

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

IQAC

MKC

2021-22

Subject			19ECE25 / Internet of Things	
S. No.	Term	Notation Symbol)	Concept/Definition/Meaning/Units/Equation/Expression	Units
	-	UN	NIT I OVERVIEW OF IOT	
1.	Internet of Things (IoT)	I F t	Internet of Things (IoT) is a network of physical objects or beople called "things" that are embedded with software, electronics, network, and sensors that allows these objects to collect and exchange data.	
2.	IoT Communication mediums		 Mobile or satellite networks, Bluetooth, WI-FI, WAN, etc. 	
3.	Challenges of Internet of Things (IoT)	DES	 Insufficient testing and updating Concern regarding data security and privacy Software complexity Data volumes and interpretation Integration with AI and automation Devices require a constant power supply which is difficult Interaction and short-range communication 	
4.	Advantages of IoT		 Technical Optimization Improved Data Collection Reduced Waste Improved Customer Engagement 	
5.	Disadvantages of IoT		 Security Privacy Flexibility Complexity Compliance 	
6.	IoT Best Practices		 Design products for reliability and security Use strong authentication and security protocols Disable non-essential services Ensure Internet-managed, and IoT management hubs & services are secured 	

ECE

			• Energy efficient algorithms should be designed for	
			the system to be active longer.	
	Four Koy		1) Sensors/Devices,	
7	components of		2) Connectivity,	
/.	IoT framework		3) Data Processing,	
			4) User Interface	
			Industrial Internet of Things in which Communication	
8.	IIOT		transportation is done through both wired and wireless	
			devices.	
			1) Sensing and information,	
9.	Layers of IoT		2) INELWORK CONNECTIVITY,	
	protocol stack		5) Information processing layer,	
			4) Application layer.	
			Tomporature concere	
			remperature sensors Pressure sensor	
	Mostly used		Pressure sensor Motion dotaction concorr	
10.	sensors types in		 Motion detection sensors Concernent 	
	IoT		Gas sensor Drowimity concern	
			Proximity sensor D sensor	
			• IK sensors	
			• Controlling the speed of DC motor	
11	Applications of		• Controlling the direction of a serve moto	
11.	PWM in IoT		 Dimming I ED etc 	
			Arduino is an open programmable USR microcontroller	
12.	Arduino		that can execute one program at a time	
			• Thingworx is a platform for the fast development	
			and deployment of connected devices.	
13.	IoT Thingworx		• It is a collection of integrated IoT development tools	
			that support analysis, production, property, and	
			alternative aspects of IoT development.	
14	Salesforce IoT	DF	The Salesforce IoT Cloud is an online platform for storing	
14.	Cloud		and processing IoT information	
15	GPIO		GPIO is a programmable pin that can be used to control	
15.			input or output pins programmatically.	
			• Influx DB	
	Suitable		Apache Cassandra	
16	databases for		• RethinkDB	
10.	IoT		MongoDB	
			• Sqlite	
			• LPWAN	
			• Cellular	
15	IoT network		• Bluetooth Low Energy (BLE)	
17.	technologies		• ZigBee	
	100110105105		• near field communication (NFC)	
			Radio Frequency Identification (RFID)	
			• WiFi	

		• Ethernet	
18.	6LoWPAN	IPv6 over Low-Power Wireless Personal Area Networks	
19.	Internet Layer IoT Network Technologies	 IPv6, 6LoWPAN, and RPL. 	
20.	Messaging protocols frequently used within IoT applications	 Message Queue Telemetry Transport (MQTT) Advanced Message Queuing Protocol (AMQP), and Extensible Messaging and Presence Protocol (XMPP) 	
21.	IoT testing tools	 IoT testing software: Tcpdump and Wireshark. Hardware for IoT testing: JTAG Dongle, Digital Storage Oscilloscope, and Software Defined Radio. 	
22.	IoT software	 Blockchain, windows IoT, Predix, Microsoft Azure, Bluemix, and Node-RED. 	
23.	Shodan	 Shodan is an IOT testing tool that can be used to discover which of your devices are connected to the Internet. It allows you to keep track of all the computers which are directly accessible from the Internet. 	
24.	IoT test approaches	 1) Usability, 2) IoT Security, 3) Connectivity, 4) Performance, 5) Compatibility Testing, 6) Pilot Testing, 7) Regulatory Testing, and 8) Upgrade testing. 	
25.	Hardware Prototypes used in IoT	 Raspberry Pi, ARM Cortex Family, and Arduino. 	
		UNIT II IOT ARCHITECTURE	
26.	IoT Reference Model	• IoT Reference Model defines a set of levels with control flowing from the center (this could be either a cloud service or a dedicated data center), to the edge, which includes sensors, devices, machines, and other types of intelligent end nodes.	
27.	Seven layers of the IoT	 Layer 1: Physical Devices and Controllers Layer Layer 2: Connectivity Layer 	

