

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

2021-22

MCA

Course Code & Course Name

21CAB01 & Computer Organization and Architecture

Year/Sem/Sec

I/I/-

:

:

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
		Unit-I : Digit	al Fundamentals	
1.	Computer Architecture		It is concerned with the structure and behavior of the computer.	Ι
2.	Computer Organization		It describes the function and design of the various units of digital computer that store and process information.	Ι
3.	Number System		It is defined as a system of writing to express numbers.	Ι
4.	Decimal number system		Composed of ten symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) known as Base 10 system.	Ι
5.	Binary number system		Composed of two symbols (0,1) also called as Base 2 system.	Ι
6.	Octal number system	$\langle \rangle$	Composed of eight symbols (0,1,2,3,4,5,6,7) also known as the Base 8 System.	Ι
7.	Hexadecimal number system	SNING	Composed of 16 symbols (digits 0-9 & letters A,B,C,D,E,F) known as Base 16 system.	Ι
8.	Boolean Algebra	std.	Used to simplify the design the logic circuits and involves lengthy mathematical operations.	Ι
9.	Boolean Function		Algebraic expression formed using constant, binary variables and basic logic operation symbols.	Ι
10.	Demorgan's First Theorem		States that complement of a product is equal to be sum of the complements.	Ι
11.	Demorgan's Second Theorem		States that complement of a sum equal to product of the complements.	Ι
12.	Sum of Product		Logical sum of two or more logical product terms is called sum of product.	Ι
13.	Product of Sum		Logical product of two or more logical sum terms is called product of sum.	Ι

14.	Minterm		A product term containing all k- variables of function in either complemented or uncomplemented form.	Ι
15.	Maxterm		A sum term containing all k-variables of function in either complemented or uncomplemented form.	Ι
16.	Karnaugh map		Technique provides a systematic method for simplifying and manipulating switching expressions.	Ι
17.	Quine-McCluskey Method	-	Tabular method that employs a systematic, step by step procedure to produce a simplified form for function with any no. of variables.	Ι
18.	Logic Gates	-	It is an electronic circuit which makes logical decisions.	Ι
19.	AND gate		An electronic circuit that gives a high output (1) only if all its inputs are high. A dot (.) is used to show the AND operation.	Ι
20.	OR gate	\sim	An electronic circuit that gives a high output (1) if one or more of its inputs are high. A plus (+) is used to show the OR operation.	Ι
21.	NOT gate	$\langle \cdot \rangle$	An electronic circuit that produces an inverted version of the input at its output. It is also known as an inverter.	Ι
22.	NAND gate	\bigotimes	Gate which is equal to an AND gate followed by a NOT gate. The outputs of all NAND gates are high if any of the inputs are low.	Ι
23.	NOR gate		Gate which is equal to an OR gate followed by a NOT gate. The outputs of all NOR gates are low if any of the inputs are high.	Ι
24.	Exclusive OR gate	std.	An XOR gate implements an exclusive OR, i.e., a true output result occurs if one – and only one – of the gate's inputs is true.	Ι
25.	Exclusive NOR Gate		It is a digital logic gate whose function is the logical complement of the exclusive OR gate (XOR gate). It means the output of the XOR gate is inverted in the XNOR gate.	Ι
	Unit-II	: Combination	al and Sequential Circuits	
26.	Combinational Circuit		The circuit output at any time depends only on the input values at that time.	II
27.	Sequential Circuit		The output at any time depends on the present input values as well as the past output values.	II

