

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

Must Know Concepts (MKC)

2020-21

Subject			19MEC13 - Metrology and Measurement		
S.N 0	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation/ Expression	Units	
	Unit-I Basics of Metrology				
1	Metrology		Science of Measurement		
2	Metrology types		Fundamental Metrology, Industrial Metrology, and Legal Metrology.		
3	Uses of Metrology		Measurements are used in manufacturing and other processes		
4	Units		Meter (m), Kilogram (kg), Second (S), Kelvin (K), Ampere (A), Mole (mol), and Candela (cd)		
5	Measurement		Assigning a number to a characteristic of an Object		
6	Measurement System		It is used to compare the physical quantity with the Standard value. 1. MKS System 2. CGS System 3. FPS System 4. SI System		
7	Measuring tools		 Vernier Caliper Thread gauge Feeler gauge Micrometer Dial Indicator Torque Wrench Torque Angle Gauge 		
8	Need of Measurements		Measurement is needed to find1. True dimensions of a part2. Physical Parameters3. Performance of a system		
9	Methods of Measurements		 Direct Method Indirect Method Absolute Method Comparison method Transposition Method Substitution Method Coincidence Method 		
10	Elements of Measurements		 Primary sensing elements Variable Conversion Element Variable Manipulation Element Data Transmission Element Data Presentation Element 		

11	Elements of Metrology	1. Standard2. Work piece3. Instrument4. Person5. Environment
12	Standard	A known accurate measure of physical quantity is termed as Standard.
13	Instrument	Measuring Devices that transform the measured quantity into an indication
14	Environment	The surroundings or conditions in which an instrument operates
15	Accuracy	The degree to which the result of a measurement confirms to the correct value
16	Precision	The closeness of two or more measurements
17	Repeatability	Closeness of the agreement between the results of successive measurements of the same measure
18	Reproducibility	The extent to which consistent results are obtained when an experiment is repeated.
19	Calibration	Evaluating and adjusting the precision and accuracy of measurement equipment
20	Calibration Types	 Transducer Calibration Data system calibration Physical end-to-end calibration
21	Errors	The difference between a measured value of a quantity and its true value
22	Types of Error	 Systematic Error Random Error Gross Error
23	Types of Standard	1. Line standard2. End standard3. Wavelength standard
24	Line standard	Distance between two parallel lines or two surfaces
25	End standard	Distance between two flat parallel faces

	Unit-II Linear and Angular Measurements			
1	Linear Measuring	Instruments are designed to measure the distance between two surfaces or points like Vernier Caliper, Micrometer		
2	Linear Measurement	Measurements of length, diameter, height and thickness		
3	Types of Linear Measuring Instruments	Vernier Caliper Micrometer Vernier Depth Gauge Vernier Height Gauge Comparator		
4	Vernier Caliper	It is a visual aid to take an accurate measurement reading between two graduation markings on a linear scale by using mechanical interpolation		
5	Types of Vernier Caliper	 A Type Vernier Caliper B Type Vernier Caliper C Type Vernier Caliper 		
6	Parts of Vernier Caliper	 Main Scale Vernier Scale External Measuring faces Internal Measuring Faces Depth Measuring Balance 		
7	Least Count of Vernier	0.02mm		
8	Parts of Vernier Height Gauge	 Base Beam Measuring Jaw Scriber Slider 		
9	Least Count of Micrometer	0.01mm		
10	Micrometer	It is a device incorporating a calibrated screw widely used for accurate measurement of components		
11	Classification of Micrometer	 Outside Micrometer Inside Micrometer 		
12	Criteria for selecting materials for Slip Gauges	 High Hardness Temperature Stability Corrosion Resistance High Quality Finish 		
13	Angular Measurement	Includes the measurement of angles or tapers		
14	Gauge Materials	Basic metals, Glass, Plastics, Aluminum, Brass, Steel, Polycarbonate and Polypropylene		
15	Purpose of gauge	A gauge is a device used for Inspection Purposes		
16	Limit gauge	Method of checking dimensions using fixed gauge to determine whether a given		

