

## **MUTHAYAMMAL ENGINEERING COLLEGE**

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu



MKC

2021-22

## **MUST KNOW CONCEPTS**

| Course Code & Course<br>Name | : | 19ECC09 & DIGITAL SIGNAL PROCESSING |  |
|------------------------------|---|-------------------------------------|--|
| Year/Sem/Sec                 | : | II/IV/A,B,C                         |  |

| S.No | Term                                    | Notation<br>(Symbol) | Concept/Definition/Meaning/Units/<br>Equation/Expression                                                                                       | Units |
|------|-----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | U                                       | NIT I DISCI          | RETE FOURIER TRANSFORM                                                                                                                         |       |
| 1    | Signals                                 | 7                    | A Signal a function that Conveys information about<br>a phenomenon                                                                             |       |
| 2    | Systems                                 |                      | It produces an output for a given input signal.                                                                                                |       |
| 3    | Sinusoidal signals                      | X                    | X(t)=Asinωt<br>X(t)=A cos ωt                                                                                                                   |       |
| 4    | Analog signal                           |                      | A continuous signal that contains time-varying quantities.                                                                                     |       |
| 5    | Digital signal                          |                      | It is a signal that is being used to represent data as a sequence of discrete values.                                                          |       |
| 6    | Discrete time signal                    | DESIG                | A discrete time signal $x$ (n) is a function of an independent variable that is an integer.                                                    |       |
| 7    | Discrete time system                    | Es                   | A discrete or an algorithm that performs some prescribed operation on a discrete time signal.                                                  |       |
| 8    | Elementary discrete time signals        |                      | Unit Step signal, Unit Ramp, Unit Impulse and Exponential Signal.                                                                              |       |
| 9    | Exponential signal                      |                      | x (n)= $a^n$ where a is real x(n)-Real signal                                                                                                  |       |
| 10   | Classification of discrete time signals |                      | <ol> <li>Energy and power signals</li> <li>Periodic and A periodic signals</li> <li>Symmetric(even) and Ant symmetric (odd) signals</li> </ol> |       |
| 11   | Energy Signal                           |                      | $\mathbf{E} = \sum  \mathbf{x}(\mathbf{n}) ^2$                                                                                                 |       |
| 12   | Power Signal                            |                      | P = Lt (1/2N+1)<br>N> $\infty$                                                                                                                 |       |
| 13   | DFT Equation                            |                      | $\begin{array}{c} N-1 \\ X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2 \prod nk/N} , 0 <= k <= N-1 \end{array}$                                          |       |

|    | 1                                          |                                                                                                                                          |  |
|----|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| 14 | IDFT Equation                              | N-1<br>x(n)= $1/N \sum_{n=0}^{N-1} X(k) e j2 \prod nk/N$ , 0<=n<=N-                                                                      |  |
|    |                                            | n=0<br>Periodicity, Linearity and symmetry, Multiplication                                                                               |  |
| 15 | Properties of DFT                          | of two DFTs, Circular convolution, Time reversal,<br>Circular time shift and frequency shift, Complex<br>conjugate, Circular correlation |  |
|    | T. (1, 1, 6                                | conjugate, Circular correlation                                                                                                          |  |
| 16 | Two methods of<br>Circular convolution     | 1. Concentric Circle Method                                                                                                              |  |
|    | Circular convolution                       | 2. Matrix multiplication Method                                                                                                          |  |
| 17 | zero padding                               | To find N point DFT, have to add (N-L) zeros at the sequence x(n).                                                                       |  |
| 18 | Methods used for the sectional convolution | 1. Overlap-add method and2. Overlap-save method                                                                                          |  |
| 19 | Overlap-add method                         | To each data block we append M-1 zeros and perform N point circular convolution.                                                         |  |
| 20 | Overlap-save method                        | To each data block we add M-1 zeros at the initial                                                                                       |  |
|    | -                                          | point of input signal.The Fast Fourier Transform is an algorithm used to                                                                 |  |
| 21 | FFT                                        | compute the DFT.                                                                                                                         |  |
|    |                                            | If the number of output points N can be expressed                                                                                        |  |
| 22 | Radix-2 FFT                                | as a power of 2 that is N=2M, where M is an                                                                                              |  |
|    |                                            | integer, the algorithm is known as radix-2                                                                                               |  |
|    |                                            | algorithm.                                                                                                                               |  |
|    |                                            | Decimation-In-Time algorithm is used to calculate                                                                                        |  |
| 23 | DIT algorithm                              | the DFT of a N point sequence. The sequence $x(n)$                                                                                       |  |
|    |                                            | is often splitted into smaller sub-sequences.                                                                                            |  |
| 24 |                                            | The output sequence X(k) is divided into smaller                                                                                         |  |
| 24 | DIF algorithm                              | and smaller sub-sequences , that is why the name                                                                                         |  |
|    |                                            | Decimation In Frequency.                                                                                                                 |  |
| 25 | Applications of FFT algorithm              | <ol> <li>Linear filtering 2)Correlation</li> <li>Spectrum analysis</li> </ol>                                                            |  |
|    |                                            | UNIT II IIR FILTER DESIGN                                                                                                                |  |
| 26 | Filter                                     | DESIG A <b>filter</b> is a circuit capable of passing certain                                                                            |  |
|    |                                            | frequencies while attenuating other frequencies.                                                                                         |  |
| 27 | Types of filters based                     | 2. FIR filter                                                                                                                            |  |
| 21 | on impulse response                        |                                                                                                                                          |  |
|    | IIR filter                                 | IIR filters are easily realized recursively                                                                                              |  |
| 28 |                                            | The round off noise in IIR filters is more.                                                                                              |  |
|    |                                            | The round off holds in first fixers is historie.     The Magnitude response of Butterworth                                               |  |
|    |                                            | filter decreases monotonically as the                                                                                                    |  |
| 29 | Butterworth filter                         | frequency increases.                                                                                                                     |  |
|    |                                            | • The Poles of the Butterworth filter lies                                                                                               |  |
|    |                                            | along the circle.                                                                                                                        |  |
| 30 | Low pass signal                            | A baseband signal is centered around DC (zero)                                                                                           |  |
| 50 | LOW Pass signal                            | frequency.                                                                                                                               |  |
|    |                                            | A high-pass filter (HPF) is an electronic filter that                                                                                    |  |
| 31 | High pass signal                           | passes signals with a frequency higher than a                                                                                            |  |
|    |                                            | certain cutoff frequency.                                                                                                                |  |
| 32 | Band pass signal                           | A band of frequencies ranging from some non zero                                                                                         |  |
|    |                                            | value to another non zero value.                                                                                                         |  |

