

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MKC

2019-20

MUST KNOW CONCEPTS

MECH

Course Code & Course Name :

16MED13 & Heat and Mass Transfer

Year/Sem/Sec III / V/ A :

Concept/Definition/Meaning/ Notation S.No. Units Term **Units/Equation/Expression** (Symbol) **Unit-I Conduction** Transfer of heat in solid objects Conduction. 1. K Thermal conductivity is defined as the w/mK 2. Thermal Conductivity ability of a substance to conduct heat. Heat transfer by convection is given by Newton's law of cooling 3. Newton's law $\mathbf{Q} = \mathbf{h}\mathbf{A}\left(\mathbf{T}_{s} - \mathbf{T}_{\infty}\right)$ Heat transfer by extended surface Fins 4. 1. Cooling of electronic components 2. Cooling of motor cycle engines. 3. Cooling of transformers Applications of fins. 5. 4. Cooling of small capacity compressors It gives a simple index of the ratio of the heat transfer resistances inside of a body 6. Biot number Bi and at the surface of a body. Bi = hl/kTypes of Fins 1. Longitudinal fin 2. Radial fin 3. Pin fin 7. The ratio of actual heat transfer rate taking place through the fin and the maximum 8. Fin Efficiency possible heat transfer rate that could occur through the fin. The ratio between heat transfer rate with fin 9. **Fin Effectiveness** and the heat transfer rate without fin. Heat is a form of energy that can be transferred from one system to another as a 10. Heat result of temperature difference. science The with that deals the Heat transfer determination of the rates of such energy 11. transfer

12.	Mechanism of heat transfer		Conduction, Convection, Thermal Radiation	
13.	Fourier's law of heat conduction	Qcond	It indicates that the rate of heat conduction in a direction is proportional to the <i>temperature gradient</i> in that direction. $\dot{Q}_{cond} = -k_t A \frac{dT}{dx} (W)$	W
14.	Thermal diffusivity	α	The thermal diffusivity is a measure of how quickly a material can carry heat away from a hot source. $\alpha = \frac{k}{\rho C_p} = \frac{Heat \ conducted}{Heat \ stored}$	$\frac{m^2}{s}$
15.	Steady-State Heat Conduction		If the temperature of the body does not varies with time	
16.	Transient or Unsteady state heat conduction		If the temperature of the body varies with time	
17.	Periodic Heat flow		The temperature varies on regular basis. Examples: 1. Cylinder of IC engines 2. Surface of the earth during a period of 24 hours.	
18.	Non – Periodic Heat flow	\otimes	 The temperature at any point within the system varies non linearly with time. Examples: Heating of an ingot in a furnace Cooling of bars 	
19.	Newtonian heating or cooling process	$\langle \rangle$	The process in which the internal resistance is assumed as negligible in comparison with its surface resistance	
20.	Lumped Heat DES Analysis	IGNING	In a Newtonian heating or cooling process the temperature throughout the solid is considered to be uniform at a given time	
21.	Semi- infinite solids	Esta.	At any instant of time, there is always a point where the effect of heating or cooling at one of its boundaries is not felt at all. At this point the temperature remains unchanged	
22.	Infinite solids		A solid which extends itself infinitely in all directions of space	
23.	Fourier Number		The ratio of characteristic body dimension to temperature wave penetration depth of time	
24.	Factors affecting Thermal conductivity		 Moisture Density of material Pressure Temperature Structure of material 	
25.	Heisler charts		The solutions for temperature distributions	

