

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

-

МКС

2021-22

EEE

Course Code & Course Name :19GES33 & Electronic Devices & Circuits

Year / Sem

: 11 / 111

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units		
	Unit-I : Application of Semiconductor Devices					
1.	Semiconductor		Semiconductor is a substance has its resistivity in between conductors and insulators.	-		
2.	Conductors	\otimes	The substances, which allow electric current to pass through them, are called conductors.	-		
3.	Insulator	$\langle \times$	Material, which does not allow the passage of electric current through them.	-		
4.	Doping	$\langle \rangle$	The process of adding impurities to an intrinsic semiconductor is called doping.	-		
5.	Intrinsic Semiconductor	IGNING	Semiconductor in an extremely pure form is called intrinsic semiconductor. Its valence shell must be tetravalent in nature.	-		
6.	Extrinsic Semiconductor	Estd.	Semiconductor in an impure form is called extrinsic semiconductor.	-		
7.	Valence Band	-	The range of energy possessed by valence electron in an atom is called Valence band.	-		
8.	Conduction Band	-	The range of energy possessed by conduction electron in an atom is called conduction band.	-		
9.	Diode	⊶⊁⊷	Semiconductor device which allows current flow in one direction only - (anode) to (cathode).	-		

10.	Breakdown voltage	-	The reverse voltage at which the PN Junction breaks down with sudden rise in reverse current.	-
11.	Biasing	-	To use the transistor in any application it is necessary to provide sufficient voltage and current to operate the transistor. This is called biasing.	-
12.	SCR	-	A silicon controlled rectifier or semiconductor controlled rectifier is a four-layer solid-state current-controlling device.	-
13.	Power Rating		Pd = V f x I f.	-
14.	Forward Resistance		The resistance offered by the diode in its forward biased condition when a voltage is given is called forward resistance.	-
15.	Transition Capacitance	\mathcal{X}	The P-N region on either of the dielectric media act as the plates hence we have components for making a plate capacitor the junction capacitance is called transition capacitance.	-
16.	Rectifier	\bigotimes	A rectifier is a device which converts AC (Alternating current) to DC (Direct current).	-
17.	Types of rectifiers	\sim	Half wave rectifier, Full wave center tap rectifier and Full wave bridge rectifier.	-
18.	Maximum efficiency (η) of a half wave	I G N I N G	Half wave rectifier – 40.6%	-
19.	Maximum efficiency (η) of a full wave	Estd.	Full wave rectifier – 81.2%.	-
20.	Form factor	-	It is the ratio of the RMS value to the Average value.	-
21.	Peak factor	-	The ratio of maximum value to the RMS value.	-
22.	Drift current	-	This drift movement of charge carriers will result in a current termed as drift current.	-

23.	Zener Diode	⊶⊁⊸	Zener diode is a p-n junction diode specially designed for operation in the breakdown region in reverse bias condition.	-
24.	LED	-	Light-emitting diodes are usually placed behind the screen or around the edges.	-
25.	LCD	-	Fluorescent lights used are usually placed behind the screen.	-
-	1	Unit-II	: Transistors	
26.	BJT	-	It is a semiconductor device which can be used for switching or amplification	-
27.	UJT	-	It is an electronic semiconductor device that has only one p-n junction.	
28.	Types of Transistor	-	BJT,UJT,MOSFET,IGBT,JFET	-
29.	MOSFET	2	The metal-oxide-semiconductor field- effect transistor	-
30.	IGBT	\bigotimes	It is a three-terminal semiconductor switching device that can be used for fast switching with high efficiency	-
31.	Thyristor	\times	Thyristors are semiconductor devices that can operate only in the switching mode.	-
32.	Transistor DES	IGNING	A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power	-
33.	Firing Angle of Thyristor	Estd.	The phase angle of the ac supply voltage when the GATE current is applied and thyristor turns ON.	-
34.	JFET	-	Junction field-effect transistor.	-
35.	NPN Bipolar Transistor	۳¢	Allows current flow when high potential at base	-
36.	PNP Bipolar Transistor	۳ -	Allows current flow when low potential at base	-
37.	Rise time	t _r	Time required for the current to rise from 0 to 90 percentage of the maximum value	Sec