|     |                                          | The design of IIR filter is realizable and stable.     |  |
|-----|------------------------------------------|--------------------------------------------------------|--|
| 33  | Structure of IIR filter                  | The impulse response $h(n)$ for a realizable filter is |  |
| 55  | Structure of fire filter                 | $h(n)=0$ for $n\leq 0$                                 |  |
|     | Advantage of direct                      | In direct form II structure, the number of memory      |  |
| 34  | form II structure over                   | locations required is less than that of direct form I  |  |
| 54  | direct form I structure                  | structure.                                             |  |
|     |                                          |                                                        |  |
|     | Design digital filters                   | 1. Map the desired digital filter specifications into  |  |
| 35  | Design digital filters                   | those for an equivalent analog filter.                 |  |
|     | from analog filters                      | 2. Derive the analog transfer function for the analog  |  |
|     | Procedures for                           | prototype.                                             |  |
| 26  |                                          | 1. Impulse invariance method.                          |  |
| 36  | digitizing the TF of                     | 2. Bilinear transformation method.                     |  |
|     | analog filter                            |                                                        |  |
| 27  | Impulse invariant                        | The impulse response of resulting digital filter is a  |  |
| 37  | method                                   | sampled version of the impulse response of the         |  |
|     |                                          | analog filter.                                         |  |
|     |                                          | • The Magnitude response of Chebyshev filter           |  |
|     |                                          | will not decrease monotonically with                   |  |
| •   | Chebyshev Filter                         | frequency because it exhibits ripples in pass          |  |
| 38  | Chebyshev I hter                         | band or stop band.                                     |  |
|     |                                          | • The Transition width is very small                   |  |
|     |                                          | • The poles of chebyshev filter lies along the         |  |
|     |                                          | ellipse.                                               |  |
|     | וית                                      | The mapping from the S-plane to the Z-plane is in      |  |
| 39  | Bilinear                                 | bilinear transformation is                             |  |
|     | transformation                           | $S=2(1-z^{-1})/T(1+z^{-1})$                            |  |
| 40  | Response of analog                       | $y_a(t) = L^{-1}[H_a(s)X_a(s)]$                        |  |
| 40  | filter                                   | $y_a(l) - L [\Pi_a(3)X_a(3)]$                          |  |
| 41  | sampled signal of                        | $y_a(nT) = [L^{-1}[H_a(s)X_a(s)]]_{t=nT}$              |  |
| 71  | analog filter output                     |                                                        |  |
|     |                                          | When the desired magnitude response is piece-wise      |  |
|     |                                          | constant over frequency, this compression can be       |  |
| 42  | Pre-warping                              | compensated by introducing a suitable pre-scaling,     |  |
|     |                                          | or pre-warping the critical frequencies by using the   |  |
|     |                                          | formula and a a a a a a a a a a a a a a a a a          |  |
|     |                                          | 1. The bilinear transformation provides one-to-one     |  |
|     | Advantages of bilinear                   | mapping.                                               |  |
| 43  | transformation                           | 2. Stable continuous systems can be mapped into        |  |
|     | transiormation                           | realizable, stable digital systems.                    |  |
|     |                                          | 3. There is no aliasing.                               |  |
|     |                                          | 1. The mapping is highly non-linear producing          |  |
|     | Dianduantagas                            | frequency, compression at high frequencies.            |  |
| 44  | Disadvantages of bilinear transformation | 2. Neither the impulse response nor the phase          |  |
|     | onmear transformation                    | response of the analog filter is preserved in a        |  |
|     |                                          | digital filter obtained by bilinear transformation.    |  |
| 4 5 | Advantage of cascade                     | Quantization errors can be minimized if we realize     |  |
| 45  | realization                              | an LTI system in cascade form.                         |  |
|     |                                          | It is a graphical representation of the relationships  |  |
| 46  | Signal flow graph                        | between the variables of a set of linear difference    |  |
|     |                                          | equations.                                             |  |
|     |                                          | If we reverse the directions of all branch             |  |
| 47  | Transposition theorem                    |                                                        |  |