			and heat flow of plane walls, long cylinders	
			and spheres with finite internal and surface	
			resistance presented. It is nothing but a	
			analytical solutions in the form of graphs.	
		Unit -	– II Convection	
24	Convection.		Transfer of heat in liquids	
26.			1	
			The fluid particles in each layer remain in	
27.	Laminar flow		an orderly without mixing with each other.	
28	Turbulent flow		The path of any individual particle is zig –	
			zag and irregular.	
			If the fluid motion is produced due to	
29.	Natural convection		change in density	
20			If the fluid motion is artificially created by	
30.	Forced convection		means of an external force like a blower or	
			Tan It is a worth subject worth a drawhish works	
			It is a mathematical method which makes	
01	Dimensional Analysis		use of the study of dimensions for solving	
51.	Dimensional Analysis		problems in fluid mechanics and	
			thermodynamics	
			If there are n variables in a dimensionally	
			homogeneous equation and if these contain	
32	Buckingham π		m fundamental dimensions then the	
52.	theorem		variables are arranged into $(n -$	
		\sim	<i>m</i>)dimensionless terms.	
33.	Revnolds Number	Re	The ratio of inertia force to viscous force	
			The ration of momentum diffusivity to	
34.	Prandtl Number	Pr	thermal diffusivity	
			The ratio of heat convection to heat	
35.	Nusselt Number	I G Nu G	conduction	
			The ratio of product of inertia force and	
36	Grashof Number	FSGr	buoyancy force to the square of viscous	
00.		LUCU.	force	
07		C.	The ratio of Nusselt number to the product	
37.	Stanton Number	St	of Reynolds number and Prandtl number	
20	Newtonian Eluid		The Fluid which obey the newton's law of	
38.	newtonian Fluid		viscosity	
20	Non Newtonian Eluid		The Fluid which does not obey the newton's	
39.			law of viscosity	
40	Hydrodynamic		The velocity of fluid is less than 99% of	
то.	Boundary Layer		free stream velocity	
41	Thermal Boundary		The temperature of fluid is less than 99% of	
	Layer		tree stream temperature	
	Boundary Laver		The distance from the surface at which the	
42.	Thickness		local velocity or temperature reaches 99%	
			of external velocity or temperature	
43.	Displacement		It is the distance, measured perpendicular to	

		1		
	thickness		the boundary, by which the stream is	
			displayed on account of formation of	
			boundary layer.	
			It is the distance through which the total	
11	Momentum thickness		loss of momentum per second be equal to if	
44.	Womentum unexness		ioss of momentum per second be equal to n	
			it were passing a stationary plate	
			It is the distance, measured perpendicular to	
			the boundary of the solid body, by which	
4=			the boundary should be displaced to	
45.	Energy Thickness		compensate for the reduction in kinetic	
			energy of the flowing fluid on account of	
			hour dame lower formation	
			boundary layer formation.	
			1. Boundary layer region near the	
16	Flow over cylinder		surface	
40.	field regions		2. An inviscid region away from the	
	_		surface	
	Dimensionless		1 Reynolds Number (Re)	
47	parameters used in		2 Nusselt Number (NU)	
47.	formed convection		2. Russelt Number (RC)	
	lorced convection			
			1. It express the functional relationship	
			between the variables in	
10	Advantages of	~ /	dimensionless terms	
40.	Dimensional Analysis		2. It enables getting up a theoretical	
			solution in a simplified	
			dimensionless form	
			1 No information is given about the	
			1. No information is given about the	
			internal mechanism of physical	
49	Dis advantages of		phenomenon	
17.	Dimensional Analysis		2. Dimensional analysis does not give	
			any clue regarding the selection of	
			variables	
		~ /	Heat transfer by convection is given by	
	Newton's law of		Newton's law of cooling	
50.	Convection	LC MUNCC		
		TONING	$TOUR Q = nA(T_s - T_{\infty})$	
	<u> </u>		2000	
	Unit-III : PHASE CH	IANGE HEAT	I TRANSFER AND HEAT EXCHANGERS	5
			The change of phase from liquid to vapour	
⊑1	Poiling		state is known as beiling	
51.	Doming		state is known as donnig.	
	Condensation		The change of phase from vapour to liquid	
52.	Condensation		state is known as condensation.	
			1. Thermal and nuclear power plant	
	Applications of		2 Refrigerating systems	
52	boiling and		2. Process of heating and cooling	
55.	condensation.		A in conditioning and cooling	
			4. Air conditioning systems	
54	Pool boiling		If heat is added to a liquid from a	
51.			submerged solid surface	
	Film wise		The liquid condensate wets the solid	
55.	condensation		surface, spreads out and forms a continuous	
			-	