	Reference Model.	 Layer 3: Edge Computing Layer Layer 4: Data accumulation Layer Layer 5: Data abstraction Layer
		 Layer 5: Data abstraction Layer Layer 6: Applications Layer
		Layer 7: Collaboration and processes layer
28.	Connectivity Layer Functions	 Communications between Layer 1 devices Reliable delivery of information across the network Switching and routing Translation between protocols Network level security
29.	Layers in three- layer architecture IoT	 Perception layer Network layer application layer
30.	Layers in five- layer architecture IoT	 Perception layer Transport layer Processing layer Application layer Business layer
31.	The three data management layers	 The edge layer (data management within the sensors themselves), The fog layer (data management in the gateways and transit network), and The cloud layer (data management in the cloud or central data center).
32.	Perception Layer	Manages smart devices across the system.
33.	Connectivity/Tr ansport Layer	Allows transferring data from the cloud to devices and vice- versa, different aspects of gateways and networks.
34.	Processing Layer	Controls and manages IoT levels for streamlining data across the system.
35.	Application Layer	Aids in the procedures of analytics, device control, and reporting to end-users.
36.	Business Layer	Derives information and decision-making analysis from data.
37.	Security Layer	Covers all aspects of protecting the whole IoT architecture
38.	Edge computing Layer	Works at an edge or near the device information collection.
39.	Two main stages in processing layer	Data AccumulationData Abstraction
40.	Types of IoT	 Internet of Things: It creates a business that uses a gadgets to perform a task. Industrial Internet of Things: It creates business in the industry like agriculture
41.	Essential Device security	• Secure boot process to avoid any malicious code

	measures	running on a device	
		Using Trusted Platform Module (TPM) chips in	
		combination with cryptographic keys for devices	
		and point protections	
		• Extra physical layer to avoid direct access via the	
		device	
		• Regular updates for security patches	
		Cloud Security	
42.	IoT Cloud	An IoT cloud is a massive network that supports IoT	
		devices and applications	
		• Bluetooth Low Energy is a wireless, low-power	
		ISM band	
43	Bluetooth Low	 Its goal is to connect devices over a relatively short 	
	Energy (BLE)	range.	
		• BLE was created with IoT applications in mind.	
		which has particular implications for its design.	
		Bluetooth Low Energy technology operates in the same	
44	Spectrum range	spectrum range (the 2.400–2.4835 GHz ISM band) as	
	of BLE	classic Bluetooth technology, but uses a different set of	
		channels.	
45.	BLE channels	Instead of the classic Bluetooth 79 1-MHz channels,	
	Dluatooth	Bluetooth Low Energy has 40 2-MHz channels	
	version that		
46	enables	Bluetooth 4.0	
101	bluethooth low		
	energy		
		Beacon is a small bluetooth device that repeatedly transmits	
47	Beacon	signals that other devices like your smartphone can see.	
17.	Deacon	D E Beacon broadcasts radio signal that is a combination of	
		letters and numbers approximately every 1/10th of a second.	
		Bescon IoT Ads Application	
48	3 Beacon IoT Use	Beacon Powered Smart Shelves	
40.	Cases	Beacon IoT App for Local News	
		Three times faster transmission speed	
	Footures of	• Low power consumption through reduced duty cycle	
49.	Bluethooth 5.0	Backward compatibility to earlier versions	
		• Further improved BER performance	
		Simplification of multi-link scenario	
50.	Security in	Bluethooth uses the SAFER+ algorithm for authentication	
	Bluetooth	and key generation.	
	U	NIT-III: WIRELESS TECHNOLOGY FOR IOT	
51	winalass IoT	Wireless technology is a method of connection	
51.	witcless 101	within an IoT system that includes sensors,	

