

ECE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

	Subject		19ECE14 & WIRELESS COMMUNICATION		
	Unit I	Introduction	Introduction to Wireless Communication		
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/ Equation/Expression	Units	
1	Types of mobile radio transmission systems		SimplexHalf- duplexFull - duplex	-	
2	Simplex		A communication channel that sends information in one direction only. That is In simplex mode, Sender can send the data but that sender can't receive the data.	-	
3	Half- duplex	\geq	Half duplex mode is a two-way directional communication but one at a time.	-	
4	Full - duplex	$\langle \cdot \rangle$	Full duplex mode is a two-way directional communication simultaneousl y.	-	
5	Base station	Estc	A Fixed station in a mobile radio communication with mobile station. Base stations are located at the center or on the edge of a coverage region and consist of radio channels and Transmitter and receiver antennas mounted on a tower	-	
6	Control channel	-	Radio channels used for transmission of call setup, call request, call initiation and control purpose.	-	
7	Forward Channel	-	Radio channels used for transmission of information from the base station to the mobile		
8	Handoff	-	The process of transferring a mobile station form one channel or base station to another	-	

9	M S	A mobile station in the cellular radio service intended for use while in motion at unspecified locations. Mobile stations may be hand held personal units
10	MSC	Mobile Switching Center which coordinates the routing of calls in a large service area.
11	Reverse Channel	Radio channel used for transmission of information from the mobile to the base station.
12	Subscriber	A user who pays subscription charges for using a mobile communication system
13	Transceiver	A device capable of simultaneously transmitting and receiving radio signals.
14	Frequency Reuse	The design process of selecting and allocating channel groups for all of the cellular base station within a system.
15	Total number of available radio channel	S = kN, Where N – Cells, k- Channels
16	Cluster	The N cells which collectively use the complete set of available frequencies.
17	Channel assignment DESIG	 Fixed channel assignment Dynamic channel assignment
18	Dwell time	STC The time over which a call may be maintained within a cell, without handoff.
19	Cell dragging	The practical handoff problem in microcell system
20	LOS	Line of sight, the radio path between the subscriber and the base station
21	Interference	the interference another mobile in the same cell, a call in progress in a neighboring cell, other base station operating in the same frequency band

		It is a technique which allows a large -
22	Trunking	number of users to share the relatively small number of channels in a cell by providing access to each user, on demand, from a pool of available channels
23	Holding Time	Average duration of a typical call. Denoted by H
24	Traffic Intensity	Measure of channel time utilization, which is the average channel occupancy measure in Erlangs.
25	GOS	 The Grade of service (GOS) is a measure of ability of mobile subscriber to access a cellular system during the busiest hour. GOS is typically specified as the probability that a cell is blocked, or the probability of a call experiencing a delay greater than the predefined queuing time.
	Uni	t II Mobile Radio Propagation
26	Free Space Propagation Model	The free space propagation model is used to predict received signal strength. when the transmitter and receiver have a clear, unobstructed line-of-sight path between them.
27	Friis free space equation,	$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$
28	Effective isotropic radiated power	Estd. $2^{EIRP = P_tG_t}$
29	The path loss for the free space model when antenna gains are included is	$PL(dB) = 10\log \frac{P_t}{P_r} = -10\log \left[\frac{G_t G_r \lambda^2}{(4\pi)^2 d^2}\right]$
30	Free space, the power flux density Pd	$P_d = \frac{EIRP}{4\pi d^2} = \frac{P_t G_t}{4\pi d^2} = \frac{E^2}{R_{fs}} = \frac{E^2}{\eta} W/m^2$
31	The Three Basic Propagation Mechanisms	ReflectionDiffractionScattering

