

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

ECE

MKC

2021-22

	Subject		19ECC15 / Embedded Systems and RTOS	
S. No.	Term	Notation Symbol)	Concept/Definition/Meaning/Units/Equation/Expression	Units
			UNIT I INTRODUCTION	
1.	System		It is an arrangement in which all its units assemble and work together according to the plan or program.	
2.	Embedded System		It is a combination of hardware and software, either fixed in capability or programmable, designed for a specific function or functions within a larger system.	
3.	Components of an Embedded System		 Hardware, Application Software, Real Time Operating Systems (RTOS) 	
4.	Constraints		 Available System Memory, Available Processor Speed, limit power dissipation 	
5.	Classifications of Embedded Systems		 Small Scale Embedded System, Medium Scale Embedded System, Sophisticated Embedded System 	
6.	Small Scale Embedded Systems	DE	An entry-level system in which 8-bit or 16-bit processor is used. The processor has very limited resources like RAM, ROM and processing speed.	
7.	Medium Scale Embedded Systems		These systems are usually designed with a single or few 16- bit or 32-bit microcontrollers or Digital Signal processor.	
8.	Sophisticated Embedded Systems		The embedded system which can do large-scale works with multiple 32 - 64-bit chips.	
9.	Applications of Embedded System		Consumer electronics, Consumer products, Automobiles, Industrial process controllers & avionics/defense	
10.	General Purpose Processor		A Programmable digital system intended to solve computation tasks in a large variety of applications.	
11.	DSP Processor		A specialized microprocessor (or a SIP block) chip, with its architecture optimized for the operational needs of digital signal processing.	

12.	Microprocessor	It is a central processing unit on a single integrated circuit chip containing millions of very small components.
13.	Embedded	It is particularly suited for embedded applications to
	microcontroller	perform dedicated task or operation.System on chip is an embedded systems are being designed
14.	SOC	on a single silicon chip.
15.	Important considerations when selecting a processor	 Instruction set, Maximum bits in an operand, Clock frequency Processor ability
16.	Requirements of embedded system	 Reliability, Low power consumption, Cost effectiveness, Efficient use of processing power
17.	FPGA	Field-Programmable Gate Array is an integrated circuit designed to be configured by a customer or a designer after manufacturing
18.	Quality Attributes of Embedded system	 Operational quality attributes Non-operational quality attributes
19.	Operational Quality attributes	 Response Throughput Reliability Maintainability Security Safety
20.	Non-operational quality attributes	 Testability and Debug-ability Evolvability Portability Time to prototype and market Per unit and total cost
21.	Characteristics of Embedded System	 Application and domain specific, Tightly constrained, Reactive and real time Operation in harsh environment Distributed Compact in size and light weight
22.	Design metrics	 Power, Size, NRE cost, Performance
23.	Challenges Of Embedded Systems	 Hardware needed, Meeting the deadlines, Minimizing the power consumption, Design for upgradeability

