

ECE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

:

:

3 677 0	
MK(`	

2021-2022

٦

Course Code & Course Name

19ECC16 - NEMS and MEMS Technology

Year/ Sem/Sec

III/VI/A, B & C

	Subject		19ECC16 - NEMS and MEMS Technology				
S. No.	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equati on/Expression	Units			
	UNIT I - INTRODUCTION TO MEMS AND NEMS						
1	MEMS		Micro Electro Mechanical System				
2	NEMS		Nano Electro Mechanical System				
3	Definition of MEMS		 The MEMS is the batch-fabricated integrated microscale system that: 1. Converts physical stimuli, events, and parameters to electrical, mechanical, and optical signals and vice versa; 2. Performs actuation, sensing, and other functions; 3. Comprises control, diagnostics, signal processing, and data acquisition features, 				
4	Basics of the MEMS operation		Microscale features of electromechanical, electronic, optical, and biological components (structures, devices, and subsystems), architectures, and operating principles are basics of the MEMS operation				
5	Microdevice		The microdevice is the batch-fabricated integrated microscale motion, electromagnetic, radiating energy, or optical microscale device that 1.Converts physical stimuli, events, and parameters to electrical, mechanical, and optical signals and vice versa; 2.Performs actuation, sensing, and other functions,				
6	Basics of the microdevice operation		Microscale features of electromechanical, electronic, optical, and biological structures, topologies, and operating principles are basics of the microdevice operation.				

7	Microstructure	The microstructure is the batch-fabricated microscale electromechanical, electromagnetic, mechanical, or optical composite microstructure that is a functional component of the microdevice and serve to attain the desired microdevice's operating features.	
8	Biological nanomotors	Biological (bacterial) nanomotors convert chemical energy into electrical energy, and electrical energy into mechanical energy	
9	Biomimetic systems	Biomimetic systems are the man-made systems which are based on biological principles, or on biologically inspired building blocks integrated as the systems structures, devices, and subsystems.	
10	Electromagnetic and mechanical laws used in MEMS	Barrier Potential in a PN junction refers to the potential required to overcome the barrier at the PN junction.	
11	Issues which must be addressed in view of evolving nature of the MEMS and NEMS	Synthesis, analysis, design, modeling, simulation, optimization, complexity, intelligence, decision making, diagnostics, fabrication and packaging.	
12	Most challenging problems in systems design	The topology– architecture–configuration synthesis, system integration, optimization, as well as selection of hardware and software	
13	Design of systems	The design of systems is a process that starts from the specification of requirements and progressively proceeds to perform a functional design and optimization.	
14	Types of approaches to design	Top-down and Bottom-up	
15	Need to augment interdisciplinary areas	To acquire and expand the engineering- science-technology core	

16	Design of high- performance MEMS and NEMS	The design of high-performance MEMS and NEMS implies the subsystems, components, devices and structures synthesis, design, and developments.	
17	Sequential activities	Synthesis, modeling, analysis and simulation are the sequential activities	
18	important aspects for developing and prototyping advanced MEMS and NEMS	Modeling, simulation, analysis, virtual prototyping, and visualization.	
19	Software tools to design	MATLAB, VHDL, SPICE	
20	Quantum dots	Quantum dots are metal "boxes" that hold the discrete number of electrons which is changed applying the electromagnetic field.	
21	Classification of electromechanical systems	 Conventional electromechanical systems, Microelectromechanical systems (MEMS) Nanoelectromechanical systems (NEMS) 	
22	Flip-chip technique	Flip-chip MEMS assembly replaces wire banding to connect ICs with micro- and nanoscale actuators and sensors.	
23	Large-scale MEMS and NEMS	Large-scale MEMS and NEMS, which can integrate processor (multiprocessor) and memories, high-performance networks and input-output (IO) subsystems.	
24	Types of microsensors	Position, displacement, velocity, torque, force, current and voltage.	
25	Micro- and nanoscale sensors used in aircraft	Load, vibrations, temperature, pressure, velocity, acceleration, noise and radiation sensors are used in aircraft.	

