

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & **Affiliated to Anna University**) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

1

Must Know Concepts (MKC)

Subject		Fluid Mechanics and Machinery				
	UNIT-I FLUID PROPERTIES AND FLOW CHARACTERISTICS					
S No	Term	Notatio n (Symbol)	Concept/Definition/Meaning/Units/Equation/ Expression	Units		
1.	Density	ρ	$\rho = Mass/Volume$	Kg/m ³		
2.	Specific weight	γ	$\gamma = Weight/Volume$	N/m ³		
3.	specific volume	v	v = Volume/ Weight	m ³ /Kg		
4.	Kinematic viscosity	ν	v = Dynamic viscosity / Density of fluid	Stokes		
5.	Compressibility	β	β = Volumetric Strain / Compressive stress	m ² /N		
6.	Surface tension	σ	σ = Tensile force acting on the surface of the liquid	N/m		
7.	Capillarity D E S	h	Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small tube relative to the adjacent general level of liquid when the tube is held vertically in the liquid	m		
8.	Continuity equation	Est	$\mathbf{Q} = \mathbf{A}_1 \mathbf{V}_1 = \mathbf{A}_2 \mathbf{V}_2$	-		
9.	Relative density of mercury is		13.6			
10.	A Newtonian fluid is defined as the fluid which		Obeys Newton's law of viscosity			
11.	The unit of pressure one bar is		100 kPascal			
12.	The location of the centre of pressure over a surface immersed in a liquid is		will be below the centroid			
13.	The continuity equation is the result of application of the following law to the flow field		Conservation of mass			
14.	Property of fluid that describes its internal resistance is known as:		Viscosity			

15.	Which fluid does not experience shearing stress		Inviscid	
16.	during flow?Stress strain relationship forNewtonian fluid is		Linear	
17.	Bulk modulus is the ratio of		Compressive stress to volumetric strain	
18.	The sum of components of shear forces in the direction of flow of fluid is called as		Shear drag, friction drag, skin drag	
19.	When the angle between surface tension with the liquid (θ) is greater than 90°, the liquid becomes		Convex upward	
20.	The fluid will rise in capillary when the capillary is placed in fluid, if		The adhesion force between molecules of fluid and tube is more than the cohesion between liquid molecules	
21.	Ideal fluid		A fluid which has no viscosity, incompressible, no surface tension	
22.	Newton's law of viscosity states that		The shear stress applied to the fluid is directly proportional to the velocity gradient	
23.	The specific weight of the fluid depends upon		Gravitational acceleration, mass density of the fluid	
24.	Shear stress in static fluid is		Always zero	
25.	The study of force which produces motion in a fluid is called as	\mathbf{X}	Fluid dynamics	
	UNIT-II FL	OW THR	OUGH CIRCULAR CONDUITS	
26.	If the Reynolds number is less than 2000, the flow in a pipe is	IGNIN	Laminar G YOUR FUTURE	
27.	In pipe flow the critical Reynolds number is about		2000	
28.	Boundary layer thickness is the distance from the boundary to the point where velocity of the fluid is	LS	Equal to 99% of free stream velocity	
29.	The friction factor in fluid flowing through pipe depends upon		Reynold's number, Relative roughness of pipe surface	
30.	Laminar flow	-	Reynolds number is less than 2000- Defined path	
31.	Turbulent flow	-	Reynolds number is greater than 4000 - zig – zag	
32.	Compressible flow	-	$\rho \neq \text{constant}$	
33.	Incompressible flow	-	$\rho = constant$	

34.	Major Losses	-	Loss of energy due to friction		
35.	Minor Losses	-	Loss of energy or head due to change of velocity		
36.	Darcy-Weisbach equation	-	$h_f = 4 f l v^2 / 2g d$		
37.	Friction factor for laminar flow is given by		64 / Re		
38.	Formula for Euler's equation of motion		$(\partial p / \rho) + (g dz) + (v dv) = 0$		
39.	Viscous forces are not present in		Irrotational flow		
40.	If viscosity of fluid is more, the thickness of boundary layer is		More		
41.	The effect of free stream velocity on thickness of boundary layer		Increase in free stream velocity decreases the boundary layer thickness		
42.	The velocity gradients over the boundary layer are		Large		
43.	The intensity of shear stresses over the boundary layer		Large		
44.	Formula for loss at the exit of a pipe		$V^2/2g$		
45.	Minor losses do not make any serious effect in	$\langle \rangle$	Long pipes		
46.	Minor losses occur due to		Sudden enlargement, sudden contraction and bends in pipe		
47.	The head loss through fluid E s flowing pipe due to friction is	IGNIN	The major loss		
48.	Coefficient of friction for laminar flow is given as	Est	16/Re2000		
49.	The viscosity of the flowing fluid for laminar flow		Should be as high as possible		
50.	The flow of fluid will be laminar when		Reynold's number is less than 2000, the density of the fluid is low		
	UNIT-III DIMENSIONAL ANALYSIS				
51.	Reynolds number signifies the ratio of		Inertial forces to viscous forces		
52.	Square root of the ratio of inertia force to elastic force is called as		Mach's Number		
53.	Dimensionless equation		Reynold's equation, Euler's equation, Weber's equation		