			platforms, routers, applications, and other systems.	
			Each option has trade-offs between power consumption	
			bandwidth. and range	
			• LPWANs	
			• Collular $(3C/4C/5C)$	
	Types of IoT		• Cellular $(30/40/30)$	
52	Wireless		• Zigbee and Other Mesh Protocols	
52.	Technology		• Bluetooth and BLE	
	8,		• Wi-Fi	
			• RFID	
			• IEEE 802.11 standard, popularly known as WiFi,	
	IEEE 802 11		lays down the architecture and specifications of	
53.	IEEE 002.11		wireless LANs (WLANs).	
			• It provided 1 Mbps or 2 Mbps data rate in the 2.4	
			GHz band	
			Bluetooth is a short-range wireless technology standard that	
54.	Bluetooth		is used for exchanging data between fixed and mobile	
			devices over short distances.	
	Components of		Station (STA)	
55.	IEEE 802.11		Basic service set (BSS)	
			Extended service set (ESS)	
			Distributed system (DS)	
56.	Bluetooth Range		Using UHF radio waves in the ISM bands, from 2.402 to	
			RFID (radio frequency identification) is a form of wireless	
			communication that incorporates the use of electromagnetic	
57.	RFID		or electrostatic coupling in the radio frequency portion of	
			the electromagnetic spectrum to uniquely identify an object,	
			animal or person.	
			Contactless access control systems.	
		DE	Contactless payments.	
58	Lises of PEID		• Electronic passports and citizen ID cards.	
50.			• Retail logistics.	
			• Automation & manufacturing.	
			Returnable transport Items.	
	Types of RFID		• Active (powered),	
59.	tags		• passive (un-powered) or	
	tugo		• semi-passive (battery-assisted).	
	Maximum range		An active RFID system can read tags from 1,500 feet away	
60.	of the RFID		or more, as the tags broadcast a signal and the systems are	
	module		designed for longer-range applications.	
			• bLOWPAIN is an IPv6 adaptation layer defined by the IETE 6LoWPAIN working group that describes	
			how to transport IPv6 packets over IEEE 202 15.4	
61.	6LoWPAN		lavers.	
			• RFCs document header compression and IPv6	
			enhancement to cope with the specific details of	

		IEEE 802.15.4	
	Line of	• Wireless sensor networks, and	
62.	Use of	• The Thread protocol for home automation device	4
	OLOWI AN	also runs over 6LoWPAN.	
-		Ultra-WideBand is a radio technology that can use a very	7
63.	UWB	low energy level for short-range, high-bandwidth	1
		communications over a large portion of the radio spectrum.	_
61	UWB	• Data communication,	
04.	Applications	 Localization and Identification roder and Sensing applications 	
		• Tadai and Sensing applications	
		range under 200 meters	L
65.	Range of UWB	• It operates most effectively over short ranges	
		generally between 1-50 meters	
		• UWB can track a bigger number of assets at large	2
		distances.	
	Difference	It can detect with high accuracy where in the room	L
66.	between UWB	the object is, while Wi-Fi-based RTLS provide	5
	and Wi-Fi	information only about the presence or absence o	
		the asset in the required room.	
		• RILS Ultra wide Band sensor gives les	,
		Zighee is a standards-based wireless technology developed	
67	ZigPoo wirologo	to enable low-cost low-power wireless machine-to-machine	
07.		(M2M) and internet of things (IoT) networks	·
		The ZigRee Coordinator (ZC)	
68	ZigBee types	• The ZigBee Cooldinator (ZC), • The ZigBee Router (ZR) and	
00.	Zigbee types	• The ZigBee End Device (ZED)	
		Support for multiple network topologies such as	
		point-to-point	
	Zigbee Advantage	Low duty cycle – provides long battery life.	
60		• Low latency	
09.		 Direct Sequence Spread Spectrum (DSSS) 	
		• Up to 65,000 nodes per network	
		• 128-bit AES encryption for secure data connections	
		Collision avoidance, retries and acknowledgements	
70.	6LoWPAN	6LowPAN is a network protocol that defines encapsulation	L
		and header compression mechanisms	
71.	oLOWPAIN	oLOWPAIN is a low power wireless mesh network where every node has its own IPv6 address	7
	protocol	Devices Properties Low Routing State	-
		Link Properties, Minimal Routing Overhead	
		Link Hopertees, Winning Routing Overhead	
72.	teatures of	• Incline Characteristics. Periodically Hidemate	
	OLOWPAN	• Security	
		Confidentiality and Authentication	
		Mesh under Forwarding.	

