

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

IQAC	
MKC	

RA & MZ

Must Know Concepts (MKC)

2021-22	

	Subject	19RAC03/1	9MZC03-Manufacturing Technology	
	UN	IT-I THEOR	Y OF METAL CUTTING	
S No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation/ Expression	Units
1.	Different types of cutting tool		Single point cutting tool, Multi point cutting tool.	
2.	Parts of single point cutting tool		Shank,Face,Flank,Base,Nose,Cutting edge	
3.	Angles of single point Cutting tool		Back rake angle, side rake angle, end relief angle, side cutting angle, end cutting angle.	
4.	Tool signature		Tool angle given in definite pattern	
5.	Types of clearance angle		Side relief angle, Front clearance angle.	
6.	Negative rake angle		When the face of the cutting tool slopes away from the cutting edge at outer side	
7.	Factors affecting surface finish		Cutting speed Depth of cut. Feed Material Removal rate	
8.	Types of metal cutting process		Orthogonal cutting, oblique cutting.	
9.	Orthogonal cutting		Cutting edge of the tool is perpendicular to the work piece axis.	
10.	Examples of orthogonal cutting		Turning, facing, thread cutting, parting off.	
11.	Oblique cutting		Cutting edge is inclined at acute angle.	
12.	Shear plane		Material of work piece is stressed beyond its yield point under compressive force.	
13.	Cutting force		Compressive force applied to form the chip.	
14.	Chip		Sheared material begins to flow along the cutting tool face.	
15.	Types of chip		Continuous, discontinuous, continuous with built up edge.	
16.	Formation of continuous chip		Ductile material, high cutting speed, sharp cutting edge, smaller depth of cut.	
17.	Factors for built-up edge in cutting tools		Low cutting speed, smallrake angle, coarsefeed.	
18.	Chip thickness ratio		Ratio of chip thickness before cutting to after cutting.	
19.	Chip reduction co-efficient		Reciprocal of chip thickness.	

20.	Types of chip breaker.		Step, groove and clamp type.	
	7F surp = 238001.		Machinability is the ease with which a metal can	
21.	Machinability of metal		be cut permitting the removal of the material	
22.	Material Removal Rate	MRR	Material removal rate is the amount of material removed per time unit	
23.	Factors affecting Machinability		Chemical composition, microstructure, physical properties, mechanical properties.	
24.	Tool variable affecting Machinability		Tool geometry, tool material and rigidity of tool.	
25.	Various cutting fluid		Water based, straight or heat oil based.	
		UNIT-II TU	URNING MACHINES	
26	Diaman I		Diamond is a solid form of the element carbon	
26.	Diamond		with its atoms arranged in a crystal structure	
27.	Advantage of diamond tools		Low co-efficient friction, extreme wear resistant ,high compressive strength.	
28.	Factors for selection of tool materials		Volume of production, tool design, types of machining process.	
29.	Factors for the selection of cutting speed		Tool life, depth of cut, rate of feed, tool geometry.	
30.	Lathe		A lathe is a machine tool that rotates a work piece about an axis of rotation.	
31.	Specifications of typical lathe		Length of bed, type of bed, feed, spindle speed.	
32.	Various operations performed in lathe		Turning, facing, forming, knurling, drilling, boring etc.	
33.	Parts of lathe		Bed, headstock, tailstock, carriage, cross-slide, tool post.	
34.	Types of head stock		Back geared, all geared type.	
35.	Live centre		It is constructed so that the 60° center runs in its own bearings and is used at tailstock.	
36.	Dead centre		It used to support the work piece at either the fixed or rotating end of the machine	
37.	Parts mounted on carriage		Saddle, compound rest, cross slide, tool post.	
38.	Function of feed rod		To guide the carriage in a straight line.	
39.	Types of lathe		Engine lathe, Bench lathe, Tool room lathe, Semi-automatic lathe, Automatic lathe.	
40.	Bench lathe purpose		A bench top model usually of low power used to make precision machine small work pieces	
41.	Types of semi automatic lathe		Capstan lathe, turret lathe.	
42.	Merits of semiautomatic lathe		Less production time, high accuracy, increases production rate.	
43.	Feed		Movement of the tool relative to the work and work piece.	
44.	Work holding devices		Chuck, centres, face plate, angle plate.	
45.	Uses of chuck		It is a type of clamp used to hold an object with radial symmetry, especially a cylinder	

