

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

:

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

2021-22

EEE

Course Code & Course Name

19EEC07 & Power Electronics

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
	UNIT	I POWER	SEMI-CONDUCTOR DEVICES	
1.	Power Electronics		It is defined as the application of solid state electronics for the control (source-load) and conversion of electrical power (ac-dc dc-dc, dc- ac, ac-ac).	Nil
2.	Solid State Electronics	Nil	They are made up of solid state semiconductor devices which is unable to move, and can control the rotating machines. Ex. Diode, SCR, MOSFET, IGBT, etc).	Nil
3.	Signal level Electronics		It is the study of semiconductor devices and the process of information/signal where the operating voltage and current is of signal level (Ex: max.30v, 0.5A).	Nil
4.	Power level Electronics		It is the study of semiconductor devices whose operating voltage and current is of power level (Ex: interms of KV, higher value of magnitude of currents).	Nil
5.	Doping	Nil	The amount of impurity added to a pure semiconductor.	Nil
6.	Depletion Region	Nil	A region in a P-N junction diode where no mobile charge carriers are present. Depletion layer acts like a barrier that opposes the flow of electrons from n-side and holes from p-side.	Nil
7.	Drift region	Nil	A region where the immobile acceptor and donor ions break.	Nil
8.	Break down voltage	V _{BO}	It is the minimum forward voltage at which gate being open, junction breaks down and the SCR starts conducting.	Volts
9.	Knee /Cut- in/Threshold voltage	$V_K/V_{\text{cut-in}}$	The minimum voltage at which the diode starts conducting and current starts increasing exponentially is called knee voltage of a diode. $V_{\text{cut-in}} = 0.6V$ for silicon and 0.3V for germanium.	Volts
10.	Peak Inverse Voltage		The maximum voltage which diode can withstand without breakdown is called peak inverse voltage.	Volts
11.	Reverse Recovery Charge	Qrr	It is the charge accumulated within a diode rectifier that has experienced a forward current.	Coulom bs

12.	Reverse recovery Time	t _{rr}	When switching from the conducting to the blocking state, a diode has stored charge that must first be discharged. This discharge takes a finite amount of time known as the Reverse Recovery Time.	μs
13.	Latching current	IL	It is the minimum anode current, above which the SCR starts conducting and it is required to keep SCR in conducting state even after removal of gate pulse. $I_L > I_H$	mA
14.	Holding current	I _H	It is the minimum anode current, below which the SCR turns-off. Hence, holding current is responsible for turn-off and latching current for turn off.	mA
15.	Reverse Recovery Time	T _{rr}	Reverse recovery time (T_{rr}) is the time taken to stop conducting when the diode is reverse biased.	seconds
16.	Snubber Circuit	Nil	Snubber circuits are needed to limit the rate of change in voltage or current (di/dt or dv/dt) and over voltage during turn-on and turn-off. Hence, it acts as a protection circuit.	Nil
17.	V-I Characteristics	Nil	A trainer kit is available in the laboratory to compare the ideal and practical V-I characteristics of SCR, TRIAC, GTO, MOSFET, IGBT.	Nil
18.	Pinch-Off Voltage	Vp	For MOSFET $V_{GS}=0$ V, the value of VDS at which ID becomes essentially constant is the pinch-off voltage, V_P .	Volts
19.	Commutation	0	Commutation-Turning-off from forward conducting state to forward blocking state.	-
20.	Silicon Controlled rectifier	ŧ	It belongs to the family of thyristors and is a current-controlled four-layer solid state semiconductor device used as a controlled rectifier.	-
21.	GTO-Gate Turn-off thyristor	er 🛉 🚈	It belongs to the family of thyristors, where the turn –on and turn-off of the device is	-
22.	TRIAC-Triode as an AC switch		It is a bidirectional semiconductor device, where two thyristors are connected in antiparallel, can be integrated into a single device called TRIAC.	-
23.	Power BJT- Bidirectional Junction Transistor	C - J - J - J - J - J - J - J - J - J -	It is a 3 terminal, three layer, 2 junction, current controlled semiconductor device in which the operation depends on the interaction of both the majority and minority charge carriers and hence the name bipolar.	-
24.	MOSFET-MetalOxide SemiconductorFieldEffectTransistor		It is a 3 terminal, three layer, voltage controlled high input impedance semiconductor device	-
25.	IGBT-Insulated Gate Bipolar Junction Transistor	and the second s	It is a 3 terminal, three layer, voltage controlled, which possess high input impedance and high switching speeds of a MOSFET with the low saturation voltage of a bipolar	-

