

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

MKC

2021-22

PHYSICS

SUBJECT		21BSS03 – BIO AND NANOMATERIAL SCIENCES			
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation/ Expression	Units	
	τ	JNIT-I BIOM	ATERIALS AND ITS APPLICATIONS		
1	Biomaterial	- 11-	A biomaterial can be defined as any material used to make devices to replace a part or a function of the body.	No unit	
2	Biocompatibility		Biocompatibility is a general term describing the property of a material being compatible with living tissue.	No unit	
3	General classification of biomaterials		Metallic, ceramic, polymeric and composite implant materials.	No unit	
4	Nitinol	NiTi alloy	Nickel and Titanium alloy	No unit	
5	Alumina	Al ₂ O ₃	Aluminum Oxides	No unit	
6	Sapphire	2.1	Natural single crystal alumina known as sapphire	No unit	
7	Thermoplastic polymers	_	Thermoplastic polymers can be melted, reshaped and reformed.	No unit	
8	Thermosetting plastics	- 1-	The thermosetting plastics cannot be re melted and reused, since the chemical reactions that have taken place are irreversible.	No unit	
9	Heart and lung machine	14	The combination of a blood pump and an oxygenator is known as the heart-and-lung machine.	No unit	
10	Types of oxygenators	-	membrane oxygenator,bubble oxygenator and film oxygenator.	No unit	
11	Classification of Contact lenses	-	1.Rigid 2.Elastomeric 3.Hydrogel lenses	No unit	
12	Bandage lenses	-	Therapeutic contact lenses may be considered a bandage on the cornea and thus they have also been called bandage lenses	No unit	
13	Contact lens	-	Used to the Correct vision	No unit	
14	Intraocular lens	-	Replace lens containing cataracts	No unit	

15	Sure Smile Technology	-	A new advanced technology used to take 3D scan of our teeth.	No unit	
UNIT -II INTRODUCTION TO NANOTECHNOLOGY					
16	Nanoscale	_	1-100 nm	No unit	
17	Nanoscience	-	Nanoscience is the study of structures and materials on the atomic or molecular scale	No unit	
18	Nanotechnology	-	Nanotechnology is the ability to create and manipulate structures and materials on the atomic or molecular scale	No unit	
19	Surface to volume ratio	1	Surface to Volume ratio and Quantum confinement	No unit	
20	Quantum confinement		When the dimensions of potential wells or potential boxes are of the order of de Broglie wavelength of electrons or mean free path of electrons, energy levels of electrons change. This effect is called <i>Quantum confinement</i> .	No unit	
21	Classification of Nanomaterials	100	Based on the dimension-Zero,One,Two and three dimensional nanomaterials	No unit	
22	Zero dimensional Nanomaterials	13	Materials wherein all the dimensions are measured within the nanoscale	No unit	
23	One dimensional Nanomaterials	-	One dimension that is outside the nanoscale. 1-D materials include nanotubes, nanorods, and nanowires.	No unit	
24	Two dimensional Nanomaterials	2	Two dimensions that are outside the nanoscale. 2-D materials include nanofilms, nanolayers, and nanocoatings.	No unit	
25	Three dimensional Nanomaterials		All three dimensions are in outside the nanoscale.	No unit	
26	Melting point of nanophase materials		Melting point of nanophase materials is reduced by reducing the grain size.	No unit	
27	Magnetic moment of nanophase material	161	Magnetic moment of nanophase material is increased by decreasing the material size.	No unit	
28	Nano aerogel	-	Foam like structures of nanocrystalline material called aerogel is being used for insulation in offices and homes.	No unit	
29	Nanomaterials used in automotive applications	-	Nanocrystalline ceramics such as silicon nitride and silicon carbide are used in automotive applications	No unit	
30	Magnetic resonance Imaging	MRI	Nanocrystalline Yittrium-Samarium-Cobalt grains possess some special properties and are used in Magnetic resonance Imaging	No unit	