		component lies within its limit	
17	Advantages of Limit Gauges	Quicker Inspection Method used in Mass Production	
18	Types of Gauges	 GO Gauge NOGO Gauge 	
19	Interchangabilit y	Ability of components to assemble to form a final Product	
20	Fit	Degree of tightness or looseness between two mating parts	
21	Sine bar	Sine bar is used in conjunction with slip gauge for precise angular measurement	
22	Angle Dekkor	Optical device that uses the principle of Auto collimation for measuring small angles	
23	Bevel Protractor	It is a graduated circular protractor with one pivoted arm to measure angles	
24	Clinometers	Clinometers is an instrument used for measuring angles of slope (or tilt)	
25	Autocollimator	Autocollimator is an optical instrument for non-contact measurement of angles	
	· · ·	Unit-III Advances in Metrology	
1	LASER	Light Amplification by Stimulated Emission of Radiation	
2	Components of Laser	 Active medium Excitation Mechanism High Reflectance Mirror Partially Transmissive Mirror 	
3	Lasers Applications in Measurements	 Dimensional measurements Surface Inspection 	
4	Types of Laser	 Solid state Gas Semiconductor 	
5	Laser in Metrology	Laser is suited in metrology because of its high degree of coherence and monochromatic nature	
6	Alignment test on Machine Tools	The alignment test is carried out to check the Straightness and flatness of guide ways and slide ways of machine tool	
7	CNC	Computer Numerical Control System	
8	СММ	Coordinate Measuring Machine	
9	Types of CMM	 Cantilever Type Bridge Type Horizontal boring Mill Type Vertical Boring type 	
10	Benefits of Using CMM	CMM accurately check multiple features on different planes and angles, and the information is stored for later reference	

		1. Quicker Inspection	
11	Advantages of	2. Accurate Measurements	
11	Column Type	3. Easier to Position	
	CMM	4. More Accurate	
		5. No need to use GO/NOGO Gauges	
	Types of	1. Geometry accuracies	
12	Types of	 Total measuring accuracies Volumetric length measuring 	
12	Accuracy used for CMM	3. Volumetric length measuring accuracies	
		4. Environmental effects	
		1. Table of CMM may not have perfect	
		geometric form.	
13	Causes of Errors	2. The probes may have a degree of run	
10	in CMM	out.	
		3. Probes should be minimum and rigid	
	-	Laser micrometers are the type that uses an	
14	Laser	encoder to detect the distance and displays the	
	Micrometer	result on a digital screen.	
	Various	1. Straightness	
	Various Geometrical	2. Flatness	
15	Checks in	3. Parallelism, equidistance and	
	Machine Tools	coincidence	
		4. Rotations	
	Applications of	1. Aircraft production, shipbuilding to	
16	Laser in	check for limits and fits	
10	Machine Tool	2. Testing of flatness of machined	
	Metrology	surfaces	
		Machine tools are very sensitive to impact or	
17	Axial slip of	shock, even heavy casting standards are not	
	Machine Tool	always solid and rigid enough to withstand	
	Methods of	stresses due to falling during transportation	
	Dimensional	1. Laser telemetric system	
18	Measurements	2. Laser Triangulation sensors	
	using Laser	3. Two frequency laser interference	
		1. Two frequency laser source	
10	Laser	2. Optical elements	
19	Interferometer	3. Laser heads measurement receiver	
	Components	4. Measurement display	
20	Types of Laser	1. AC Interferometer	
20	Interferometer	2. DC Interferometer	
	Types of AC	1. Standard Interferometer	
21	Laser	2. Single Beam Interferometer	
	Interferometer		
		1. Michelson Interferometer	
22	Other Types of	2. Twyman green specialization of	
	Interferometer	Michelson Interferometer	
		3. Dual frequency laser Interferometer	
		Machine vision is the ability of a computer to	
23	Machine vision	employ one or more video cameras, analog-to-	
		digital conversion (ADC) and digital signal	
		processing (DSP). The resulting data goes to a	