46.	Purpose of mandrel		The work piece clamp on a lathe, and a post or shaft.	
47.	Types of mandrel		Plain, collar, cone, special, step, gang mandrel.	
48.	Grooving		Reducing the diameterofthe work piece.	
49.	Conicity		Ratio of difference in diameters of taper to its length.	
50.	Mechanism used in turret head		Geneva or indexing mechanism	
	UNIT-III SHAP	ER MILLING	G AND GEAR CUTTING MACHINES	
51.	Bar stop		It is a work stop to setting the require length of the work piece.	
52.	copying lathe purpose		It is a template that enables one to duplicate a lathe turned part as many times as desired	
53.	Copying lathe machine		It is a semi automatic machine which produces components in large quantities	
54.	Work holding devices in semiautomatic lathe		Collets, chucks, fixtures, powerchucks.	
55.	Milling operation		Removing metal by using rotating cutter.	
56.	Taper turning methods		To produce a conical surface by gradual reduction.	
57.	Thread cutting operation		The lathe is a process that produces a helical ridge of uniform section on the work piece.	
58.	Filling operation		Process of removing bars, sharp corners and feed marks.	
59.	Steady rest		It is fixed on bed ways of the lathe clamping the bolt.	
60.	Shaper machine		It is a reciprocating type of machine basically used for producing the horizontal, vertical or flat surfaces	
61.	Size of a shaper		Maximum travel of cutting tool	
62.	In a shaper, the length of stroke is increased by		Increasing the centre distance of bull gear and crank pin	
63.	Single point cutting tool		The type of tool used on lathe, shaper and planer	
64.	Up milling		The process of removing metal by a cutter which is rotated against the direction of travel of work piece	
65.	Climb milling		Work moves in same direction as rotation of the cutter	
66.	Undercutting		An operation of cutting a groove next to a shoulder on a piece of work	
67.	Mandrel		A tapered gauge used for inspection of tapered holes	
68.	Drilling operation		It is an example of Oblique cutting	
69.	Drilling speed in aluminum		35 to 50 m/min	

70.	Lapping		Sizing and finishing a small diameter hole	
71.	Purpose of Helical groove		To remove chips	
72.	Tungsten carbide tipped drill bits		Used for drilling on glasses, ceramics, etc.	
73.	Helix or rake angle		The angle formed by the leading edge of the land with a plane having the axis of the drill	
74.	Twist drills		These are made of Either high speed steel or carbon steel	
75.	Gang drilling machine		The type of drilling machine is used for mass production	
	UNIT-IV	ABRASIVE	PROCESS AND BROACHING	
76.	Surface Grinder		Grinding irregular, curved, tapered, convex and concave surface	
77.	Glazing of grinding wheels		It is easily identified by Shiny appearance on the face of the wheel	m/mi n
78.	External cylindrical grinding		The method of grinding used to produce a straight or tapered surface on a work piece,	
79.	Internal cylindrical grinding		The method of grinding used to produce internal cylindrical holes and tapers	
80.	The grade of grinding wheel		It depends upon Hardness of the material being ground, speed of wheel and work, condition of grinding machine	
81.	The most common bond used in grinding wheels		Vitrified bond	
82.	In rubber bond for grinding wheels,		Sulphur is added to act as vulcanizing agent	
83.	Silicon carbide		The abrasive recommended for grinding materials of low tensile strength	
84.	Cobalt		The binding material used in cemented carbide tool	
85.	The efficiency of abrasive particles		Purity, uniformity in composition, hardness	
86.	Aluminum oxide		The abrasive recommended for grinding materials of high tensile strength	
87.	Hardest abrasive material		Diamond	
88.	Part off grinding		The peripheral speed of the grinding wheel will be highest	
89.	The hardness of a grinding wheel		It is is specified by Letter of alphabet	
90.	Surface grinder		For machining irregular, curved, tapered, convex and concave surfaces	
91.	Which grinding wheel is used to grind soft materials		Coarse grained wheel	
92.	Grind soft material		Coarse grained grinding wheel	
93.	Form grinding		Grinding splined shafts	
94.	The performance of grinding wheel		The ratio of the volume of material required to the volume of wheel wear	