			transistor.			
UNIT IL AC - DC CONVERTERS						
A power electronic converter which uses power						
26.	Converters	Nil	electronic components such as SCRs, TRIACs, IGBTs, etc. to control and convert the electric	Nil		
			It converts the alternating current to pulsating			
27.	Rectifier	N inpt	direct current by suing semiconductor devices.	Nil		
	Controlled		Controlled rectifiers are line commutated ac to			
28.	Rectifiers	Niipt /= Kotpt	a fixed voltage fixed frequency ac power	Nil		
		V	supply into variable dc output voltage.			
29	Uncontrolled	Nil	It employs only diodes for rectification and the	Nil		
<i></i>	Rectifiers	111	dc output voltage is fixed in amplitude.	1411		
20	Firing angle		The angle measured from the instant that gives	NH		
50.	rining angle	a	triggered with the applied voltage	INII		
		Nil	The delay angle is defined as the angle between	Nil		
31.	Delay angle		the zero crossing of the input voltage and the			
			instant the thyristor is fired.			
22	One Pulse	Nil	It employs one pulse in each cycle of ac wave	Nil		
32.	Converter	1.5	for obtaining the rectification process. Ex. Half			
		Nil	It is a single quadrant converter which has only	Nil		
22	G • •	144	one polarity of output voltage and current. It	1111		
33.	Semiconverters	100	uses two SCRs and two diodes which are			
		-	connected in bridge configuration.			
24		Nil	It employs two pulses in each cycle of ac wave	Nil		
34.	Two Pulse converter		for obtaining the rectification process. Ex. $1-\phi$			
		Nil	It is a two quadrant converter whose voltage	Nil		
25	E-II	1111	polarity can reverse, but the current direction	1,11		
35.	Full converters	551CM	cannot reverse. It uses four SCRs which are			
			connected in bridge configuration.			
26	Three pulse	Nil	It employs three pulses in each cycle of ac	Nil		
36.	converter	1.24	wave for obtaining the rectification process. Ex.			
		Nil	It employs six pulses in each cycle of ac wave	Nil		
37.	Six pulse converter	1111	for obtaining the rectification process. Ex. $3-\phi$	1,11		
	-		full wave controlled converter.			
		Nil	Two full converters connected in antiparallel	Nil		
38.	Dual Converter		and connected to the dc load, offering four			
			The process of turning off of a power			
39.	Commutation	Nil	semiconductor device.	Nil		
	Noturol		The semiconductor device is turned off			
40.	Inatural Commutation	Nil	naturally without using any circuit. If the source is AC this type of commutation is	Nil		
			employed.			
	Farrad		It is an external commutation circuit required to			
41.	rorcea Commutation	Nil	turn-off the conducting semiconductor device.	Nil		
			If the source is DC this type of commutation is			

			mandatory.	
42.	Freewheeling diode	FWD	It maintains the load current to be continuous and is also used to improve the power factor of the system.	Nil
43.	Ripple	Nil	AC component present in the DC output voltage.	Nil
44.	Overlap period	μ	Both the incoming and outgoing thyristors conducts.	Nil
45.	Extinction angle	β	The angle β , where the thyristor gets switched off in spite of being reverse biased, this instant is called extinction angle.	Nil
46.	Harmonics	Nil	It is the integral multiple of fundamental frequency (f=50hz).	Nil
47.	Total Harmonic Distortion	THD	THD is the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency.	Nil
48.	Frequency	f	Frequency is the number of complete cycles per second in alternating current direction.	Hz
49.	Time period	T=1/f	It is time required to complete one complete cycle $T=1/f$.	seconds
50.	Performance validation	Nil	Power circuit module, triggering unit and CRO is available in the laboratory to validate the performance of $1-\phi$ and $3-\phi$ half controlled and fully controlled converter.	Nil
		UNIT III	DC - AC CONVERTERS	
51.	Inverter		Convert fixed dc voltage to variable ac output voltage and frequency by employing forced commutation.	Nil
52.	Inverter output	Vo	Square wave output can produce with humming.	Nil
53.	Square wave Inverter	Nil	The practical output of an inverter is either a square or quasi-square inverter.	Nil
54.	Pulse Generator	Nil	Generates trigger pulses/firing pulses to trigger the power semiconductor devices.	Nil
55.	Voltage source inverter	VSI	It is a stiff/constant dc input voltage which remains constant irrespective of the load connected across the output terminals.	Nil
56.	Current source inverter	CSI	It is a stiff/constant dc input current source which remains constant irrespective of the load connected across the output terminals.	Nil
57.	Pulse Width Modulation	PWM	A fixed dc input voltage is given to the inverter and a controlled ac output voltage is obtained by adjusting the on and off periods of the inverter devices.	Nil
58.	Single PWM	Nil	In single pulse modulation, there is only one pulse exists per half cycle. The width of this pulse is varied to control the inverter output voltage.	Nil
59.	Multiple PWM	Nil	In MPWM, many pulses having equal widths are produced per every half cycle. The gating signals are produced by comparing reference signal with triangular carrier wave.	Nil