	UNIT II-MEMS FABRICATION TECHNOLOGIES				
26	Silicon direct bonding	Silicon direct bonding is used to bond a pair of silicon wafers together directly (face to face).			
27	Anodic bonding	Anodic bonding is used to bond silicon to glass			
28	Assembling and packaging of MEMS	Assembling and packaging of MEMS includes microstructure and die inspection, separation, attachment, wire bonding, and packaging or encapsulation.			
29	Technologies of MEMS fabrication	Bulk micromachining, surface micromachining and LIGA technologies			
30	Etching techniques used in bulk micromachining	The anisotropic and isotropic wet etching processes, as well as concentration dependent etching techniques, are widely used in bulk micromachining.			
31	Etchants used in anisotropic etching	Potassium hydroxide KOH, sodium hydroxide NaOH, H2N4 and ethylene-diamine-pyrocatecol EDP			
32	Three-dimensional structures formed using anisotropic etching	Through anisotropic etching cons, pyramids, cubes and channels into the surface of the silicon wafer are fabricated			
33	Wet etching	Wet etching is the process of removing material by immersing the wafer in a liquid bath of the chemical etchant.			
34	Isotropic etchants	Isotropic etchants attack the material being etched at the same rate in all directions.			
35	Anisotropic etchants	Anisotropic etchants attack the material or silicon wafer at different rates in different directions, and therefore, shapes/geometry can be precisely controlled.			
36	Example for Anisotropic etchants	Ethylene-diamine- pyrocatecol, potassium hydroxide, and hydrazine			

37	Etchants for isotropic etching of silicon	Mixtures of hydrofluoric (HF) and nitric (HNO3) acids in water or acetic acid (CH3COOH	
38	Surface micromachining	It is an additive fabrication technique which uses modified CMOS technology, materials and involves the building of a microstructure or microdevice on top the surface of a supporting substrate.	
39	Advantage of Surface micromachining technology	This technology is used to fabricate the structure as layers of thin films. This technology guarantees the fabrication of three-dimensional microdevices with high accuracy	
40	Key challenges in fabrication of microstructures using surface micromachining	Control and minimization of stress and stress gradient in the structural layer. High selectivity of the sacrificial layer etchant to structural layers and silicon substrate Avoidance of stiction of the released (suspended) microstructure to the substrate	
41	Microtransducers	Microtransducers have stationary and rotating members (stator and rotor) and radiating energy microdevices	
42	LIGA	LIGA process denotes Lithography– Galvanoforming–Molding (in German Lithografie–Galvanik–Abformung).	
43	Capability of LIGA process	LIGA is capable of producing three- dimensional microstructures of a few centimeters high with the aspect ratio (depth versus lateral dimension) of more than 100.	
44	Metal evaporation	To deposit a thin film of metal on a wafer by heating a metal source in a crucible until it boils, and hence transfer metal from the crucible to the wafer through evaporated metal particles	
45	Thermal oxidation	To grow a thin film of silicon dioxide by reacting the substrate with oxygen at very high temperature (e.g., >900°C)	

46	Photolithography	To pattern the photoresist thin film by exposing the film through a patterned mask, thus transferring the patterns on the mask to the photoresist layer.	
47	Ion implantation	To inject high-kinetic-energy dopant atoms into the substrate matrix to change electrical or chemical characteristics of the material.	
48	Deposition of photoresist	To coat a wafer with a uniform and thin layer of photoresist, typically with the spin coating method.	
49	Metal sputtering	To deposit a thin film of metal on a wafer by bombarding a metal source with highenergy particles. The particles sputter the metal off the source and on to the wafer	
50	Plasma etching	To etch a material by reacting it with chemically active species produced in a high-energy plasma, while the wafer is placed on a ground electrode.	
		UNIT III - MICRO SENSORS	
51	Major Classes of MEMS Actuators	UNIT III - MICRO SENSORS Electrostatic, Thermal, Piezoelectric Magnetic	
51	Major Classes of MEMS Actuators Acoustic wave sensor	UNIT III - MICRO SENSORS Electrostatic, Thermal, Piezoelectric Magnetic It is does not related to the sensing of acoustic waves transmitted in solids or other media, as the name implies	
51 52 53	Major Classes of MEMS Actuators Acoustic wave sensor Application of Acoustic wave sensor	UNIT III - MICRO SENSORS Electrostatic, Thermal, Piezoelectric Magnetic It is does not related to the sensing of acoustic waves transmitted in solids or other media, as the name implies Sensors is to act like "band filters" in mobile telephones Sensing of torques and tire pressures Sensing biological and chemical substances Sensing vapors, humidity and temperature Monitor fluid flow in microfluidics	
51 52 53 54	Major Classes of MEMS ActuatorsAcoustic wave sensorApplication of Acoustic wave sensorMEMS switches	UNIT III - MICRO SENSORSElectrostatic, Thermal, Piezoelectric MagneticIt is does not related to the sensing of acoustic waves transmitted in solids or other media, as the name impliesSensors is to act like "band filters" in mobile telephones Sensing of torques and tire pressures Sensing biological and chemical substances Sensing vapors, humidity and temperature Monitor fluid flow in microfluidicsIt is consume less power and better isolation and insertion loss	