		MAC Addresses	
73.	Main function of 6LoWPAN	 It is low power wireless mesh network where every node has its own IPv6 address. This allows the node to connect directly with the Internet using open standards. 	
74.	6LoWPAN security measures	 The 6LoWPAN group has its own encapsulation and header compression mechanisms. This enables IPv6 packets to be sent and received over IEEE 802.15. 4 based networks. IPv4 and IPv6 provide data delivery for LANs, MANs, and WANs. 	
75.	Zigbee Disadvantages	The technology used in Zigbee is of low bit rate, the transmission rate of this technology is also low.	
	UN	IT IV: BUILDING IOT WITH RASPBERRY PI	
76.	Raspberry Pi	 Raspberry Pi is a computer which is capable of doing all the operations like a conventional computer. It has other features such as onboard WiFi, GPIO pins, and Bluetooth in order to communicate with external things. 	
77.	wireless communications boards available in Raspberry Pi	WiFi andBLE/Bluetooth	1
78.	Models of Raspberry Pi	 Raspberry Pi 1 Model B Raspberry Pi 1 Model B+ Raspberry Pi 1 Model A Raspberry Pi Zero Raspberry Pi 3 Model B Raspberry Pi 1 model A+ Raspberry Pi Zero W Raspberry Pi 2 	
79.	Raspberry PI Interfaces:	 SPI, ZUUU serial interface I2C interfaces 	
80.	5 pins Raspberry for SPI interface.	 MISO(Master In Slave Out) MOSI(Master Out Slave In) SCK(Serial Clock CE0(Chip Enable 0) CE1(Chip Enable 1) 	
81.	I2C	 I2C Interface pins are used to connect hardware modules. I2C interface allows synchronous data transfer with two pins: SDA(data line) and SCL (Clock Line) 	
82.	Features of Raspberry PPI	• RASPBERRY PI 3 has wireless LAN and Bluetooth facility by which you can setup WIFI HOTSPOT for internet connectivity	

		• RASPBERRY PI had dedicated port for connecting touch LCD display which is a feature that	
		completely omits the need of monitor.	
		• RASPBERRY PI also has dedicated camera port so	
		one can connect camera without any hassle to the PI	
		• RASPRERRY PL also has PWM outputs for	
		application use.	
		• It supports HD steaming	
		Hobby projects.	
		Low cost PC/tablet/laptop	
		IoT applications	
		Media center	
		Robotics	
83.	Applications of	• Industrial/Home automation	
	Raspberry pi	• Server/cloud server	
		• Print server	
		• Security monitoring	
		• Web camera	
		Wireless access point	
		Raspherry Pi can be used as a platform to develop	
	Use of Raspberry	many Internet of Things project.	
84.	pi in IoT	• It is simple to use Raspberry Pi because it uses	
	1	Linux OS in a small card like a computer.	
		The Raspberry Pi board contains a 700 or 900 MHz	
		processor with a minimum memory provision of 128	
	Components of	MB.	
		• It has an additional slot for memory card too.	
85.	Raspberry Pi	• There is a graphics set up, USB port for connecting	
		Keyboard or mouse.	
		evitation to connect your monitor	
		There is an HDMI port too for connecting with TV	
		GPIO pins used in the Raspberry Pi boards to make an	
86.	GPIO pins used	interface between the Raspberry Pi and all the components	
	in Kaspberry Pi	of the board.	
		Raspberry Pi uses Linux OS and is a general	
	Difference	purpose microcomputer.	
87.	between Audino	• It is capable of running multiple programs at a time,	
	and Raspberry Pi	while the Arduino is a simple microcomputer that is	
		capable of running one program only.	
		• Low cost (~35\$)	
	Donofite of	Huge processing power in a compact board	
88.	Denenits OI Raspherry Di	• Many interfaces (HDMI, multiple USB, Ethernet, onboard Wi Ei and Plustoath many CDIOs, USP	
	Kaspberry P1	powered etc.)	
		• Supports Linux Dython (making it easy to build	
		- Supports Linux, I ymon (making it casy to build	

