
OOP Review

Object-Oriented Programming

Revisited

 Key OOP Concepts
 Object, Class

 Instantiation, Constructors

 Encapsulation

 Inheritance and Subclasses

 Abstraction

 Reuse

 Polymorphism, Dynamic Binding

 Object-Oriented Design and Modeling

Object

Definition: a thing that has identity, state, and

behavior

 identity: a distinguished instance of a class

 state: collection of values for its variables

 behavior: capability to execute methods

* variables and methods are defined in a class

Class

Definition: a collection of data (fields/
variables) and methods that operate on that
data

 define the contents/capabilities of the instances
(objects) of the class

 a class can be viewed as a factory for objects

 a class defines a recipe for its objects

Instantiation

 Object creation

 Memory is allocated for the object’s fields as

defined in the class

 Initialization is specified through a

constructor

 a special method invoked when objects are

created

Encapsulation

 A key OO concept: “Information Hiding”

 Key points
 The user of an object should have access only to

those methods (or data) that are essential

 Unnecessary implementation details should be
hidden from the user

 In Java/C++, use classes and access modifiers
(public, private, protected)

Inheritance

 Inheritance:

 programming language feature that allows for the

implicit definition of variables/methods for a class

through an existing class

 Subclass relationship

 B is a subclass of A

 B inherits all definitions (variables/methods) in A

Abstraction

 OOP is about abstraction

 Encapsulation and Inheritance are examples

of abstraction

 What does the verb “abstract” mean?

Reuse

 Inheritance encourages software reuse

 Existing code need not be rewritten

 Successful reuse occurs only through careful

planning and design

 when defining classes, anticipate future

modifications and extensions

Polymorphism

 “Many forms”

 allow several definitions under a single method name

 Example:

 “move” means something for a person object but means

something else for a car object

 Dynamic binding:

 capability of an implementation to distinguish between the

different forms during run-time

Building Complex Systems

 From Software Engineering:

complex systems are difficult to manage

 Proper use of OOP aids in managing this

complexity

 The analysis and design of OO systems

require corresponding modeling techniques

Object-Oriented Modeling

 UML: Unified Modeling Language
 OO Modeling Standard

 Booch, Jacobson, Rumbaugh

 What is depicted?
 Class details and static relationships

 System functionality

 Object interaction

 State transition within an object

Some UML Modeling

Techniques

 Class Diagrams

 Use Cases/Use Case Diagrams

 Interaction Diagrams

 State Diagrams

Example:

Class Diagram

Borrower Book
currBorr bk[]

0..30..1

public class Borrower {

Book bk[];

…

public Borrower() {

bk = new Book[3];

}

}

public class Book {

Borrower currBorr;

…

}

Example:

Use Case Diagram

Facilitate Checkout

Facilitate Return

Search for Book

LIBRARY SYSTEM

BorrowerLibrarian

Example:

Interaction Diagram

Checkout

Screen

:Borrower

:Book

1: borrowAllowed()

3: borrowBook()

2: isAvailable()

4: setBorrower()

Example:

State Diagram (Book)

New

Available

Reserved

Borrowed

start

Librarian activates

book as available

Borrower returns book

Object-Oriented Design

Models

 Static Model

 Class Diagrams

 Dynamic Model

 Use Cases, Interaction Diagrams, State

Diagrams, others

OO Static Model

 Classes and Class Diagrams

 Relationships

 Association

 Aggregation/Composition

 Inheritance

 Dependencies

 Attribute and Method names

OO Dynamic Model

 Goal: Represent

 Object behavior

 Object interaction

 Traditional/Procedural Dynamic Modeling

 Data Flow Diagrams (DFDs)

 Problem: Processes separate from data

 Need modeling notation that highlight tight

relationship between data & processes

DFD Example

(Inventory Management)

Accept and Post

Delivery

Item Master

Transaction

Delivery info

OO Counterpart:

Object Interaction

Encoder

:Item Master

:Transaction

new (delivery info)

post (item count)

Building an

OO Dynamic Model

 Identify use cases

 Describe each use case through an

interaction diagram

 For more complex objects, provide a state

diagram per class

 Derive implied methods (and attributes)

What’s Next?

 Need to understand the notation

 Make sure it helps the software development

process

 When to use the UML techniques

 Primarily when specifying OO design

 Formal means of communication across the

different software development stages

