

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTSMKC52021-22

DEPT : MATHS

Course Code & Course Name

19BSS23&Transforms and Partial Differential Equations

Year/Sem/Sec

II/III/ ECE

:

S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/ Equation/Expression	Units
		Uni	it-I Fourier Transforms	
1	Transform	Z	A Transformation is a process that manipulate a polygon or other two dimentional objects on a plane or coordinate system. Mathematical transformations describe how two dimentional figures move around a plane or coordinate system.	
2	Types of transformation		 Dilation Reflection Rotation Shear Translation 	
3	Fourier Transform		It is a way of transforming a continuous signal into the frequency domain.	
4	Discrete Fourier Transform (DFT)	DESIGN	It is a discrete numerical equivalent using sums instead of integrals that can be computed on a digital computer.	
5	Applications of DFT	E	As one of the applications DFT and then inverse DFT can be used to compute standard convolution product and thus to perform linear filtering.	
6	Uses of Fourier Transform		The Fourier Transform of a musical chord is a mathematical representation of the amplitudes of the individual notes that make it up.	
7	Uses of Fourier Transform		 X-ray diffraction Electron microscopy NMR spectroscopy IR spectroscopy Fluorescence spectroscopy Image Processing 	

8	Time Domain		The original signal depends on time.
9	Frequency Domain		The original signal depends on frequency.
10	Difference between Time and Frequency Domain analysis		 The time domain analysis examine the amplitude vs time characteristics of a measuring signal. Frequency domain analysis replaces the measured signal with the group of sinusoidal which, when added together, produce the waveform equivalent to original.
11	Fourier Transform Pair	\leq	If $f(x)$ is a given function, then Fourier transform and its inverse Fourier transform are called Fourier transform pair.
12	Fourier Transform Pair	F[f(x)] = F(s)	If f(x) is a given function, then $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \cdot e^{isx} dx = F(s)$ and $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) \cdot e^{-isx} ds$ are called Fourier transform pair.
13	Properties of Fourier Transforms		 Convolution Theorem Correlation Theorem Wiener – Khinchin Theorem Parseval's Theorem
14	Linear property		If $F[f(x)] = F(s)$ and $F[g(x)] = G(s)$ then $F[af(x) \pm bg(x)] = aF(s) \pm bG(s)$
15	Shifting theorem		If $F[f(x)] = F(s)thenF[f(x-a)] = e^{ias}F(s)$
16	Change of scale property		If $F[f(x)] = F(s)$ then $F[f(ax)] = \frac{1}{a}F\left(\frac{s}{a}\right)$
17	Modulation theorem	DESIGN	If $F[f(x)] = F(s)$ then $F[f(x)cosax] = \frac{1}{2}[F(s+a) + F(s-a)]$
18	Convolution theorem	*	The Fourier transform of the convolution of two functions $f(x)$ and $g(x)$ is the product of their Fourier transform $F[(f(x) * g(x)] = F(S)G(S) = F[f(x)]F[g(x)].$
19	Convolution	F[f(x)] $= F(s)$ $F[g(x)]$ $= G(s)$	If $F[f(x)] = F(s)$ and $F[g(x)] = G(s)$ then convolution of $f(x)$ & $g(x)$ is defined as $(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)g(x-t)dt$
20	Applications of Convolution		 It is used to merge signals It is used to apply operations like smooting and filtering images where the primary task is selecting the appropriate filter template or mask.

