig. 1-3 Example of binary signals

Conversion Between Number Bases

Convert an Integer from Decimal to Another Base

For each digit position:

1. Divide decimal number by the base (e.g. 2)
2. The remainder is the lowest-order digit
3. Repeat first two steps until no divisor remains.

Example for (13) ${ }_{10}$:

| | Integer
 Quotient | Remainder |
| ---: | :---: | :---: | Coefficient

Convert an Fraction from Decimal to Another Base

For each digit position:

1. Multiply decimal number by the base (e.g. 2)
2. The integer is the highest-order digit
3. Repeat first two steps until fraction becomes zero.
Example for (0.625) ${ }_{10}$:

Integer	Fraction	Coefficient	
$0.625 \times 2=$	1	+	0.25
$0.250 \times 2=$	0	+	$a_{-1}=1$
$0.500 \times 2=$	1	+	$a_{-2}=0$
Answer $(0.625)_{10}=\left(0 . a_{-1} a_{-2} a_{-3}\right)_{2}=(0.101)_{2}$			

The Growth of Binary Numbers

Binary Addition

${ }^{\circ}$ Binary addition is very simple.
${ }^{\circ}$ This is best shown in an example of adding two binary numbers.

Binary Subtraction

- We can also perform subtraction (with borrows in place of carries).
- Let's subtract $(10111)_{2}$ from $(1001101)_{2} \ldots$

Binary Multiplication

- Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...

Convert an Integer from Decimal to Octal

For each digit position:

1. Divide decimal number by the base (8)
2. The remainder is the lowest-order digit
3. Repeat first two steps until no divisor remains.

Example for (175) ${ }_{10}$:

	Integer Quotient	
$175 / 8=$	Remainder	Coefficient
$21 / 8=2+7 / 8$	$\mathrm{a}_{0}=7$	
$2 / 8=$	$+5 / 8$	$\mathrm{a}_{1}=5$
$2+2 / 8$	$\mathrm{a}_{2}=2$	

Answer $(175)_{10}=\left(a_{2} a_{1} a_{0}\right)_{2}=(257)_{8}$

Convert an Fraction from Decimal to Octal

For each digit position:

1. Multiply decimal number by the base (e.g. 8)
2. The integer is the highest-order digit
3. Repeat first two steps until fraction becomes zero.
Example for $(0.3125)_{10}$:
Integer Fraction Coefficient

$$
\begin{array}{lll}
0.3125 \times 8= & 2+5 & a_{-1}=2 \\
0.5000 \times 8= & +\quad 0 & a_{-2}=4
\end{array}
$$

Answer $(0.3125)_{10}=(0.24)_{8}$

Summary

Binary numbers are made of binary digits (bits)
Binary and octal number systems

- Conversion between number systems

0
Addition, subtraction, and multiplication in binary