| Image: constraint the set of the input and output in the flow graph, the system function remains unchanged.48Transposed structure1. Reverse the directions of all branches in the signal flow graph49Important parameters of band pass2. Interchange the input and outputs.<br>3. Reverse the roles of all nodes in the flow graph.49Important parameters of band pass $\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$ 50Sampling frequency $\mathcal{T} = \frac{1}{2}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}_{L}$<br>$\mathcal{O}$                                                                                                                                      |    |                        |           | transmittance and interesting the ' ( 1 (                                                                                              | ] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|---|
| Image: construction of the signal flow graph48Transposed structure48Transposed structure49Important parameters<br>of band pass49Important parameters<br>of band pass50Sampling frequency50Sampling frequency51Filter52Sampling frequency53Filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.54Filter55Filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.51Filter52Types of filters based<br>on frequencies53Types of filters based<br>on frequency54Band pass signal55Low pass signal54Band pass signal55Low pass signal56High pass signal57FIR filter58IIR filter59Linear phase FIR<br>pass signal50Filter51Infilter52Ing pass signal53A baseband signal is centered around DC (zero)<br>frequency.54Band pass signal55Low pass signal56High pass signal57FIR filter58IIR filter59Linear phase FIR<br>filter59Linear phase FIR<br>filter59Linear phase FIR<br>filter59Linear phase FIR<br>filter59Linear phase FIR<br>filter50Anti Symmetric FIR<br>fil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                        |           | transmittance and interchange the input and output                                                                                     |   |
| 48Transposed structure1. Reverse the directions of all branches in the<br>signal flow graph<br>2. Interchange the input and outputs.<br>3. Reverse the roles of all nodes in the flow graph.<br>1. center frequency<br>$2 \cdot \mathcal{O}_{a}^{a}$ upper critical frequency<br>$3 \cdot \mathcal{O}_{l}^{a}$ low critical frequency<br>$3 \cdot \mathcal{O}_{l}^{a}$ preserve the roles of all nodes in the flow graph.49of band pass $2 \cdot \mathcal{O}_{a}^{a}$ upper critical frequency<br>$3 \cdot \mathcal{O}_{l}^{a}$ low critical frequency50Sampling frequency $T=1/f_{5}$<br>$r=\frac{1}{2} \cdot \frac{2\pi}{2} \cdot \frac{\pi}{2} \cdot \frac{\pi}{2}$ 51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52On impulse response<br>on impulse response1. LR filter53Types of filters based<br>on frequency<br>response1. Low pass filter<br>3. Band pass filter<br>3. Band pass filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.56High pass signalA high-pass filter (HPF) is an electronic filter that<br>pass signal mass signal value to another non zero value.57FIR filterFilter scan be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are asily realized recursively and non-<br>recursively.<br>Errors due to round off noise in the first<br>quadrant and third quadrant or second quadrant and<br>Fourting in the first<br>quadrant and third quadrant or second quadrant and<br>Fourt quadrant or both.60Ant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                        |           |                                                                                                                                        |   |
| 48Transposed structuresignal flow graph<br>2. Interchange the input and outputs.<br>3. Reverse the roles of all nodes in the flow graph.49Important parameters<br>of band pass1. center frequency<br>$\mathcal{D}_{c}$<br>$\mathcal{O}_{u}$ upper critical frequency<br>$\mathcal{D}_{c}$<br>$\mathcal{O}_{u}$ upper critical frequency<br>$\mathcal{D}_{c}$ 50Sampling frequency $r = \frac{1}{2}, \frac{ex}{2\pi}, r = \frac{1}{2}, $ |    |                        |           |                                                                                                                                        |   |
| 43       Transposed structure       2. Interchange the input and outputs.         44       Important parameters of band pass       2. $\mathcal{O}_{u}$ upper critical frequency         45       Sampling frequency $\mathcal{O}_{c}$ 50       Sampling frequency $\mathcal{I}_{r=\frac{1}{h}} = \frac{2\pi}{r} = \frac{1}{h} = \frac{2\pi}{r}$ 51       Filter       A filter is a circuit capable of passing certain frequencies while attenuating other frequencies.         51       Filter       A filter is a circuit capable of passing certain frequencies while attenuating other frequencies.         52       Types of filters based on impulse response       1. IR filter         53       on frequency       3. Band pass filter         54       Band pass signal       A baseband signal is centered around DC (zero) frequency.         55       Low pass signal       A bage pass filter (HPF) is an electronic filter that passes signals with a frequency higher than a certain curoff frequency.         56       High pass signal       A bage bas signal with a frequency higher than a certain curoff frequency.         58       IR filter       IR filter sear as be realized recursively and non-recursively.         57       FIR filter       IR filter sear as be realized recursively and non-recursively.         58       IR filter       IR filter sear easily realized recursively         59       Linear phase FIR f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                        |           |                                                                                                                                        |   |
| 3. Reverse the roles of all nodes in the flow graph.49Important parameters<br>of band pass1. center frequency $M_C$<br>$2. \frac{M_U}{M_U} upper critical frequency3. \frac{M_U}{M_U} low critical frequency50Sampling frequencyT=1/fsr - \frac{1}{r} - \frac{2\pi}{r} - \frac{1}{r} - \frac{2\pi}{r}50Sampling frequencyUNIT III FIR Filter DesignUNIT III FIR Filter Design51FilterA filter is a circuit capable of passing certainfrequencies while attenuating other frequencies.52Types of filters basedon impulse response1. IIR filter53Types of filters basedon frequency3. Band pass filter3. Band pass filter3. Band pass filter4. Band of frequencies ranging from some non zerovalue to another non zero value.54Band pass signalA baseband signal is centered around DC (zero)frequency.FIR filterFIR filterFIR filterIIR filterIIR filterIIR filterIIR filterIIR filterFIR filterColspan= filter (HPF) is an electronic filter thatpasse signalA baseband signal is centered around DC (zero)frequency.FIR filterImplase signalA baseband signal is centered in Curonic filter thatpasse s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48 | Transposed structure   |           |                                                                                                                                        |   |
| 49Important parameters<br>of band pass1. center frequency<br>$2$ . $\mathcal{M}$ upper critical frequency<br>$3$ . $\mathcal{M}$ low critical frequency<br>$3$ . $\mathcal{M}$ low critical frequency50Sampling frequency $T=1/fs$<br>$x=\frac{1}{r}=\frac{2\pi}{r}$ . $x=\frac{1}{r}=\frac{2\pi}{r}$ 51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. ILR filter53Types of filters based<br>on frequency<br>response2. FIR filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passe signals with a frequency bigher than a<br>certain cutoff frequency.56High pass signalFIR filters can be realized recursively and non-<br>recursively.57FIR filterDISCIC filter58IIR filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>contain cutoff frequency.59Linear phase FIR<br>FilterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $(\alpha) = (N-1-\alpha)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filter is always stable62Design techniques of<br>FIR filter is always stableThe Optimum Equiripple design Criterion is used<br>for designing FIR Filter is always stable63Reason that FIR filter<br>is always stableThe Optimum Equir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                        |           |                                                                                                                                        |   |
| 49Influence2. $\mathcal{B}_{u}^{u}$ upper critical frequency50Sampling frequency $T=1/fs$<br>$r=\frac{1}{r_{c}}=\frac{2\pi}{r_{c}}=r-\frac{1}{r_{c}}=\frac{2\pi}{r_{c}}$ UNIT III FIR Filter Design51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter53on frequency2. Fift filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.54Band pass signalA baseband signal is centered around DC (zero)<br>frequency.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA baseband signal is centered around DC (zero)<br>frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are asily realized recursively and non-<br>recursively.<br>Errors due to round off noise in IIR filters is more.58IIR filterIIR filter are casily realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter60Anti Symmetric FIR<br>FiltersImplese occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR filter<br>is always stable63Reason that FIR filter<br>is always stable<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                        |           | 3. Reverse the roles of all nodes in the flow graph.                                                                                   |   |
| 49of band pass2. $f_{\rm e}^{\rm h}$ upper critical frequency50Sampling frequencyT=1/fs<br>$r - \frac{1}{r} - \frac{2\pi}{r} - \frac{1}{r} - \frac{2\pi}{r}}$ UNIT III FIR Filter Design51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter53Types of filters based<br>on frequency<br>response2. FIR filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA bigh-pass filter<br>4. Band reject filter56High pass signalA high-pass filter (HPF) is an electronic filter that<br>passe signals with a frequency.56High pass signalA high-pass filter (HPF) is an electronic filter that<br>passe signals with a frequency.57FIR filterEffect (HPF) is an electronic filter that<br>passe signals with a frequency.58IIR filterIIR filter are easily realized recursively and non-<br>recursively.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant/Impulse response, $(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>filterImpulses occur at the mirror image in the first<br>quadrant of both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filter is always stable62Design techniques of<br>FIR filter is always stable(1) Window method (2) Prequency sampling<br>method (3) optimal or minimax design63Reason tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Important parameters   |           | 1.center frequency $\mathcal{O}_{\mathcal{C}}$                                                                                         |   |
| 50Sampling frequencyT=1/fs<br>$r = \frac{1}{r} = \frac{2\pi}{r}$ UNIT III FIR Filter Design51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter53Types of filters based<br>on frequency<br>response2. FIR filter54Band pass signal1. Low pass filter<br>3. Band pass filter<br>4. Band reject filter54Band pass signalA baseband signal is centered around DC (zero)<br>frequency.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA high-pass filter (HPF) is an electronic filter that<br>passe signals with a frequency higher than a<br>certain cutoff frequency.56High pass signalFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The toud off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and thrid quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>filter filter is always stable because all its poles are<br>at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49 | 1 1                    |           | 2. $\omega_{l}$ upper critical frequency                                                                                               |   |
| 50Sampling requercy $r = \frac{1}{h} = \frac{2\pi}{h} = \frac{1}{h} = \frac{2\pi}{h} = \frac{1}{h} = \frac{2\pi}{h}$ UNIT III FIR Filter Design51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter53Types of filters based<br>on frequency<br>response2. FIR filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.54Band pass signalA baseband signal is centered around DC (zero)<br>frequency.55Low pass signalA high-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency bigher than a<br>certain cutoff frequency.56High pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency bigher than a<br>certain cutoff frequency.57FIR filterFIR filter are easily realized recursively and non-<br>recursively.58IIR filterIIR filters are asily realized recursively and non-<br>recursively.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and thrid quadrant or second quadrant and<br>Fourth quadrant or second part and and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>filteration throughout the Design.62Design techniques of<br>filtersFIR filter is always stable b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                        |           | 3. <sup>1</sup> low critical frequency                                                                                                 |   |
| 50Sampling requercy $r = \frac{1}{h} = \frac{2\pi}{h} = \frac{1}{h} = \frac{2\pi}{h} = \frac{1}{h} = \frac{2\pi}{h}$ UNIT III FIR Filter Design51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter53Types of filters based<br>on frequency<br>response2. FIR filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.54Band pass signalA baseband signal is centered around DC (zero)<br>frequency.55Low pass signalA high-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency bigher than a<br>certain cutoff frequency.56High pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency bigher than a<br>certain cutoff frequency.57FIR filterFIR filter are easily realized recursively and non-<br>recursively.58IIR filterIIR filters are asily realized recursively and non-<br>recursively.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and thrid quadrant or second quadrant and<br>Fourth quadrant or second part and and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>filteration throughout the Design.62Design techniques of<br>filtersFIR filter is always stable b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 |                        |           | T=1/fs                                                                                                                                 |   |
| UNIT III FIR Filter Design51FilterA filter is a circuit capable of passing certain<br>frequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter53Types of filters based<br>on frequency<br>response1. Low pass filter<br>4. Band pass filter<br>4. Band reject filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA baseband signal is centered around DC (zero)<br>frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively and non-<br>recursively.<br>Errors due to round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR filters with Equal level<br>filteration throughout the Design.62Filter filter<br>filterThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 | Sampling frequency     |           | $T = \frac{1}{f_s} = \frac{2\pi}{\omega_s} \qquad T = \frac{1}{f_s} = \frac{2\pi}{\omega_s} T = \frac{1}{f_s} = \frac{2\pi}{\omega_s}$ |   |
| 51Filterfrequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter<br>2. FIR filter53Types of filters based<br>on frequency<br>response1. Low pass filter<br>2. High pass filter<br>3. Band pass filter<br>4. Band reject filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1.n)60Anti Symmetric FIR<br>FiltersImpulse soccur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Bibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                        | UNIT      |                                                                                                                                        |   |
| 51Filterfrequencies while attenuating other frequencies.52Types of filters based<br>on impulse response1. IIR filter<br>2. FIR filter53Types of filters based<br>on frequency<br>response1. Low pass filter<br>2. High pass filter<br>3. Band pass filter<br>4. Band reject filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1.n)60Anti Symmetric FIR<br>FiltersImpulse soccur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Bibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51 | Filtor                 |           | A filter is a circuit capable of passing certain                                                                                       |   |