	T		
		It is a function of the material properties	
32	Fresnel reflection	and generally depends on the wave	
	coefficient	polarization and the frequency of the	
		propagating wave.	
		$\theta_i = \theta_r$	
33	Reflection from Perfect		
	Conductors		
		The Brewster angle is the angle at	
		which no reflection occurs in the	
24		medium of origin.	
34	Brewster Angle		
		$\sin(\Theta_B) = \sqrt{\frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2}}$	
		• • • •	
		The 2-ray ground reflection model	
		Propagation model that is based on	
35	Ground Reflection (2-	geometric optics, and considers both the	
	ray) Model	direct path and a ground reflected	
		propagation path between transmitter and receiver.	
		Time Dispersion Parameters	
	Parameters of Mobile Multipath Channels	 Coherence Bandwidth 	
36		Doppler Spread and Coherence	
		Time	
		Small-Scale Fading	
		(Based on multipath time delay	
		spread)	
	Types of Small-Scale Fading	Small-Scale Fading	
37		(Based on Doppler spread)	
0,		Fast Fading	
		Slow Fading	
		Flat Fading	
		Frequency Selective Fading	
	D	High Doppler spread	
20	Fast Fading	Coherence time c Symbol period	
38		ESTC Channel variations faster than	
		base- band signal variations	
		Low Doppler spread	
39	Slow Fading	Coherence time> Symbol period	
39		Channel variations slower than	
		baseband signal variations	
	Practical Link Dudget	Log distance Path Loss Model	
40	Practical Link Budget design	Log Normal Shadowing	
70	using path loss model	• Determination of Percentage of	
		Coverage Area	
		Longley-RIce Model	
		Durkin's Model	
41	Outdoor Propagation Models	Okumura's model	
		Hata model	
		PCS Extension to Hata Model	
		Walfisch and Bertoni Model	

		Wldeband PCS Microcell Model
42	Indoor Propagation Models	 Partition Losses (same floor) Partition Losses between Floors Log-distance Path Loss Model Ericsson Multiple Breakpoint Model Attenuation Factor Model
43	Signal Penetration into Buildings	The signal strength received inside of a building due to an external transmitter is important for wireless systems that share frequencies with neighboring buildings or with outdoor systems.
44	Small-Scale Fading effects.	Most important effects are: • Rapid changes in signal strength over a small travel distance or time interval • Random frequency modulation due to varying Doppler shifts on different multipath signals • Time dispersion (echoes) caused by multipath propagation delays.
45	Slow fading channel	If the baseband signal bandwidth is much greater than BD, the effects of Doppler spread are negligible at the receiver. This is a slow fading channel
46	The average received power over a local area	$E_{a,\theta}[P_{CW}] \approx \sum_{i=0}^{N-1} \overline{a_i^2} + 2\sum_{i=0}^{N-1} \sum_{i,j\neq i}^{N} r_{ij} \overline{\cos(\theta_i - \theta_j)}$
47	Factors Influencing D Small-Scale Fading	 Multipath propagation Speed of mobile Speed of surrounding objects The transmission bandwidth of the signal
48	Doppler Shift	the Doppler shift to the mobile velocity and the spatial angle between the direction of motion of the mobile and the direction of arrival of the wave.
49	Relationship between Doppler spread and coherence time	The Doppler spread and coherence time are Inversely proportional to one another. $T_C \approx \frac{1}{f_m}$
50	Small-Scale Multipath Measurements	 Direct RF Pulse System Spread Spectrum Sliding Correlator Channel Sounding Frequency Domain Channel Sounding

	Unit III Fading and design parameters of Base and Mobile Station				
51	Important effects of small-scale fading effects.		 Rapid changes in signal strength over a small travel distance or time interval. Random frequency modulation due to varying Doppler shifts on different multipath signals. Time dispersion caused by multipath propagation delays. 		
52	Factors Influencing small scale fading		 Multipath propagation. Speed of the mobile. Speed of surrounding objects. The transmission bandwidth of the signal 		
53	Diversity technique concept		The simple concept of diversity is that even if a radio signal path experiences a deep face, there will be another independent signal path available for analysis.		
54	Types of fading		Small-scale fadingLarge-scale fading		
55	Small scale Multipath Measurements Techniques	2	 Direct pulse measurement Spread spectrum sliding correlator measurement Swept frequency measurements 		
56	Direct pulse measurement		This technique to determine rapidly power delay profile of and channel		
57	Spread spectrum channel sounder	DESIG	A carrier signal is spread over large bandwidth by mixing it with a binary pseudo –noise (PN) Sequence having a chip duration Tc and chip rate Rc		
58	Advantage of a spread spectrum system	E	 Cross-talk elimination Better output with data integrity Reduced effect of multipath fading Better security Reduction in noise Co-existence with other systems Longer operative distances Hard to detect Not easy to demodulate/decode Difficult to jam the signals 		
59	Processing gain		$PG = \frac{2R_c}{R_{bb}} = \frac{2\tau_{bb}}{T_c} = \frac{(S/N)_{out}}{(S/N)_{in}}$		