		computer or robot controller.
	Various stages	1. Image Formation
24	of Machine	2. Image Processing
	vision	3. Image Analysis
		4. Image Interpretation 1. Measurements of Dimensions and
		Tolerance
		2. Guidance and Control
25	Applications of	3. Identification of Surface Defects
_	Machine vision	4. Flatness Measurement
		5. Inspection of Printed Circuit Boards
		(PCB)
		Unit-IV Form Measurement
1	Straightness	Condition where an element of a surface or an
	Suagnuloss	edge is in a straight line
2	Straight edge	Measuring tool which consists of length on
		steel of narrow and deep section
3	Concern thread	Helical ridge produced by forming a
3	Screw thread	continuous helical groove of a uniform section on the external or internal surface of a cylinder
		1. External Threads
4	Types of Thread	2. Internal Threads
5	Flank	Surface between crest and root
6	Pitch	Distance measured parallel to the axis from a point on a thread to the corresponding point
		1. Progressive error
	Types of Pitch	2. Drunken error
7	Errors	3. Periodic error
		4. Irregular errors
		1. One wire method
8	Wire Methods	2. Two wire method
		3. Three wire method
_	Instruments for	1. Pitch measuring machine
9	Measuring Pitch	2. Tool maker
	Diameter	3. Screw pitch gauge
10	Drunken Thread	The advance of the helix is irregular in one
	<u> </u>	complete revolution of threadTo calculate the speed of the driven gear -
11	Velocity ratio	multiply the speed of the driver gear by the
11		velocity ratio.
		1. Spur Gear
10		2. Helical Gear
12	Types of Gear	3. Gear Rack
		4. Internal Gear
		The distance along the pitch circle or pitch line
13	Circular Pitch	between corresponding profiles of adjacent
		teeth

r		
14	Force ratio	Ratio of the output force (load) of a machine to the input force (effort)
15	Runout	Runout is an inaccuracy of rotating mechanical systems, specifically that the tool or shaft does not rotate exactly in line with the main axis
16	Roundness ratio	The ratio of the polar diameter to the equatorial diameter of a sphere
17	Addendum	The distance between the reference line and the tooth tip.
18	Dedendum	The distance between the reference line and the tooth root
19	Pitch point	The point of contact of the pitch lines of two gears or of a rack and pinion when in mesh.
20	Diametrical pitch	The number of teeth divided by the pitch diameter.
21	Types of Thread Gauge	 Plug Screw Gauge Ring Screw Gauge Caliper Gauges
22	Flatness	It is defined as minimum distance between two planes.
23	GD&T	Geometrical Dimensioning and Tolerance
24	Tolerances types	 Limit Dimensions Unilateral Bilateral Tolerances
25	Gears	Gears are used to transmit power
	Unit-	V Measurement of Power, Flow and Temperature
1	Measurement Process	 Establishing Performance Standards. Measuring the Actual Performance. Comparing Actual Performance to the Standards. Taking Corrective Action
2	Flow area	Flow may be measured by measuring the velocity of fluid over a known area
3	Flow Measurement	The quantification of movement of a fluid
4	Venturimeter	Device used to measure the flow rates of all incompressible fluids
5	Orificemeter	Device used for measure the flow rate of liquid
6	Flow Nozzle	When a flow nozzle is placed in a pipe it causes a pressure drop which varies with flow rate
7	Temperatures measurement	 Thermocouple, Electrical thermal resistance Thermostats Pyrometers
8	Types of Strain Gauges	 Non Bonded strain gauge Bonded strain gauge Fine wire strain gauge

