Linear integrated circuits

Linear integrated circuits

A linear integrated circuit (linear IC) is a solid-state analog device characterized by a theoretically infinite number of possible operating states. It operates over a continuous range of input levels

APPLICATIONS

Linear ICs are employed in audio amplifiers,
A/D (analog-to-digital) converters,
averaging amplifiers,
differentiators,
DC (direct-current) amplifiers,
integrators,
multivibrators,
oscillators,
audio filters, and
sweep generators.

SSI	MSI	LSI	VLSI	ULSI
< 100 active devices	$100-1000$ active devices	$1000-$ 100000 active devices	>100000 active devices	Over 1 million active devices
Integrated resistors, BJT's	BJT's and Enhanced MOSFETS	MOSFETS	8bit, 16bit Microproces sors	Pentium Microproces sors

OPERATION AMPLIFIER

An operational amplifier is a direct coupled high gain amplifier consisting of one or more differential amplifiers, followed by a level translator and an output stage.

It is a versatile device that can be used to amplify ac as well as dc input signals \& designed for computing mathematical functions such as addition, subtraction ,multiplication, integration \& differentiation

741 Op-Amp Schematic

Ideal characteristics of OPAMP

1. Open loop gain infinite
2. Input impedance infinite
3. Output impedance low
4. Bandwidth infinite
5. Zero offset, ie, $\mathrm{Vo}=0$ when $\mathrm{V} 1=\mathrm{V} 2=0$

Op-amp symbol

Linear Integrated Circuits - An analog IC is said to be Linear, if there exists a linear relation between its voltage and current. IC 741, an 8-pin Dual In-line Package (DIP)op-amp, is an example of Linear IC.

Op Amp

Inverting amplifier example

- Applying the rules: - terminal at "virtual ground"
- so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$
- Current does not flow into op-amp (one of our rules)
- so the current through R_{1} must go through R_{2}
- voltage drop across R_{2} is then $I_{f} R_{2}=V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- So $V_{\text {out }}=0-V_{\text {in }} \times\left(R_{2} / R_{1}\right) \equiv-V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- Thus we amplify $V_{\text {in }}$ by factor $-R_{2} / R_{1}$
- negative sign earns title "inverting" amplifier
- Current is drawn into op-amp output terminal

Non-inverting Amplifier

- Now neg, terminal held at $V_{\text {in }}$
- so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$ (to left, into ground)
- This current cannot come from op-amp input
- so comes through R_{2} (delivered from op-amp output)
- voltage drop across R_{2} is $I_{f} R_{2}=V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- so that output is higher than neg. input terminal by $V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
$-V_{\text {out }}=V_{\text {in }}+V_{\text {in }} \times\left(R_{2} / R_{1}\right)=V_{\text {in }} \times\left(1+R_{2} / R_{1}\right)$
- thus gain is ($1+R_{2} / R_{1}$), and is positive
- Current is sourced from op-amp output in this example

Voltage follower

$$
V_{O U T}=V_{I N}
$$

Differentiator

Integrator

Differential Amplifier

Summing Amplifier

$$
V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\cdots+\frac{V_{n}}{R_{n}}\right)
$$

- Much like the inverting amplifier, but with two input voltages
- inverting input still held at virtual ground
$-I_{1}$ and I_{2} are added together to run through R_{f}
- so we get the (inverted) sum: $V_{\text {out }}=-R_{f} \times\left(V_{1} / R_{1}\right.$ $\left.+V_{2} / R_{2}\right)$
- if $R_{2}=R_{1}$, we get a sum proportional to $\left(V_{1}+V_{2}\right)$

Comparator

$$
v_{\text {out }}= \begin{cases}\mathrm{V}_{1} \text { is } \mathrm{V}_{\text {ref }} \\ \mathrm{V}_{2} \text { is } \mathrm{V}_{\text {in }} \\ -V_{\max } & v_{+}>v_{-} \\ -\left|V_{\text {min }}\right| & v_{+}<v_{-}\end{cases}
$$

Determines if one signal is bigger than another

Applications of comparator

1. Zero crossing detector
2. Window detector
3. Time marker generator
4. Phase detector

Schmitt trigger

square wave generator

Instrumentation Amplifier

$v_{\text {OUT }}=(R 2 / R 1)\left(1+\left[2 R_{B} / R_{A}\right]\right)(v 1-v 2)$
By adjusting the resistor R_{A}, we can adjust the gain of this instrumentation amplifier

Application:Strain Gauge