		• Doquinomorita	
	Stans in	Requirements,	
24.	Steps in Embedded	• Specifications,	
		• Architecture,	
	System Design	• Components	
		System integration	
		Consumer Electronics	
		Household Appliances	
		Home Automation and Security Systems	
	Major	• Automotive Industry	
	Application	• Telecom	
25.	Areas of	• Computer Peripherals	
	Embedded	Computer Networking Systems	
	Systems	Health Care	
		Measurement & Instrumentation	
		Banking & Retail	
		Card Readers	
		UNIT II TYPICAL EMEDDED SYSTEM	
		Application Specific System Processor is a processing unit	
26.	ASSP	for specific tasks like image compression and it provides a	
		faster solution.	
	common types		
	of memories		
	used in		
27.	embedded	OTP, PROM, UVEPROM, EEPROM and FLASH	
27.	systems for		
	control		
	algorithm		
	storage		
		General Purpose and Domain Specific Processors	
	Core of the	✓ Microprocessors	
20	Core of the Embedded	DESIGNING VOVEMicrocontrollers V Digital Signal Processors	
28.	Systems	Programmable Logic Devices (PLDs)	
	Systems	 Programmable Logic Devices (PLDs) Application Specific Integrated Circuits (ASICs) 	
		 Application Specific Integrated Circuits (ASICs) Commercial off the shelf Components (COTS) 	
		A highly integrated silicon chip containing a CPU, scratch	
		pad RAM, Special and General-purpose Register Arrays,	
29.	Microcontroller	On Chip ROM/FLASH memory for program storage, Timer	
		and Interrupt control units and dedicated I/O ports	
	General Purpose	General Purpose Processor or GPP is a processor designed	
30.	Processor	for general computational tasks	
		Application Specific Instruction Set processors (ASIPs) are	
		processors with architecture and instruction set optimized to	
31.	ASIP	specific domain/application requirements like Network	
		processing, Automotive, Telecom, media applications,	
		digital signal processing, control applications etc.	
20	Examples of	Microcontrollers (like Automotive AVR, USB AVR	
32.	Application	from Atmel),	
L	3		

	Specific		
	Specific Instruction Set	System on Chips,Digital Signal Processors etc	
	Processors (ASIPs)	• Digital Signal Processors etc	
	Key units in	Program Memory	
33.	Digital Signal	Key memory	
55.	Processor	Computational Engine	
		• I/O unit	
	Types of		
34.	processor	Harvard architecture	
	architecture design	Von-Neumann architecture	
		Von-Neumann architecture shares a single common bus for	
35.	Von-Neumann	fetching both instructions and data. Program instructions	
	architecture	and data are stored in a common main memory	
		Microprocessors/controllers based on the Harvard	
36.	Harvard	architecture will have separate data bus and instruction bus.	
30.	architecture	This allows the data transfer and program fetching to occur	
		simultaneously on both buses	
37.	Endianness	Endianness specifies the order in which the data is stored in	
57.	Endidimess	the memory by processor operations in a multi byte system	
		Little-endian means the lower-order byte of the data is	
38.	Little-endian	stored in memory at the lowest address, and the higher-	
		order byte at the highest address	
20	D' 1'	Big-endian means the higher-order byte of the data is stored	
39.	Big-endian	in memory at the lowest address, and the lower-order byte	
	Programmable	at the highest address. (The big end comes first.)	
40.	logic devices	Devices that can be re-configured to perform any number of	
- 0.	(PLDs)	functions at any time	
		Field Programmable Gate Arrays (FPGAs) and	
41.	Types of PLDs	Complex Programmable Logic Devices (CPLDs)	
10		FPGA is an IC designed to be configured by a designer after	
42.	FPGA	manufacturing –	
		• data processing and storage,	
10	FPGA	• instrumentation,	
43.	applications	• telecommunications, and	
		 digital signal processing 	
		A complex programmable logic device (CPLD) is a	
44.	CPLD	programmable logic device with complexity between that of	
		PALs and FPGAs, and architectural features of both.	
	Commercial off	COTS products are designed in such a way to provide easy	
45.	the Shelf	integration and interoperability with existing system	
	Component	components	
	(COTS)	r	
46.	Program Storage	Stores the program instructions	
	Memory Masked DOM		
47.	Masked ROM (MROM)	One-time programmable memory	