		4. Metal foil strain gauge
		5. Piezo –resistive strain gauge
		1. Venturimeter
	Types of Flow	2. Orificemeter
9	Meter	3. Rotometer
	Wieter	4. Pitot tube
		Defined as a type of resistor whose electrical
10	Thermistor	resistance varies with changes in temperature.
		1. Bead type
	Types of	2. Water type
11	Thermistor	3. Rod type
	Thermistor	4. Washer type
		When thermocouples are connected in series it
12	Thermopile	is called as thermopiles
		1. Chrome
		2. Alumel
	Thermocouple	3. Copper
13	Materials	4. Iron
	Waterials	5. Platinum
		6. Rhenium
		A Thermocouple is a sensor used to measure
14	Thermocouple	temperature. Thermocouples consist of two
14	rnermocoupie	wire legs made from different metals.
15	Laws of thermo	1. Law of intermediate metals
15	couple	2. Law of intermediate temperature
		Type of remote-sensing thermometer used to
16	Pyrometer	measure the temperature of a surface.
	Tourse	
17	Types of	1. Total Radiation Pyrometer
	Pyrometers	2. Optical Radiation Pyrometer
	Materials for	1. Invar
18		2. Brass
	Bimetallic strips	3. Nickel – iron alloy
	Forma	Mechanical force is a force that needs a
10	Force	physical contact between the system which
19		applies the force and the system on which the
		force is applied.
		1. Applied Force
		2. Gravitational Force
		3. Normal Force
20	Types of Forces	4. Frictional Force
		5. Air Resistance Force
		6. Tension Force.
		7. Spring Force
	Force	
21	measurement	1. Direct Comparison
	methods	2. Indirect Comparison
		1. Scale and Balance
22	Devices used for	2. Elastic Force meter Proving Ring
	Measuring Force	3. Load Cell

23	Torque		Turning or twisting action of the force. The SI	
23	Torque		unit of torque is Nm	
24	Torque Measuring Instruments		 Mechanical Torsion Meter Optical Torsion Meter Electrical Torsion Meter Strain Gauge Torsion Meter 	
25	Types of Dynamometers		Absorption Dynamometers Driving Dynamometers Transmission Dynamometers	
		Aptitu	ide Questions and Answers	
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation /Expression	Units
1	A person crosses a 600 m long street in 5 minutes. What is his speed in km per hour?		A. 3.6 B. 7.2 C. 8.4 D. 10 Explanation: Speed = 600/ 5 x 60 m/sec. = 2 m/sec. = 2 x 18/5km/hr =7.2 km/hr	
2	An express train travelled at an average speed of 100 km/hr, stopping for 3 minutes after every 75 km. How long did it take to reach its destination 600 km from the starting point?		A. 6 hrs 27 min B. 6 hrs 24 min C. 6 hrs 21 min D. 6 hrs 30 min Explanation: Time taken to cover $600 \text{ km} = (600/100)\text{ hrs} = 6$ hrs. Number of stoppages = $600/75 - 1 = 7$. Total Time of stoppages= $(3 \times 7)\text{min}=21$ min. Hence, total time taken=6 hrs 21 min.	
3	The ratio between the length and the breadth of a rectangular park is 3: 2. If a man cycling along the boundary of the park at the speed of 12 km/hr completes one round in 8 minutes, then the area of the park (in sq. m) is		A. 15360 B. 153600 C. 30720 D. 307200 Explanation: Perimeter = Distance covered in 8 min. =12000x 8m = 1600 m. Let length = 3x metres and breadth = 2x metres. Then, $2(3x + 2x) = 1600$ or $x = 160$. Length = 480 m and Breadth = 320 m. Area = (480 x 320) m ² = 153600 m ² .	

