

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

MUST KNOW CONCEPTS

MKC

ECE

2021-2022

Subje	ect Code/Name	19ECC04 / DIGITAL SYSTEM DESIGN		
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation /Expression	Units
	UNIT I - BASIC C	ONCEPTS (OF DIGITAL SYSTEMS AND LOGIC FAMIL	IES
1	Digital Electronics		Digital (electronic) circuits operate on digital signals (0 and 1).	
2	Number system		Decimal Number system (0-9) base 10 Binary Number system(0 and 1) base 2 Octal Number system (0-7) base8 Hexadecimal Number system(0-9, A- F) base 16	
3	Signed Numbers		Signed numbers contain both sign and magnitude of the number. Generally, the sign is placed in front of number. If sign bit is zero, which indicates the binary number is positive. Similarly, if sign bit is one, which indicates the binary number is negative.	
4	Representation of Signed Binary Numbers	DESIG	Sign-Magnitude form 1's complement form 2's complement form	
5	Un-Signed Binary Numbers	E	The bits present in the un-signed binary number holds the magnitude of a number. That means, if the un-signed binary number contains 'N' bits, then all N bits represent the magnitude of the number	
6	1's complement form		The 1's complement of a number is obtained by complementing all the bits of signed binary number (1 change into 0, 0 change into 1)	
7	The 2's complement		The 2's complement of a binary number is obtained by adding one to the 1's complement of signed binary number. So, 2's complement of positive number gives a negative number. Similarly, 2's complement of negative number gives a positive number. That means, if you perform two times 2's	

			complement of a binary number including sign bit, then you will get the original signed binary number.	
8	Code and binary code.		The group of symbols is called as code. The digital data is represented, stored and transmitted as group of bits. This group of bits is also called as binary code.	
9	Types of binary code		Weighted codesUn weighted codes	
10	WEIGHTED CODE		The weighted code are those that obey the position weighting principle, which states that the position of each number represent a specific weight.	
11	Un weighted codes		The Non - Weighted Code are not positionally weighted. In other words, codes that are not assigned with any weight to each digit position.	
12	Commutative law		$x + y = y + x$ $x \cdot y = y \cdot x$	
13	Associative Law		x + (y + z) = (x + y) + z x.(y.z) = (x.y).z	
14	Distributive Law		x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z)	
15	Duality theorem	DESIG	This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a corresponding Dual function.	
16	DeMorgan's Theorem		1. $(x + y)' = x'.y'$ 2. $(x.y)' = x' + y'$	
17	Boolean function		It is described by an algebraic expression consists of binary variable, constant and logic operators.	
18	min terms	m	Boolean product terms are called as min terms. It denoted by "m"	

19	Canonical SoP	∑ m	Canonical Sum of Products form. In this form, each product term contains all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP form is also called as sum of min terms form.
20	Max terms	M	Boolean sum terms are called as Max terms . It denoted by "M"
21	Canonical PoS	πΜ	Canonical Product of Sums form. In this form, each sum term contains all literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called as product of Max terms form.
22	Karnaugh or K- Map		It is graphical representation of Boolean functions and is used to simplify Boolean functions .K map is a matrix of squares and each square or Cell represents a minterm or maxterm from of Boolean expression
23	don't care		If don't care terms also present, then place don't cares 'x' in the respective cells of K-map. Consider only the don't cares 'x' that are helpful for grouping maximum number of adjacent zeroes. In those cases, treat the don't care value as '0'.
24	Tabular method		It is difficult to simplify the functions using K-Maps. Because, the number of cells in K-map gets doubled by including a new variable.
25	min terms	m	Boolean product terms are called as min terms. It denoted by "m"
		UNIT II -	COMBINATIONAL LOGIC
26	Combinational circuits	E	It is consist of Logic gates. These circuits operate with binary values. The output(s) of combinational circuit depends on the combination of present inputs
27	Types of Logical Gate		 Basic Logic gate – NOT,AND,OR Universal Logic gate – NAND, NOR Special Logic gate – EX OR, EX NOr
28	Half Adder		Half adder is a combinational circuit, which performs the addition of two binary numbers A and B are of single bit. It produces two outputs sum, S & carry, C.
29	Full Adder		Full adder is a combinational circuit, which performs the addition of three bits A, B and C _{in} . Where, A & B are the two parallel significant bits and C _{in} is the carry bit, which is