60.	Sinusoidal PWM	Nil	Gate pulses are generated by comparing sinusoidal reference signal with triangular carrier signal. Frequency of reference signal (f_r) decides the frequency of output voltage.	Nil
61.	Modulation index	m	Modulation index is the ratio of peak magnitudes of the modulating waveform and the carrier waveform.	Nil
62.	Space vector modulation	SVM	SVM is an algorithm for the control of pulse width modulation. It is used for the creation of alternating current (AC) waveforms; most commonly to drive 3 phase AC powered motors at varying speeds from DC.	Nil
63.	Series inverter	Nil	The commutating components (L&C) are connected in parallel with the load.	Nil
64.	Parallel inverter	Nil	The commutating components (L&C) are connected in series with the load thus forming an underdamped circuit.	Nil
65.	Converter grade SCR	Nil	Converters with slow turn-off time (50-100 μ S).	Nil
66.	Inverter grade SCR	Nil	Converters with fast turn-off time $(3-50\mu S)$.	Nil
67.	Performance validation	Nil	The performance of Series and parallel, VSI, CSI can be validated in the laboratory using the trainer kits/discrete components.	Nil
68.	Power Pollution	Nil	Harmonics contributes power pollution which are the unwanted higher frequencies which superimposed on the fundamental waveform creating a distorted wave pattern.	Nil
69.	Harmonics	Nil	It is a integral multiple of the fundamental frequency (50Hz) and is a distortion of the normal electrical current waveform, generally transmitted by non-linear loads.	Nil
70.	Odd harmonics	Nil	Harmonics such as, 3,5,7,9,11,13 contributes odd harmonics.	Nil
71.	Even harmonics	Nil	Harmonics such as 2,4.6,8,10 contributes even harmonics.	Nil
72.	Total Harmonic Distortion	THD	Measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency.	Nil
73.	180 degree mode VSI	Nil	Here 3 SCRs conducts at an instant, each SCR conducts for 180° or T/2 seconds.	Nil
74.	120 degree mode VSI	Nil	Here 2 SCRs conducts at an instant, each SCR conducts for 120° or T/3 seconds.	Nil
75.	Feedback diodes	Nil	For RL loads, load current will not be in phase with load voltage and the diodes connected in antiparallel will allow the current to flow when the main thyristors are turned off. These diodes are called feedback diodes.	Nil
		UNIT IV D	C TO DC CONVERTERS	
76.	AC Link chopper	Nil	It is a traditional chopper, where dc is converted to ac and a transformer is used to neither increase or decrease the voltage, finally	Nil