	1	
		A. Rs.2
	If a cost price of	B. Rs.3
	a pencil box is	C. Rs.4wrong
	Rs.67 and	D. RS.5
4	selling price is	
	Rs.70.Is there is	
	profit or loss?	Explanation:
	profit of 1055.	C.P = RS.67, $S.P = Rs.70$ As, $S.P > C.P$ it
		means profit .profit = S.P-C.P = Rs.3
		A. Rs.1000/-
	A and B started	B. Rs.1800/-
	a business by	C. Rs.800/-
	investing	D. Rs.400/-
	Rs.4000/- and	
_	Rs.5000/-	Explanation:
5	respectively.	A = Rs.4000/-
	Find the A's	B = Rs.5000/-
	share out of a	A share 4 parts & B share 5 parts
	total profit of	Total 9 parts> $Rs.1800/-$
	Rs.1800:	> 1 part> Rs.200/-
		A share = 4 parts> $Rs.800/-$
	Two pipes can	•
	fill the cistern	A. 7.5 hr
	in 10hr and 12	B. 8 hr
	hr respectively,	C. 8.5 hr
	while the third	D. 10 hr
-	empty it in	
6	20hr. If all	Explanation:
	pipes are	Work done by all the tanks working together in
	opened	1 hour.
	simultaneously,	110, 110, 100, 015
	then the cistern	110+112-120=215
	will be filled in	Hence, a tank will be filled in $152 = 7.5$ hour
	A train munning	A. 120 metres
	A train running at the speed of	B. 180 meters
	-	C. 150 meters
	·	D. 324 meters
7	crosses a pole	
	in 9 seconds. What is the	Explanation:
		Speed= $60 \text{ x5}/18 \text{ m/sec} = 50/3 \text{ m/sec}$.
	length of the	Length of the train = (Speed x Time).
	train?	Length of the train = $50/3x \ 9m = 150 \ m$.
	A boat can	A. 2 hours
	travel with a	B. 3 hours
	speed of 13	C. 4 hours
	km/hr in still	D. 5 hours
0	water. If the	
8	speed of the	Explanation:
	stream is 4	Speed downstream = $(13 + 4)$ km/hr =
	km/hr, find the	17 km/hr.
	time taken by	Time taken to travel 68 km downstream
	the boat to go	=68/17 hrs $= 4$ hrs.
L		

	68 km		
9	downstream. Ramya gives 50 times the rent per annum to purchase a plot from L.I.C. Find the rate of interest from the amount paid by him	A. 1% B. 2% C. 3% D. 1.5% Explanation : Let the annual rent be Rs. x. $I = x$; $P = 50x$, $n = 1$ The rate of interest =100I/Pn =100x/(50x x 1)% = 2%	
10	Average of all prime numbers between 30 to 50	A. 37 B. 37.8 C. 39 D. 39.8 Explanation: Prime numbers between 30 and 50 are: 31, 37, 41, 43, 47 Average of prime numbers between 30 to 50 will be ((31+37+41+43+47)/5)=199/5=39.8	
11	Average of 10 matches is 32, How many runs one should score to increase his average by 4 runs.	A. 70 B. 76 C. 78 D. 80 Explanation: Average after 11 innings should be 36 So, Required score = (11 * 36) - (10 * 32)= 396 - 320 = 76	
12	The greatest number which on dividing 1657 and 2037 leaves remainders 6 and 5 respectively, is:	A. 127 B. 305 C. 235 D. 123 Explanation: Required number = H.C.F. of (1657 - 6) and (2037 - 5) = H.C.F. of 1651 and 2032 = 127.	
13	Find the number, when 15 is subtracted from 7 times the number, the result is 10 more than twice of the number	A. 5 B. 15 C. 7.5 D. 4 Explanation: Let the number be x. 7x - 15 = 2x + 10 => 5x = 25 => x = 5	
14	Difference between a two- digit number and the number obtained by	A. 2 B. 4 C. 8 D. 12	