48.	Programmable Read Only Memory (PROM) / (OTP)	OTP is widely used for commercial production of embedded systems whose proto-typed versions are proven and the code is finalized.	
49.	EPROM	Erasable Programmable Read Only (EPROM) memory gives the flexibility to re-program the same chip.	
50.	Advantage of EPROM	Erasable Programmable Read Only (EPROM) memory gives the flexibility to re-program the same chip using electrical signals	
		UNIT-III: EMBEDDED FIRMWARE	
51.	Firmware	 A specific class of computer software that provides the low-level control for the device's specific hardware. Simply, it is the software substituted for hardware and stored in ROM. 	
52.	Real-time clock	Much like a digital wristwatch, a <i>real-time clock</i> (RTC) keeps the time and date in an embedded system.	
53.	Common examples of fireware	 Typical examples of devices containing firmware are embedded systems (running embedded software), home and personal-use appliances, computers, and computer peripherals. Firmware is held in non-volatile memory devices such as ROM, EPROM, EEPROM, and Flash memory. 	
54.	Brownout reset circuit	A brownout reset is a circuit that causes a computer processor to reset (or reboot) in the event of a brownout, which is a significant drop in the power supply output voltage.	
55.	Reset circuit	A power on reset circuit ensures the system power supply stabilizes at the correct levels, the clocks of the processors settle accurately, and that the loading of the internal registers is complete before the device actually starts working or gets powered up.	
56.	Brown-out condition	A brownout, sometimes also called a 'sag', is a "dip" in the voltage level of the electrical line. When a brownout occurs, the voltage drops from its normal level to a lower voltage and then returns.	
57.	PICs that do not support the Brown-Out-Reset (BOR) feature	PIC 16C61PIC 16C71	
58.	Timer	A <i>timer</i> is a device that generates a signal pulse at specified time intervals.	
59.	Counter	<i>Counter</i> is nearly identical to a timer, except that instead of counting clock cycles (pulses on the clock signal), a counter counts pulses on some other input signal.	
60.	Watchdog Timer	• A watchdog timer (WDT) is a timer that monitors microcontroller (MCU) programs to see if they are	

		 out of control or have stopped operating. It acts as a "watchdog" watching over MCU operation.
61.	Types of firmware	 Low-level firmware, High-level firmware, and Subsystem
62.	Function of watchdog timer	Its main function is to protect the system against malfunctions.
63.	Embedded firmware design approaches	Super loop-based approach,Operating system based approach
64.	System components of embedded firmware	 Firmware is also known in the industry as "embedded software" or "low-level software." Major firmware components optionally include An operating system (OS), Kernel, Device drivers, and Application code.
65.	Difference between firmware and embedded software	 Embedded software typically implements higher-level features and functions of the device. Firmware takes care of low-level tasks such as converting analog sensor signals to digital data and managing communications protocols.
66.	Functions of firmware	 Firmware assumes an intermediary role between the hardware and software – including potential future upgrades of the software. Some firmware (such as the BIOS on a PC) does the job of booting up a computer by initialising the hardware components and loading the operating system.
67.	Difference between hardware and firmware	 A hardware has a physical entity and can undergo physical damage, unlike a firmware. A hardware needs a program to run. A firmware is a program itself. A hardware cannot operate without a firmware. A firmware operates on a hardware.
68.	Embedded firmware Development Languages/Option s	 Assembly Language High Level Language Mix of Assembly & High-level Language
69.	High Level Language for Embedded firmware development	 Subset of C (Embedded C) o Subset of C++ (Embedded C++) Any other high-level language with supported Cross-compiler
70.	Mix of Assembly & High level Language	 Mixing High Level Language (Like C) with Assembly Code Mixing Assembly code with High Level Language 6