			• It is used to find gradient of the image.
21	Parseval's identity		If f(x) is defined $(-\infty, \infty)$ and $F[f(x)] = F(s)$ then $\int_{-\infty}^{\infty} f(x) ^2 dx = \int_{-\infty}^{\infty} F(s) ^2 dx.$
22	Concept of parseval's Theorem		The sum (or intergral) of the square of the function is equal to the sum (or intergral) of the square of its transform.
23	Fourier sine transform pair	$F_{s}[f(x)] = F_{S}(s)$	The Fourier sine transform of $f(x)$ is $F_{s}[f(x)] = F_{s}(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$ The inverse Fourier sine transform of $F_{s}(s)$ is defined by $f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_{s}(s) \sin sx ds$
24	Fourier cosine transform pair	$F_{c}[f(x)] = F_{c}(s)$	The Fourier sine transform of f(x) is $F_{c}[f(x)] = F_{c}(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) cossx \ dx$ The inverse Fourier sine transform of $F_{c}(s)$ is defined by $f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_{c}(s) cossxds$
25	Self reciprocal		If the fourier transform of $f(x)$ is $f(s)$ then $f(x)$ is said to be self –reciprocal under fourier transform.
	1	Unit-II Z – Tra	unsforms and Differential Equations
26	Z- Transform (one sided or unilateral)		Let { $f(n)$ } be a sequence defined for $n = 0, 1, 2, 3,$ and $f(n) = 0$ for $n < 0$ then its Z- transform is defined as $Z[f(n)] = F[z] = \sum_{n=0}^{\infty} f(n) Z^{-n}$
27	Z- Transform (two sided or bilateral)		Let { $f(n)$ } be a sequence defined for all integers then its Z- transform is defined as $Z[f(n)] = F[z] = \sum_{n=-\infty}^{\infty} f(n) Z^{-n}$
28	Uses of Z-Transform	DECLON	The Z-Transform is a mathematical tool commonly used for the analysis and synthesis of discrete time control system.
29	Differentiation in then Z-Domain	ESIGN	system. If $Z[f(n)] = F[z]$ then $Z[nf(n)] = -Z \frac{d}{dz} F[z]$
30	Second Shifting Theorem		If $Z[f(n)] = F[z]$ then i). $Z[f(n + 1)] = ZF[z] - Zf[0]$ ii). $Z[f(n + 2)] = Z^2F[z] - Z^2f[0] - Zf[0]$ iii). $Z[f(n + k)] =$ $Z^kF[z] - Z^kf[0] - Z^{k-1}f[1] - Z^{k-2}f[2] - \dots - Z^{k-(k-1)}$ iv). $Z[f(n - k)] = Z^{-k}F[z]$ If z[f(n)] = F[z] then
31	Initial value theorem		$If \ z[f(n)] = F[z] then$ $f(0) = \lim_{z \to \infty} F[z].$
32	Final value theorem		Ifz[f(n)] = F[z]

	then $\lim_{n\to\infty} f[n] = \lim_{z\to 1} (z-1)F[z].$		then $\lim_{n\to\infty} f[n] = \lim_{z\to 1} (z-1)F[z].$
33	Convolution theorem of Z Transform.		If $Z[f(n)] = F[z] \& Z[g(n)] = G[z]$ then $Z^{-1}{f(n) * g(n)} = \mathbf{F}(\mathbf{z}) G(z)$
34	Convolution of two functions	*	$f(n) * g(n) = \sum_{k=0}^{n} f(k) \cdot g(n-k).$
35	Z- Transform of <i>cosnθ</i>		$Z[cosn\theta] = \frac{z(z - cos\theta)}{z^2 - 2zcos\theta + 1}$
36	Z- Transform of <i>sinnθ</i>		$Z[cosn\theta] = \frac{z(z - cos\theta)}{z^2 - 2zcos\theta + 1}$ $Z[sinn\theta] = \frac{zsin\theta}{z^2 - 2zcos\theta + 1}$
37	Advantages of Z- transform		 (i) It is easy and time consuming to solve difference equation. (ii) It is faster than Laplace transform to solve difference equation.
38	Unit step sequence	u(k)	$u(k):\{1,1,1,\dots\} = \begin{cases} 1, & k \ge 0\\ 0, & k < 0 \end{cases}$
39	Zeros		When $X(Z)$ is a rational function. i.e., a ration of polynomial in Z, then the roots of the numerator polynomial are referred to as the zeros of $X(Z)$.
40	Poles When X(Z) is a rational function. i.e., a rational polynomial in Z, then the roots of the denomination of the denominati		When $X(Z)$ is a rational function. i.e., a ration of polynomial in Z, then the roots of the denominator polynomial are referred to as the poles of $X(Z)$.
41	Z-Transform at work		 Z-Transform takes a sequence of X_n numbers and transform it into an expression X(Z) that depends on the variable Z but not n. That's the transform part. So the problem is transformed from the sampled time domain (n) to the Z domain
42	Applications of Z- Transforms	DESIGN	The field of signal processing is essentially a field of signal analysis in which they are reduced to their mathematical components and evaluated. One important concept in signal processing is that of the Z-Transform , which converts unwidely sequences into forms that can be easily dealt with. Z-Transforms are used in many signal processing systems.
43	Uses of Z- Transforms		It can be used to solve differential equations with constant coefficients.
44	Differentiation in the Z-Domain		If $Z[f(n)] = F[z]$ then $Z[nf(n)] = -z \frac{d}{dz} F[z]$