89.	Cons of Raspberry Pi	 applications) Readily available examples with community support Developing such an embedded board is going to cost a lot of money and effort Missing eMMC Internal Storage Graphics Processor Missing Impractical as a Desktop Computer Overheating 	
90.	SPI	 Not able to run Windows Operating system SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol used for communicating with one or more peripheral devices. 	
91.	Five pins on Raspberry Pi for SPI interface :	 MISO (Master in slave out) – Master line for sending data to the peripherals. MOSI (Master out slave in) – Slave line for sending data to the master. SCK (Serial Clock) – Clock generated by master to synchronize data transmission CE0 (Chip Enable 0) – To enable or disable devices CE0 (Chip Enable 1) – To enable or disable devices 	
92.	API	• API is the acronym for Application Programming Interface, which is a software intermediary that allows two applications to talk to each other.	
93.	Best Lightweight Operating Systems for Raspberry Pi	 8 Best Lightweight Operating Systems for Raspberry Pi Raspberry Pi OS Lite. DietPi. piCore/Tiny Core Linux. Arch Linux ARM. RISC OS. Raspup/Puppy Linux. Sugar on a Stick/Sugar OS. Alpine Linux 	
94.	Instruction set architecture used in raspberry Pi	ARM	
95.	Distributions supported by Raspberry Pi	Arch Linux Debain Fedora remix	
96.	WiFi not present in which model of Raspberry Pi	Raspberry Pi Zero	
97.	Speed of operation of Raspberry Pi 2 and 3	 Raspberry Pi 2 : 900 MHz Raspberry Pi 3 : 1.2 GHz 	

	•	
98.	Number of USB ports in Raspberry Pi3	Four
99.	Ethernet/LAN cable used in RPi	RJ45
100.	Difference between API and web services	All web services are APIs, but not all APIs are web services.
	UNII	V: SERVICE LAYER PROTOCOL & SECURITY
101.	security issues in the IoT	 Vulnerabilities. Vulnerabilities are a large problem that constantly plague users and organizations Malware Escalated cyberattacks Information theft and unknown exposure Device mismanagement and misconfiguration.
102.	major security and privacy concerns in IoT	 Authentication, Identification and device heterogeneity
103.	IoT Security	IoT security is the technology segment focused on safeguarding connected devices and networks in the internet of things (<u>IoT</u>).
104.	IoT security methods	 Network access control Segmentation Security gateways Patch management/continuous software updates Training Integrating team Consumer education
105.	key requirements for any IoT security solution	 Device and data security, including authentication of devices and confidentiality and integrity of data. DESI(• Implementing and running security operations at IoT scale. Meeting compliance requirements and requests. Meeting performance requirements as per the use case.
106.	Requirements for Secure adoption of IoT	 Enabling mutual authentication between connected devices and applications Maintaining the integrity and confidentiality of the data collected by devices Ensuring the legitimacy and integrity of the software downloaded to devices Preserving the privacy of sensitive data in light of stricter security regulations
107.	Public key infrastructure (PKI)	Set of hardware, software, policies, processes, and procedures required to create, manage, distribute, use, store, and revoke digital certificates and public-keys.