		(Like C)	
71.	Advantage of High Level Language for Embedded firmware development	 Inline Assembly Reduced Development time Developer independency Portability 	
72.	Cross-compiler	A software utility that converts the high level language to target processor specific machine code	
73.	Assembly language program	Program written in assembly code is saved as .asm (Assembly file) file or a .src (source) file or a format supported by the assemble	
74.	Assembler	The software that performs the translation of assembly code to machine code	
75.	Advantages of assembly language programming	 Efficient Code Memory & Data Memory Usage (Memory Optimization) High Performance Low level hardware access Code reverse engineering 	
	U	NIT IV: REAL TIME OPERATING SYSTEMS	
76.	RTOS	Real Time Operating System is an OS for embedded systems, as these have real time programming issues to solve.	
77.	Processes	A computational unit that processes on a CPU and whose state changes under the control of kernel of an OS.	
78.	РСВ	Process Control Block is a data structure having the information using which the OS controls the process state.	
79.	Thread	A process or sub process within a process that has its own PC, its own SP and stack, its own priority parameter for its scheduling.	
80.	Task	Task is a set of computations or actions that processes on a CPU under control of a scheduling kernel.	
81.	Task states	 Idle state, Ready state, Running State, Blocked State, Deleted State 	
82.	Characteristics of task	A task is a function, which executes on scheduling. A task can wait as well as post the events or signals or messages.	
83.	Inter process communication	An output from one task passed to another task through the scheduler and use of signals, exception, semaphore, queues, mailbox, pipes, sockets, and RPC.	
84.	Semaphore	Semaphore provides a mechanism to let a task wait till another finishes. It is a way of synchronizing concurrent processing operations.	
85.	Mutex	Mutex is a semaphore that gives at an instance two tasks mutually exclusive access to resources.	

86.	Priority inversion	A problem in which a low priority task inadvertently does not release the process for a higher priority task
87.	Deadlock situation	A set of processes or threads is deadlocked when each process or thread is waiting for a resource to be freed which is controlled by another process.
88.	Socket	It provides the logical link using a protocol between the tasks in a client server or peer to peer environment.
89.	Remote Procedure Call	A method used for connecting two remotely placed methods by using a protocol.
90.	Goals of RTOS	 Facilitating easy sharing of resources, Facilitating easy implantation of the application software, Maximizing system performance
91.	Kernel	It is a computer program at the core of a computer's operating system with complete control over everything in the system
92.	Functions of a kernel	 Process management, Process creation to deletion, Processing resource requests Scheduling, IPC, Memory management, I/O management, Device management
93.	Non-preemptive scheduling	Once the CPU has been allocated to a process, the process keeps the CPU until it releases the CPU either by terminating or switching to the waiting state.
94.	Preemptive scheduling	Preemptive scheduling can preempt a process which is utilizing the CPU in between its execution and give the CPU to another process.
95.	Two important RTOS	• μCOS • VxWorks
96.	Vxworks	Vxworks is a popular Real-time multi- tasking operating system for embedded microprocessors and systems.
97.	Features of µC/OS II	 Preemptive, Portable, Scalable, Multitasking
98.	Application for the VxWorks RTOS	 Automobiles, Avionics, Consumer electronics Medical devices, Military, Aerospace, Networking
99.	Features of VxWorks	 High performance, Host and target-based development approach, Supports advanced processor architecture.

100.	Basic functions of µCOS	 System level, Task service function, Task delay, Memory allocation and partitioning, IPCs, mailbox and queues V: RTOS-BASED EMBEDDED SYSTEM DESIGN	
	UNII		
101.	Digital camera	Cameras that we use today are smart and have a lot of features that were not present in early cameras all because of embedded system used in them	
102.	RT Linux	Hard real-time real time operating system microkernel that runs the entire linux operating system as a fully preemptive process.	
103.	Washing Machine	Allows the washing machine to adjust the water and cut the power automatically.	
104.	Home Security Systems	Collects the information of the parameter such as temperature, gas, fire, human presence etc and sends the information to the microcontroller.	
105.	Cruise control	A system that takes charge of controlling the throttle from the driver and cruising the vehicle at preset and constant speed.	
106.	Adaptive control	An embedded system is adaptive if it is able to adjust its.	
107.	Adaptive control algorithm	An embedded system algorithm is adaptive if it is able to adjust its.	
108.	Application area	 Digital electronics, Telecommunications, Computing network, Smart cards, Satellite systems, Military defense system equipment, Research system equipment, and so on 	
109.	Soft embedded systems	A real-time task is said to be soft if generating the output after its deadline has still some utility for the system, although causing a performance degradation.	
110.	Hard embedded systems	 Hard real-time embedded systems include medical systems such as heart pacemakers and industrial process controllers. MRI and CT Scanner, 	
111.	Medial application	 Sonography, Digital Flow Sensors, Defibrillator, Blood Pressure and Glucose Test Set, Fetal Heart Monitoring Machine, Wearable Device. 	
112.	Military application	• Surveillance and Reconnaissance UAVs,	