28.	Half adder		The logic circuit that performs the addition of two bits is a half adder.	II
29.	Full adder		The circuit that Performs the addition of three bits is a full adder.	II
30.	Half Subtractor		It is a combinational circuit which is used to perform subtraction of two bits.	II
31.	Full Subtractor		It is a combinational circuit that performs subtraction involving three bits.	II
32.	Encoder		It is a combinational logic circuit that converts an active input signal into a coded output signal. Perform inverse operation of decoder.	П
33.	Decoder		It is a combinational logic circuit that converts a coded output signal into active output signal. Perform inverse operation of encoder.	П
34.	Multiplexer		A digital Multiplexer (data selector) is a combinational circuit that selects binary information from one of many input lines and directs it to a single output	П
35.	Demultiplexer	$\langle \langle \rangle$	A Demultiplexer (data distributor) is a combinational circuit that receives the information on a single line and transmits this information on one of 2nd possible output lines.	П
36.	Magnitude Comparator	\sim	It is a special combinational circuit that compares the magnitude of two binary numbers.	П
37.	Synchronous sequential circuit	\sim	In synchronous sequential circuits, signals can affect the memory elements only at discrete instant of time.	II
38.	Asynchronous sequential circuit	Y	In asynchronous sequential circuits change in input signals can affect memory element at any instant of time.	Π
39.	Flip flop	GN <u>I</u> NG	The basic unit for storage is flip flop. A flip-flop maintains its output state either at 1 or 0 until directed by an input signal to change its state.	П
40.	Present state	3001	The information stored in the memory elements at any given time defines the present state of the sequential circuit.	Π
41.	Next State		The present state and the external inputs determine the outputs and the next state of the sequential circuit.	Π
42.	D flip-flop		In D flip-flop, during the occurrence of clock pulse if D=1, the output Q is set and if D=0, the output is reset.	II
43.	Master-Slave Flip-flop		It consists of two flip-flops where one circuit serves as a master and the other as a slave.	II
44.	Race Around Condition		In JK flip-flop output is fed back to the	Π

			input. if both J and K are high then output toggles continuously	
45.	Edge Triggering		It is a type of triggering that allows a circuit to become active at the positive edge or the negative edge of the clock signal.	Π
46.	Level Triggering		It is a type of triggering that allows a circuit to become active when the clock pulse is on a particular level.	II
47.	Binary Counter	-	A sequential circuit consisting of a set of flip flops connected in a suitable manner to count the sequence of input pulses presented to it in digital form.	Π
48.	Asynchronous counter		In asynchronous counter, each flip flop is triggered by the output from the previous flip flop which limits its speed of operation.	II
49.	Synchronous counter		In synchronous counter, the clock input of the flip-flops are all clocked together at the same time with the same clock signal.	II
50.	Shift Register	\otimes	It is a type of digital circuit using a cascade of flip flops where the output of one flip-flop is connected to the input of the next.	Π
	Uni	t-III : Basic St	ructure of Computers	
			Acta on the newspacement that	
51.	Control Unit	\times	Acts as the herve center, that coordinates all the computer operations. It issues timing signals that governs the data transfer.	III
51. 52.	Control Unit Cache Memory		Acts as the herve center, that coordinates all the computer operations. It issues timing signals that governs the data transfer. A small memory between CPU and main memory is called cache. The speed is equal to the CPU.	ш
51. 52. 53.	Control Unit Cache Memory ROM (Read Only Memory)	SN HN G	Acts as the herve center, that coordinates all the computer operations. It issues timing signals that governs the data transfer. A small memory between CPU and main memory is called cache. The speed is equal to the CPU. It is a non-volatile memory that contains permanent data.	
51. 52. 53. 54.	Control Unit Cache Memory ROM (Read Only Memory) RAM (Random Access Memory)	aning	Acts as the herve center, that coordinates all the computer operations. It issues timing signals that governs the data transfer. A small memory between CPU and main memory is called cache. The speed is equal to the CPU. It is a non-volatile memory that contains permanent data. It is a volatile memory that contains temporary data that can be accessed at high speed.	
51. 52. 53. 54. 55.	Control Unit Cache Memory ROM (Read Only Memory) RAM (Random Access Memory) Interrupt	SNHNG	Acts as the herve center, that coordinates all the computer operations. It issues timing signals that governs the data transfer. A small memory between CPU and main memory is called cache. The speed is equal to the CPU. It is a non-volatile memory that contains permanent data. It is a volatile memory that contains temporary data that can be accessed at high speed. An interrupt is a request from an I/O device for service by the processor.	
51. 52. 53. 54. 55. 56.	Control Unit Cache Memory ROM (Read Only Memory) RAM (Random Access Memory) Interrupt Bus	<u>sning</u>	Acts as the herve center, that coordinates all the computer operations. It issues timing signals that governs the data transfer. A small memory between CPU and main memory is called cache. The speed is equal to the CPU. It is a non-volatile memory that contains permanent data. It is a volatile memory that contains temporary data that can be accessed at high speed. An interrupt is a request from an I/O device for service by the processor. A group of lines that serves as a connecting path for several devices is called a bus.	
51. 52. 53. 54. 55. 56. 57.	Control UnitCache MemoryROM (Read Only Memory)RAM (Random Access Memory)InterruptBusExecution Time	<u>SN HN G</u> sttd.	Acts as the herve center, that coordinates all the computer operations. It issues timing signals that governs the data transfer. A small memory between CPU and main memory is called cache. The speed is equal to the CPU. It is a non-volatile memory that contains permanent data. It is a volatile memory that contains temporary data that can be accessed at high speed. An interrupt is a request from an I/O device for service by the processor. A group of lines that serves as a connecting path for several devices is called a bus. Response time also called execution time. The total time required for the computer to complete a task.	