			a controlled rectifier is used to obtain variable	
			dc voltage.	
77.	Duty Cycle	α	It is defined as the ratio of on period to the total time period of the chopper. $\alpha = T_{On} / (T_{on} + T_{off})$.	%
78.	Time period	Т	It is the sum of ON and OFF period of a semiconductor device which acts as a chopper, $T = T_{on} + T_{off}$.	seconds
79.	Chopping frequency	f	The corresponding time period, T for a chopper circuit determines the switching frequency, where $T = 1/f$.	Hz
80.	Buck Converter	Nil	It is a step down converter, which produces a lower average dc output voltage E_0 than the dc input voltage E_{dc} .	Nil
81.	Boost Converter	Nil	It is a step up converter, which produces a greater average dc output voltage E_0 than the dc input voltage E_{dc} .	Nil
82.	Buck-Boost Converter	Nil	It is cascade connection of buck and boost converter and the output voltage can be either decreased or increased with respect to the input voltage E_{dc} .	Nil
83.	Frequency Modulation	Nil	In frequency modulation control, the chopping frequency f (or the chopping period T) is varied.	Nil
84.	Time-Ratio control	TRC	Achieved by varying the Ton / T control.	seconds
85.	Current Limit control	CLC	Current is maintained between two limits.	Amps
86.	Forced commutation	Nil	Current is forced to zero for turn-off.	Nil
87.	Voltage commutation	Nil	The capacitor voltage reverse biases the conducting device and it turns Off.	Nil
88.	Load commutation	Nil	The load current becomes zero or is transferred to another device	Nil
89.	Motoring	Nil	It operates in Quadrant I of the V_0 -I ₀ four quadrant plane, with operating in forward motoring mode.	Nil
90.	Forward braking	Nil	It operates in Quadrant II of the V _o -I _o four quadrant plane with operating in Generating or forward braking mode.	Nil
91.	Reverse motoring	Nil	It operates in Quadrant III of the V_0 - I_0 four quadrant plane, with operating in reverse motoring mode.	Nil
92.	Reverse braking	Nil	It operates in Quadrant IV of the V _o -I _o four quadrant plane, with operating in Generating or reverse braking mode.	Nil
93.	Flyback converters	Nil	It is a DC-DC converter, which are used to convert the unregulated dc input voltage into a controlled desired dc output voltage.	Nil
94.	Cuk Converter	Nil	It is a type of DC/DC converter that has an output voltage magnitude that is either greater than or less than the input voltage E_{dc} .	Nil
95.	AC Link chopper	Nil	It is a traditional chopper, where dc is converted to ac and a transformer is used to	Nil

			neither increase or decrease the voltage, finally			
			a controlled rectifier is used to obtain variable			
			dc voltage.			
96	Posonant Convertor	Nil	It is a type of electric power converter that contains a network of inductors and capacitors	Nil		
90.	Resonant Converter	INII	called a "resonant tank", tuned to resonate at a specific frequency			
	II . 1 E		They are power semiconductor devices with			
97.	High Frequency	Nil	faster turn-on and turn-off process to achieve			
	switching devices		the power conversion at a faster rate.			
			The performance of Step-up and Step-down	Nil		
98.	Performance	Nil	choppers, Voltage and Current commutated			
	validation		chopper can be validated in the laboratory using			
		NUI	the trainer kits/discrete components.	NJI		
99	Linear Regulator	1111	where a linear component (such as a resistive	1911		
<i>))</i> .	Linear Regulator		load) is used to regulate the output.			
		Nil	A switching regulator is a voltage regulator that	Nil		
			uses a switching element to transform the			
100.	Switching Regulator		incoming power supply into a pulsed voltage,			
			which is then smoothed using capacitors,			
			inductors, and other elements.			
	UNIT V AC TO AC CONVERTERS					
		100	It is a power electronic converter, which			
101.	Cvcloconverter	Nil	converts the input power at one frequency to	Nil		
			output power at another frequency/load			
			Alternating summent (as) frequency is the			
			number of cycles per second in an ac sine			
102.	Frequency	F	wave Power line frequency (normally 50 Hz or	Hz		
			60 Hz).			
-			The Period, (T) is the length of time in seconds			
103	Time period	т	that the waveform takes to repeat itself from	Sec		
105.		2330AU	start to finish.	500		
			$T = T_{ON} + T_{OFF}$			
	AC voltage	L	It is a power electronic converter, which			
104.	controllers/ AC	:0 === 0:=	alternating current to variable voltage fixed	Nil		
	regulators		frequency.			
	TT .• 1•		It can only control positive or negative cycle of			
105	Unidirectional	NT:1	the AC Wave or say half wave therefore it can	NI:1		
105.	Controller/ Hall	1111	be used where there is only need of control half	INII		
	wave ACVC		wave.			
			Single-phase half wave voltage regulator			
			consists of a Invision and a diode in anti-			
106.	Half wave ACVC	Nil	parallel. Therefore control is possible only in	Nil		
			much distorted. Therefore half wave regulator			
			is not used.			
			It can control the ac power flow to the load in			
107	Bidirectional	NI;1	both the half cycles by adjusting the trigger	NG1		
107.	controller	1111	angle ' ' α Controlled during both cycles of the	1111		
			input voltage.			