		Communication,	
		• Computing,	
		• Cyber Security.	
		Vehicle Electronics	
113.	Automation	Embedded systems are designed to help control power efficiency, maximize performance, and control processes while operating in demanding environments	
114.	Consumer application	MP3 players, mobile phones, video game consoles, digital cameras, DVD players, and GPS.	
115.	Handshaking	Handshaking is the exchange of information between two modems and the resulting agreement about which protocol to use that precedes each telephone connection.	
116.	Aurdino	Open-source electronic prototyping platform enabling users to create interactive electronic objects.	
117.	Debug	Debugging is the process of finding and resolving defects or problems within a computer program that prevent correct operation of computer software or a system.	
118.	Office automation	Embedded systems are designed to help control power efficiency, maximize performance, and control processes while operating in demanding environments	
119.	Security	Embedded system security is a strategic approach to protecting software running on embedded systems from attack.	
120.	Tele communication	Telecommunications systems employ numerous embedded systems from telephone switches for the network to cell phones	
121.	Instrumentation	Equipment and appliances irrespective of circuit	
122.	Entertainment	Video games, mp3, mind storm, smart toy, etc	
123.	Banking and finance	Embedded banking allows businesses to have their own software to perform financial operations — weaving the bank's capabilities into the company's life.	
124.	Software Application	That permanently resides in an industrial or consumer device.	
125.	Android	It is a subset of Embedded Linux.	
	· · · · · · · · · · · · · · · · · · ·	PLACEMENT QUESTIONS	
126.	Microprocessor	Microprocessor is managers of the resources (I/O, memory) which lie outside of its architecture.	
127.	Microcontroller	The microcontroller is a self-contained system with peripherals, memory and a processor that can be used as embedded system.	
128.	Pre processor	Preprocessor is a program that processes its input data to produce output that is used as input to another program.	

129.	Integrated Circuit	Microchip is an electronic circuit etched onto a silicon chip.
130.	Firmware	A specific class of computer software that provides the low- level control for the device's specific hardware
131.	ARM	An ARM processor is one of a family of CPUs based on the RISC
132.	Semaphore	The semaphore is an abstract data store that is used to control resource accesses across the various threads of execution or across different processes.
133.	Dead lock	A group of threads are waiting for resources held by others in the group.
134.	Processor	A computational unit that processes on a CPU and whose state changes under the control of kernel of an OS.
135.	РСВ	PCB is process control block and it is a data structure having the information using which the OS controls the process state.
136.	RTOS	Real-time operating system-an operating system (OS) intended to serve real-time applications.
137.	Embedded operati ng system	A specialized operating system designed to perform a specific task for a device.
138.	Memory leak	Memory leak is nothing but the accumulation of memory which is not cleared.
139.	RAM	Random-access memory is a form of computer memory and volatile.
140.	ROM	Read-only memory is a type of non-volatile memory used in computer.
141.	Number System	If the number $481*673$ is completely divisible by 9, what is the the smallest whole number in place of *?Soln: $=> 4+8+1+x+6+7+3)$ is divisible by 9 $=> (29+x)$ is divisible by 9 x should be the smallest whole number.Hence, $(29+x)=36$ $=>x=36-29=7$ Ans : 7
142.	Calendar	Today is Monday. After 61 days, it will beA. Sunday B. SaturdayC. Monday D.ThursdaySoln61 days = 8 weeks 5 days = 5 odd daysHence if today is Monday, After 61 days,it will be = (Monday + 5 odd days) = SaturdayAns : C.Saturday
143.	Profit and Loss	Ramesh bought a chair for Rs. 1540 and sold it to Suresh. If Ramesh earned a profit of 25%, find the selling price of chair. A. Rs.1875 B. Rs.1900 C.Rs.1925 D.Rs.1950 Soln:

		C.P. of the chair = $Rs. 1540$
		S.P. of the chair =?
		Profit earned = 25%
		Selling Price = $(100+Profit\%)$ *C.P.
		100
		Therefore, S.P. =(100+25) *1540
		100
		=125/100 *1540=1925
		Ans : C Rs.1925
		A car running at a speed of 140 km/hr reached its
		destination in 2 hours. If the car wants to reach at its
		destination in 1 hour, at what speed it needs to travel?
		A. 300 km/hr
		B. 280 km/hr
	Time and	C. 250 km/hr
144.	Distance	D. 240 km/hr
		Soln:
		Distance to be covered = Speed x Time
		= 140 * 2 = 280 km
		Time = 1 hour
		Required Speed $=$ ²⁸⁰ / ₁ $=$ 280 km/hr
		Ans: B.280 km/hr
		Two pipes can fill a tank in 6 hours and 8 hours
		respectively. A third pipe can empty the same tank in 12
		hours. If all the pipes start working together, how long it
		will take to fill the tank?
		A. 4 hours B.4.5 hours C.4.8 hours D.5.2 hours Soln:
145.	Pipes and Cisterns	Part of the tank filled by two pipes in one hour = $1/6 + 1/8$
145.	-	Part of the tank emptied by two pipes in one nour = 1/0 + 1/0 Part of the tank emptied by the third pipe in one
		hour = $1/12$
		Net part of the tank filled in one hour = $1/6+1/8-1/12=5/24$
		5/24 Part of tank can be filled in one hour
		\therefore The whole tank will be filled in $24/5 = 4.8$ hours
		Ans: C. 4.8 hours
		A can run 22.5 m while B runs 25 m. In a one kilometer
		race, B beats A by
		A. 100 m B.111 1/9 m C.25 m D.50 m
140	Races & Games	Soln:
146.		When B runs 25 m, A runs $45/2$ m When B runs 1000 m. A runs
		When B runs 1000 m, A runs $(45/2 \times 1/25 \times 1000) = 000 \text{m}$
		(45/2 * 1/25 * 1000)=900m ∴ B beats A by 100 m.
		Ans: A. 100 m
		A 20 liter mixture contains 30% alcohol and 70% water.
	Alligation and	If 5 liters of water is added to the mixture, what will be
147.	Mixture	the percentage of alcohol in the new mixture?
		A. 22% B.23% C.24% D.25%
L	1	

		Soln: Initially, the mixture contains 30% alcohol = $30/100 *20=6$ liters of alchol And, 70% of water = $70/100 *20=14$ liters of water After adding 5 liters of water, the mixture contains (14+5) 19 liters of water and 6 liters of alcohol. \therefore Percentage of alcohol = $6/25*100=24\%$ Ans: C. 24%
148.	Logical Reasoning	SCD, TEF, UGH,, WKL A.CMN B.UJI C.VIJ D. IJT Soln: There are two alphabetical series here. The first series is with the first letters only: STUVW. The second series involves the remaining letters: CD, EF, GH, IJ, KL. Ans: C. VIJ
149.	Logical Reasoning	Which word does NOT belong with the others? A. Tulip B. Rose C. Bud D.Daisy Tulip, rose, and daisy are all types of flowers. A bud is not. Ans: C. Bud
150.	Logical Reasoning	Find the next number in the sequence: 3, 6, 9, 30, 117 A. 192 B. 352 C. 388 D. 588 Soln: $3 * 1 + 3 = 6$ $6 * 2 - 3 = 9$ $9 * 3 + 3 = 30$ $30 * 4 - 3 = 117$ $117 * 5 + 3 = 588$ Ans. D 588

Faculty Team Prepared

1. Dr.R.Praveena, ASP/ECE

2. Dr.U.Saravanakumar, HOD/ECE,

3. Mrs.A.Nivetha, AP/ECE

4. Dr.P.Padmaloshani, ASP/ECE

HOD