| $52$ on impulse response2. FIR filter $53$ Types of filters based<br>on frequency<br>response1. Low pass filter<br>2. High pass filter<br>4. Band pass filter<br>4. Band reject filter $54$ Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value. $55$ Low pass signalA baseband signal is centered around DC (zero)<br>frequency. $56$ High pass signalA baseband signal is centered around DC (zero)<br>frequency. $56$ High pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency. $57$ FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter $58$ IIR filterIIR filters $58$ IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more. $58$ IIR filterIIR filter same easily realized recursively<br>The round off noise in IIR filters is more. $59$ Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ $60$ Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant or both. $61$ Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design. $62$ Reason that FIR filter<br>is always stableFIR filter is always stable $63$ Reason that FIR filter<br>is always stable <td>51</td> <td></td> <td></td> <td>frequencies while attenuating other frequencies.</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 |                        |           | frequencies while attenuating other frequencies.                                                                                       |   |
| on impulse response       2. FIR filter         53       Types of filters based<br>on frequency<br>response       1. Low pass filter         54       Band pass signal       A band of frequencies ranging from some non zero<br>value to another non zero value.         55       Low pass signal       A baseband signal is centered around DC (zero)<br>frequency.         56       High pass signal       A baseband signal is centered around DC (zero)<br>frequency.         56       High pass signal       A bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.         57       FIR filter       FIR filters can be realized recursively and non-<br>recursively.         58       IIR filter       IIR filter filter         59       Linear phase FIR<br>filter       Phase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60       Anti Symmetric FIR<br>Filters       Impulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.         61       Optimum equiripple<br>design criterion       The Optimum Equiripple design.         62       Design techniques of<br>FIR filters       (1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design         63       Reason that FIR filter<br>is always stable       FIR filter is always stable because all its poles are<br>at the origin.         64       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 | Types of filters based |           | 1. IIR filter                                                                                                                          |   |
| 53Types of Infers based<br>on frequency<br>response2. High pass filter<br>3. Band pass filter<br>4. Band reject filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Apti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filter(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to tru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32 | • -                    |           | 2. FIR filter                                                                                                                          |   |
| 53on frequency<br>response2. Figh pass filter3. Band pass filter3. Band pass filter4. Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.54Band pass signalA baseband signal is centered around DC (zero)<br>frequency.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA bigh-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design. Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filter(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                        |           | 1. Low pass filter                                                                                                                     |   |
| 3.5On frequency<br>response3. Band pass filter<br>4. Band reject filter54Band pass signalA band of frequencies ranging from some non zero<br>value to another non zero value.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA high-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, (n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filters in throughout the Design.62Design techniques of<br>FIR filter(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52 |                        |           | 2. High pass filter                                                                                                                    |   |
| 54       Band pass signal       A band of frequencies ranging from some non zero value.         55       Low pass signal       A band of frequencies ranging from some non zero value.         56       High pass signal       A baseband signal is centered around DC (zero) frequency.         56       High pass signal       A baseband signal is centered around DC (zero) frequency.         57       FIR filter       FIR filters can be realized recursively and non-recursively.         57       FIR filter       FIR filters can be realized recursively and non-recursively.         58       IIR filter       IIR filter voice FITTEF         59       Linear phase FIR filter       Phase delay, a = (N-1)/2 (i.e., phase delay is constant)Impulse response, h(n) = h(N-1-n)         60       Anti Symmetric FIR Filters       Impulses occur at the mirror image in the first quadrant or both.         61       Optimum equiripple design criterion is used for designing FIR Filters with Equal level filteration throughout the Design.         62       Design techniques of FIR filter is always stable       FIR filter is always stable         63       Reason that FIR filter is always stable       FIR filter is always stable because all its poles are at the origin.         64       Gibb's phenomenn       One possible way of finding an FIR filter that approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55 |                        |           | 3. Band pass filter                                                                                                                    |   |
| 34Baild pass signalvalue to another non zero value.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA high-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design.62Design techniques of<br>FIR filter(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | response               |           | 4. Band reject filter                                                                                                                  |   |
| 34Baild pass signalvalue to another non zero value.55Low pass signalA baseband signal is centered around DC (zero)<br>frequency.56High pass signalA high-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design.62Design techniques of<br>FIR filter(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51 | Dand mass signal       | ~         | A band of frequencies ranging from some non zero                                                                                       |   |
| 53Low pass signalfrequency.56High pass signalA high-pass filter (HPF) is an electronic filter that<br>passes signals with a frequency higher than a<br>certain cutoff frequency.57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filter(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54 | Band pass signal       |           |                                                                                                                                        |   |
| 56       High pass signal       A high-pass filter (HPF) is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency.         57       FIR filter       FIR filters can be realized recursively and non-recursively.         58       IIR filter       IIR filters can be realized recursively and non-recursively.         58       IIR filter       IIR filters are easily realized recursively         59       Linear phase FIR filter       Phase delay, α = (N-1)/2 (i.e., phase delay is constant)Impulse response, h(n) = h(N-1-n)         60       Anti Symmetric FIR Filters       Phase occur at the mirror image in the first quadrant and third quadrant or both.         61       Optimum equiripple design criterion is used for designing FIR Filters with Equal level filteration throughout the Design.         62       Design techniques of FIR filter is always stable       FIR filter is always stable because all its poles are at the origin.         63       Reason that FIR filter is always stable       One possible way of finding an FIR filter that approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 | Low pass signal        |           |                                                                                                                                        |   |
| 56       High pass signal       passes signals with a frequency higher than a certain cutoff frequency.         57       FIR filter       FIR filters can be realized recursively and non-recursively. Errors due to round off noise are less severe in FIR filter         58       IIR filter       IIR filters are easily realized recursively         59       Linear phase FIR filter       Phase delay, α = (N-1)/2 (i.e., phase delay is constant)Impulse response, h(n) = h(N-1-n)         60       Anti Symmetric FIR Filters       Impulses occur at the mirror image in the first quadrant or both.         61       Optimum equiripple design criterion       The Optimum Equiripple design Criterion is used for designing FIR Filters with Equal level filteration throughout the Design.         62       Design techniques of FIR filter is always stable because all its poles are at the origin.         63       Reason that FIR filter is always stable because all its poles are at the origin.         64       Gibb's phenomenn       One possible way of finding an FIR filter that approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55 | Low pass signal        |           |                                                                                                                                        |   |
| 57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>filter59Linear phase FIR<br>filterPhase delay, α = (N-1)/2 (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                        |           |                                                                                                                                        |   |
| 57FIR filterFIR filters can be realized recursively and non-<br>recursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>filter59Linear phase FIR<br>filterPhase delay, α = (N-1)/2 (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56 | High pass signal       |           |                                                                                                                                        |   |
| 57FIR filterrecursively.<br>Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, α = (N-1)/2 (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                        |           |                                                                                                                                        |   |
| 57FIR filterErrors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                        |           |                                                                                                                                        |   |
| Errors due to round off noise are less severe in FIR<br>filter58IIR filterIIR filter in the round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57 | FIR filter             |           |                                                                                                                                        |   |
| 58IIR filterIIR filters are easily realized recursively<br>The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, α = (N-1)/2 (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 |                        |           |                                                                                                                                        |   |
| 38The round off noise in IIR filters is more.59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                        | DESIG     |                                                                                                                                        |   |
| 59Linear phase FIR<br>filterPhase delay, $\alpha = (N-1)/2$ (i.e., phase delay is<br>constant)Impulse response, $h(n) = h(N-1-n)$ 60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58 | IIR filter             |           |                                                                                                                                        |   |
| 59Emical phase FIR<br>filterFilase delay, d = (N-1)/2 (i.e., phase delay is<br>constant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |                        | Fe        |                                                                                                                                        |   |
| filterconstant)Impulse response, h(n) = h(N-1-n)60Anti Symmetric FIR<br>FiltersImpulses occur at the mirror image in the first<br>quadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59 | -                      | 1 mar 1 m |                                                                                                                                        |   |
| 60Antr Symmetric FIR<br>Filtersquadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | filter                 |           |                                                                                                                                        |   |
| 60Filtersquadrant and third quadrant or second quadrant and<br>Fourth quadrant or both.61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Anti Symmetric FIR     |           | -                                                                                                                                      |   |
| 61Optimum equiripple<br>design criterionThe Optimum Equiripple design Criterion is used<br>for designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 | •                      |           |                                                                                                                                        |   |
| 61Optimum equilipple<br>design criterionfor designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 1 11015                |           |                                                                                                                                        |   |
| 61design criterionfor designing FIR Filters with Equal level<br>filteration throughout the Design.62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Optimum equiripple     |           |                                                                                                                                        |   |
| 62Design techniques of<br>FIR filters(1) Window method (2) Frequency sampling<br>method (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61 |                        |           |                                                                                                                                        |   |
| 62       FIR filters       method (3) Optimal or minimax design         63       Reason that FIR filter is always stable       FIR filter is always stable because all its poles are at the origin.         64       Gibb's phenomenn       One possible way of finding an FIR filter that approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                        |           |                                                                                                                                        |   |
| FIR filtersmethod (3) Optimal or minimax design63Reason that FIR filter<br>is always stableFIR filter is always stable because all its poles are<br>at the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62 |                        |           |                                                                                                                                        |   |
| 63     is always stable     at the origin.       64     Gibb's phenomenn     One possible way of finding an FIR filter that approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                        |           |                                                                                                                                        |   |
| Is always stableat the origin.64Gibb's phenomennOne possible way of finding an FIR filter that<br>approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63 |                        |           | •                                                                                                                                      |   |
| 64 Glob's phenomenia approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 1s always stable       |           |                                                                                                                                        |   |
| approximates H(w) would be to truncate the infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | Gibb's phenomenn       |           |                                                                                                                                        |   |
| Fourier series at $n=\pm(N-1/2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64 | r                      |           |                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                        |           | Fourier series at $n=\pm(N-1/2)$ .                                                                                                     |   |

