MUST KNOW CONCEPTS

MECH
Course Code \& Course Name : 16MED25 \& Computer Integrated Manufacturing System
Year/Sem/Sec
:IV/VII/B

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning/ Units / Equation / Expression	Units
	Unit-I : Introduction			
1.	Computer Integrated Manufacturing	CIM	CAD/CAM functions $\quad+$ Business Functions	-
2.	CAD Functions		Designing using Computer Design $=$ Modelling (Software: Autocad, Creo, Catia, Solidworks etc) + Analysis (Software: Ansys)	-
3.	CAM Functions		Use of computers for planning and control of manufacturing functions	-
4.	Forward Engineering		Model-Prototype - Product	-
5.	Reverse Engineering		Process of duplicating an existing component	-
6.	Rapid Prototyping	RPT	Adding and bonding materials in layers to form objects	-
7.	Concurrent Engineering		Involving internal customers in the design phase	-
8.	Manufacturing Planning	-	CAM is those in which computers are used indirectly to support the production function, but there is no direct connection between the computer and the process.	-
9.	Manufacturing Control		Manufacturing control is concerned with managing and controlling the physical operations in the factory.	-
10.	Examples for		- Process monitoring and control - Quality	

	manufacturing control		- Shop floor control - Inventory Control - Just - in time production system
11.	Process monitoring and control		Better utilization of computer hardware and software to provide uninterrupted manufacturing process
12.	Quality	$x=$	Degree of Excellence
13.	Manufacturing models		The manufacturer business model utilizes raw materials to create a product to sell. This type of business model might also involve the assembly of prefabricated components to make a new product, such as automobile manufacturing.
14.	Mathematical models		Mathematical modeling is the art of translating problems from an application area into tractable mathematical formulations whose theoretical and numerical analysis provides insight, answers, and guidance useful for the originating application.
15.	Metrics		The levels of branching are arbitrary and no precise metric is applied to distance between the nodes
16.	Production Performance		This report summarizes data on daily and weekly quantities of different parts produced by the FMS. The reports compare the actual quantities against the production schedule
17.	Manufacturing Planning and Control		Concerned with planning and controlling all aspects of manufacturing
18.	Control Aspects in manufacturing		- Managing materials, - Scheduling machines - People, - Coordinating suppliers and - Key customers
19.	Automation		Automation is a technology that is concerned with the use of mechanical electronic and computer based system in the operation and control of production.
20.	Types of Automation		Fixed automation, programmable automation, flexible automation

21.	Levels of Automation		- Device level - Machine level - Cell or system level - Plant level - Enterprise level
22.	Marketing \quad 为		The action or business of promoting and selling products or services, including market research and advertising
23.	Sales	-	Sales are activities related to selling or the number of goods sold in a given targeted time period.
24.	Accounting		Accounting is the process of recording financial transactions pertaining to a business
25.	Research		The systematic investigation into and study of materials and sources in order to establish facts and reach new conclusions
	Unit-II : Production Planning and Control and Computerized Process Planning		
26.	Process planning		Information and activities involved to transform raw materials into a finished product
27.	Process Plan		Preparing Route sheet
28.	Computer Aided Process Planning	CAPP	Preparation of Process Plan with the aid of Computer software
29.	Automation		Process or procedure accomplished without human assistance.
30.	Lean Manufacturing		Reducing waste in all forms.
31.	Just in Time Inventory and Production system	- JIT	Produces and delivers required number of items at required time
32.	Continuous Process Production		Product flows continuously in the manufacturing system e.g. petroleum, cement, steel rolling, petrochemical and paper production etc
33.	Mass Production		Production of large amounts of standardized products
34.	Job Shop Production		Different items and different sequences among the production

35.	Shop Floor Control	SFC	Collection of data to control production and inventory	
36.	Inventory control		Minimizing the investment and storage costs of holding inventory	
37.	CIM Hardware		It includes Manufacturing tools, Computer Hardware, Office equipments and Communication equipments.	
38.	Manufacturing Lead Time	MLT	Total time to process a given product	