			film	
56.	Drop wise condensation		a large portion of the area of the plate is directly exposed to vapour.	
57.	Heat exchanger		A heat exchanger is defined as an equipment which transfers the heat from a hot fluid to a cold fluid.	
58.	Direct heat exchanger		In direct contact heat exchanger, the heat exchange takes place by direct mixing of hot and cold fluids.	
59.	Indirect contact heat exchanger		In this type of heat exchangers, the transfer of heat between two fluids and separated by wall	
60.	Regenerator		In this type of heat exchangers, hot and cold fluids flow alternately through the same space.	
61.	Recuperater		the hot and cold fluid do not come into direct contact with each other but are separated by a tube wall or a surface.	
62.	parallel flow	\times	In this type of heat exchanger, hot and cold fluids move in the same direction.	
63.	counter flow	\propto	In this type of heat exchanger hot and cold fluids move in parallel but opposite directions.	
64.	shell and tube heat exchanger	\times	In this type of heat exchanger, one of the fluids move through a bundle of tubes enclosed by a shell	
65.	compact heat exchangers	X	heat exchangers are small in size	
66.	LMTD DES	IGNING	Log mean temperature difference	
67.	cross flow heat exchanger	Estd.	hot and cold fluid moves at right angle to each other	
68.	NTU		Number of transfer units	
69.	Fouling factor		Deposits present in the tube reduces the heat transfer rate	
70.	Effectiveness of heat exchanger		ratio between actual heat transfer to maximum possible heat transfer	
71.	Compact heat exchanger		small in size .Radiator is a type of compact heat exchanger	
72.	Flow Boiling		It may occur when a fluid is forced through a pipe or over a surface which is maintained at a temperature higher than the saturation temperature of the fluid.	
73.	Modes of condensation process		 Flimwise condensation Dropwise condensation 	
74.	Assumption of Nusselt's theory for		 The fluid properties are constant The shear stress at the liquid vapour 	

	Flim condensation		interface is negligible	
75.	Types of Heat exchangers		It may be classified on the basis of 1. Nature of heat exchange process 2. Relative direction of fluid motion 3. Design and constructional features 4. Physical state of fluids	
		Unit-	IV : RADIATION	
76.	Emissivity		It is defined as the ability of the surface of a body to radiate heat.	
77.	Kirchhoff's law		This law states that the ratio of total emissive power to the absorptivity	
78.	Stefan Boltzmann law		Emissive power of a black body is proportional to the fourth power of absolute temperature	
79.	Shape factor		Actual participation of part in transmission of electricity	
80.	Eddy diffusion		When one of the diffusion fluids is in turbulent motion, eddy diffusion takes place.	
81.	Radiation shield		Reduces heat by keeping the shield	
82.	Heat flux	X	Saturation of heat per unit area is called heat flux.	
83.	Stefan–Boltzmann constant	σ	$\sigma = 5.67 * 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$	$rac{W/m^2}{K^4}$
84.	Black body	\sim	The idealized surface that emits radiation at this maximum rate is called black body	
85.	Absorptivity	α	The fraction of the radiation energy incident on a surface that is absorbed by the surface. Its value is in the range $0 \le \alpha \le 1$.	
86.	Radiation DES	IGNING	The heat is transferred from one body to another body without any transmitting medium. It is a electromagnetic wave phenomenon.	
87.	Emissive power	Es_{E}^{td} .	The total amount of radiation energy emitted by the body per unit time and unit area.	W/m ²
88.	Monochromatic Emissive power	${ m E}_{b\lambda}$	The energy emitted by the surface at a given length per unit time and per unit area in all directions	
89.	Reflectivity	Р	The ratio of radiation reflected to the incident radiation	
90.	Transmissivity	Т	The ratio of radiation transmitted to the incident radiation	
91.	Wein's Displacemt Law		The relationship between the temperature and wave length corresponding to the maximum spectral emissive power of the black body at that temperature $\lambda_{max} T= 2.9 \times 10^{-3} \text{ mk}$	
92.	Gray Body		If a body absorbs a definite percentage of incident radiation irrespective of their wave	