			generated from previous stage. This Full adder	
			also produces two outputs sum, S & carry,	
			C _{out} , which are similar to Half adder.	
			Cout, which are similar to Han adder.	
30	4-bit Binary Adder		The 4-bit binary adder performs the addition of two 4-bit numbers. Let the 4-bit binary numbers, $A=A_{3}A_{2}A_{1}A_{0}$ and $B=B_{3}B_{2}B_{1}B_{0}$. We can implement 4-bit binary adder in one of the two	
			following ways.	
31	Carry look- ahead		The parallel adder causes a unstable factor on carry bit, and produces longest propagation delay. That limit can be overcome by this technique	
32	Binary subtractor		The circuit, which performs the subtraction of two binary numbers, is known as Binary subtractor. We can implement Binary subtractor in following two methods.1's and 2's complement form	
33	Rules of BCD adder		When the binary sum is greater than 1001, The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation	
		-	Its compares two digital or binary	
34	Magnitude comparator		numbers in order to find out whether one binary number is equal, less than or greater than. logically design a circuit -two inputs one for A and B and have three output terminals,	
			A > B, $A = B$, $A < B$.	
35	Decoder		Decoder is 'n' input lines and maximum of 2 ⁿ output lines. One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled.	
26	P 1	DESIG	An Encoder is a combinational circuit that performs the reverse operation of Decoder. It	
36	Encoder	E	has maximum of 2 ⁿ input lines and 'n' output lines.	
37	Encoder Applications		Encoders are used to translate rotary or linear motion into a digital signal. Usually this is for the purpose of monitoring or controlling motion parameters such as speed, rate, direction, distance or position.	
38	Priority encoder		If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.	
39	Multiplexer		Multiplexer is a combinational circuit that has maximum of 2 ⁿ data inputs, 'n' selection lines and single output line. One of these data inputs will be connected to the output based on the values of selection lines.	

40	Applications of Demultiplexer	Communication System – Multiplexer and Demultiplexer both are used in communication systems to carry out the process of data transmission. A De-multiplexer receives the output signals from the multiplexer; and, at the receiver end, it converts them back to the original form De-Multiplexer is a combinational circuit that	t t
41	De-Multiplexer	performs the reverse operation of Multiplexer It has single input, 'n' selection lines and maximum of 2 ⁿ outputs.	1
42	Parity Bit	A parity bit is a check bit, which is added to a block of data for error detection purposes. It is used to validate the integrity of the data. The value of the parity bit is assigned either 0 or 1	S
43	Types of Parity Bit Generator	Even parity generatorOdd parity generator	
44	Parity checker	Parity checker checks error in the transmitted data, which contains message bits along with parity bit.	
45	Types of Parity checker	Even parity checkerOdd parity checker	
46	Gray code	The reflected binary code or Gray code is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). Gray codes are very useful in the normal sequence of binary number generated by the hardware that may cause an error or ambiguity during the transition from one number to the next. Gray code is no weighted code	
47	BCD	It is also called as 8421 code because each of the four bits is given a 'weighting' according to its column value in the binary system. The least significant bit (lsb) has the weight of value 1, the next bit, going left, the value 2.	
48	Excess-3 codes	It is unweighted and can be obtained by adding 3 to each decimal digit then it can be represented by using 4 bit binary number for each digit	
49	Design procedure	 The problem definition. The no of available and required output variable is determined The input and output variables are assigned letter symbols. The truth table that defines the required 	

50	Analysis procedure		relationship between inputs and outputs are derived. 5. The simplified Booleanfunction for each output is obtained. 6. The logic diagram is drawn. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. By repeated	
			substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.	
		UNIT III -	SEQUENTIAL CIRCUITS	
51	Memory Elements	7	There are two types of memory elements based on the type of triggering that is suitable to operate it. Latches Flip-flops	Memory Elements
52	Latches		Latches operate with enable signal, which is level sensitive	Latches
53	Flip-Flops		Memory element used in clocked sequential circuits	Flip-Flops
54	Register	DESIG	The one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip-flops. The group of flip-flops, which are used to hold (store) the binary data is known as register.	Register
55	Types Of Register		Serial In – Serial Out shift register Serial In – Parallel Out shift register Parallel In – Serial Out shift register Parallel In – Parallel Out shift register	Types Of Register
56	Johnson Ring Counter		The Johnson Ring Counter or "Twisted Ring Counters", is another shift register with feedback exactly the same as the standard <i>Ring Counter</i> above, except that this time the inverted output Q of the last flip-flop is now connected back to the input D of the first flip-flop as shown below.	
57	Required Components of Serial Adder/Subtracto r		Required 2 register and one FA and one FF	Required Component s of Serial Adder/Subt ractor

58	Sequential Circuit		The sequential circuit contains a set of inputs and output(s). The output(s) of sequential circuit depends not only on the combination of present inputs but also on the previous output(s). Previous output is nothing but the present state.	
59	Types of Sequential Circuits		Asynchronous sequential circuits Synchronous sequential circuits	
60	Synchronous sequential circuits		Output changes at discrete interval of time. It is a circuit based on an equal state time or a state time defined by external means such as clock	
61	Asynchronous sequential circuits		Output can be changed at any instant of time by changing the input. It is a circuit whose state time depends solely upon the internal logic circuit delays.	
62	Types of Triggering		Level triggering Edge triggering	
63	S-R Flip Flop	Z	It is basically a one-bit memory bistable device that has two inputs, one which will "SET" the device (meaning the output = "1"), and is labelled S and one which will "RESET" the device (meaning the output = "0"), labelled R.	
64	J-K Flip Flop		It is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level "1".	
65	D Flip Flop	DECLA	It is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level	
66	T Flip Flop	LS	These are basically a single input version of JK flip flop. This modified form of JK flip-flop is obtained by connecting both inputs J and K together. This flip-flop has only one input along with the clock input.	
67	Master Slave Flip Flop		The master-slave flip-flop eliminates all the timing problems by using two SR flip-flops connected together in a series configuration. One flip-flop acts as the "Master" circuit, which triggers on the leading edge of the clock pulse while the other acts as the "Slave" circuit, which triggers on the falling edge of the clock pulse.	
68	Propagation Delay Time		The Interval of time required after an input signal has been applied for the resulting output change to occur.	