54.	Dimensional analysis	-	Mathematical technique which makes use of the study of dimensions as an aid to solution of several engineering problems	
55.	Dimensional homogeneity	-	Dimensions of the terms on its LHS are same as the dimensions of the terms on its RHS.	
56.	Methods of dimensional analysis	-	Rayleigh method, Buckinghum π method	
57.	Model	-	Small scale replica of an actual structure	
58.	Prototype	-	Actual structure or machine is called as its Prototype	
59.	Dimensions of force		M L T $^{-2}$	
60.	Quantities has the dimensions [M0 L0 T 0]		Strain	
61.	The unit of physical quantity which does not depend on the unit of any other physical quantity is called as		Fundamental dimension	
62.	Euler's dimensionless number relates the following		Pressure force and inertial force	
63.	When a body floating in a liquid, is displaced slightly, it oscillates about		Metacentre	
64.	When the Mach number is between the flow is called super-sonic flow.	\mathbf{X}	1 and 6	
65.	A one dimensional flow is one which		Involves zero transverse component of flow	
66.	Dimensions of surface tension		ML°T ⁻ 2	
67.	The loss of pressure head in case of laminar flow is proportional to	Rsi	Velocity	
68.	Reynolds number is significant in		Full immersion or completely enclosed flow, as with pipes, aircraft wings, nozzles etc.	
69.	Practical fluids		Possess viscous, surface tension, compressible	
70.	The flow in a pipe is neither laminar nor turbulent when Reynold number is		Between 2000 and 2800	
71.	Principle of similitude forms the basis of		Designing models so that the result can be converted to prototypes	
72.	A fluid is said to be ideal, if it is		Inviscous and incompressible	
73.	In one dimensional flow, the flow		Takes place in straight line	
74.	Cavitation is caused by		Low pressure	

75.	Froude number is significant in		Simultaneous motion through two fluids where there is a surface of discontinuity, gravity forces, and wave making effect, as with ship's hulls	
		UNI	T-IV PUMPS	
76.	Centrifugal pump	-	The mechanical energy is converted into pressure energy means of centrifugal force acting on the fluid, the hydraulic machine is called Centrifugal Pump	
77.	Mechanical Efficiency	η mech	Power at the impeller / Shaft Power	
78.	Priming	-	The operation in which the suction pipe, casing of the pump and a portion of the delivery pipe up to the delivery valve is completely filled up from outside source with the liquid to be raised by the pump before starting the pump	
79.	Slip	-	Difference between the theoretical discharge (QT) and actual discharge (Qact)	
80.	Coefficient of discharge	-	Ratio of actual discharge to theoretical discharge	
81.	The main function of centrifugal pumps are to		Transfer energy	
82.	Centrifugal pumps are used to transport	\bigcirc	Fluid	
83.	Centrifugal pumps transport fluids by converting		Kinetic energy to hydrodynamic energy	
84.	The fluid coming into the centrifugal pump is accelerated by		Impeller	
85.	Pump transfers the mechanical energy of a motor or of an E engine into of a fluid.	IGNIN	Pressure energy, kinetic energy or both	
86.	Rotary displacement pumps are suitable for handling	LS	oils	
87.	Which of the following is/are example/s of rotary displacement pumps?		Rotary piston pump	
88.	Pump is also called as velocity pump.		Centrifugal	
89.	Capacity of the reciprocating pump isDischarge that of the centrifugal pump.		lower than	
90.	For small discharge and high head, which pump is preferred?		Reciprocating type	
91.	Centrifugal pumps are used to		Fluid	