			length.	
93.	Intensity of radiation	In	As the rate of energy leaving a space in a given direction per unit solid angle per unit area emitting surface normal to the mean direction of space $I_n = E_b/\pi$	
94.	Lambert's Cosine law		The total emissive power E_b from the radiating plane surface in any direction propotional to the cosine of the angle of emission. $E_b \alpha \cos \theta$	
95.	Irradiation	G	The total radiation incident upon a surface per unit time and per unit area	W/m ²
96.	Radiosity	J	It is used to indicate the total radiation leaving a surface per unit time and per unit area	W/m ²
97.	Shape factor	Fij	The fraction of radiative energy that is diffused from one surface element and strikes the other surface directly with no intervening reflections	
98.	Other Names of Shape factors	X	 View Factor Angle Factor Configuration Factor 	
99.	wavelength range of radiation	\sim	0.1 to 100 μm (micrometer)	
100.	wavelength range of the visible light	\sim	350 to 750 nm (nanometer)	
		Unit-V:	MASS TRANSFER	
101.	Types of mass transfer	$\langle \rangle$	Convection mass transfer, diffusion mass transfer	
102.	Mass transfer	IGNING	The process of transfer of mass as a result of the species concentration	
103.	Examples of mass transfer	Estd.	 Humidification of air in cooling tower Evaporation of petrol in the carburetor of an IC engine. The transfer of water vapour into dry air. 	
104.	Modes of mass transfer		 Diffusion mass transfer Convective mass transfer 	
105.	Convective mass transfer		It occur between surface and a fluid medium when they are at different concentration.	
106.	Free convective mass transfer		If the fluid motion is produced due to change in density resulting from concentration gradients,	

107.	Forced convective mass transfer		If the fluid motion is artificially created	
108.	Eddy diffusion		When one of the diffusion fluid is in turbulent motion, eddy diffusion takes place	
109.	Schmidt Number	Sc	The ratio of molecular diffusivity of the momentum to molecular diffusivity of mass	
110.	Scherwood Number	Sh	It is the ratio of concentration gradients at the boundary	
111.	Examples of Convective mass transfer		 Evaporation of alcohol Evaporation of water from an ocean when air blows over it 	
112.	Mass Concentration (or) Mass Density		Mass of a component per unit volume of mixture	Kg/m ³
113.	Molar Concentration (or) Molar Density		Number of molecules of the component per unit volume of mixture	Kg – mole / m ³
114.	Mass fraction	\langle	The ratio of mass concentration of the species to the total mass density of the mixture	
115.	Mole fraction		The ratio of mole concentration of a species to the total molar concentration	
116.	Molecular diffusion	$\left \right>$	Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero.	
117.	Examples of Molecular diffusion	\geq	Balloons, Food Coloring, Perfume, Soda	
118.	Distillation	\succ	It is the process of separating components of a mixture based on different boiling points.	
119.	Distillation Examples	IGNING	Examples of uses of distillation include purification of alcohol, desalination, crude oil refining, and making liquefied gases from air.	
120.	Wetted wall column	Estd.	The liquid-vapor contacting devices provides maximum contact surface area for a particular duty	
121.	spray chamber		The equipment frequently used for adiabatic humidification-cooling operation with recirculating liquid is called spray chamber	
122.	Physisorption		Physisorption, also called physical adsorption, is a process in which the electronic structure of the atom or molecule is barely perturbed upon adsorption	
123.	Lewis number	(Le)	It is the dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass transfer	
124.	Relative humidity		The ratio of partial pressure of the vapour to the vapour pressure of the liquid at gas temperature.	