60	Actual Propagation Time		Actual Propagation Time = $\frac{\text{Observed Time}}{\gamma}$	
61	Disadvantage of the spread spectrum		 Increased complexity needs synchronization between Transmitter & Receiver Large Bandwidth 	
62	Small scale fading		It is used to describe the rapid fluctuation of the amplitude of a radio signal over a short period of time or travel distance	
63	Parameters of mobile multipath channels		 Time Dispersion parameters Coherence Bandwidth Doppler Spread Coherence Time 	
64	Time Dispersion parameters		Mean excess delay,RMS delay spread, andExcess delay spread	
65	Coherence Bandwidth		It is a statistical measure of the range of frequency over which the channel can be considered "flat"	
66	Doppler Spread	X	The range of frequency over which the received Doppler spectrum is essentially non zero. The components range f_c - f_d to f_c + f_d where, f_c transmitted frequency and f_d is Doppler shift	
67	Coherence Time		Coherence time is the time duration over which the channel impulse response is considered to be not varying.	
68	Types of Small Scale Fading	DESIG	 Based on multipath time delay spread(Small Scale Fading) Based on Doppler spread(Small Scale Fading) 	
69	Based on multipath time delay spread		Flat FadingFrequency Selective Fading	
70	Multipath time delay spread(Flat Fading)		 BW of signal < BW of Channel Delay spread < Symbol period 	
71	Multipath time delay spread(Frequenc y Selective Fading)		 BW of signal > BW of Channel Delay spread > Symbol period 	
72	Based on Doppler spread		Flat FadingSlow Fading	

r					
73	Doppler spread(Flat Fading)	 High Doppler Spread Coherence time < Symbol period Channel variations faster than baseband signal variations 			
74	Doppler spread(Slow Fading)	 low Doppler Spread Coherence time > Symbol period Channel variations slower than baseband signal variations 			
75	Rayleigh Fading Distribution.	It is commonly used to describe the statistical time varying nature of the received envelope of a flat fading signal or the envelope of an individual multipath component.			
	Unit IV Multiple Access Schemes				
76	Techniques used to improve the received signal quality	 Equalization Diversity Channel coding 			
77	Equalization	Equalization is used to compensate the inter symbol interference created by multipath within time dispersive channel.			
78	Various non linear equalization methods	 Decision feedback equalization. Maximum likelihood symbol detection Maximum likelihood sequence estimation 			
79	Various linear equalization methods	Transversal Lattice			
80	Adaptive equalizer	The equalizer which tracks the time varying characteristics of mobile channel is known as adaptive equalizer.			
81	Mode of Adaptive equalizer	• Training • Tracking Estd. 2000			
82	Linear Equalizer	Output of the decision maker is not used in the feedback path to adapt the equalizer			
83	Non-linear Equalizer	Output of the decision maker is used in the feedback path to adapt the equalizer			
84	Algorithm for adaptive equalization	 Constant Modulus algorithm Spectral coherence restoral algorithm 			

• Zero forcing algorithm. • LMS algorithm • RLS algorithm. • RLS algorithm. • Fast RLS • Square root RLS • Which applies the inverse of the frequency response of the channel. To eliminate the inter symbol interference at decision time instants gorithm Image: symbol interference at decision time instants Least Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE) gorithm gorithm Provide Convergence, but is computationally more complex than LMS
hm used for • RLS algorithm. • Fast RLS • Square root RLS • Square root RLS • Which applies the inverse of the frequency response of the channel. To eliminate the inter symbol interference at decision time instants gorithm Least Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE) gorithm Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
• Fast RLS • Square root RLS • Square root RLS which applies the inverse of the frequency response of the channel. To eliminate the inter symbol interference at decision time instants gorithm Least Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE) gorithm Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
• Square root RLS rcing algorithm gorithm Which applies the inverse of the frequency response of the channel. To eliminate the inter symbol interference at decision time instants gorithm Least Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE) Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
rcing algorithmWhich applies the inverse of the frequency response of the channel. To eliminate the inter symbol interference at decision time instantsgorithmLeast Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE)gorithmRecursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
rcing algorithmresponse of the channel. To eliminate the inter symbol interference at decision time instantsgorithmLeast Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE)gorithmRecursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
gorithm symbol interference at decision time instants gorithm Least Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE) gorithm Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
gorithm Least Mean Squares algorithm is steepest descent and it is meant for convergence towards Minimum Mean Square Error(MMSE) gorithm Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
gorithm descent and it is meant for convergence towards Minimum Mean Square Error(MMSE) gorithm Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
towards Minimum Mean Square Error(MMSE) gorithm Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
gorithm Recursive Least Squares Algorithm is faster convergence, but is computationally more complex than LMS
gorithm convergence, but is computationally more complex than LMS
complex than LMS
Decision Feedback Equalization consists of
feed forward filter (FFF) and feedback filter
(FBF).
The FBF is driven by decisions on the output
of the detector, and its coefficients can be
adjusted to cancel the ISI on the current
symbol from past detected symbols.
The DFE is particularly is useful for the
Decision channel with severe amplitude distortion and
ck Equalization has been widely used in wireless communications.
Maximum likelihood sequence estimation (MLSE) which entails making measurement of
channel impulse response and then providing a
means for adjusting the receiver to the
transmission environment.
Diversity is used to compensate the fading
channel impairments and is usually
antennas.
It is a kind of space diversity scheme using
several antennas or transmitter antennas for
diversity transferring the same signals. The distance
between the transmitters is longer than the
wavelength.
Frequency Diversity
• Time Diversity
Delanization diversity
Polarization diversity
Angle Diversity
Angle DiversitySpace Diversity
Angle Diversity Space Diversity The same information signal is transmitted on
Angle Diversity Space Diversity The same information signal is transmitted on different carriers, the frequency separation
Angle Diversity Space Diversity The same information signal is transmitted on different carriers, the frequency separation between them being at least the coherence
Angle Diversity Space Diversity Space Diversity The same information signal is transmitted on different carriers, the frequency separation between them being at least the coherence bandwidth.
Angle Diversity Space Diversity The same information signal is transmitted on different carriers, the frequency separation between them being at least the coherence
ty D S1 implemented by using two or more receiving antennas. diversity It is a kind of space diversity scheme using several antennas or transmitter antennas for transferring the same signals. The distance between the transmitters is longer than the wavelength. of Diversity • Frequency Diversity of Diversity • Time Diversity