108.	Use of PKI in IoT	PKIs deliver the elements essential for a secure and trusted business environment for e-commerce and the growing Internet of Things (IoT).	
109.	DDS (Data Distribution Service)	DDS (Data Distribution Service) is another scalable IoT protocol that enables high-quality communication in IoT. Similar to the MQTT, DDS also works to a publisher- subscriber model.	
110.	The IoT Service functional components	A collection of service implementations, which interface the related and associated Resources.	
111.	Service descriptions of IoT Services	Contain a number of attributes as seen earlier in the IoT Functional Model section	
112.	Virtual Entity Service functional components (FC)	Virtual Entity Service FC enables the interaction between Users and Virtual Entities by means of reading and writing the Virtual Entity attributes (simple or complex), which can be read or written	
113.	Management Service Layer	The management Service layer is responsible for Securing Analysis of IoT devices, Analysis of Information (Stream Analytics, Data Analytics), Device Management.	
114.	Application layer	Application layer forms the topmost layer of IoT architecture which is responsible for effective utilization of the data collected.	
115.	key components of a M2M system	 Sensors RFID (Radio Frequency Identification) Wi-Fi Autonomic Computing. 	
116.	ХМРР	Extensible Messaging and Presence Protocol (XMPP) is used in IOT which covers XMPP core, XMPP addressing, XMPP server and XMPP client communication. XMPP is the short form of Extensible Messaging and Presence Protocol.	
117.	Type of architecture used by XMPP	Decentralized client-server architecture where clients do not talk directly to one another, but there is no central server.	
118.	API allows the user to control electronic components.	RETful API	
119.	Boot	It allows us to monitor the application in IoT.	
120.	Class client()	Publishing messages is handled through Class	
121.	Service models that is restrictive & refined more	Paas –Platform as a service (Paas)	
122.	Platform that provides Amazon Web Services	Paas –Platform as a service	

	with Service Oriented Architecture (SOA. Approach	Hardware Assets like virtual storage, virtual infrastructure	
123.	Infrastructure as a Service	and virtual machines are provided	
124.	WSDL	WSDL is an XML notation for describing a web service. It is used to describe the service interface, how to bind information, and the nature of the component's service or endpoint	
125.	SOA – Service oriented architecture	a message-passing taxonomy for a component-based architecture that provides services to clients upon demand	
		PLACEMENT QUESTIONS	
126.	Thingful	 Thingful is a search engine for the Internet of Things. It allows secure interoperability between millions of IoT objects via the Internet. This IOT testing tool also to control how data is used and empowers to take more decisive and valuable decisions. 	
127.	Risks associated with IOE	 Privacy, Security, Network congestion, and Electricity consumption at the peaks. 	
128.	main purpose of the Web of Things	 To improve the usability and interoperability in IoT. Developing IoT Apps through WoT is much easier, faster, and less expensive. 	
129.	IoT devises testing types	 Usability Testing Compatibility Testing Reliability and Scalability Testing Data Integrity Testing Security testing Performance Testing 	
130.	Device management	 Device identification Configuration and control Monitoring and diagnostics Software updates and maintenance 	
131.	Elements of IoT	 Smarter Devices in a different form Network and Gateway that allows devices to be part of the IoT Middleware that includes data storage spaces and advances predicting capabilities End-user applications 	

132.	IEEE standard of Bluethooth	IEEE 802.15	
133.	Data throughput speed of Bluethooth	721 Kbps	
134.	6LoWPAN Adaption layer contains?	Header compressionFragmentationLayer 2 forwarding.	
135.	Industrial IoT	Category of IoT used for business to consumer process	
136.	Zigbee gateway	A ZigBee gateway is a means of transferring data between a ZigBee network and devices on another network.	
137.	Embedded operat ing system	A specialized operating system designed to perform a specific task for a device.	
138.	Number of masters and slaves in a piconet	One master and seven slaves	
139.	Zigbee	Zigbee is a wireless technology developed as an open global standard to address the unique needs of low-cost, low-power wireless IoT networks.	
140.	Range of Zigbee	ZigBee is widely used to control several devices within the range of 10–100 m .	
141.	Number System	If the number 481*673 is completely divisible by 9, what is the the smallest whole number in place of *? Soln: => 4+8+1+x+6+7+3) is divisible by 9 => (29+x) is divisible by 9 x should be the smallest whole number. Hence, (29+x)=36 =>x=36-29=7 DE Ans: 7 NO YOUR FUTURE	
142.	Calendar	Today is Monday. After 61 days, it will beA. SundayB. SaturdayC. MondayD.ThursdaySoln61 days = 8 weeks 5 days = 5 odd daysHence if today is Monday, After 61 days,it will be = (Monday + 5 odd days) = SaturdayAns : C.Saturday	
143.	Profit and Loss	Ramesh bought a chair for Rs. 1540 and sold it to Suresh. If Ramesh earned a profit of 25%, find the selling price of chair. A. Rs.1875 B. Rs.1900 C.Rs.1925 D.Rs.1950 Soln: C.P. of the chair = Rs. 1540	