	transport			
92.	Centrifugal pumps transport fluids by converting		Kinetic energy to hydrodynamic energy	
93.	pump is also called as velocity pump		Centrifugal pump	
94.	In a centrifugal pump, the liquid enters the pump		At the centre	
95.	In general, the vanes of a centrifugal pump are		Backward-curved	
96.	Head developed by a centrifugal pump depends on		Speed ,impeller diameter	
97.	The ratio of the of the actual measured head to the head imparted to the fluid by the impeller is known as		Manometric efficiency	
98.	If pump NPSH requirements are not satisfied,		It will be cavitated	
99.	To avoid cavitation in the centrifugal pump		Suction pressure should be high	
100.	Multistage centrifugal pumps are used to obtain	\leq	High head	
		UNIT	V TURBINES	
101.	Turbine	-	The machines which use the energy of water and convert it into mechanical energy	
102.	Jet Ratio	-	Ratio of the pitch diameter (D) of the Pelton wheel to the diameter of the jet (d).	
103.	Radial flow reaction turbine E	IGNIN	Water flows in the radial direction in the turbine	
104.	Draft tube		Discharges water to tail race safely	
105.	Efficiencies of a turbine		Hydraulic efficiency Mechanical efficiency Volumetric efficiency Overall efficiency	
106.	Impulse turbine requires		High head and low discharge	
107.	Which of the following is an impulse turbine?		Pelton turbine	
108.	Pelton turbine is		Tangential flow	
109.	Kaplan turbine is		Radial flow	
110.	Francis turbine is		Mixed flow	
111	If the blades of the axial flow			

112.	The specific speed of a turbine is		N√P / H^5/4		
113.	Hydraulic gradient line represents the sum of		pressure head and datum head		
114.	Hydraulic ram is a pump which works		principle of water hammer		
115.	The Pelton turbine is		Tangential flow impulse turbine		
116.	Which of the following is an example of impulse turbine		Pelton wheel		
117.	Gross head is the difference between		head race and tail race		
118.	The energy of water entering the reaction turbine is		partly the pressure energy and partly the kinetic energy		
119.	What is the formula for the velocity of water jet at the inlet of turbine		$V = C_v \sqrt{2gH}$		
120.	Impulse turbine is used for		High head		
121.	Hydraulic gradient line (H.G.L.) represents the sum of	$\boldsymbol{\times}$	Pressure head,kinetic head and datum head		
122.	High specific speed of a pump implies it is	\geq	Axial flow pump		
123.	Low specific speed of a pump implies it is	\geq	Centrifugal pump		
124.	For small discharge at high- pressure following pump is preferred DES	IGNIN	Reciprocating G YOUR FUTURE		
125.	Indicator diagram of a reciprocating pump is a graph between	Est	Pressure in cylinder vs swept volume		
PLACEMENT & TRAINING					
126.	Anemometer is used to measure		Velocity		
127.	The highest point of syphon is called as		Summit		
128.	Kinematic eddy viscosity (ε) is the ratio of		Eddy viscosity (η) to mass density (ρ)		
129.	Magnitude of eddy viscosity for laminar flow is		Zero		
130.	Venturimeter consists of short converging conical tube which has a total inclination angle of		21 ± 10		

131.	Blood circulation through arteries is		A laminar flow	
132.	The component of acceleration due to change in the direction of velocity vector is called as		Normal acceleration	
133.	Which acceleration has a nonzero value in uniform flow?		Local acceleration	
134.	Inter molecular cohesive force in the fluids is		Less than that of the solids	
135.	One litre of water occupies a volume of		1000 cm ³	
136.	In one dimensional flow, the flow		Takes place in straight line	
137.	Coefficient of contraction is the ratio of		Area of jet at vena contracta to the area of orifice	
138.	The Reynold's number of a ship is to its velocity and length.		Directly proportional	
139.	Coefficient of resistance is the ratio of		Loss of head in the orifice to the head of water available at the exit of the orifice	
140.	In order to measure the flow with a venturimeter, it is installed in	$\langle \rangle$	Any direction and in any location	
141.	In a venturimeter, the velocity of liquid at throat is than at inlet.	\mathbf{X}	Higher	
142.	Example of laminar flow		Under ground flow, Flow past tiny bodies, Flow of oil in measuring instruments	
143.	The pressure less than atmospheric pressure is known as	IGNIN	Suction pressure, vacuum pressure, negative gauge pressure	
144.	The maximum efficiency of transmission through a pipe is	Est	-66.67%	
145.	The coefficient of viscosity may be determined by		Capillary tube method, orifice type viscometer, rotating cylinder method	
146.	The stability of a dam is checked for		Tension at the base, overturning of the wall or dam, sliding of the wall or dam	
147.	An ideal fluid is		Frictionless and incompressible	
148.	A manometer is used to measure		High pressure	
149.	The centre of gravity of the volume of the liquid displaced is called		Centre of buoyancy	
150.	The pressure measured with the help of a piezometer tube is in		Head of liquid	