59.	Processor Time		The periods during which the processor is active is called processor time of a program.	III
60.	MIPS(Million Instruction Per Second)		The rate at which the instructions are executed at a given time.	III
61.	Throughput Rate		The rate at which the total amount of work done at a given time.	III
62.	Program		It is a set of instructions that specify the operations, operands and the sequence by which processing has to occur.	III
63.	Instruction Code		It is a group of bits that instruct the computer to perform a specific operation.	III
64.	Operation Code		It is a group of bits that define operations as add, subtract, multiply, shift and complement etc.	III
65.	Straight-line Sequencing		The CPU control circuitry automatically proceed to fetch and execute instruction, one at a time in the order of the increasing addresses.	III
66.	Addressing Modes	\times	The different ways in which the location of an operand is specified in an instruction.	III
67.	Immediate Addressing		The operand is given explicitly in the instruction.	III
68.	Direct Addressing		Effective address of the operand is given in the address field of the instruction.	III
69.	Indirect Addressing		It tells the processor where to go to find the address of the operand.	III
70.	Index Addressing	\sim	The effective address of an operand is generated by adding a constant value to the contents of a register.	III
71.	Pointer		The register or memory location that contains the address of an operand.	III
72.	Pipelining	GNHNG	Several instructions are performed simultaneously to reduce the overall processing time, the processing called instruction pipelining.	III
73.	RTN(Register Transfer Notation)	sta.	It is way to specify the behavior of digital synchronous circuit.	III
74.	RISC (Reduced Instruction Set Computer)		It is a microprocessor designed to perform a smaller number of computer instruction operate at high speed.	III
75.	CISC (Complex Instruction Set Computer)		It supplies a large number of complex instructions at the assembly language level.	III
		Unit-IV : P	rocessor Design	
76.	CPU (Central Processing Unit)		Brain of the processor. Executes instructions along with the computation required to determine addressing.	IV

77.	Data Buffer		Bidirectional device that holds outgoing data until memory bus is ready for it.	IV
78.	I/O Ports		These ports represent the device interfaces that have been incorporated into the processor's hardware.	IV
79.	Front Side Bus(FSB)		It is an electrical pathway on a computer's motherboard, which connects the various hardware components.	IV
80.	ALU (Arithmetic and Logic Unit)		It is a collection of logic circuits designed to perform arithmetic and logic operations.	IV
81.	Data path		The registers, the ALU and the interconnecting bus are collectively referred to as the data path.	IV
82.	Processor Clock		All operations and data transfers within the processor take place within time periods defined by the processor clock.	IV
83.	Instruction Decoder	\leq	It receives the instruction from memory interprets the value to see what instruction is to be performed.	IV
84.	Registers		Used to store data, address and flags that are in use by the CPU.	IV
85.	Clock Speed	\times	It is the rate at which a processor can complete a processing cycle measured in Mega or Gigahertz.	IV
86.	Multiphase Clocking		Data transfers may use both the rising and falling edges of the clock.	IV
87.	Register File	\sim	All general purpose registers are combined into a single block called register file.	IV
88.	Control Word		It is a word whose individual bits represent the various control signal.	IV
89.	Hardwired Control	GN HN G	It can be defined as sequential logic circuit that generates specific sequences of control signal in response to externally supplied instruction.	IV
90.	Micro programmed Control	sta.	A micro programmed control unit is built around a storage unit is called a control store where all the control signals are stored in a program like format.	IV
91.	Parallelism in Microinstruction.		The ability to represent maximum number of micro operations in a single microinstruction.	IV
92.	Structural Hazard		It occurs when two activities require the same resource simultaneously.	IV
93.	Pipeline Hazard		Any condition that causes the pipeline to stall is called hazard. They are also called as stalls or bubbles.	IV