|    | 1                                                |                                                                                                                                                                          |
|----|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 65 | Desired frequency<br>response H <sub>d</sub> (w) | $h_{d}(n) = \frac{\pi}{1/2\pi \int} H_{d}(w) e^{jwn} dw$ $-\pi$                                                                                                          |
| 66 | Transfer function of the realizable filter       | $\begin{array}{c} (N-1)/2 \\ H(z)=z-(N-1)/2 \left[h(0)+\sum h(n)(zn+z-n)\right] \\ n=0 \end{array}$                                                                      |
| 67 | Types of windowing techniques                    | <ol> <li>Rectangular window</li> <li>Hamming window</li> <li>Hanning window</li> <li>Bartlett window</li> <li>Kaiser window</li> </ol>                                   |
| 68 | Equation for<br>Rectangular window               | $W(n) = 1 \qquad \text{for } 0 \le n \le M-1$<br>= 0  \text{otherwise}                                                                                                   |
| 69 | Equation for<br>Hamming window                   | $W_{H}(n) = 0.54-0.46 \cos(2\pi n/M-1)$ for $0 \le n \le M-1$<br>= 0 otherwise                                                                                           |
| 70 | Equation for Hanning<br>window                   | $W_{Hn}(n) = 0.5[1 - \cos (2 \pi n / M - 1)]$ for $0 \le n \le M - 1$<br>= 0 otherwise                                                                                   |
| 71 | Equation for Bartlett<br>window                  | $WT(n) = 1 - \{2 n - (M-1)/2 \}/(M-1) \text{ for } 0 \le n \le M-1$<br>= 0 otherwise otherwise                                                                           |
| 72 | Equation for<br>Blackman window                  | $W_{\rm H}(n) = 0.42-0.5 \cos (2 \pi n / M-1) + 0.08 \cos (4 \pi n / M-1) = 0 \qquad \text{otherwise}$                                                                   |
| 73 | Merits of FIR filters                            | <ol> <li>FIR Filter is always stable.</li> <li>FIR Filter with exactly linear phase can easily be designed.</li> </ol>                                                   |
| 74 | Demerits of FIR<br>filters                       | 1. High Cost.<br>2.Require more Memory                                                                                                                                   |
| 75 | Features of hanning<br>window spectrum           | <ol> <li>The main lobe width is equal to 8π/N.</li> <li>The maximum side lobe magnitude is -31db.</li> <li>The side lobe magnitude decreases with increasing.</li> </ol> |
|    | UNIT                                             | IV FINITE WORD LENGTH EFFECT                                                                                                                                             |
| 76 | Types of arithmetic in digital systems           | Fixed point arithmetic, floating point, block floating point arithmetic                                                                                                  |
| 77 | Fixed point number                               | In fixed point number the position of a binary point<br>is fixed. The bit to the right represent the fractional<br>part and those to the left is integer part.           |
| 78 | Types of fixed point<br>arithmetic               | sign magnitude, 1's complement, 2's complement                                                                                                                           |
| 79 | Sign magnitude<br>representation                 | The leading binary digit is used to represent the sign. If it is equal to 1 the number is negative, otherwise it is positive.                                            |
| 80 | 1's<br>complement form                           | Complement all the bits of the positive number                                                                                                                           |
| 81 | 2's<br>complement form                           | Complement all the bits of the positive number and add 1 to the LSB                                                                                                      |
| 82 | Advantages of<br>floating pint<br>representation | 1. Large dynamic range         2. Overflow is unlikely                                                                                                                   |