45	Damping Rule	If $Z[u(n)] = U[z]$ Then $Z[a^{-n}u(n)] = U[az]$ which is called Damping rule because the geometric factor a^{-n} when $ a > 0$ damps the function $u(n)$
46	Difference Equation	A difference equation is relation between the difference of an unknown function at one or more general values of the argument.
47	Order of a Difference Equation	The order of a Difference Equation is the difference between the largest and the smallest arguments occurring in the difference equation divided by the unit of increment.
48	Solution of a Difference Equation	The solution of the Difference Equation is an expression for $y(n)$ which satisfies the given difference equation.
49	Procedure to solve Difference equation using Z-Transform	 Apply the Z-Transform to the difference equation. Substitute the initial conditions. Solve for the difference equation in the Z- Transform domain. Find the solution in the time domain by applying the inverse Z-Transform.
50	Inverse Z-Transform	The Inverse Z-Transform of $Z[f(n)] = F[z]$ is defined as $Z^{-1}[f(z)] = f(n)$
	· · · · · ·	Unit – III Fourier Series
51	Fourier Series	A series of sine and cosine of an angle and its multiples of the form $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n con nx + \sum_{n=1}^{\infty} b_n \sin nx$ is called the Fourier series . Where a_0, a_n and b_n are Euler (or) Fourier constants.
52	Periodic Function	A function $f(x)$ is said to be periodic, if and only if f(x + p) = f(x) is true for some value of p and every value of x The smallest value of p is called the period of the function $f(x)$
53	Dirichlet's conditions	 f(x) is well defined in the defined interval. f(x) has a finite number of finite discontinuities in the defined interval. f(x) has at most a finite number of maxima and minima in the defined interval.
54	Uses of Dirichlet's condition	The Dirichlet's conditions are sufficient conditions for a real-valued, periodic function f to be equal to the sum of its Fourier series at each point where f is continuous.
55	Odd function	A function $f(x)$ is said to be odd, if and only if f(-x) = -f(x)
56	Even function	A function $f(x)$ is said to be odd, if and only if f(-x) = f(x)

57	Neither even nor odd function	A function $f(x)$ is said to be Neither even nor odd function, if and only if $f(-x) \neq f(x) \neq -f(x)$	
58	Types of intervals in Fourier series	$f(-x) \neq f(x) \neq -f(x)$ 1. (0,2 π) 2. (- π , π) 3. (0,2 l) 4. (- l , l)	
59	Importance of Fourier series in engineering	The Fourier series of functions in the differential equation often gives some prediction about the behavior of the solution of a differential equation. They are useful to find out the dynamics of the solution.	
60	Application of Fourier series	 Image Processing Heat distribution mapping Wave simplification Light simplification Radiation measurements 	
61	Real life application of Fourier series	 Signal Processing Approximation Theory Control Theory 	
62	Application of Fourier series in Engineering	The Fourier series has many such applications in electrical engineering, vibration analysis, acoustics, optics, signal processing, image processing, quantum mechanics, econometrics, thin-walled shell theory, etc	
63	Uses of Fourier series	 Fourier series are particularly suitable for expansion of periodic functions. We come across many periodic functions in voltage, current, flex, density, applied force, potential and electromagnetic force in electricity. Fourier series are very useful in electrical engineering problems. 	
64	Advantage of Fourier series	 The main advantage of Fourier analysis is that very little information is lost from the signal during the transformation. The Fourier transform maintains information on amplitude, harmonics, and phase and uses all parts of the waveform to translate the signal into the frequency domain. 	
65	Disadvantage of exponential Fourier series	The major disadvantage of exponential Fourier series is that it cannot be easily visualized as sinusoids.	
66	Limitations of Fourier series	It can be used only for periodic inputs and thus not applicable for aperiodic one. It cannot be used for unstable or even marginally stable systems.	
67	Bernoulli's Formula	$\int u dv = uv - u'v_1 + u''v_2 - \dots$	
68	Purpose of Bernoulli's equation	The Bernoulli equation is an important expression relating pressure, height and velocity of a fluid at one point along its flow.	