	interchanging	Explanation:
	the two digits is	Let the ten digit be x, unit digit is y.
	36, what is the	Then $(10x + y) - (10y + x) = 36$
	difference	=>9x - 9y = 36
	between two	=> x - y = 4.
	numbers	
		A. 12
		B. 9
	Find the odd	C. 1
15		D. 3
15	man out. 1, 3, 9,	
	12, 19, 29	Explanation :
		12 is an even number. All other given numbers
		are odd
		A. Romeo
		B. Hamlet
		C. Novel
	Find the odd	D. Play
16	man out.	Explanation:
	Shakespeare	Shakespeare was involved in all three forms of
		literature except NOVEL. Thus, option 3 is
		correct.
		A. 60
	Find the	B. 64
		C. 72
	Missing Number 2 6	D. 70
17	Number 2, 6,	
	12, 20, 30, 42, 56,	Explanation:
		Pattern is 1 * 2, 2 * 3, 3 * 4, 4 * 5, 5 * 6, 6 * 7,
		7 * 8
		i.e) $8 * 9 = 72$
	In 100 m race,	A. 20m
	A covers the	B. 25m
	distance in 36	C. 22.5m
18	seconds and B	D. 9m
	in 45 seconds.	Explanation:
	In this race A	Distance covered by B in 9 sec. = $(100/45)$ *9m
	beats B by:	=20m
	-	A beats B by 20 meters.
	Raju age after	A. 15
	15 years will be	B. 14
	5 times his age	C. 10
19	5 years back,	D. 8
	What is the	Explanation:
	present age of	Clearly, $x+15 = 5(x-5)$
	Raju	<=>4x = 40 => x = 10
	Ten years ago,	A. 45
	P was half of	B. 40
	Q's age. If the	C. 35
20	ratio of their	D. 30
	present ages is	Explanation:
	3:4, what will	Let the present age of P and Q be 3x and 4x
	be the total of	respectively.
<u> </u>		

гасин	ly ream riepares	P.Ramesh, AP/MECH S.Palanisamy, ASP / MECH
		Dr.T.Yuvaraj, ASP/MECH
		x = -1, 3
		That was quick! And my answer is: x = 1.3
		x = -1, x = 3 That was quick! And my answer is:
`25	Solve $(x + 1)$ (x - 3) = 0.	
		(x + 1)(x - 3) = 0 x + 1 = 0, x - 3 = 0
		Explanation: (x + 1)(x - 3) = 0
		D1, 6 Explanation:
		C1, 5 D 1 6
		B. 2, 3 C 1 5
		A1, 3 P. 2, 2
		n/2=6; n=12
	f $\sqrt{2n}$ =64, then the value of n is:	$\sqrt{2n} = 64 = > 2n/2 = 64 = 26$
24		
		D. 12 Explanation:
		C. 6
		B. 4
		A. 2
		Birds killed by $A = (5/24)x = (5/24)*144 = 30$
		(3/16)x = 27 ? x = 144 Binds hilled by $A = (5/24)x = (5/24)*144 = 20$
23	A fires 5 shots to B's 3 but A kills only once in 3 shots while B kills once in 2 shots. When B has missed 27 times, A has killed :	Shots missed by $B = 1/2$ of $(3/8)x = (3/16)x$
		Killing shots by $A = 1/3$ of $(5/8)x = (5/24)x$
		Shots fired by $B = (3/8)x$ Willing shots by $A = 1/2$ of $(5/8)x = (5/24)x$
		Shots fired by $A = (5/8)x$
		Let the no of shots be x. Then, (5/6)
		Explanation:
		D. 90 birds
		C. 72 birds
		A. 30 birds B. 60 birds
		get c=7. A. 30 birds
22	Find c, if 5c - 2 = 33	or $5c=35$. We divide both sides by 5 in order to
		We add 2 to both sides and get $5c-2+2=33+2$, or $5c-25$ We divide both sides by 5 in order to
		Explanation: We add 2 to both sides and get $5c_2+2-33+2$
		D. 13
		B. 9 C. 11
		A. / B. 9
		Explanation: x=82-34=48 A. 7
21	equation x+34=82	
		D. 60
		B. 48 C. 55
	Solve the	A. 58 B. 48
		2x=10=>x=5 Total of their present ages= $3x+4x=7x=7\times5=35$
	ages?	(3x-10)=1/2(4x-10)?6x-20=4x-10=>
	1	
	their present	Ten years ago, P was half of Q's age