|     |                      |          | 1. Input quantization errors 2. Coefficient                                                   |  |
|-----|----------------------|----------|-----------------------------------------------------------------------------------------------|--|
| 83  | Quantization errors  |          | quantization errors                                                                           |  |
| 00  | Qualitization errors |          | 3.Product quantization errors                                                                 |  |
|     | Input quantization   |          | The filter coefficients are computed to infinite                                              |  |
| 84  | error                |          | precision in theory                                                                           |  |
| 0.5 | Product quantization |          | The product quantization errors arise at the output                                           |  |
| 85  | error                |          | of the multiplier                                                                             |  |
| 0.6 | Input quantization   |          | The input quantization errors arise due to A/D                                                |  |
| 86  | error                |          | conversion                                                                                    |  |
| 87  | Quantization methods |          | Truncation and Rounding                                                                       |  |
| 07  | Quantization methods |          |                                                                                               |  |
| 88  | truncation           |          | A process of discarding all bits less significant than                                        |  |
|     |                      |          | LSB that is retained                                                                          |  |
|     |                      |          | Rounding a number to b bits is accomplished by                                                |  |
| 89  | Rounding             |          | choosing a rounded result as the b bit number                                                 |  |
|     |                      |          | closest number being unrounded                                                                |  |
| 00  | Limit origina        |          | In recursive system these nonlinearities often cause                                          |  |
| 90  | Limit cycles         |          | periodic oscillation to occur in the output, even                                             |  |
|     |                      |          | when input sequence is zero or some nonzero valueThe reduction of a continuous-time signal to |  |
| 91  | Sampling             |          | The reduction of a continuous-time signal to a discrete-time signal                           |  |
|     |                      |          | The average number of samples obtained in one                                                 |  |
| 92  | sampling rate        | -        | thus $f_s = 1/T$                                                                              |  |
|     |                      |          | A bandpass signal is sampled slower than                                                      |  |
|     | Under                |          | its Nyquist rate, the samples are indistinguishable                                           |  |
| 93  | sampling             |          | from samples of a low-frequency alias of the high-                                            |  |
|     | B                    |          | frequency signal.                                                                             |  |
|     |                      | N N      | Oversampling is used in most modern analog-to-                                                |  |
| 94  | Over                 |          | digital converters to reduce the distortion                                                   |  |
|     | sampling             |          | introduced by practical digital-to-analog converters                                          |  |
| 95  | Sampling Theorem     | <u> </u> | fs>=2fm                                                                                       |  |
| 95  | Sampling Theorem     |          |                                                                                               |  |
| 96  | Nyquist rate         |          | fs=2fm                                                                                        |  |
|     | <i>J</i> 1           | DESIG    |                                                                                               |  |
| 97  | Types of limit cycle | _        | 1. Zero limit cycle behavior                                                                  |  |
| 9/  | behavior of DSP      | ES       | 2. Over flow limit cycle behavior                                                             |  |
|     |                      |          | A high-level oscillation that can exist in an                                                 |  |
|     |                      |          | otherwise stable filter due to the nonlinearity                                               |  |
| 98  | Overflow limit cycle |          | associated with the overflow of internal filter                                               |  |
|     |                      |          | calculations                                                                                  |  |
|     |                      |          | 1. Saturation arithmetic                                                                      |  |
| 99  | Methods to prevent   |          | 2. Scaling                                                                                    |  |
|     | overflow             |          |                                                                                               |  |
| 100 | Safa Sacling         |          | v(n) = f(n) * x(n)                                                                            |  |
| 100 | Safe Scaling         |          |                                                                                               |  |
|     |                      | UNIT     | V DSP APPLICATIONS                                                                            |  |
|     | Multirate signal     |          | Data communication require more than one                                                      |  |
| 101 | processing           |          | sampling rate for processing data in such a cases                                             |  |
|     | processing           |          | increase and/or decrease the sampling rate.                                                   |  |
|     |                      |          |                                                                                               |  |