			S.P. of the chair =?	
			Profit earned = 25%	
			Selling Price =(100+Profit%) *C.P.	
			100	
			Therefore, S.P. = $(100+25) * 1540$	
			100	
			-125/100 *15/0-1925	
			-125/100 - 1540 - 1525	
			Alls. C KS. 1923	
			destination in 2 hours. If the car wants to reach at its	
			destination in 2 hours. If the car wants to reach at its destination in 1 hour, at what speed it needs to travel?	
			A. 300 km/hr	
			B = 280 km/hr	
	Time and		C = 250 km/hr	
144	Distance		$\mathbf{D} = 240 \mathrm{km} \mathrm{dr}$	
144.			D. 240 km/nr	
			Soln:	
			Distance to be covered = Speed x Time $140 \pm 2 = 280$ km	
			= 140 + 2 = 280 km	
			$\frac{111110}{1000} = 111001$	
			A net B 280 km/hr	
			Two nines can fill a tank in 6 hours and 8 hours	
			respectively A third nine can empty the same tank in 12	
	Pipes and Cisterns		hours. If all the nines start working together, how long it	
			will take to fill the tank?	
			$A_{\rm A}$ 4 hours B 4 5 hours C 4 8 hours D 5 2 hours	
			Soln:	
145.			Part of the tank filled by two pipes in one hour = $1/6 + 1/8$	
			Part of the tank emptied by the third pipe in one	
			hour =1/12	
		DE	Net part of the tank filled in one hour = $1/6+1/8-1/12=5/24$	
		LUL	5/24 Part of tank can be filled in one hour	
			\therefore The whole tank will be filled in $24/5 = 4.8$ hours	
			Ans: C. 4.8 hours	
	Races & Games		A can run 22.5 m while B runs 25 m. In a one kilometer	
			race, B beats A by	
			A. 100 m B.111 1/9 m C.25 m D.50 m	
			Soln:	
146.			When B runs 25 m, A runs $45/2$ m	
			When B runs 1000 m, A runs $(45/2 \times 1/25 \times 1000)$, 000	
			(45/2 * 1/25 * 1000) = 900m	
			\therefore B beats A by 100 m.	
			Alls. A. 100 III	
147.	Alligation and Mixture		A 20 mer mixture contains 50% alconol and 70% water.	
			the nercentage of electrol in the new mixture?	
			A 22% B 23% C 24% D 25%	
			Soln.	
L	1			1

		Initially, the mixture contains 30% alcohol = $30/100 *20=6$ liters of alchol And, 70% of water = $70/100 *20=14$ liters of water After adding 5 liters of water, the mixture contains (14+5) 19 liters of water and 6 liters of alcohol. \therefore Percentage of alcohol = $6/25*100=24\%$ Ans: C. 24%
148.	Logical Reasoning	SCD, TEF, UGH,, WKLA.CMN B.UJI C.VIJ D. IJTSoln:There are two alphabetical series here.The first series is with the first letters only: STUVW.The second series involves the remaining letters: CD, EF,GH, IJ, KL.Ans: C. VIJ
149.	Logical Reasoning	Which word does NOT belong with the others? A. Tulip B. Rose C. Bud D.Daisy Tulip, rose, and daisy are all types of flowers. A bud is not. Ans: C. Bud
150.	Logical Reasoning	Find the next number in the sequence:3, 6, 9, 30, 117A. 192 B. 352 C. 388 D. 588Soln: $3 * 1 + 3 = 6$ $6 * 2 - 3 = 9$ $9 * 3 + 3 = 30$ $30 * 4 - 3 = 117$ $117 * 5 + 3 = 588$ Ans. D 588
Faculty Team Prepared		 Ms.K.Shenbagadevi, AP/ECE Mr.A.Kumaravel, AP/ECE Ms.S.Priya, AP/ECE Signatures

Estd. 2000

HOD