	1		
			Let $f(x)$ be a periodic function defined in the interval (a,b)
(0)			then $a_2^2 + \sum_{n=1}^{\infty} b_n a_n a_n a_n a_n a_n a_n a_n a_n a_n a$
69	Parseval's Theorem		$\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n^2 + b_n^2] = \frac{1}{b-a} \int_a^b [f(x)]^2 dx$ if the interval is
			(a,b)
			Let f(x) be a periodic function defined in the interval (a,b)
	Root Mean Square		then
70	(RMS) Value	\overline{y}	$\bar{y} = \sqrt{\frac{1}{b-a}} \int_{a}^{b} [f(x)]^2 dx$ is called the Root Mean Square
			(RMS) Value of $f(x)$ and it is denoted by \overline{y} .
71	Half Range series		1. If $f(x)$ is Half range cosine series then $b_n = 0$ 2. If $f(x)$ is Half range sine series then $a_0, a_n = 0$
	Advantage of Half		A Half range Fourier series is a Fourier series defined on an interval instead of the more common, with the
72	range Fourier series		implication that the analyzed function should be extended
	range i ourier series		to as either an even or odd function.
			The process of finding the Fourier series for a function
			given by numerical values is known as Harmonic Analysis
72			$f(x) = \frac{a_0}{2} + (a_1 \cos x + b_1 \sin x)$
73	Harmonic Analysis	-11	$(a_2 \cos 2x + b_2 \sin 2x)$
			+ $(a_2 \cos 3x + b_2 \sin 2x)$ + $(a_3 \cos 3x + b_3 \sin 3x)$ +
			Harmonic functions are important in the areas of applied
74	Application of		mathematics, engineering and mathematical physics. They
/4	Harmonic Functions		are used to solve problems involving steady state temperatures, two-dimensional electrostatics and ideal
			fluid flow.
	Uses of Harmonic		The analysis of harmonics is the process of calculating the
75	analysis		magnitudes and phases of the fundamental and high order
			harmonics of the periodic waveforms.
		Unit- IV	Boundary Value Problems
	Boundary value	ESIGN	A boundary value problem is differential equation together
76	problem	LUIUN	with a set of additional restraints, called the boundary
	r	-	conditions.
77	Boundary Condition		A Boundary value problem is a differential equation together with a set of additional constrains.
70	Initial value		The auxiliary conditions are at one point of the
/8	78 problem		independent variable
			The wave equation is an important second-order linear
79	Wave equation		partial differential equation for the description of waves.
			The heat equation is an important partial differential
80	Heat equation		equation which describes the distribution of heat(or
			variation in temperature) in a given region over time.
81	One dimensional wave equation		$\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$
	wave equation		