	1			
95.	Broaching		A process of removing metal by pushing or pulling a cutting tool	
96.	The rear teeth of a broach		Remove maximum metal	
97.	Specification of Broaching Machine		Maximum length of stroke Maximum force developed by the slide	
98.	Continuous broaching		The broaching operation in which the work moves past the stationary tool	
99.	Types of Continuous broaching		Horizontal, Vertical, Rotarytype	
100.	Broaching tool material		HSS, Tin coated carbides, Aluminum, Brass	
	UNI	Γ-V METAL	FINISHING PROCESSES	
101.	Important metal finishing processes		Heat Treating ,Welding ,Braze & Solder , Metal Plating	
102.	Types of Metal Finishing		Metal Plating, Brushed Metal, Buff Polishing, Metal Grinding	
103.	Stamping		The process of cutting thin gears from metal sheets	
104.	Ultrasonic machining		It is a subtraction manufacturing process that removes material from the surface of a part through high frequency,	
105.	Electrical discharge machining		Hard, tough, fragile and heat sensitive metals can be processed	
106.	Burnishing		It is the plastic deformation of a surface due to sliding contact with another object.	
107.	Purpose of metal finishing		To protect against tarnishing or corrosion	
108.	Anodizing		It is the by which natural film on aluminum is greatly increased in thickness.	
109.	Lapping		It is a surface finishing operation used to give better surface finish and have very small material removal rate.	
110.	Material removal ranges of lapping processes		0.003 to 0.3mm	mm
111.	Honing		It is one of the finishing processes in which tool called hone carries combined rotary or reciprocating motion	
112.	Buffing processes		Remove scratches from the surface	
113.	Polishing		Push high points over into the low places to smooth out the surface.	
114.	The reason of surface finishing operation		Protection. Durability Appearance	
115.	Types of surface grinding machine		Horizontal grinding machine .Vertical grinding machine.	
116.	Purpose of cylindrical grinding machine		This machine is used to produce external cylindrical surface the surface may be straight or tapered.	

117.	Types of metal finishing		Metal Plating. Brushed Metal. Buff Polishing. Metal Grinding. Metal Vibratory Finishing Sand Blasting	
118.	Metal plating		Machines use a chemical bath to coat or alter the surface	
119.	Choosing a Metal Finishing Process		Production speed. Cost-effectiveness. Metal hardness	
120.	Spraying		Spraying is a painting technique that employs a spraying device, usually coupled with compressed air, to air-spray a work piece	
121.	Powder coating		Powder coating uses a free-flowing, dry powder to coat work pieces.	
122.	Plating		Plating is a finishing process that deposits metal onto a conductive surface to achieve decorative, resistance,	
123.	Electro less plating		Electro less plating, also known as autocatalytic plating, is a purely chemical process that makes a component tougher,	
124.	Waviness		The component of the surface texture upon which the roughness is superimposed	
125.	The dip coating process involves		Immersion. Start-up. Deposition.DrainageEvaporation,	
	QUEST	TIONS FOR P	PLACEMENT & TRAINING	
126.	What are Non metal cutting or chip less operation.		i)Forging ii)Blanking iii)Rolling iv)Pressing	
127.	What are metal cutting or chip operation.		i)Turning ii)Drilling iii)Milling iv)Shaping	
128.	Surface finish of any product depend on		i)Cutting speed ii)Feed iii)Depth of cut	
129.	Main types of cutting fluids		i)Water based cutting fluid ii)Heat oil based cutting fluid	
130.	Heat treated Manufacturing cutting tools		i)Carbon tool steel ii)High speed steel iii)Cemented carbides iv)Ceramics v)Diamonds	
131.	Lathe machine operation		i)Turning ii)Taper turning iii)chamfering iv)grooving	
132.	Three types feed can be given to lathe tool		i)Longitudinal ii)cross iii)angular	
133.	Taper turning formula		Conicity, $K = \frac{D - d}{l}$	
134.	Eccentric definition		The axis of one cylinder is off-set with axis of other cylinder	
135.	How can the number of teeth on various change gears be calculated		Driver tooth Driven_tooth	
136.	Single point cutting tool which type machines using		Shaper. Planer. Slotter. lathe etc	

137.	Multipoint point cutting tool which type machines using		Drilling. Grinding. Boring. Milling and Broaching etc	
138.	All machine having main important specification		i)Power input of the machine is in HP ii)Net weight of the machine is in Tonne	
139.	Gear ratio		Driving gear= Driven gear	
140.	Uses of tapping tool		Making internal threads of machine component	
141.	Specification of grinding wheel		i)Grit number and grain size ii)Grade iii)Structure of wheels	
142.	Which surfaces centreless grinding performing		Both external and internal cylindrical surface.	
143.	What is tool post grinder		It used for miscellaneous and small grinding work on lathe	
144.	State the uses of abrasives in manufacturing grinding wheel		i)Natural abrasive a. Corundum b.Diamond ii)Artificial abrasive a.Aluminium oxide b.Silicon carbide	
145.	Different shape of grinding wheel		a. Straight b.Cylindrical c.Tapered	
146.	Which one of the finishing processes Removing scratches from the surface		Buffing processes	
147.	What are the surface finishing processes		Lapping. Honing. Polishing and buffing	
148.	Which one processes used for super finishing		Lathe attachment operation processes	
149.	Dressing process		To be loading and breaking away the glazed surfaces	
150.	Truing process		To be trimming the cutting surface of axis	
Facult	y Team Prepared	2. Mr.S	Senthil Kumar Gopal Signatures Sundaram	

Subject staff: HoD