38.	Cut-in voltage	-	Forward voltage at which the current through the junction starts increasing	-
39.	Features of Thyristor	-	Conducts current only when forward biased and triggering current applied to the Gate.	-
40.	Thyristor Applications	-	Used in power-switching circuits, relay- replacement circuits, inverter circuits, oscillator circuits	-
41.	Transistor Applications	-	they are being used in various oscillators, modulators, detectors	-
42.	Pinch off voltage	\langle	Voltage at which the channel is pinched off, (i.e) all the free charges from the channel get removed.	-
43.	Saturation Region		Both the collector and emitter functions are forward biased	-
44.	Cutoff Region		Collector and emitter functions are both reverse biased	-
45.	Advantages of UJT	\searrow	Low cost. Negative resistance characteristics. Requires low value of triggering current.	-
46.	Application of IGBT	\geq	It is used as switching devices for motor drive systems, uninterruptible power supplies.	-
47.	Active Region	IGNING	Base terminal function in reverse direction and emitter function in forward direction.	-
48.	NPN Transistor	Estd.	In NPN transistor, the direction of movement of an electron is from the emitter to collector.	_
49.	AC Converter	-	solid-state AC-to-AC converter converts an AC waveform to another AC waveform	-
50.	Turn-on time	$\frac{T_{ON}}{T_R} = T_D + T_R$	Time required for the current to rise from 0 to 90 percentage of the maximum value	Sec
		Unit-III	: Amplifiers	
51.	Amplifier	-	Amplifier is a circuit which is used to	-

			increase the magnitude of the signal	
			applied to its input.	
			The configuration in which the emitter is	
52	CE configuration	-	connected between the collector and	-
52.			base.	
			The configuration in which the collector	
53.	CC configuration	-	is common between emitter and base is	-
			known as CC configuration.	
			The difference between f_1 and f_2 f_3 -	
	Bandwidth		high frequency region f_1 low frequency	_
54.	Dandwidth	_	ragion	
			region.	
			Handle a large amount of current and also	
55	Power transistors	-	dissipates large amount of power across	-
55.			collector base junction	
	Lower cut-off	~//	Frequency at which the voltage gain of	
56	frequency		the amplifier is exactly 70.0% of the	-
50.	inequency	\leq	maximum gain	
57	Source follower		In electronics, a common-drain amplifier,	-
57.			also known as a source follower,	
			Frequency at which the voltage gain of	
58	Upper cut-off frequency		the amplifier is exactly 70.0% of the	-
50.			maximum gain	
			The input signal is coupled to the output	
59.	Voltage follower	~ /	circuit without making any distortion	-
			cheat without making any distortion.	
	Coin DEC	CNINC	Gain is defined as the ratio of the output	
60.	ULJ	CIN-ING	power to the input power in dB	-
		Ental	2000	
		esta.	Any linear circuit having input and	
61.	Hybrid parameters	-	output terminals can be analyzed by four	-
			parameters called hybrid or h-parameters.	
	Relation between a and			
62	Relation between a and	-	$\alpha = \beta/(1+\beta)$	-
02.	h			
63	CEO	-	collector to emitter base open	-
05.			-	
			The ratio of change of collector current to	
64.	AC current gain	-	the ratio of change of base current is	-
			called ac current gain	