82	The constant a^2 in		$a^2 = \frac{T}{T} = \frac{Tension}{Tension}$
02	wave equation		m mass per unit length of the string
83	One dimensional heat equation		$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$
84	The constant a^2 in		$\alpha^{2} = \frac{k}{\rho c} = \frac{Thermal \ conductivity}{(Density)(Specific \ heat)}$ • The motion takes place entirely in one plane. The
04	heat equation		$\alpha^{-} = \frac{1}{\rho c} = \frac{1}{(Density)(Specific heat)}$
85	Assumption made in the derivative of one dimensional wave		 The motion takes place entirely in one plane. The mass of the string per unit length is constant. The tension T is constant at all times and at all points of he deflected string. The string is perfectly flexible, i.e., it can transmit tension but not bending or sheering forces.
	In One dimensional		
86	heat equation, what is α^2	\langle	$\alpha^{2} = \frac{k}{\rho c} \frac{Thermal \ conductivity}{(Density)(Specific \ heat)}$
07		ди	The rate of change of temperature with respect to distance
87	Gradient	∂x	is called temperature (or) gradient
	Stoody state		Steady state condition in heat flow means that the
88	Steady state condition		temperature at any point in the body does not vary with
	condition		time. $\frac{\partial u}{\partial t} = 0.$
89	Thermally insulated	K	If an end of heat conducting body is Thermally insulated means that no heat through that section. Mathematically the temperature gradient is zero at that point. i.e., $\frac{\partial u}{\partial x} = 0.$
90	Fourier law of heat	k	The rate at which heat across any area (A)is proportional to
	conduction		the area and to the temp gradient normal to the curve .
91	Specific Heat		The amount of heat required to produce a given temperature change in a body is proportional to the mass of the body and to the temperature change. This constant of proportionality is known as the specific heat of the conducting material.
	Classification of		B^2 - 4AC <0 Elliptic Equation
92	second order Quasi		B^2 - 4AC =0 Parabolic Equation
-	Linear PDE	ESIGN	B^2 - 4AC >0 Hyperbolic Equation
			The rate at which heat flows across any area is proportional
	Fourier law of heat		to the area and to the temperature gradient normal to the
93	conduction.		curve. This constant of proportionality is known as thermal
			conductivity of the material. It is known as Fourier law of
			heat conduction
	Difference between		The correct solution of one dimensional wave equation is
	the solutions of one		of periodic in nature. But the solution of heat flow equation
94	dimensional wave		is not periodic in nature.
	equation and one		
	dimensional heat equation.		
	Steady state solution		When the heat flow is along curves, instead straight lines,
95	of two dimensional		the curve lying in parallel planes, the flow is called two
	or two unitensional		the curve typing in paramet planes, the new is called two

	heat equation	dimensional. The two dimensional heat flow equations $\partial^2 u + \partial^2 u$	
		$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 .$	
96	Two dimensional heat flow equation	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. \text{ i.e., } \nabla^2 u = 0 \text{ this is known as Laplace's equation.}$	
97	Steady State in heat conduction	In steady state, the temperature at any point depends only on the position of the point and is independent of the time t.	
98	Unsteady State in heat conduction	In unsteady state, the temperature at any point of the body depends on the position of the point and also the time t.	
99	Application	 In electrostatics, a common problem is to find a function which describes the electric potential of a given region. If the region does not contain charge, the potential must be a solution to Laplace's equation (a so-called harmonic function). The boundary conditions in this case are the Interface conditions for electromagnetic fields. If there is no current density in the region, it is also possible to define a magnetic scalar potential using a similar procedure. 	
100	Uses of Boundary value Problems	Boundary value problems for large scale nonlinear evolution equations are often required in engineering and scientific applications. Some examples are: incompressible Navier-Stokes equations, problems in elasticity, cosmology, material science, semiconductor device simulation	
		Unit-V Partial Differential Equations	
101	Partial Differential Equations (PDE)	$\frac{\partial}{\partial x}, \frac{\partial}{\partial y},$ $\frac{\partial^2}{\partial x \partial y}$ A PDE is one which involves partial derivatives. For example $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$ is a PDE.	
102	Concept of PDE	A PDE is a mathematical equation that involves two or more independent variables, an unknown function (dependent on those variables), and partial derivatives of the unknown function with respect to the independent variable.	
103	Linear PDE	A PDE is said to be linear, if the dependent variable and the partial derivatives occur in the first degree only.	
104	Non Linear PDE	A PDE is said to be non linear , if the dependent variable and the partial derivatives occur in more than one degree .	
105	Formation of PDE	 By eliminating arbitrary constants that occur in the functional relation between the dependent and independent variables By eliminating arbitrary functions from a given relation between the dependent and independent 	