			- Material type	
63.	Composite Part		A composite part for a given family is a hypothetical part that includes all of the design and manufacturing attributes of the family	
64.	Benefits of Group Technology		- Standardization of tooling, fixtures, and setups is encouraged - Material handling is reduced - Parts are moved within a machine cell rather than entire factory - Process planning and production scheduling are simplified - Work-in-process and manufacturing lead time are reduced - Improved worker satisfaction in a GT cell - Higher quality work	
65.	FMS Components		- Workstations - CNC machines in a machining type system - Material handling system - means by which parts are moved between stations - Central control computer - to coordinate the activities of the components so as to achieve a smooth overall operation of the system - Software and control functions - Human labor	
66.	Types of FMS Layouts		- In-line - Loop - Ladder - Open field - Robot-centered cell	
67.	FMS Applications		- Machining -most common application of FMS technology - Assembly - Inspection - Sheet metal processing (punching, shearing, bending, and forming) - Forging	
68.	FMS Benefits	-	- Higher machine utilization than a conventional machine shop due to better work handling, off-line setups, and improved scheduling - Reduced work-in-process due to continuous production rather than batch production - Lower manufacturing lead times - Greater flexibility in production scheduling	

69.	Setup times		The time taken to prepare the manufacturing processes and system for production
70.	Product or Line Layout		If all the processing equipment and machines are arranged according to the sequence of operations of the product, the layout is called product type of layout.
71.	Rank Order Clustering		Rank Order Clustering is an algorithm characterized by the following steps: For each row i compute the number. Order rows according to descending numbers previously computed. For each column p compute the number.
72.	Hollier Method		Use the "From-To" chart from part routing data to arrange the machines
73.	Design retrieval		A designer faced with the task of developing a new part can use a design retrieval system to determine if a similar part already exists. A simple change in an existing part would take much less time than designing a whole new part from scrap
74.	Automated process planning		The part code for a new part can be used to search for process plans for existing parts with identical or similar codes
75.	Machine cell design		The part codes can be used to design machine cells capable of producing all members of a particular part family, using the composite part concept
Unit-IV : Flexible Manufacturing System (FMS) And Automated Guided Vehicle System			
76.	Flexible Manufacturing System	FMS	Group of workstations connected by material handling and storage system and controlled by a computer
77.	Dedicated FMS		Produce a limited variety of part in more number
78.	Random-order FMS		Production schedule is changing day-today
79.	Material Handling System		Movement, protection, storage and control of materials and products throughout manufacturing
80.	Automated Guided	AGV	Computer controlled driverless vehicles

	Vehicle		used for transporting materials
81.	Vehicle Guidance Technology		Keeping AGV on a predefined path
82.	Vehicle Management		Coordinating the unmanned vehicles
83.	Vehicle Traffic Control	$\square=$	Minimizing interference between vehicles to prevent collusions.
84.	Vehicle Dispatching		Assigning vehicle in time
85.	Gantry Robot		Cartesian coordinate robots with the horizontal member supported at both ends are sometimes called Gantry robots.
86.	Rail Guided Vehicles	RGV	Motorised vehicles that are guided by a fixed rail system constitute a third category of material transport systems.
87.	Robot purchase cost		The basic price of the robot equipped from the manufacturer with the proper options (excluding end effector) to perform the application.
88.	Engineering costs		The costs of planning and design by the user company's engineering staff to install the robot.
89.	Installation costs		This includes the labor and materials needed to prepare the installation site (provision for utilities, floor preparation, etc.).
90.	Special tooling		This includes the cost of the end eflector, parts position and other fixtures and tools required to operate the work cell.
91.	Miscellaneous costs		This covers the additional investment costs not included by any of the above categories (e.g., other equipment needed for the cell).
92.	Direct labor cost		The direct labor cost associated with the operation of the robot cell. Fringe benefits are usually included in the calculation of direct labor rate, but other overhead costs are excluded.