65	The range of β is	-	20 to 500	-
05.	In a transistor I _E	_	$I_{\rm E} = I_{\rm C} + I_{\rm B}$	-
00.	In a transistor, signal is			
67.	transferred from	-	Low resistance to high resistance.	-
68.	Small Signal Diode	-	The semiconductor Signal Diode is a small non-linear semiconductor devices generally used in electronic circuits.	-
69.	Active Region	-	It is defined in which transistor function is biased in reverse direction and emitter function in forward direction.	-
70.	Cutoff Region	<	The region in which the collector and emitter functions are both reverse biased	-
71.	Saturation Region	->	The region in which both the collector and emitter functions are forward biased.	-
72.	Types of configuration in transistors	\sim	Common Base, Common Emitter and Common Collector configurations.	-
73.	Common-Base Biasing	\searrow	input = $V_{EB} \& I_E$ output = $V_{CB} \& I_C$	-
74.	Common-Emitter Biasing	\geq	input = $V_{BE} \& I_B$ output = $V_{CE} \& I_C$	-
75.	Common-Collector Biasing	IGNING	input = $V_{BC} \& I_B$ output = $V_{EC} \& I_E$	-
	Unit-IV : Mu	ultistage Ampl	ifiers and Differential Amplifier	
76.	BIMOS	estd.	BI-polar Metal-Oxide Semiconductor	-
77.	Amplifier	_	Used to increase the amplitude of the input current or voltage at the output.	-
78.	Tuned amplifiers	-	Amplifiers which amplify only selected range of frequencies with the help of tuned circuits.	-
79.	Cascade amplifier	-	Two-port network constructed from a series of amplifiers.	-
80.	Differential Amplifier	-	It yields an output voltage which is proportional to the difference between the	-

			inverting and the non-inverting input	
			signals.	
81.	Uses of Differential Amplifier	-	Used as an automatic gain control circuit.	-
82.	CMRR	-	Common Mode Rejection Ratio CMRR = 20log Ad/Ac dB.	-
83.	Common mode	-	The common mode refers to signals or noise that flow in the same direction in a pair of lines.	-
84.	Common Mode Rejection Ratio	CMRR	Gain of the amplifier for a difference mode input signal Gain of the amplifier for a common mode input signal	-
85.	FET input stages		The input voltage ranges from about -0.2 V to 1 V, the PNP differential amplifier is active and the NPN differential amplifier is cut off	-
86.	single tuned amplifiers	\sim	Circuit with a single tuner section being at the collector of the amplifier circuit.	-
87.	frequency affect gain	$\langle X \rangle$	The capacitor reactance decreases with increase in frequency bypassing the majority of output.	-
88.	Double tuned amplifiers	\bigcirc	Use two inductively coupled tuned circuits per stage, both the tuned circuits being tuned to the same frequency	-
89.	Neutralization DES	IGNING	Technique used for the elimination of potential oscillations	-
90.	Types of qualitative analysis	esta.	Content analysis, Narrative analysis, Discourse analysis, Framework analysis, Grounded theory.	-
91.	Types of power amplifier	-	 Class A Class B Class AB Class C Class D to T 	-
92.	Class-A	$\theta = 2\pi$	Full cycle 360° of Conduction	-
93.	Class-B	$\theta = \pi$	Half cycle 180° of Conduction	-
r			·	

94.	Class-AB	$\pi < \theta < 2\pi$	Slightly more than 180° of conduction	-
95.	Class-C	$\theta < \pi$	Slightly less than 180° of conduction	-
96.	Class-D to T	$\theta = 0$	ON-OFF non-linear switching	-
97.	Qualitative method	-	Qualitative methods are exploratory; they seek to unearth the opinions, thoughts and feelings of respondents.	-
98.	Most efficient power amplifier	-	Class D amplifier is the highest power efficient amplifier.	-
99.	Small signal amplifier	-	When the input is so weak as to produce small fluctuation in the collector current compared to its quiescent value	-
100.	Power Amplifiers	\times	It is an electronic amplifier that amplifies low-power electronic audio signals	-
	Unit-	V: Feedback A	Amplifiers and Oscillators	
101.	Feedback	\mathbf{X}	Portion of the output signal is taken from the output of the amplifier and is combined with the normal input signal.	-
102.	Positive feedback	$\langle \times \rangle$	When input signal and part of the output signal are in phase	-
103.	Negative feedback	IGNING	When input signal and part of the output signal are in out of phase	-
104.	Oscillators	Estd.	An oscillator is a circuit which produces a continuous, repeated, alternating waveform without any input.	-
105.	Crystal oscillators	-	Frequency of oscillations depends on the dimensions of crystal	-
106.	LC oscillators	-	Frequency of oscillations is dependent on values of L and C	-
107.	RC oscillators	-	Frequency of oscillations is dependent on values of R and C used at low and medium frequencies	-
108.	Q factor	-	Q=2π *(Maximum Energy Stored per cycle / Energy dissipated per cycle)	-