56	Energy-conserving transducers	It is depend only on the state variables that control energy storage	
57	Gyroscope	It is the sensor aiming at measuring the angular variance or angular rate based on the Coriolis force	
58	Vibratory gyroscope	Drive frame, a Coriolis frame, and a detection frame	
59	Dissipative transducers	It is depend, in addition, on state variables that determine the rate of energy dissipation	
60	Electrostatic Actuators	Attraction between oppositely charged conductors	
61	Thermal Actuators	Displacement due to thermal expansion	
62	Piezoelectric Actuators	Displacement due to strain induced by an electric field	
63	Magnetic Actuators	Displacement due to interaction among various magnetic elements: permanent magnets, external magneticfields, magnetizable material, and current-carrying conduct	
64	Suspended structure	A sandwich of piezoelectric material between electrodes	
65	Materials challenges in Acoustic	Repeatability of piezoelectric's properties (choose AlN and work the process until it is repeatable) Low acoustic losses and low electrical losses	
66	Fabrication challenges in Acoustic	 Precise control of layer thickness Process compatibility (with IC and piezoelectric) Structure built over an oxide-filled cavity in the substrate; oxide removed at end to release Packaging in the fab, by wafer bonding 	
67	Capacitive pressure sensors	This sensor conducting layers are deposited on the diaphragm and the bottom of a cavity to create a capacitor.	
68	Principle of Capacitive pressure sensors	Measure changes in electrical capacitance caused by the movement of a diaphragm	

69	Piezoelectric	Apply an electric field across a piezoelectric material; deformation (strain) results, along with actuator deflection and force	
70	Piezoelectric harvesting	An attractive technology for harvesting small magnitudes of energy from ambient vibrations	
71	Piezoelectric effects	The coupling between internal dielectric polarization and strain, an effect called piezoelectricity.	
72	Piezoelectric features	High force High switching speeds Low power dissipation	
73	Ppiezoelectric materials	Quartz, lithium niobate, and gallium arsenide	
74	Piezoelectric substrates	It can also set up traveling acoustic waves.	
75	Electrical Equivalent circuit for Piezoelectric	$V = C_0 + \frac{1}{2}$ $V = C_0 + \frac{1}{2}$ $V = \frac{1}{2}$ $\frac{1}{2}$	
		UNIT IV - MICRO ACTUATORS	
76	Actuator functions	Converting rotary motion into linear motion to execute movement.	
77	Thermal Actuators	It is a direct result of incorporating tiny heaters, or resistors. These resistors can be controlled to locally heat specific areas or	
		layers as in the case of a bilayer actuator.	
78	SMAs	layers as in the case of a bilayer actuator. Shape memory alloy actuation	
78 79	SMAs SMAs function	layers as in the case of a bilayer actuator.Shape memory alloy actuationExhibit considerable changes in their length (contraction) when heated. These include titanium/nickel alloys, of which some, once mechanically deformed, would return to their original unreformed state when heated.	

81	Magnetostrictive Actuators	These rely on the magnetostrictive effect, which is the change of shape or size of a ferromagnetic material induced by a magnetic field	
82	Chemical Actuators	Electrochemical electrode concept in which current is transducer from the circuit domain into the chemical domain through oxidation or reduction of chemical species at the electrode surface.	
83	The additive approach in piezoelectric	The piezoelectric thin films are deposited on silicon substrates with layers of insulating and conducting material followed by surface or silicon bulk micromachining.	
84	The subtractive approach in piezoelectric	Single crystal polycrystalline piezoelectrics and piezoceramics are subjected to direct bulk micromachining and then electroded	
85	The integrative approach in piezoelectric	Micromachined structures are integrated in silicon or piezoelectrics by using bonding techniques on bulk piezoelectric or silicon substrates.	
86	Actuation Using Electrostatic Forces	Coulomb's Law- Electrostatic force F is defined as the electrical force of repulsion or attraction induced by an electric field E	
87	Electrostatic forces on parallel plates	Two charged plates separated by a dielectric material (i.e. an electric insulating material) with a gap d. The plates become electrically charged when an electromotive force (emf), of voltage, is applied to the plates	
88	Electrostatic forces on parallel plates diagram	V L F_{W} F_{L} W	
89	Electrostatic forces on parallel plates	There are two forces in the two directions	

