

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MECH

MKC 2020-21

Course Code & Course Name :16MEE14 Year/Sem/Sec : IV/VII

Industrial Robotics

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units		
Unit-I: Fundamentals of Robot						
1.	Industrial Robot		Reprogrammable,multifunctionalmechanical deviceperforming tasks.			
2.	Manipulator	2	Machine having same function as of human being			
3.	Work envelope	\sim	Space within the robot manipulates its wrist			
4.	Pitch	\sim	Up and down movement of wrist			
5.	Roll		Rotation of wrist			
6.	Yaw		Right and Left movement of wrist			
7.	Actuator	\mathbf{X}	Devices used to convert hydraulic energy to Mechanical Energy			
8.	Automation		Automation is a technology that is concerned with the use of mechanical electronic and computer based system in the operation and control of production.			
9.	Types of Automation	std. 2	Fixed automation, programmable automation, flexible automation			
10.	Rule of robot		 do not harm human being obey human being protects itself from harm 			
11.	Robot anatomy		It means study of structure of Robots			
12.	Types of robot anatomy		 polar cylindrical cartesian jointed arm 			
13.	Robot joints		 linear rotational twisting revolving 			
14.	Wrist		It is the set of rotary joints to which a robots end effector is attached.			

15.	Major components of robots	Manipulator, end effector, power source controller censors actuator
16.	General areas of robotics	Industrial, hobbyist, promotional, personal, military, educational, medical.
17.	Work performed by the robot	 loading unloading palletizing depalletizing
18.	Advantages of robots	 greater flexibility reprogram ability adjustable kinematics greater response time improved product quality
19.	Disadvantages of robots	 replacement of human labour more unemployment significant retraining costs
20.	Processing application of Robot	 welding painting assembly inspection
21.	Offset	point of action for the tool mounted to the Robot tool plate
22.	Types of Robot movements	arm and body motion wrist motion
23.	4D jobs	 Dirty Dangerous Difficult Dull
24.	RIA definition of robot	Reprogrammable, multifunction manipulator designed to move materials, parts, tools or special devices through variable programmed motions for the performance of the variety of tasks.
25.	Robot control CSTO .	 non servo control servo control
	Unit-II : Robot Drive	e Systems and End Effectors
26.	End-effector	Attachments at the wrist arm perform a task.
27.	Grippers	Device to grasp objects
28.	Stripping Device	Used to remove work piece from magnetic gripper
29.	Compliance of a Robot	Displacement of the wrist in response to force
30.	Feedback Devices	Potentiometer, Resolver, Encoder
31.	Types of Drive Systems	Electric: Servo motors, Stepper motors Hydraulic actuators Pneumatic actuators

32.	RCC		Remote Center Compliance	
33.	Linear hydraulic		single acting cylinderdouble acting cylinder	
	actuator		• double acting doublerod cylinder	
	Hydraulic rotary		Geared motor	
34.	actuator		• Vane motor	
			Piston motor	
	Advantages of		• robust	
35.	hydraulic actuator		• self-lubricating	
			high efficiency	
36	Disadvantages of		 expensive noisy 	
50.	hydraulic actuator		 high maintenance 	
			compact	
	A 1		• cheapest	
37.	Advantages of		• compressed air can be stored and	
	plicullatic actuator		conveyed easily over long	
			distance	
			• more noise and vibration	
38.	Disadvantages of		• not suitable for heavy load	
	pneumatic actuator		• if mechanical stops are used	
			resetting the system can be slow	
			• widespread availability of power	
	Advantages of electrical actuator		• no pollution of working	
39.			environment	
		\sim	• high power conversion	
			efficiency	
	~		• poor dynamic response	
	Disadvantages of		• larger and heavier motors must	
40.	electrical actuator	C 1 1 1 1 2	be used which is costly	
	DEST	UNING	backlash	
		ctd 7	 pick up times are very fast 	
41.	Advantages of magnetic	.stu. 2	• to handle metal parts with holes	
	gripper		• require only one surface gripping	
			residual magnetism	
42	Disadvantages of		• side slippage	
72.	magnetic gripper		• more than one sheet will be	
			lifted by the magnet from a stack	
43.	Types of magnetic		• electromagnetic grippers	
	grippers		• permanent magnet grippers	
44	Adhesive grippers		the grasping action for handling fabrics	
TT .	rancorve grippero		and other lightweight material.	
			• Adhesive substance losses is	
45	Limitations of adhesive		tackiness on repeated usage	
43.	grippers		• Reliability is diminished with	
			successive operations	

