MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)
(Approved by AICTE, New Delhi, Accredited by NAAC \& Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MECH				2020-21
Course Code \& Course Name Year/Sem/Sec		: IV/VII	Industrial Robotics	
S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
Unit-I : Fundamentals of Robot				
1.	Industrial Robot		Reprogrammable, multifunctional mechanical device performing tasks.	
2.	Manipulator		Machine having same function as of human being	
3.	Work envelope		Space within the robot manipulates its wrist	
4.	Pitch		Up and down movement of wrist	
5.	Roll		Rotation of wrist	
6.	Yaw		Right and Left movement of wrist	
7.	Actuator		Devices used to convert hydraulic energy to Mechanical Energy	
8.	Automation		Automation is a technology that is concerned with the use of mechanical electronic and computer based system in the operation and control of production.	
9.	Types of Autom		Fixed automation, programmable automation, flexible automation	
10.	Rule of robot		- do not harm human being - obey human being - protects itself from harm	
11.	Robot anatomy		It means study of structure of Robots	
12.	Types of robot		- polar - cylindrical - cartesian - jointed arm	
13.	Robot joints		- linear - rotational - twisting - revolving	
14.	Wrist		It is the set of rotary joints to which a robots end effector is attached.	

15.	Major components of robots		Manipulator, end effector, power source, controller, censors, actuator
16.	General areas of robotics		Industrial, hobbyist, promotional, personal, military, educational, medical.
17.	Work performed by the robot		- loading - unloading - palletizing - depalletizing
18.	Advantages of robots		- greater flexibility - reprogram ability - adjustable kinematics - greater response time - improved product quality
19.	Disadvantages of robots		- replacement of human labour - more unemployment - significant retraining costs
20.	Processing application of Robot		- welding - painting - assembly - inspection
21.	Offset		point of action for the tool mounted to the Robot tool plate
22.	Types of Robot movements		- arm and body motion - wrist motion
23.	4D jobs		- Dirty - Dangerous - Difficult - Dull
24.	RIA definition of robot	GNING	Reprogrammable, multifunction manipulator designed to move materials, parts, tools or special devices through variable programmed motions for the performance of the variety of tasks.
25.	Robot control techniques	510.	- non servo control - servo control
Unit-II : Robot Drive Systems and End Effectors			
26.	End-effector		Attachments at the wrist arm perform a task.
27.	Grippers		Device to grasp objects
28.	Stripping Device		Used to remove work piece from magnetic gripper
29.	Compliance of a Robot		Displacement of the wrist in response to force
30.	Feedback Devices		Potentiometer, Resolver, Encoder
31.	Types of Drive Systems		Electric: Servo motors, Stepper motors Hydraulic actuators Pneumatic actuators

32.	RCC		Remote Center Compliance
33.	Linear hydraulic actuator		- single acting cylinder - double acting cylinder - double acting doublerod cylinder
34.	Hydraulic rotary actuator		- Geared motor - Vane motor - Piston motor
35.	Advantages of hydraulic actuator		- robust - self-lubricating - high efficiency
36.	Disadvantages of hydraulic actuator		- expensive - noisy - high maintenance
37.	Advantages of pneumatic actuator		- compact - cheapest - compressed air can be stored and conveyed easily over long distance
38.	Disadvantages of pneumatic actuator		- more noise and vibration - not suitable for heavy load - if mechanical stops are used resetting the system can be slow
39.	Advantages of electrical actuator		- widespread availability of power supply - no pollution of working environment - high power conversion efficiency
40.	Disadvantages of electrical actuator	-NING	- poor dynamic response - larger and heavier motors must be used which is costly - conventional gear driven create backlash
41.	Advantages of magnetic gripper	540	- pick up times are very fast - to handle metal parts with holes - require only one surface gripping
42.	Disadvantages of magnetic gripper		- residual magnetism - side slippage - more than one sheet will be lifted by the magnet from a stack
43.	Types of magnetic grippers		- electromagnetic grippers - permanent magnet grippers
44.	Adhesive grippers		Which an adhesive substance performs the grasping action for handling fabrics and other lightweight material.
45.	Limitations of adhesive grippers		- Adhesive substance losses is tackiness on repeated usage - Reliability is diminished with successive operations

66.	Thresholding		Binary conversion technique - each pixels are converted to binary values
67.	Edge detection		Change of intensity in the pixels at the boundary or edges
68.	Region Growing		It is a collection of segmentation techniques in which pixels are grouped in regions called grid elements based on attribute similarities.
69.	Feature Extraction		In vision applications distinguishing one object from another is accomplished by means of features that uniquely characterize the object. A feature is a single parameter that permits ease of comparison and identification.
70.	Types of Rotary encoders		- Incremental encoders - Absolute encoders
71.	Transducer		A transducer is an electronic device that converts energy from one form to another.
72.	Preprocessing		It deals with techniques such as noise reduction and enhancement of details.
73.	Vision Applications		Object location, Object Properties, Spatial Relations, Action Monitoring
74.	Capacitive technique advantages		- Wide Dynamic Range - Linear Response - Robust
75.	Ultrasonic Sensors Applications		- Distance Measurement - Mapping
Unit-IV : Robot Kinematics and Robot Programming			
76.	Robot Program		List of instruction to support the robot work cycle
77.	Continuous path control		Entire route is specified by interpolation
78.	Point to point control		Finite points are specified along the route
79.	Kinematics	- -	Study of relative motion between parts
80.	Forward Kinematics		Determination of position and orientation knowing the joint angles
81.	Reverse Kinematics		Determination of joint knowing the angles position and orientation
82.	Teach Pendant		A small hand held control box to regulate robot movements
83.	Versatile Algorithmic Language	VAL	Robotic language developed by Unimation. Inc. for PUMA series.
84.	Servo Control Robot		Programmed by lead through and textual language methods
85.	Straight line Interpolation		Computes the straight line path by sequence of addressable points
86.	Circular Interpolation		Used to define a circle in the robot's workspace