		variables.
106	Order of PDE	The order of a PDE is the order of the highest partial differential coefficient occurring in it.
107	Degree of PDE	The degree of the highest derivative is the degree of the PDE.
108	Order of PDE got by eliminating arbitrary functions	The elimination of one arbitrary function will result in a PDE of the first order. The elimination of two arbitrary functions will result in equations of second order and so on.
109	Method to solve the first order PDE	The general form of a first order PDE is $f(x, y, z, p, q) = 0$, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.
110	Types of solution of a PDE	 Complete Solution (or) Integral Singular Solution (or) Integral General Solution(or) Integral
111	Complete Integral (or) Complete Solution	A solution which contains as many arbitrary constants as there are independent variables is called a complete integral or complete solution.
112	Particular Integral (or) Particular Solution	A solution obtained by giving particular values to the arbitrary constants in a complete integral is called a particular integral or particular solution.
113	General Integral (or) General Solution	A solution of a PDE which contains the maximum possible number of arbitrary functions is called a general integral or general solution.
114	Clairaut's form Z	The equation of the form $z = px + qy + f(p,q)$ is called Clairaut's form.
115	Lagrange's Linear Equation	An equation of the form $Pp + Qq = R$ is known as Lagrange's equation when P,Q,& R are functions of x, yandz.
116	Method to solve Lagrange's Linear Equation	 Method of grouping Method o Multipliers
117	Method of Grouping	In the subsidiary equation $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$ if the variables can be separated in any pair of equations, then we get a solution of the form $u(x, y) = a \& v(x, y) = b$.
118	Method of Multipliers	Choose any three multipliers l, m, n which may be constants (or) function of $x, y\&z$ we have • $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{ldx+mdy+ndz}{lP+mQ+nR}$. • If it is possible to choose l, m, n such that lP + mQ + nR = 0, then $ldx + mdy + ndz =0. We get a solutionu(x, y) = a&v(x, y) = b$. • The multipliers l, m, n are called Lagrange's multiplier.

119	Categories of PDE of higher order with constant Coefficient	 Homogeneous PDE with constant coefficients. Non-homogeneous PDE with constant coefficients 	
120	Homogenous and	A linear PDE with constant coefficients in which all the partial derivatives are of the same order is called homogeneous; otherwise it is called non-homogeneous.	
121	Common types of PDE	Elliptic, Paraboli hyperbo	
122	Application of PDE	transfer,	y engineering or science problems, such as heat elasticity, quantum mechanics, water flow and the problems are governed by partial differential ns.
123	Solution of PDE	A solution or integral of a partial differential equation is a relation between the independent and the dependent variables which satisfies the given partial differential equation.	
124	Uses of PDE	 Fluid mechanics, heat and mass transfer, and electromagnetic theory are all modeled by partial differential equations and all have plenty of real life applications. Heat and mass transfer is used to understand how drug delivery devices work, how kidney dialysis works, and how to control heat for temperature-sensitive things. It probably also explains why thermoses work. 	
125	Examples of PDE	fields of 1 1	are used to model many systems in many different Science and engineering. Laplace Equation Heat Equation Wave Equation
		Placemer	nt Questions
126	Percentage	ESIGNIN	Percent implies "for every hundred" and the sign % s read as percentage and x % is read as x per cent. In other words, a fraction with denominator 100 is called a per cent. For example, 20 % means 20/100
127	Probability		A probability is a number that reflects the chance or ikelihood that a particular event will occur.
128	Rules of Probability		There are three basic rules associated with probability: the addition, multiplication, and complement rules. The addition rule is used to calculate the probability of event A or event B happening We express it as: $P(A \text{ or } B) = P(A) + P(B) - P(A$ and B)