	UNIT –III SYNTHESIS OF NANOMATERIALS					
31	Two methods in the synthesis of Nanomaterials	-	1) Top down methods 2) Bottom up methods	No Unit		
32	Top down Method	-	Under this process of fabrication, bulk materials are broken into nano-sized particles.	No Unit		
33	Bottom up method	-	Bottom-up approach refers to the building up of a material from the bottom, i.e.,atom by atom,molecule by molecule,or cluster by cluster.	No Unit		
34	Common approaches of top- down method	<	(i) Ball milling method (ii) Plasma arcing(iii) Laser sputtering (iv) Vapour deposition method	No Unit		
35	Common approaches of bottom-up method	-	 (i) Sol–gel method (ii) Colloidal method (iii) Electro deposition (iv) Solution phase reductions 	No Unit		
36	Principle of Electro deposition method		When current is passed through the electrodes immersed in the electrolyte, certain mass of the substance liberated at one electrode and gets deposited on the surface of the other.	No Unit		
37	Plasma arcing method		This technique is used for the production of nanoparticles by generating plasma using heating coils at radio frequency	No Unit		
38	Principle of Ball milling method		The rolling balls give force to particles, while the falling balls provide head-on impacts with high kinetic energy.	No Unit		
39	Pulsed laser deposition method	PLD	The high power laser pulse is used to melt, evaporate and ionize the material from the surface of a target.	No Unit		
40	Chemical Vapour Deposition method	CVD	Deposition of a solid on a heated surface from a chemical reaction in the vapour phase	No Unit		
40	Advantages of coprecipitation method	- 2 -	High yield, Product purity and low cost	No Unit		
41	Potential of hydrogen value	рН	pH describes the degree of acidity or alkalinity of a solution	No Unit		
42	Lithography	-	It is used to pattern specific shapes of a thin layer on a rigid substrate for fabricating electrical devices.	No Unit		
43	Some types of lithography	-	Optical, Electron, X-ray and ion beam lithography	No Unit		
44	Electron beam lithography	EBL	The process of tracing out a pattern in a suitable recording medium using a focused e-beam.	No Unit		
45	Examples for Active Nanostructures	-	i) 3D transistors, ii) amplifiers, iii) targeted drugs,iv) actuators,v) adaptive structures	No Unit		

UNIT-IV CHARACTERIZATION OF NANOMATERIALS						
46	Characterization of Nanomaterials	-	Determining the structural,optical,magnetic, and mechanical properties of the materials depending on their applications.	No Unit		
47	Structural characterization	-	Determining the morphology and materials composition of nanomaterials	No Unit		
48	X ray diffraction analysis	XRD	It is a technique used in materials science to determine the crystallographic structure of a material	No Unit		
49	Principle of X ray diffraction	-	Constructive interference of monochromatic x rays and a crystalline sample.	No Unit		
50	Principle of Raman spectrometer	\sim	It is a analytical technique where scattered light is used to measure the vibrational energy modes of a sample.	No Unit		
51	Scanning Electron Microscope	SEM	SEM is a type of electron microscope that images the sample by scanning it with a high energy beam of electrons in a raster scan pattern	No Unit		
52	Morphology study		Study of size, shpe and order of particle in a sample	No Unit		
53	Advantages of Transmission Electron Microscope	TEM	Compare with SEM, they have High magnification, High resolution, High quality images	No Unit		
54	Advantages of Atomic Force Microscope	AFM	Easy sample preparations, accurate height information, works in vacuum, air, and liquids, living systems can be studied.	No Unit		
55	Differential Scanning Calorimetry	DSC	SC measures the temperatures and heat flows associated with transitions in materials as a function of time and temperature.	No Unit		
56	Principle of electron microscope	-	In electrons microscope the electrons have shorter wavelength that allows greater magnification.	No Unit		
57	Magnetic lens	-	The lenses used in electron microscope are magnetic lens, used to focus or diverse the electron beam	No Unit		
UNIT-V CARBON NANOMATERIALS						
58	What is carbon nanotube?	CNT	New form of rolled carbon sheets in nanoscale			
59	Classification of CNT		Single walled nanotubes and Multi walled nanotubes	No Unit		
60	Size of CNT		50,000 times smaller than the width of human hair	No Unit		
61	What is carbon?	С	Carbon is a non-metal in group 14 of the periodic table, it has 4 valence electrons	No Unit		
62	Hydrocarbon		Compounds that contains only carbon and hydrogen are called hydrocarbon	No Unit		

63	Formation of CNT		When graphite sheet of one atom thickness are rolled into a cylinder with the diameter in the order of few nanometers it is called CNT	No Unit
64	Single walled carbon nanotubes	SWCNT	If the wall of CNT contain only one layer, that is called as SWCNT.	No Unit
65	Multi walled carbon nanotubes	MWCNT	If the wall of CNT contain more than one layer, that is called as MWCNT.	No Unit
66	Types of multi walled carbon nano tube	-	Russian doll model and Parchment model	No Unit
67	Russian doll		Sheets of graphite are arranged in concentric cylinders	No Unit
68	Parchment model	6	Single sheet of graphite is rolled to form a tube with multilayer	No Unit
69	Some methods to prepare CNT		Arc discharge method- chemical vapour deposition method –laser ablation method	No Unit
70	Any two properties of CNT		 i) CNTs have very high elastic modulus and tensile strength ii) Electrical current density is 1000 times greater than the silver or copper. 	No Unit
75	Some applications of CNT	13	 i) Flat panel displays ii) Development of fuel cells iii) Cloths, sports equipments, space elevator 	W/m-k
Faculty term Prepared		1.Mr.J.Venkate 2. Dr.D.Anbuse 3. Mr.D.Prabhu	san Ivi dass	