108.	Sequence control	Nil	A two or more stages of ac voltage controllers in parallel for the regulation of output voltage.	Nil
109.	Multi stage Sequence control	Nil	While controlling two or more sequence control stages, there can be an enhancement in power factor and additional reduction in THD (total harmonic distortion).	Nil
110.	On-Off Control	Nil	In this technique, the thyristors are used as switches to connect the load circuit to the ac supply (source) for a few cycles of the input ac supply and then to disconnect it for few input cycles.	Nil
111.	Integral Cycle Control	Nil	In integral cycle control, thyristor switches connect the load to the AC source for a few cycles of input voltage and then disconnect it for another few cycles.	Nil
112.	Phase Control	Nil	The thyristor switch sets up a connection between the load and the AC source for only part of each cycle of the input voltage by adjusting the ac ac phase angle.	Nil
113.	Duty cycle in ACVC	Nil	Duty cycle = $n / n + m$ where $n =$ number of on-cycles; $m =$ number of off-cycles	Nil
114.	Step-up Cycloconverter	Nil	If the output frequency is greater than the supply frequency, then it is called as step-up cycloconverters.	Nil
115.	Step-down Cycloconverter	Nil	If the output frequency is less than the supply frequency, then it is called as step-down cycloconverters.	Nil
116.	1-ф-1- ф Cycloconverter	Nil	It consists of two full wave converters that are linked back to back as shown below.	Nil
117.	3-ф-1- ф Cycloconverter	231GA	This type of converter can operates in four quadrants (+V, +I, -V, -I) in two modes (inverting and rectifying). Here; +V, +I are in rectifying modes and -V, -I are in inverting modes.	Nil
118.	3-ф-3- ф Cycloconverter	Nil	These types of Cycloconvertes are formed by using 3 three-phase to single cycloconverters linked together to the load and is used in AC machine systems.	Nil
119.	Blocking Mode Cycloconverters	Nil	The positive converter will provide the necessary voltage when there is positive load current where as at that time, the negative converter will be in the blocked condition.	Nil
120.	Positive converter group	Nil	The part of the cycloconverter circuit that permits the flow of current during positive half cycle of output current is called positive converter group.	Nil
121.	Commutation in Cycloconverter	Nil	Since the source is AC, line/natural commutation is employed.	Nil
122.	Commutation in ACVC	Nil	Since the source is AC, line/natural commutation is employed.	Nil
123.	Negative converter	Nil	The part of the cycloconverter circuit that	Nil

	group		permits the flow of current during negative half cycle of output current is called negative		
			converter group.		
124.	Matrix Converters	Nil	It is a single stage of conversion ac-ac conversion without any intermediate energy storage element.	Nil	
125.	Performance validation	Nil	The performance of cycloconverters, AC voltage controllers can be validated in the laboratory using the trainer kits which includes the power modules and triggering units/discrete components.	Nil	
		Pla	cement Questions		
126.	Tell me a little about yo	ourself.			
127.	What are your biggest	weaknesses?	- 19 - C		
128.	What are your biggest	strengths?			
129.	Where do you see your	self in five ye	ars?		
130.	Out of all the other candidates, why should we hire you?				
131.	How did you learn about the opening?				
132.	Why do you want this job?				
133.	What do you consider to be your biggest professional achievement?				
134.	Describe your dream job				
135.	Why do you want to leave your current job?				
136.	What kind of work env	ironment do y	you like best?		
137.	Tell me the toughest decision you had to make in the last 6 months				
138.	What is your leadership style?				
139.	Tell me about a time you disagreed with a decision. What did you do?				
140.	Tell me how you think	other people	would describe you.		
141.	What can we expect from	What can we expect from you in your first three months?			
142.	What do you like to do outside of work?				
143.	What was your salary i	n your last jol	o?		
144.	What questions do you have for me?				
145.	What is your greatest professional achievement?				
146.	Can you explain why you changed career paths?				
147.	How do you deal with	pressure or sti	ressful situations?		
148.	What do you like to do outside of work?				
149.	Are you willing to relo	cate?			
150.	What is your biggest regret and why?				

Faculty Team Prepared Dr R Sagayaraj P/EEE

:

Year/Sem/Sec

III / V / B

Signatures

HoD