90	Electrostatic forces in width direction	$F_W = \frac{1}{2} \frac{\varepsilon_r \varepsilon_0 L V^2}{d}$	
91	Electrostatic forces in Length direction	$F_L = \frac{1}{2} \frac{\varepsilon_r \varepsilon_0 W V^2}{d}$	
92	EDA	Electronic Design Automation	
93	RF MEMS switches	Small, micromechanical switches that have low power consumption and can be produced using conventional MEMS fabrication technology	
94	RF MEMS switches Application	Wireless communication applications in smartphones, mobile infrastructure, IoT and defense.	
95	RF MEMS switches are classification	Actuation method (electrostatic, electro thermal, magnetic, piezoelectric), axis of deflection (lateral, vertical), circuit configuration (series, shunt), clamp configuration (cantilever, fixed-fixed beam), or contact interface (capacitive, ohmic).	
96	RF MEMS switches forces	Electromagnetic and Electrostatic	
97	Electromagnetic force	It is low actuation voltage, but a high current consumption	
98	Electrostatic force	It is no current consumption, but has a high actuation voltage.	
99	Electrostatic switches use	The microwave and mm-wave regions. Electro statically actuated RF MEMS components offer low insertion loss and high isolation, linearity, power handling, and Q factor	
100	Electrostatic switches mode	There are two kinds of electrostatic switches: series and shunt. Both ohmic and capacitive coupling switches can be used either as a serial or a shunt switch, generally ohmic switches are used in serial mode	

	UNIT V - NANO DEVICES				
101	Atom	An atom is a complex arrangement of negatively charged electrons arranged in defined shells about a positively charged nucleus.			
102	Atomic structure	The structure of an atom comprising a nucleus (centre) in which the protons (positively charged) and neutrons (neutral) are present.			
103	Quantum mechanics	Quantum mechanics is a fundamental branch of physics concerned with processes involving small particles (e.g, atoms and photons)			
104	Quantum theory	Describes matter as acting both as a particle and as a wave.			
105	Difference between atom and quantum	Atomic physics studies the electrons orbiting atomic nuclei, nuclear physics studies the nuclei of atoms, while quantum mechanics (today most of us call it "quantum physics" because this theory is far from "mechanical") studies all "microscopic" objects including electrons in any situation			
106	Father of atomic theory	John Dalton, (born September 5 or 6, 1766, Eaglesfield, Cumberland, England—died July 27, 1844, Manchester), English meteorologist and chemist, a pioneer in the development of modern atomic theory.			
107	Atoms made of quantum	Atoms are made of smaller ingredients: protons, neutrons and electrons.			
108	Photon	Elementary particle that serves as the quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves			
109	Schrödinger equation	The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system.			
110	Schrodinger's law	The Schrodinger equation plays the function of Newton's laws and energy conservation – i.e., it forecasts a complex system's potential conduct.			
111	Schrodinger's model	Schrödinger used mathematical equations to describe the likelihood of finding an electron in a certain position. This atomic model is known as the quantum mechanical model of the atom.			

112	Schrodinger discover		Assuming that matter (e.g., electrons) could be regarded as both particles and waves, in 1926 Erwin Schrödinger formulated a wave equation that accurately calculated the energy levels of electrons in atoms.	
113	ZnO used for		ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement, lubricants, paints, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, and first-aid tapes.	
114	ZnO	(Crude zinc oxide is a yellow-gray granular solid with no odor. It is insoluble in water.	
115	Applications of zinc oxide		Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of industrial products such as rubber, paint, coating, and cosmetics.	
116	Elements are in ZnO	2	Zinc, oxygen.	
117	Gas sensors	(2 1 2 2 2 2 2	Gas sensors (also known as gas detectors) are electronic devices that detect and identify different types of gasses. They are commonly used to detect toxic or explosive gasses and measure gas concentration.	
118	Gas sensors uses		Gas sensor converts the components and concentrations of various gases into standard electrical signals by using specific physical and chemical effects.	
119	NEMS resonator	1 2 1	MEMS/NEMS resonators have various structures, which can be used as mass sensing, oscillators, quantum spin coupling, filters, and gyroscopes	
120	Types of gas sensors	i s	Electrochemical sensors, catalytic sensors, infrared sensors and photoionization sensors	
121	Nanodevice		A nanodevice is a device with at least one overall dimension in the nanoscale, or comprising one or more nanoscale components essential to its operation.	
122	Color sensor	2 5 2 1	A color sensor is a type of "photoelectric sensor" which emits light from a transmitter, and then detects the light reflected back from the detection object with a receiver.	
123	Benefits of NEMS] 5 2	NEMS leads to smaller and more efficient sensors to detect stresses, vibrations, forces at the atomic level, and chemical signals.	