[]		The metability of flipping a set of a distribution has d
129	Example of probability	The probability of flipping a coin and it being heads is $1/2$, because there is 1 way of getting a head and the total number of possible outcomes is 2 (a head or tail).
		The probability of something which is certain to happen is 1. The probability of something which is impossible to happen is 0.
130	Permutation	Permutation is defined as arrangement of r things that can be done out of total n things. This is denoted by nPr.
131	Combination	Combination is defined as selection of r things that can be done out of total n things. This is denoted by nCr.
132	nCr and nPr stands for	In nCr and nPr, C stands for Combinations, and P stands for permutations. Now for combinations, it is the number of ways you can pick r objects out of n.
133	Average	The average of n quantities of the same kind is equal to the sum of all the quantities divided by the number of quantities; Sum of quantities
		Average = Number of quantities
134	The concept of Time and Work	Time and work problems deal with the simultaneous performance involving the efficiency of an individual or a group and the time taken by
131		them to complete a piece of work. Work is the effort applied to produce a deliverable or accomplish a task.
135	The concept of ratio & Proportion	Ratio: A ratio is the comparison of two homogeneous quantities, or a ratio is the division of two quantities a and b having the same units. It is denoted by a:b (read as "a ratio b") or a/b. Probability: It is defined by Equality between two
126	Arithmetic Est	Ratios.Arithmetic progression(AP) or arithmetic sequenceis a sequence of numbers in which each termafter the first is obtained by adding a constant, d tothe preceding term. The constant d is called
136	Progression(AP)	common difference. An arithmetic progression is given by a, $(a + d)$, $(a + 2d)$, $(a + 3d)$, where a = the first term , d = the common difference
137	Geometric Progression(GP)	Geometric Progression(GP) or Geometric Sequence is sequence of non-zero numbers in which theratio of any term and its preceding term is always constant. It is denoted by a, ar ² ,ar ³

		Prime number: A prime number is a natural
138	Prime Number	number greater than 1 that has no positive divisors
		other than 1 and itself.
		For example, 2, 3, 5, 7, 11, 13, etc. are prime
		numbers.
		Two numbers are said to be relatively prime,
		mutually prime, or co-prime to each other when
139	Co-Prime Number	they have no common factor or the only common
139		positive factor of the two numbers is 1.
		In other words, two numbers are said to be co-
		primes if their H.C.F. is 1.
		L.C.M. is the least non-zero number in common
140	L.C.M	multiples of two or more numbers. The least
140	1 C	number which is exactly divisible by each one of
		the given numbers is called their L.C.M.
		(i) Factorization Method: Resolve each one of the
		given numbers into a product of prime factors.
		Then, L.C.M. is the product of highest powers of all
		the factors.
	Methods of finding	(ii) Division Method (short-cut): Arrange the given
	the L.C.M. of a	numbers in a row in any order. Divide by a
141	given set of	number which divided exactly at least two of the
	numbers?	given numbers and carry forward the numbers
		which are not divisible. Repeat the above process
		till no two of the numbers are divisible by the
		same number except 1. The product of the divisors
		and the undivided numbers is the required
		L.C.M. of the given numbers.
	H.C.F	The highest common factor of two or more
142	П.С.Г	numbers is the greatest number which divides each
		of them exactly without any remainder.
	Reciprocal or Inverse Ratio	If the antecedent and consequent of a ratio
		interchange their places. The new ratio is called the
112		inverse ratio of the first ratio. In other words, if a \neq
143		0, b \neq 0 then the reciprocal ratio of a : b is . Clearly,
		is same as b : a.
	U	Thus the reciprocal ratio of a : b is b : a
	Selling Price (SP) &	$\Box \frown \Box$ The price at which goods are sold is called the
144	•	selling price. The price at which goods are bought
		is called the cost price
	Ducfit	When the selling price is more than the cost price,
145	Profit	then the trader makes a profit.
		It is denoted by $Profit = SP - CP$.
		When the selling price is less than the cost price,
	T	then the trader makes a loss.
	Loss	It is given as $Loss = CP - SP$.
146		

147	Simple Interest	Simple interest is determined by multiplying the daily interest rate by the principal by the number of days that elapse between payments.	
148	The terms involved in calculating Simple Interest?	terms involved lculating Simple S.I = PNR/100 Where, P- Principle	
149	Compound Interest	Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, and can thus be regarded as "interest on interest".	
150	Odd one out	A person or thing that is different from or kept apart from others that form a group or set is called as odd one out Example : Apple, Onion, potato, Brinjal In this Apple is Odd one out because it is a fruit while remaining are vegetables	

Faculty	Team Prepared Signatures	
1.	P.M.Saravanan	
2.	J.Dhamothiran	HoD
3.	A.Arodenis	
	DESIGNING YOUR FUTURE	
	Estd-2000	