111.	Robot purchase cost		The basic price of the robot equipped from the manufacturer with the proper options (excluding end effector) to perform the application.	
112.	Engineering costs		The costs of planning and design by the user company's engineering staff to install the robot.	
113.	Installation costs		This includes the labor and materials needed to prepare the installation site (provision for utilities, floor preparation, etc.).	
114.	Special tooling		This includes the cost of end effector, parts position and other fixtures and tools required to operate the work cell.	
115.	Miscellaneous costs		This covers the additional investment costs not included by any of the above categories (e.g. other equipment needed)	
116.	Direct labor cost		The direct labor cost associated with the operation of the robot cell. Fringe benefits are usually included in the calculation of direct labor rate, but other overhead costs are excluded.	
117.	Indirect labor cost		The indirect labor costs that can be directly allocated to the operation of the robot cell. These costs include supervision, setup, programming	
118.	Maintenance cost		This covers the anticipated costs of maintenance and repair for the robot cell.	
119.	Applications of AGV		- Driverless train operations - Storage distribution system - Assembly line operation - FMS	
120.	Types of AGV vehicles.	-	- Towing vehicles - Unit load vehicles - Pallet trucks - Fork trucks - Light load Vehicles - Assembly line vehicles.	
121.	Types of maintenance		- Preventive maintenance - Emergency maintenance	
122.	Preventive maintenance		It involves the planned servicing at periodic intervals	
123.	Emergency maintenance		It is the case when the maintenance crew is called in to repair a robot that malfunctions or breaks down during regular operation.	
124.	Mean Time To Repair	MTTR	measure the average time of repairing the robot for each breakdown	
125.	Mean Time Between Failures	MTBF	average time of machinery will operate between breakdowns.	

140.	A and B can do a piece of work in 4 days, while C and D can do the same work in 12 days. In how many days will $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D do it together?		$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D will together take $1 / 4+$ $1 / 12=4 / 12=1 / 3$. 3 days to complete the work.	
141.	The average of five numbers is 27 . If one number is excluded, the average becomes 25 . The excluded number is?		A. 25 B. 35 C. 45 D. 55 Answer:B Explanation: $\begin{aligned} & (27 * 5)-(25 * 4) \\ & 135-100 \\ & 35 \end{aligned}$	
142.	The maximum gap between two successive leap year is?		A. 4 B. 8 C. 2 D. 1 Answer: B) 8 Explanation: This can be illustrated with an example. Ex: 1896 is a leap year. The next leap year comes in 1904 (1900 is not a leap year).	
143.	A guy bought 10 pencils for Rs. 50 and sold them for Rs. 60.What is his gain in terms of percentage?		A. 10% B. 5% C. $\mathbf{2 0 \%}$ D. 12% Answer:C Explanation: - "Gain\%"=("Gain"/"C.P")*100=20\%	
144.	Two trains starting at the same time from 2 stations 200 km apart and going in opposite direction cross each other at a distance of 110 km from one of the stations. What is the ratio of their speeds?	$5 t 0$	In the same time, they cover 110 km and 90 km respectively. For the same time, speed and distance is inversely proportional. So ratio of their speed $=110: 90=11: 9$	
145.	In 100 m race, A covers the distance in 36 seconds and B in 45 seconds. In this race A beats B by:		A. 20 m B. 25 m C. 22.5 m D. 9 m Explanation: Distance covered by B in 9 sec . $=$ $(100 / 45) * 9 \mathrm{~m}=20 \mathrm{~m}$	
146.	Half percent, written as a decimal, is		A. 0.2 B. 0.02 C. 0.005 D. 0.05	

			Answer: C Explanation: As we know, $1 \%=1 / 100$ Hence, $(1 / 2) \%=(1 / 2 * 1 / 100)=1 / 200=$ 0.005	
147.	A pump can fill a tank with water in 2 hours. Because of a leak, it took 2.5 hours to fill the tank. The leak can drain all the water of the tank in:		A. $41 / 3$ Hours B. 7 Hours C. 8 Hours D. 10 Hours Explanation: $\begin{aligned} & \begin{array}{l}\text { Work done by the leak in } 1 \\ \text { hour }=\end{array}\end{aligned}\binom{1}{2-5}=1$. \therefore Leak will empty the tank in 10 hrs.	
148.	If a number is chosen at random from 1 to 100 , then the probability that the chosen number is a perfect cube is		We have $1,8,27$ and 64 as perfect cubes from 1 to 100 . Thus, the probability of picking a perfect cube is $4 / 100=1 / 25$	
149.	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:		A. 9 B. 11 C. 13 D. 15 Explanation: Let the three integers be $x, x+2$ and $x+$ 4. Then, $3 x=2(x+4)+3 \Leftrightarrow x=11$. \therefore Third integer $=x+4=15$.	
150.	Find the number, when 15 is subtracted from 7 times the number, the result is 10 more than twice of the number		A. 5 B. 15 C. 7.5 D. 4 Explanation: Let the number be x . $7 x-15=2 x+10 \Rightarrow 5 x=25 \Rightarrow x=5$	