94.	Data Hazard		Any condition in which either the source or the destination operands of an instruction are not available at the time.	IV
95.	Instruction or Control Hazard		The pipeline may be stalled because of a delay in the availability of an instruction.	IV
96.	Side Effect		When a location other than one explicitly named in an instruction as a destination instruction is said to have a side effect.	IV
97.	Branch Penalty		The time lost as a result of a branch instruction is often referred to as branch penalty.	IV
98.	Branch Folding		When the instruction fetch unit executes the branch instruction concurrently with the execution of the other instruction, then this technique is called branch folding.	IV
99.	Delayed Branching		The instructions in the delay slots are always fetched and they are arranged such that they are fully executed whether or not branch is taken.	IV
100.	Super Scalar Processor	\propto	The processor which is capable of achieving an instruction execution throughput of more than one instruction per cycle.	IV
	Unit-V :M	lemory, I/O Sy	stem and Parallel Processing	
101.	Virtual Memory	\times	It permits the user to write a large programs as if the user has large main memory equal to that of the size of the auxiliary memory.	V
102.	Virtual Address		In virtual memory, the binary addresses that the processor issues for either instructions or data called virtual or logical addresses.	V
103.	Memory Latency	std.	The term memory latency is used to refer to the amount of time it takes to transfer a word of data to or from the memory.	v
104.	Static Memories		Memories that consist of circuits capable of retaining their state as long as power is applied are known as static memories.	V
105.	Memory Access Time		It is the time taken by the memory to supply the contents of a location, from the time, it receives "READ".	V
106.	Memory Cycle Time		It is defined as the minimum time delay required between the initiation of two successive memory operations.	V

107.	Hit Ratio		The performance of cache memory is frequently measured in terms of a quantity called hit ratio.	V
108.	Hit		When the CPU refers to memory and finds the word in cache, it is said to produce a hit.	V
109.	Miss		If the word is not found in cache, then it is in main memory and it counts as a miss.	V
110.	Page Fault		It is an event that occurs when an accessed page is not present in main memory.	V
111.	Associative or Content Addressable Memory	-	A memory unit accessed by contents.	V
112.	Locality of Reference		Many instructions in localized areas of the program are executed repeatedly during some time period.	V
113.	Associative Mapping		The tag bits of an address received from the processor are compared to the tag bits of each block.This is called the associative mapping.	V
114.	Least Recently Used(LRU)Block	\sim	When a block is to be overwritten, it is sensible to overwrite the one that has gone the longest time without being referenced. This block is called the Least recently Used (LRU) block.	V
115.	Physical Address		Physical address is an address in main memory.	V
116.	System Space	\bigcirc	It is convenient to assemble the operating system routines into the virtual address space, called the system space.	V
117.	User Space DES	GN IN G	It is separated from the virtual space in which the user application programs reside is called the user space.	V
118.	Programmed I/O	std.	Data transfer to and from peripherals may be handled using this mode.	V
119.	Interrupt Initiated I/O		This mode uses an interrupt facility and special commands to inform the interface to issue the interrupt command.	V
120.	Direct Memory Access. (DMA)		A modest increase in hardware enables an IO device to transfer a block of information to or from memory without CPU intervention.	V
121.	DMA Controller		The I/O device interface control circuit that is used for direct memory access is known as DMA controller.	V