| 102 | Examples of multirate digital systems                |       | Decimator and interpolator                                                                                                                                                 |
|-----|------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 103 | Input output<br>relationship for a<br>decimator      |       | Fy = Fx/D                                                                                                                                                                  |
| 104 | Input output<br>relationship for an<br>interpolator  |       | Fy = IFx                                                                                                                                                                   |
| 105 | Aliasing                                             |       | The original shape of the signal is lost due to under sampling. This is called aliasing                                                                                    |
| 106 | Avoid Aliasing                                       |       | Placing a LPF before down sampling                                                                                                                                         |
| 107 | How sampling rate be<br>converted by a factor<br>I/D |       | Cascade connection of interpolator and decimator                                                                                                                           |
| 108 | Sub-band coding                                      |       | It is an efficient coding technique by allocating<br>lesser bits for high frequency signals and more bits<br>for low frequency signals.                                    |
| 109 | Up sampling                                          |       | Increasing the sampling rate                                                                                                                                               |
| 110 | Down sampling                                        |       | Decreasing the sampling rate                                                                                                                                               |
| 111 | Decimator                                            |       | own sampling and a anti-aliasing filter                                                                                                                                    |
| 112 | Interpolator                                         |       | An anti-imaging filters and Up sampling                                                                                                                                    |
| 113 | Sampling rate conversion                             |       | Changing one sampling rate to other sampling rate is called sampling rate conversion                                                                                       |
| 114 | Sections of QMF                                      |       | Quadrature Mirror Filters-Analysis section and synthesis section                                                                                                           |
| 115 | Define mean                                          | Y     | Mxn=E[xn]=intg xpxn(x,n) dx                                                                                                                                                |
| 116 | Define variance                                      |       | $Zxn2=E[\{xn=mxn\}2]$                                                                                                                                                      |
| 117 | Cross correlation of random process                  | DESTG | R xy (n.m) = intxy*pxn, ym(x,n,y,m)dxdy                                                                                                                                    |
| 118 | DTFT of cross<br>correlation                         | ES    | Txy(e jw) = x rxy(l) e jwl                                                                                                                                                 |
| 119 | Cutoff frequency of<br>Decimator                     |       | Pi/M where M is the down sampling factor                                                                                                                                   |
| 120 | Cutoff frequency of<br>Interpolator                  |       | Pi/L where L is the UP sampling factor.                                                                                                                                    |
| 121 | Difference in efficient<br>transversal structure     |       | Number of delayed multiplications are reduced                                                                                                                              |
| 122 | Shape of the white<br>noise spectrum                 |       | Flat frequency spectrum.                                                                                                                                                   |
| 123 | Sub-band coding                                      |       | transform coding that breaks a signal into a<br>number of different frequency bands, typically by<br>using a fast Fourier transform, and encodes each<br>one independently |
| 124 | Channel vocoder                                      |       | A bank of filters that breaks two incoming sound sources into compatible frequency regions.                                                                                |