46.	Advantages of suction Cup grippers		 Requires only one surface of the part for grasping Applies uniform pressure distribution Lightweight gripper
47.	Drive system used in the robot		 gears pulley drive rack and pinion recirculating ball and screw rotary drives
48.	Advantages of open loop system		simpleeconomicaleasier to construct
49.	Advantages of closed loop system		 the systems are accurate even in the presence of nonlinearities less affected by noise
50.	Uses of stepper motor		 Used for measured rotation Can be held at a particular position of shaft
	Uni	t-III : Sensors	s and Machine Vision
51.	Sensors	\times	Device that detects information about the surroundings
52.	Accuracy	\sim	Defined target point within work volume.
53.	Precision	\times	Closeness to the true value
54.	Repeatability	\times	Ability of the robot to position itself again and again
55.	Spatial Resolution		Control resolution combined with mechanical inaccuracy
56.	Control Resolution		capability of the robot's positioning system to divide the range of the joint into closed spaced points
57.	Palletizing	std. 2	Arranging materials on a pallet as per rules
58.	Tactile Sensor		Indicates contact between themselves and some other solid objects
59.	Proximity Sensor		Senses the presence or absence of the object without physical contact
60.	Range sensor		Senses the distance of the object
61.	Piezoelectric Materials		When stretched or compressed generates electric charges
62.	Machine Vision		Image processing and Image analysis techniques
63.	Frame Grabber		Device to store the digital image
64.	Segmentation		Grouping areas of an image having similar characteristics
65.	Region growing		Pixels are grouped in regions called grid elements

66.	Thresholding		Binary conversion technique – each	
67	Edge detection		Change of intensity in the pixels at the	
07.	Lage detection		boundary or edges	
			It is a collection of segmentation	
68.	Region Growing		in regions called grid elements based on	
			attribute similarities.	
			In vision applications distinguishing one	
			object from another is accomplished by	
69	Feature Extraction		means of features that uniquely	
			characterize the object. A feature is a	
			single parameter that permits ease of comparison and identification	
	Types of Rotary		Incremental encoders	<u> </u>
70.	encoders		Absolute encoders	
			A transducer is an electronic device that	
71.	Transducer		converts energy from one form to	
			another.	
72	Prenrocessing		It deals with techniques such as noise	
12.	Treprocessing		reduction and enhancement of details.	
73.	Vision Applications	~~~	Object location, Object Properties,	
			Wide Dynamic Pange	
74	Capacitive technique	\sim	• Linear Response	
/ 1.	advantages	\sim	Robust	
	Ultrasonic Sensors		Distance Measurement	
75.	Applications	\sim	Mapping	
	Unit-IV : l	Robot Kinema	tics and Robot Programming	
76	Pohot Program		List of instruction to support the robot	
70.	Robot Flograili		work cycle	
77.	Continuous path control	GNUNG Y	Entire route is specified by interpolation	
78.	Point to point control		Finite points are specified along the	
	-	std. 2	route	
79.	Kinematics		Study of relative motion between parts	
80.	Forward Kinematics		Determination of position and orientation knowing the joint angles	
01	Davara Vinamatica		Determination of joint knowing the	
81.	Reverse Kinematics		angles position and orientation	
82	Teach Pendant		A small hand held control box to	
			regulate robot movements	
83.	versatile Algorithmic	VAL	KODOLIC LANGUAGE developed by	
			Programmed by lead through and	
84.	Servo Control Robot		textual language methods	
85	Straight line		Computes the straight line path by	
00.	Interpolation		sequence of addressable points	
86.	Circular Interpolation		Used to define a circle in the robot's	
	F		workspace	

87.	Irregular smooth motion		Combination of straight, curved and back & forth motions
88.	Manual Lead through		The programmer moves the manipulated wrist to teach
89.	Degrees of Freedom		Freedom to move in space
90.	RAIL		Robotic Automatix Incorp. Language
91.	AML		A Manufacturing Language
92.	MCL		Machine Control Language
93.	AI		Artificial Intelligence
94.	VML		Virtual Machine Language
95.	SRL		Structured Robot Language
96.	Teach Pendant mode of operations		Teach mode, test mode, repeat mode.
97.	Transformation		 Pure translation Pure Rotation Combination of rotation and translation
98.	Pure traslation	>>>	Frame moves without any change in its orientation
99.	Articulated arm	\sim	3 DOF with RRR arm configuration
100.	Joints driven modes	$\times \times$	Position control modeForce control mode
	Unit-V	: Implementat	tion and Robot Economics
101.	Payback period	\sim	Length of time required for net accumulated cash flow
102.	Preventive Maintenance	\sim	Servicing the equipment at periodic intervals to reduce breakdown
103.	Return on Investment	GN ROL	Determines the rate of return for the proposed project
104.	Equivalent Uniform Annual Cost	S _{EUAC} 2	It converts investments and cash flows into equivalent uniform cash flows over life of project
105.	Automated Guided Vehicle	AGV	Computer controlled driverless vehicles used for transporting materials
106.	Vehicle Guidance Technology		Keeping AGV on a predefined path
107.	Vehicle Management		Coordinating the unmanned vehicles
108.	Vehicle Traffic Control		Minimizing interference between vehicles to prevent collusions.
109.	Gantry Robot		Cartesian coordinate robots with the horizontal member supported at both ends are sometime called Gantry robots.
110.	Rail Guided Vehicles	RGV	Motorised vehicles that are guided by a fixed rail system constitute a third category of material transport systems.