125.	Absorption		The separation of two or more components of a liquid solution cannot be achieved.
		Placen	nent Questions
126.	What is the average of first five multiples of 12?		A. 36 B. 38 C. 40 D. 42 Answer : A
127.	A running man crosses a bridge of length 500 meters in 4 minutes. At what speed he is running?		A. 8.5 km/s B. 7.5 km/s C. 9.5 km/s D. 6.5 km/s Answer : B
128.	If Suresh borrows Rs. 36000 from Mahesh at rate of interest 6% S.I, at the end of four years how much interest Suresh has to pay along with principal amount?		A. Rs. 12560 B. Rs. 12960 C. Rs. 13500 D. Rs. 14500 Answer : B
129.	What is the HCF of 1095 and 1168?		 A. 37 B. 73 C. 43 D. 83 Answer: B
130.	A train moving at speed of 80 km/hr crosses a pole in 7 seconds. Find the length of the train.	Estd.	 A. 150 m B. 165 m C. 175 m D. 170 m Answer: C
131.	How many times the hands of a clock coincide in a day?		A. 24 B. 22 C. 23 D. 21 Answer : B
132.	40 % of 280 =?		A. 112 B. 116 C. 115 D. 120

			Answer: A	
133.	A shopkeeper sold an article for Rs. 2500. If the cost price of the article is 2000, find the profit percent.		A. 23% B. 25% C. 27% D. 29% Answer: B	
134.	What is the area of a triangle with base 5 meters and height 10 meters?		 A. 20 square meters B. 35 square meters C. 25 square meters D. 40 square meters Answer : C 	
135.	A: B: C is in the ratio of 3: 2: 5. How much money will C get out of Rs 1260?		A. 252 B. 125 C. 503 D. None of these Answer: D	
136.	In a kilometer race, A beats B by 40 meters or by 5 seconds. What is the time taken by A over the course?		A. 1 minute 57 seconds.B. 2 minutes.C. 1.5 minutes.D. None of these.Answer: B	
137.	Find the solution of $(935421 \times 625) = ?$	\otimes	a. 584638125 b. 524896335 c. 542879412 d. 582365890 ANSWER: 584638125	
138.	Find which of the following number is divisible by 11?		a. 246542 b. 415624 c. 146532ANSWER: 415624 d. 426513	
139.	Find the unit digit in the product $(365 \times 659 \times 771)$	Estd.	a. 1 b. 4 c. 5 d. 9	
140.	The remainder is 3, when a number is divided 5. If the square of this number is divided by 5, then what is the remainder?		a. 5 b. 4 c. 7 d. 1 ANSWER: 4	
141.	A man walking at the rate of 6 km/hr crosses a bridge in 15 minutes. The length of the bridge is		a. 1000 m b. 1250 m c. 1500 m d. 1800 m ANSWER: 1500 m	

142.	Two pipes A & B can fill a tank in 5 min & 10 min respectively. Both the pipes are opened together but after 2 min, pipe A is turned off. What is the total time required to fill the tank?		a. 4 min b. 6 min c. 14 min d. 20 min ANSWER: 6 min
143.	50 % of a number is 18 less than two-third of that number. Find the number		a. 123 b. 119 c. 115 d. 108 ANSWER:108
144.	A shopkeeper sells an article for Rs. 200 with a loss of Rs. 20 %. Find the cost price of the article		a. 220 b. 250 c. 280 d. 260 ANSWER: 250
145.	A merchant sells 30 metres of cloth and gains selling price of 10 metres. Find the gain percent	$\langle \langle \rangle$	a. 15 % b. 25 % c. 50 % d. 75% ANSWER: 50%
146.	The average of four consecutive even numbers is 27. Find the largest of these numbers.	\otimes	a. 28 b. 30 c. 32 d. 34 ANSWER: 30
147.	A batsman makes a E score of 80 runs in the 16 th inning and increases average by 3. What is his average after 16 th inning?	Estd.	a. 35 R FUTURE b. 32 c. 29 000 d. 25 ANSWER:35
148.	Hirsute		a. Shaggy b. bald c. erudite d. glorious ANSWER: bald
149.	Ostentatious		a. Nescient b. Awkward c. Bankrupt d. Reserved ANSWER: Reserved

150.	What is the average of first five multiples of 12?	E. 36	
		F. 38	
		G. 40	
		Н. 42	
		Answer : A	

Faculty Team Prepared

Signatures

- 1. Mr.D.Deepa
- 2. Mr.S.Perumal
- 3. Mr.R.Ramesh

HoD