r			
124	Types of Sensors	 Temperature Sensor. Proximity Sensor. Accelerometer. IR Sensor (Infrared Sensor) Pressure Sensor. Light Sensor. Ultrasonic Sensor. 	
125	NEMS sensors	Nanoelectromechanical System (NEMS) Chemical Sensors are devices that combine electrical and mechanical functionalities at the nanoscale for the detection of minute concentrations of target gaseous compounds in the environment.	
		PLACEMENT QUESTIONS	
1	Basics of the MEMS operation	Microscale features of electromechanical, electronic, optical, and biological components (structures, devices, and subsystems), architectures, and operating principles are basics of the MEMS operation	
2	Basics of the microdevice operation	Microscale features of electromechanical, electronic, optical, and biological structures, topologies, and operating principles are basics of the microdevice operation.	
3	Microstructure	The microstructure is the batch-fabricated microscale electromechanical, electromagnetic, mechanical, or optical composite microstructure that is a functional component of the microdevice and serve to attain the desired microdevice's operating features.	
4	Biological nanomotors	Biological (bacterial) nanomotors convert chemical energy into electrical energy, and electrical energy into mechanical energy	
5	Software tools	MATLAB, VHDL, SPICE	
6	Silicon direct bonding	Silicon direct bonding is used to bond a pair of silicon wafers together directly (face to face).	
7	Anodic bonding	Anodic bonding is used to bond silicon to glass	

8	Etchants used in anisotropic etching	Potassium hydroxide KOH, sodium hydroxide NaOH, H2N4 and ethylene-diamine- pyrocatecol EDP	
9	Wet etching	Wet etching is the process of removing material by immersing the wafer in a liquid bath of the chemical etchant.	
10	Microtransducers	Microtransducers have stationary and rotating members (stator and rotor) and radiating energy microdevices	
11	MEMS switches	It is consume less power and better isolation and insertion loss	
12	Basic actuation for MEMS switches	There are four basic actuation principles, electrostatic actuation, electromagnetic actuation, piezoelectric actuation , and electrothermal actuation	
13	Gyroscope	It is the sensor aiming at measuring the angular variance or angular rate based on the Coriolis force	
14	Thermal Actuators	Displacement due to thermal expansion	
15	Capacitive pressure sensors	This sensor conducting layers are deposited on the diaphragm and the bottom of a cavity to create a capacitor.	
16	SMAs function	Exhibit considerable changes in their length (contraction) when heated. These include titanium/nickel alloys, of which some, once mechanically deformed, would return to their original unreformed state when heated.	
17	Magnetic Actuators	It is based on the fact that a current-carrying conductor generates a magnetic field. If this conductor is a wire (or coil) and interacts with another external magnetic field a mechanical force is produced.	
18	The integrative approach in piezoelectric	Micromachined structures are integrated in silicon or piezoelectrics by using bonding techniques on bulk piezoelectric or silicon substrates.	

	Actuation Using	Coulomb's Law- Electrostatic force F is	
19	Electrostatic	defined as the electrical force of repulsion or	
	Eoroog	attraction induced by an electric field E	
	Forces	attraction induced by an electric field E	
20	EDA	Electronic Design Automation	
20			
		An atom is a complex arrangement of	
21	Atom	negatively charged electrons arranged in	
	Atom	defined shells about a positively charged	
		nucleus.	
		The structure of an atom comprising a nucleus	
22	Atomic structure	(centre) in which the protons (positively	
		charged) and neutrons (neutral) are present.	
		Atomic physics studies the electrons orbiting	
		atomic nuclei, nuclear physics studies the	
	Difference	nuclei of atoms, while quantum mechanics	
23	between atom and	(today most of us call it "quantum physics"	
	quantum	because this theory is far from "mechanical")	
		studies all "microscopic" objects including	
		electrons in any situation	
24		The Schrodinger equation plays the function of	
	Schrodinger's law	Newton's laws and energy conservation –	
	Semodinger s law	i.e., it forecasts a complex system's potential	
		conduct.	
25	Applications of	Zinc oxide nanoparticles (ZnO NPs) are used	
	zinc oxide	in an increasing number of industrial products	
		such as rubber, paint, coating, and cosmetics.	

1. Dr.J.Rangarajan

Faculty Team Prepared 2. Dr.S.Selvarasu

3. Mr.P.Madhavan

HoD