97	Polarization diversity	 intervals. The separation between the transmit times should be greater than the coherence time, Tc. The time interval depends on the fading rate, and increases with the decrease in the rate of fading. The electric and magnetic fields of the signal carrying the information are modified and many such signals are used to send the same information. Thus, orthogonal type of
98	Angle Diversity	polarization is obtained.Directional antennas are used to create independent copies of the transmitted signal over multiple paths.
99	Space Diversity	It is also known as antenna diversity. It consists of an elevated base station antenna and a mobile antenna closed to the ground.
100	Classification of Space Diversity	 Selection diversity Feedback diversity Maximal ratio combining Equal gain diversity
	Unit V	
101	AMPS	 Advanced Mobile Phone Service (AMPS) is a standard system for analog signal cellular telephone service in the United States and is also used in other countries. It is a 1G system
102	CDMA 2000	CDMA2000 is a multi-carrier code- division multiple access version of IMT-2000 standard It is a 3Gwireless technology
103	GSM	 Global System for Mobile Communication. It is a digital cellular technology used for transmitting mobile voice and data service a globally accepted standard for digital cellular communication uses narrowband Time Division Multiple Access (TDMA) for providing voice and text based services over mobile phone networks.
104	Why GSM	 Improved spectrum efficiency International roaming Low-cost mobile sets and base stations (BSs) High-quality speech

105	Functional units in GSM	 Compatibility with Integrated Services Digital Network (ISDN) and other telephone company services Support for new services The Mobile Station (MS) The Base Station Subsystem (BSS) The Network Switching Subsystem (NSS) The Operation Support Subsystem
106	Modulation used in GSM	(OSS Gaussian Minimum Shift Keying (GMSK) modulation
107	IMEI	International Mobile Station Equipment Identity
108	Parts of IMEI	 Type Approval Code (TAC): 6 decimal places, centrally assigned. Final Assembly Code (FAC): 6 decimal places, assigned by the manufacturer. Serial Number (SNR): 6 decimal places, assigned by the manufacturer. Spare (SP): 1 decimal place.
109	IMSI	International Mobile Subscriber Identity
110	Parts of IMSI	 Mobile Country Code (MCC): 3 decimal places, internationally standardized. Mobile Network Code (MNC): 2 decimal places, for unique identification of mobile network within the country. Mobile Subscriber Identification Number (MSIN): Maximum 10 decimal places, identification number of the subscriber in the home mobile network.
111	MSRN	Mobile Station Roaming Number
112	Structure of MSRN	 Country Code (CC): of the visited network. National Destination Code (NDC): of the visited network. Subscriber Number (SN): in the current mobile network.