93.	Indirect labor cost		The indirect labor costs that can be directly allocated to the operation of the robot cell. These costs include supervision, setup, programming
94.	Maintenance cost		This covers the anticipated costs of maintenance and repair for the robot cell.
95.	Applications of AGV		- Driverless train operations - Storage distribution system - Assembly line operation - FMS
96.	Types of AGV vehicles.		- Towing vehicles - Unit load vehicles - Pallet trucks - Fork trucks - Light load Vehicles - Assembly line vehicles.
97.	Types of maintenance		- Preventive maintenance - Emergency maintenance
98.	Preventive maintenance		It involves the planned servicing at periodic intervals
99.	Mean Time To Repair	MTTR	measure the average time of repairing the robot for each breakdown
100.	Mean Time Between Failures	- MTBF	average time of machinery will operate between breakdowns.
Unit-V : Industrial Robotics			
101.	Industrial Robot		Reprogrammable, multifunctional mechanical device performing tasks.
102.	Manipulator		Machine having same function as of human being
103.	End-effector		Attachments at the wrist arm perform a task.
104.	Grippers		Device to grasp objects
105.	Sensors		Device that detects information about the surroundings
106.	Accuracy		Defined target point within work volume.
107.	Precision		Closeness to the true value
108.	Repeatability		Ability of the robot to position itself again and again

109.	Spatial Resolution		Control resolution combined with mechanical inaccuracy	
110.	Control Resolution		capability of the robot's positioning system to divide the range of the joint into closed spaced points	
111.	Robot Program		List of instruction to support the robot work cycle	
112.	Work envelope		Space within the robot manipulates its wrist	
113.	Pitch		Up and down movement of wrist	

	hour hand rotate when the clock shows 2 o'clock in the afternoon?		C. 90 D. 60 Answer: B) 180 Explanation: Angle traced by the hour hand in 6 hours $=(360 / 12) * 6$	
132.	Excluding stoppages, the speed of a bus is 54 kmph and including stoppages, it is 45 kmph. For how many minutes does the bus stop per hour?		A. 9 B. 10 C. 12 D. 20 Explanation: Due to stoppages, it covers 9 km less. $\begin{array}{ll}\text { Time taken to cover } & 9 \\ 9 \mathrm{~km}= & 54^{60}\end{array} \quad \min =10$	
133.	Find the no., when 15 is subtracted from 7 times the no., the result is 10 more than twice of the number		Let the number be x. $7 x-15=2 x+10 \Rightarrow 5 x=25 \Rightarrow x=5$	
134.	If 0.75: $x:: 5: 8$, then x is equal to:	-	A.1.12 B.1.16 C.1.20 D.1.30 Explanation: $(x * 5)=(0.75 * 8)$ $\mathrm{X}=6 / 5=1.20$	
135.	Today is Monday. After 61 days, it will be :		A. Tuesday B. Monday C. Sunday D. Saturday Answer: D) Saturday Explanation: Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday.	