111.	Robot purchase cost		The basic price of the robot equipped from the manufacturer with the proper options (excluding end effector) to	
112.	Engineering costs		The costs of planning and design by the user company's engineering staff to install the robot.	
113.	Installation costs		This includes the labor and materials needed to prepare the installation site (provision for utilities, floor preparation, etc.).	
114.	Special tooling		This includes the cost of end effector, parts position and other fixtures and tools required to operate the work cell.	
115.	Miscellaneous costs		This covers the additional investment costs not included by any of the above categories (e.g. other equipment needed)	
116.	Direct labor cost		The direct labor cost associated with the operation of the robot cell. Fringe benefits are usually included in the calculation of direct labor rate, but other overhead costs are excluded.	
117.	Indirect labor cost	\ll	The indirect labor costs that can be directly allocated to the operation of the robot cell. These costs include supervision, setup, programming	
118.	Maintenance cost	\sim	This covers the anticipated costs of maintenance and repair for the robot cell.	
119.	Applications of AGV	\sim	 Driverless train operations Storage distribution system Assembly line operation FMS 	
120.	Types of AGV vehicles.	std. 2	 Towing vehicles Unit load vehicles Pallet trucks Fork trucks Light load Vehicles Assembly line vehicles. 	
121.	Types of maintenance		 Preventive maintenance Emergency maintenance 	
122.	Preventive maintenance		It involves the planned servicing at periodic intervals	
123.	Emergency maintenance		It is the case when the maintenance crew is called in to repair a robot that malfunctions or breaks down during regular operation.	
124.	Mean Time To Repair	MTTR	measure the average time of repairing the robot for each breakdown	
125.	Mean Time Between Failures	MTBF	average time of machinery will operate between breakdowns.	_

Placement Questions			
126.	How many times are the hands of a clock at right angle in a day?	 A. 22 B. 24 C. 44 D. 48 Explanation: In 12 hours, they are at right angles 22 times. ∴ In 24 hours, they are at right angles 44 times. 	
127.	A train moves with a speed of 108 kmph. Its speed in metres per second is :	A.10.8 B.18 C.30 D.38.8 Explanation:108 kmph = 108*[5/18] m/sec = 30 m/s.	
128.	Determine the probability that a digit chosen at random from the digits 1, 2, 3,12 will be odd.	Total no. of Digits = 12. Equally likely cases = 12. There are six odd digits. Probability = 6 /12 = 1/2	
129.	In covering a distance of 40 km, Kamlesh takes 2 hours more than Pankaj. If Kamlesh doubles his speed, then he would take 1 hour less than Pankaj. Then what is Kamlesh's speed?	A. 11 kmph B. 5 kmph C. 9 kmph D. 6 kmph Answer:B Explanation: Let Kamlesh's speed be x km/hr. Then, $40/x - 40/(2x) = 4$ 8x = 40 x = 5 km/hr	
130.	Solve the equation ESI GNING x+34=82	A. 58 B. 48 C. 55 UTURE D. 60 Explanation: x=82-34=48	
131.	An accurate clock shows 8 o'clock in the morning. Through how may degrees will the hour hand rotate when the clock shows 2 o'clock in the afternoon?	A.360. B.180 C.90 D.60 Answer: B) 180 Explanation: Angle traced by the hour hand in 6 hours=(360/12)*6	
132.	Excluding stoppages, the speed of a bus is 54 kmph and including stoppages, it is 45 kmph. For how many minutes does the bus stop per hour?	A. 9 B. 10 C. 12 D. 20	