122.	Interrupt		It is an event that causes the execution of one program to be suspended and the execution of another program to begin.	V
123.	Vectored Interrupts.		In order to reduce the overhead involved in the polling process, a device requesting an interrupt may identify itself directly to the CPU.	V
124.	I/O Interface		It provides a method for transferring binary information between internal storage, such as memory and CPU registers, and external I/O devices.	V
125.	Memory Mapped I/O		In Memory mapped I/O, there is no specific input or output instructions. The CPU can manipulate I/O data residing in interface registers.	V
		Placeme	nt Questions	
126.	Page Frame		An area in the main memory that can hold one page is called page frame.	
127.	Snooping Cache		It is the process where individual caches monitor address lines for accesses to memory locations that they have cached.	
128.	Wait State	\propto	It means that the computer processor experiences a delay when accessing a device or an external memory that is slow in its response.	
129.	RAID (Redundant Array of Independent Disks)	\mathbf{X}	It refers to the hard drives connected and set up in ways to help accelerate or protect the performance of a computer's disk storage.	
130.	Direct Mapping	\sum	Direct mapping, the RAM is used to store data and some of the data is stored in the Cache.	
131.	MESI		MESI stands for the four states of the cache blocks, which are Modified, Exclusive, Shared and Invalid.	
132.	Software Interrupts	std.	It can occur only during the execution of an instruction. They can be used by a programmer to cause interrupts.	
133.	Snooping Protocol		It maintains cache coherency in symmetric multiprocessing environments.	
134.	Horizontal Micro Code		It contains the control signal without any intermediary. It contains a lot of signals and hence due to that the number of bits also increases.	
135.	Chopping		It is a simple way to truncate or remove the guard bits and make no changes in the retained bits.	
136.	Branch Prediction		It is a technique for reducing the branch penalty associated with conditional branches is to attempt to predict whether	

			or not a particular branch will be taken.	
137.	Exceptions		Exceptions are also known as interrupt. An unscheduled event that disrupts program execution.	
138.	Word Line		Memory cells are usually organized in the form of an array. Each row of cells constitutes a memory word, and all cells of a row are connected to a common line called word line.	
139.	Memory Bandwidth	-	If the performance measure is defined in terms of the number of bits or bytes that can be transferred in one second, then the measure is called memory bandwidth.	
140.	Double-data-rate SDRAM		If a device transfer data on both edges of the clock, their bandwidth is essentially doubled for long burst transfers. Such devices are called (DDR SDRAM) double-data-rate SDRAM.	
141.	SCSI	$\langle \rangle$	Small computer system interface can be used for all kinds of devices including RAID storage subsystems and optical disks for large- volume storage applications.	
142.	I/O Channel	\times	It is actually a special purpose processor, also called peripheral processor. The main processor initiates a transfer by passing the required information in the input output channel.	
143.	Data Striping		A single large file is stored in several separate disk units by breaking the file up into a number of smaller pieces and storing these pieces on different disks.	
144.	Program Counter (PC) Register	GNING	It keeps track of the execution of the program. It contains the memory address of the instruction currently being executed.	
145.	Translation-Look aside Buffer (TLB)	stu.	It is a cache that keeps track of recently used address mappings to try to avoid an access to the page table.	
146.	Rotational Latency		Also called rotational delay, is the time required for the desired sector of a disk to rotate under the read/write head, usually assumed to be half the rotation time.	
147.	Direct-mapped Cache		It is a cache structure in which each memory location is mapped to exactly one location in the cache.	
148.	MAR (Memory Address Register)		It is used to hold the address of the location to or from which data are to be transferred.	

149.	MDR(Memory Data Register)	 It contains the data to be written into or read out of the addressed location.	
150.	Instruction Register (IR)	 Instruction Register (IR) contains the instruction being executed.	

Faculty Prepared

Signature

Dr.C.Sivaprakasam

HoD