109.	Conversion efficiency	ŋ	Ratio of the AC output power delivered to the load to DC input power applied	-
110.	Applications of oscillators.	_	AM and FM transmitters. In phase lock loops.	-
111.	Gain of an amplifier with feedback	-	$Avf = AV/1 + AV\beta$	-
112.	Frequency sensitive arms	-	The arms which decide the frequency of oscillations i.e., R1-C1 and R2-C2 are the frequency sensitive arms.	-
113.	Hartley oscillator - Advantages:	\langle	a) It is easy to tuneb) It is easy to change the frequency by means of a variable	-
114.	Hartley oscillator - Disadvantages:		Poor frequency stability	-
115.	Crystal Oscillator	$\langle \rangle$	Frequency of oscillations depends on the dimensions of crystal	-
116.	Phase shift oscillator - Frequency of oscillations	\bigotimes	$f = 1 / 2\pi 6RC$	Hz
117.	Wein bridge oscillator - Frequency of oscillations	$\langle \rangle$	$f = 1 / 2\pi RC$	Hz
118.	Phase shift oscillator - Value of β DES	IGNING	$\beta = -1/29$ for oscillator using OP-AMP	-
110	Wein bridge oscillator -		0000	
119.	Value of β	estd.	$\beta = +1/3$ for oscillator using OPAMP	-
119.	Value of β Phase shift oscillator - Minimum value of gain	estd.	$\beta = + 1/3$ for oscillator using OPAMP A>29 for sustained oscillations	-
119. 120. 121.	Value of β Phase shift oscillator - Minimum value of gain Wein bridge oscillator - minimum value of gain	estd.	 β = + 1/3 for oscillator using OPAMP A>29 for sustained oscillations A> 3 for sustained oscillations 	-
119. 120. 121. 122.	Value of β Phase shift oscillator - Minimum value of gain Wein bridge oscillator - minimum value of gain Applications: Crystal Oscillator	- -	$\beta = + 1/3$ for oscillator using OPAMP A>29 for sustained oscillations A> 3 for sustained oscillations As a crystal clock in microprocessors. In the frequency synthesizers.	

104	Closed loop gain	-	Ratio of the output to input, considering	-			
124.			the overall effect of the feedback.				
125	Open loop gain	-	Ratio of output to input when no	-			
123.			Теедраск				
	Placement Questions						
126.	Tell me a little about yourself.						
127.	What are your biggest we	eaknesses?					
128.	What are your biggest str	engths?					
129.	Where do you see yourse	lf in five years	?				
130.	Out of all the other candid	dates, why sho	uld we hire you?				
131.	How did you learn about	the opening?					
132.	Why do you want this job	o?					
133.	What do you consider to be your biggest professional achievement?						
134.	Describe your dream job						
135.	Why do you want to leav	e your current	job?				
136.	What kind of work environment do you like best?						
137.	Tell me the toughest decision you had to make in the last 6 months						
138.	What is your leadership s	tyle?					
139.	Tell me about a time you	disagreed with	a decision. What did you do?				
140.	Tell me how you think ot	her people wou	ıld describe you.				
141.	What can we expect from	n you in your fi	rst three months?				
142.	What do you like to do or	utside of work?					
143.	What was your salary in	your last job?	2000				
144.	What questions do you have	ave for me?					
145.	What is your greatest pro	fessional achie	vement?				
146.	Can you explain why you	changed caree	er paths?				
147.	How do you deal with pre-	essure or stress	ful situations?				
148.	What do you like to do outside of work?						
149.	Are you willing to reloca	te?					
150.	What is your biggest regret and why?						

Faculty Team Prepared

Signatures

- 1. Dr.R.Prakash
- 2. Mr.R.Manikandan