133.	Find the no., when 15 is subtracted from 7 times the no., the result is 10 more than twice of the number	I 7	Let the number be x. 7x - 15 = 2x + 10 => 5x = 25 => x = 5
134.	If 0.75: x :: 5:8, then x is equal to:	A E C I I E S	A.1.12 3.1.16 C.1.20 D.1.30 Explanation: $(x * 5) = (0.75 * 8)$ K=6/5 = 1.20
135.	Today is Monday. After 61 days, it will be :	A E C I I A E r iti A	A. Tuesday B. Monday C. Sunday D. Saturday Answer: D) Saturday Explanation: Each day of the week is epeated after 7 days. So, after 63 days, t will be Monday. After 61 days, it will be Saturday.
136.	Adam can do a job in 15 days; Eve can do the same job in 20 days. If they work together for 4 days, what fraction of job is incomplete?	A F I C F	Adam can do $1/15$ of the job per day Eve can do $1/20$ of the job per day f they work together they can do $7/60$ of the work together Remaining job 1 - $7/60 = 32/60 = 8/15$
137.	Which one of the following is not a prime number?	A F C I SNING M F 9 n	A.31 B. 61 C. 71 D. 91 Explanation: D1 is divisible by 7. So, it is not a prime number.
138.	Find c, if 5c - 2 = 33	Stor. 2 A E C I E V 2 s	A. 7 B. 9 C. 11 D. 13 Explanation: We add 2 to both sides and get 5c- 2+2=33+2, or 5c=35. We divide both ides by 5 to get c=7.
139.	A person crosses a 600 m long street in 5 minutes. What is his speed in km per hour?	A H C I E S	A. 3.6 3. 7.2 C. 8.4 D. 10 Explanation: Speed = $600/5 \ge 60 \text{ m/sec.} = 2 \text{ m/sec.}$ = $2 \ge 18/5 \text{ km/hr} = 7.2 \text{ km/hr}$

140.	A and B can do a piece of work in 4 days, while C and D can do the same work in 12 days. In how many days will A, B, C and D do it together?		A, B, C and D will together take $\frac{1}{4}$ + $\frac{1}{12} = \frac{4}{12} = \frac{1}{3}$. 3 days to complete the work.	
141.	The average of five numbers is 27. If one number is excluded, the average becomes 25. The excluded number is?		A.25 B.35 C.45 D.55 Answer:B Explanation: (27*5)-(25*4) 135-100 35	
142.	The maximum gap between two successive leap year is?		A.4 B.8 C.2 D.1 Answer: B) 8 Explanation: This can be illustrated with an example. Ex: 1896 is a leap year. The next leap year comes in 1904 (1900 is not a leap year).	
143.	A guy bought 10 pencils for Rs. 50 and sold them for Rs. 60.What is his gain in terms of percentage?		A. 10% B. 5% C. 20% D. 12% Answer:C Explanation: `"Gain%"=("Gain"/"C.P")*100=20%`	
144.	Two trains starting at the same time from 2 S stations 200 km apart and going in opposite direction cross each other at a distance of 110 km from one of the stations. What is the ratio of their speeds?	std. 2	In the same time, they cover 110 km and 90 km respectively. For the same time, speed and distance is inversely proportional. So ratio of their speed = 110:90 = 11: 9	
145.	In 100 m race, A covers the distance in 36 seconds and B in 45 seconds. In this race A beats B by:		A. 20m B. 25m C. 22.5m D. 9m Explanation: Distance covered by B in 9 sec. = (100/45)*9m = 20m	
146.	Half percent, written as a decimal, is		A.0.2 B.0.02 C.0.005 D.0.05	

		Answer: C	
		Explanation: As we know, 1% = 1/100 Hence, (1/2)% = (1/2 * 1/100) = 1/200 = 0.005	
147.	A pump can fill a tank with water in 2 hours. Because of a leak, it took 2.5 hours to fill the tank. The leak can drain all the water of the tank in:	A. 4 1/3 Hours B. 7 Hours C. 8 Hours D. 10 Hours Explanation: Work done by the leak in 1 $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 & 0 \end{pmatrix} = 1$ hour = \therefore Leak will empty the tank in 10 hrs.	
148.	If a number is chosen at random from 1 to 100, then the probability that the chosen number is a perfect cube is	We have 1,8,27 and 64 as perfect cubes from 1 to 100. Thus, the probability of picking a perfect cube is $4/100 = 1/25$	
149.	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	A. 9 B. 11 C. 13 D. 15 Explanation: Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \Leftrightarrow x = 11$. \therefore Third integer $= x + 4 = 15$.	
150.	Find the number, when 15 is subtracted from 7 times the number, the result is 10 more than twice of the number S	A. 5 B. 15 C. 7.5 D. 4 Explanation: Let the number be x. 7x - 15 = 2x + 10 => 5x = 25 => x = 5	
	E	std. 2000	