| 125 | Encoding of<br>Waveforms                |       | Data, Speech, Image                                                                                                                                                                                 |
|-----|-----------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | wavelonnis                              | PLAC  | CEMENT QUESTIONS                                                                                                                                                                                    |
| 126 | Define DSP                              |       | Digital signal processing improves the sensitivity of a receiving unit.                                                                                                                             |
| 127 | Signals                                 |       | A signal is a function that conveys information about a phenomenon.                                                                                                                                 |
| 128 | Systems                                 |       | It produces an output for a given input signal.                                                                                                                                                     |
| 129 | continuous-time<br>signal               |       | A signal of continuous amplitude and time is known<br>as a continuous-time signal or an analog signal                                                                                               |
| 130 | continuous-time<br>system               |       | The signals at input and output are continuous-<br>time signal                                                                                                                                      |
| 131 | Applications of DSP                     |       | Speech processing, Communication, Biomedical<br>signal processing, Image processing, Radar signal<br>processing, Sonar signal processing etc.                                                       |
| 132 | Advances of DSP                         |       | <ol> <li>The programs can be modified easily for<br/>better performance.</li> <li>Better accuracy can be achieved.</li> <li>The digital signal can be easily stored and<br/>transported.</li> </ol> |
| 133 | Analog signal                           |       | A continuous signal that contains time-varying quantities.                                                                                                                                          |
| 134 | Digital signal                          |       | It is a signal that is being used to represent data as a sequence of discrete values.                                                                                                               |
| 135 | Discrete time signal                    |       | A discrete time signal $x$ (n) is a function of an independent variable that is an integer.                                                                                                         |
| 136 | Discrete time system                    |       | A discrete or an algorithm that performs some prescribed operation on a discrete time signal.                                                                                                       |
| 137 | Methods to prevent overflow             |       | 1. Saturation arithmetic       2. Scaling                                                                                                                                                           |
| 138 | Sampling                                | DESIG | The reduction of a continuous-time signal to<br>a discrete-time signal <b>T</b>                                                                                                                     |
| 139 | Up sampling                             | Ez    | Increasing the sampling rate                                                                                                                                                                        |
| 140 | Down sampling                           | E3    | Decreasing the sampling rate                                                                                                                                                                        |
| 141 | Quantization                            |       | Transforming a continuously valued input into a representation that assumes one out of a finite set of values                                                                                       |
| 142 | Types of limit cycle<br>behavior of DSP |       | <ol> <li>Zero limit cycle behavior</li> <li>Over flow limit cycle behavior</li> </ol>                                                                                                               |
| 143 | truncation                              |       | Truncation is a process of discarding all bits less<br>significant than LSB that is retained                                                                                                        |
| 144 | Rounding                                |       | Rounding a number to b bits is accomplished by choosing a rounded result as the b bit number closest number being unrounded.                                                                        |
| 145 | zero padding                            |       | To find N point DFT, have to add (N-L) zeros at the sequence $x(n)$ .                                                                                                                               |

| 146 | FFT                           | The Fast Fourier Transform is an algorithm used to compute the DFT.                                                                                                                                    |  |
|-----|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 147 | Pre-warping                   | When the desired magnitude response is piece-wise<br>constant over frequency, this compression can be<br>compensated by introducing a suitable pre-scaling,<br>or pre-warping the critical frequencies |  |
| 148 | Signal flow graph             | It is a graphical representation of the relationships<br>between the variables of a set of linear difference<br>equations.                                                                             |  |
| 149 | Region Of<br>Convergence      | The region of convergence (ROC) of X(Z) the set of all values of Z for which X(Z) attain final value.                                                                                                  |  |
| 150 | Applications of FFT algorithm | Linear filtering, Correlation<br>Spectrum analysis                                                                                                                                                     |  |



- 1. Dr.T.R. Ganeshbabu, Prof/ECE
- 2. Mr.M.Eswaramoorthy,AP/ECE
- 3. Ms.K.Shenbagadevi,AP/ECE

HoD

Estd. 2000