			After 61 days, it will be Saturday.	
136.	Adam can do a job in 15 days; Eve can do the same job in 20 days. If they work together for 4 days, what fraction of job is incomplete?		Adam can do $1 / 15$ of the job per day Eve can do $1 / 20$ of the job per day If they work together they can do 7/60 of the work together Remaining job 1-7/60 $=32 / 60=8 / 15$	
137.	Which one of the following is not a prime number?		A. 31 B. 61 C. 71 D. 91 Explanation: 91 is divisible by 7. So, it is not a prime number.	
138.	Find c , if $5 \mathrm{c}-2=33$		A. 7 B. 9 C. 11 D. 13 Explanation: We add 2 to both sides and get 5 c $2+2=33+2$, or $5 \mathrm{c}=35$. We divide both sides by 5 to get $\mathrm{c}=7$.	
139.	A person crosses a 600 m long street in 5 minutes. What is his speed in km per hour?	E	A. 3.6 B. 7.2 C. 8.4 D. 10 Explanation: $\begin{aligned} & \text { Speed }=600 / 5 \times 60 \mathrm{~m} / \mathrm{sec} .=2 \mathrm{~m} / \mathrm{sec} . \\ & =2 \times 18 / 5 \mathrm{~km} / \mathrm{hr}=7.2 \mathrm{~km} / \mathrm{hr} \end{aligned}$	
140.	A and B can do a piece of work in 4 days, while C and D can do the same work in 12 days.		$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D will together take $1 / 4+$ $1 / 12=4 / 12=1 / 3$.	

	In how many days will $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D do it together?		3 days to complete the work.	
141.	The average of five numbers is 27 . If one number is excluded, the average becomes 25. The excluded number is?		A. 25 B. 35 C. 45 D. 55 Answer:B Explanation: $(27 * 5)-(25 * 4)$ 135-100 35	
142.	The maximum gap between two successive leap year is?	Π	A. 4 B. 8 C. 2 D. 1 Answer: B) 8 Explanation: This can be illustrated with an example. Ex: 1896 is a leap year. The next leap year comes in 1904 (1900 is not a leap year).	
143.	A guy bought 10 pencils for Rs. 50 and sold them for Rs. 60.What is his gain in terms of percentage?		A. 10% B. 5% C. 20% D. 12% Answer:C Explanation: "Gain\%"=("Gain"/"C.P")*100=20\%	
144.	Two trains starting at the same time from 2 stations 200 km apart and going in opposite direction cross each other at a distance of 110 km from one of the stations. What is the ratio of their speeds?		In the same time, they cover 110 km and 90 km respectively. For the same time, speed and distance is inversely proportional. So ratio of their speed $=110: 90=11: 9$	
145.	In 100 m race, A covers the distance in 36		A. 20 m	

	seconds and B in 45 seconds. In this race A beats B by:		B. 25 m C. 22.5 m D. 9 m Explanation: Distance covered by B in 9 sec. $=$ $(100 / 45) * 9 \mathrm{~m}=20 \mathrm{~m}$	
146.	Half percent, written as a decimal, is			
147.	A pump can fill a tank with water in 2 hours. Because of a leak, it took 2.5 hours to fill the tank. The leak can drain all the water of the tank in:		A. 4 1/3 Hours B. 7 Hours C. 8 Hours D. 10 Hours Explanation: Work done by the leak in $1 \quad\left(\begin{array}{c}1 \\ - \\ - \\ 2\end{array}\right)={ }_{10}^{1}$. \therefore Leak will empty the tank in 10 hrs.	
148.	If a number is chosen at random from 1 to 100 , then the probability that the chosen number is a perfect cube is		We have $1,8,27$ and 64 as perfect cubes from 1 to 100 . Thus, the probability of picking a perfect cube is $4 / 100=1 / 25$	
149.	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:		$\begin{aligned} & \text { A. } 9 \\ & \text { B. } 11 \\ & \text { C. } 13 \\ & \text { D. } 15 \end{aligned}$	

			Explanation: Let the three integers be $x, x+2$ and $x+$ 4. Then, $3 x=2(x+4)+3 \Leftrightarrow x=11$. \therefore Third integer $=x+4=15$.	
150.	Find the number, when 15 is subtracted from 7 times the number, the result is 10 more than twice of the number		A. 5 B. 15 C. 7.5 D. 4 Explanation: Let the number be x . $7 x-15=2 x+10 \Rightarrow 5 x=25 \Rightarrow x=5$	

Faculty Team Prepared

Signatures

1. Dr.R.Senthil Kumar
2. Mr.S.Palanisamy
3. Mr.R.Gowdhaman