113	TMSI, LMSI CI		Temporary Mobile Subscriber Identity Local Mobile Subscriber Identity Call Identifier
114	Categories of Mobile services		 Bearer services Tele services Supplementary services
115	Subsystems in GSM system		 Radio subsystem (RSS) Network & Switching subsystem (NSS) Operation subsystem (OSS)
116	Control channel groups in GSM		 Broadcast control channel (BCCH) Common control channel (CCCH) Dedicated control channel (DCCH)
117	Interfaces used in the GSM	N	 GSM radio air interface Abis interface A interface
118	OFDM		Orthogonal frequency-division multiplexing (OFDM) is a method of digital signal modulation in which a single data stream is split across several separate narrowband channels at different frequencies to reduce interference and crosstalk.
119	Forward CDMA channel	X	The Forward CDMA channel is the cell-to- mobile direction of communication or the downlink path.
120	Reverse CDMA channel		The Reverse CDMA channel is the mobile-to- cell direction of communication or the uplink path.
121	Conferencing	E	It allows a mobile subscriber to establish a multiparty conversation, i.e., a simultaneous conversation between three or more subscribers to setup a conference call.
122	Call Barring		Call Barring is useful to restrict certain types of outgoing calls such as ISD or stop incoming calls from undesired numbers.
123	Call forwarding		Call Forwarding is used to divert calls from the original recipient to another number.
124	Call hold		This service allows a subscriber to put an incoming call on hold and resume after a while.

125	Call Waiting		 This service notifies a mobile subscriber of an incoming call during a conversation. The subscriber can answer, reject, or ignore the incoming call. 						
Placement Questions									
126	Flat Fading		 BW of signal <bw channel<="" li="" of=""> Delay spread <symbol li="" period<=""> </symbol></bw>						
127	Frequency Selective Fading		1. BW of signal > SW of channel 2. Delay spread> Symbol period						
128	Standard for Bluetooth and other Personal Area Networks (PAN)	\mathbb{N}	IEEE 802.15						
129	Different Types of Transmission Impairment		Attenuation.Noise.Delay Distortion.						
130	Difference Between 3G and 4G		 3G stands for 3rd generation as it is just that in terms of the evolutionary path of the mobile phone industry. 4G means 4th generation. This is a set of standard that is being developed as a future successor of 3G in the very near future. 4G speeds are meant to exceed that of 3G. 3G uses the technique of circuit switching while 4G uses the technique of packet switching. 						
131	3G	E	ST • 3G, known as 3rd Generation, is a standard for mobile / cellular phones. It provides the services that fulfill the International Telecommunication Union specifications.						
132	RAKE receiver		Reduces the multipath interference by combining direct and reflected signals in the receiver						
133	3G standards		 UMTS - Universal Mobile Telecommunications System CDMA 2000 						
134	How is 3G different from 2G?		Packet data speed is higher in 3G, and it is up to 384 KBPS						

135	EDGE		 EDGE is an acronym for Enhanced Data GSM Environment An improved wireless technology over GSM A 2nd generation cell phone technology 	
136	WiMax		 It is a protocol designed to provide an extension to wireless communication It provides wireless communication at a distance of around 50kms. 	
137	Advantages of WiMax		 Relatively higher data rates compared to 3G or such mobile standards Wireless communication across city Data rates comparable to cable or DSL connection Lower cost of deployment Much faster installation 	
138	GPRS		 Short form of General Packet Radio System. GPRS is the next generation of GSM, and the basis of the 3G networks. A packet-oriented data service available to users of GSM 	
139	Bluetooth	6	• Bluetooth is a wireless technology standard used to exchange data over short distances.	
140	IS-95		• a CDMA standard of second generation network	
141	Modulation technique is used by EDGE	ESTG	8-PSK NING YOUR FUTURE	
142	Disadvantage of EDGE in comparison to HSCSD and GPRS	E	Small coverage range	
143			the term used by ITU for a set of global standards of 3G systems	
144	Multiple access technique used in UMTS		CDMA	
145	Standard of WLAN		HIPER-LAN HIPERLAN/2 IEEE 802.11b	
146	WLAN standard named as Wi-Fi		DSSS IEEE 802.11b	
147	DSSS IEEE 802.11b		High Performance Radio Local Area Network	

148	Nominal range of Bluetooth	10m		
149	Bluetooth operates in which band	2.4 GHz ISM Band		
150	Modulation scheme is used by Bluetooth	GFSK - Gaussian Frequency Shift Keying		

			1.
•	 Mrs.V.Hema, AP / ECE Mr.S.Bhoopalan, AP / ECE Mrs.S.Punitha, AP/ECE 	Signatures:	2.
			3.

HoD