69	Characteristics of register	i. Memory Register (or) ii. Shift Register	Buffer Register
70	Buffer Register	It is a simplest form of registers simply used to store binary in	
71	Shift Register	A register may input and output or parallel form. A number of connected together in such a be shifted into and out of the	f flip flops way that data may
72	Universal Shift Register	A shift registers which can sh both directions as well as load	
73	Uni-directional shift register	A shift registers which can shonly one direction.	ift the data in
74	Bi-directional shift register	A shift registers which can sh both directions.	ift the data in
75	Counter	It is a digital sequential logic go through a certain predefine the application of the input pu	ed states based on
1	UNIT IV - SYNCH	ONOUS AND ASYNCHRONOUS SEQ	UENTIAL CIRCUITS
76	Asynchronous circuit	The circuit in which the changing signals can affect the memory instants of the time.	
77	Different modes of operation	The different modes of fundamental mode and circuits.	
78	Ripple counters	Counter circuits made from of flops where each clock in pulses from the output of the invariably exhibit a ripple exhibit a r	nput receives its previous flip-flop ffect, where false
79	Race condition	Race condition (race) is sequential circuits in which variables change at one time.	
80	Non-critical race	The final stable state does no change order of state variable	=
81	Critical race	The change order of state value in different stable states	riables will result

82	State assignment		State assignment is the process of assignment of binary values to the states of the reduced state table in the design of asynchronous circuits.	
83	Cycle		If an input change induces a feedback transitions through more than one unstable state	
84	Hazard		Hazard is the unwanted transient i.e Spike or glitch that occurs due to unequal propagation delays through a combination circuit.	
85	Stable state		The time sequence of input, output and FF states can be enumerated in a state table it is also called as transition table.	
86	Transition Table		Transition table is useful to analyze an asynchronous circuit from the circuit diagram	
87	Glitch		The unwanted switching transients that may appear at the output of a circuit	
88	Static hazard	Z	Static hazard is a condition, which result in a single momentary incorrect output due to change is a single input variable when the output is expected to remain in the same state.	
89	Cause for Essential Hazard		Operational error generally caused by an excessive delay to a Feedback variable in response to an input change, leading to a transition to an improper state.	
90	Flow Table		It is similar to a transition table except the states are represented by letter symbols.	
91	Faults in asynchronous sequential circuits	DESIG	(1) Hazards (2) Oscillations (3) Critical races	
92	Static 1 hazard		If the outputs before and after the change of input are both 1 with an incorrect output 0 in between.	
93	Static 0 hazard		If the outputs before and after the change of input are both 0 with an incorrect output 1 in between	
94	Compatible pairs		Two states are said to be compatible, if in every column of the corresponding rows in the flow table, there are identical states and if there is no conflict in the output values.	

95	Maximal compatibles	The maximal compatible is a group of compatibles that contains all the possible combinations of compatible states
96	Types of hazards	Static hazard, Dynamic hazard, Essential hazard.
97	Primitive flow table	primitive flow is the flow table that has only one stable state in each row.
98	Secondary variables of asynchronous sequential circuits	The present state and the next state variables in asynchronous sequential circuits are called Secondary / excitation variables.
99	Application areas of asynchronous sequential circuits	 i. Used where speed is important ii. Require only few components. iii. Used where the input change at any time independent of clock. iv. Communication between two units where each has own independent clock.
100	State of sequential circuit	The binary information stored in the memory elements at any given time defines the "state" of sequential circuit.
	UNIT V - PRO	GRAMMABLE LOGIC DEVICES MEMORY AND VHDL
101	Types Of Memory	1. Primary memory (RAM and ROM). 2. Secondary memory(hard drive,CD,etc.)
102	Random Access Memory	It is a volatile memory as the data loses when the power is turned off. The programs and data that the CPU requires during execution of a program are stored in this memory.
103	RAM Types	1. SRAM (Static Random Access Memory) 2. DRAM (Dynamic Random Access Memory).
104	Read Only Memory (ROM)	Stores crucial information essential to operate the system, like the program essential to boot the computer. It is not volatile
105	ROM Types	ROM, PROM, EPROM, and EEPROM.
106	Error detection codes	To detect the errors, present in the received data bit stream. These codes contain some bits, which are included appended to the original bit stream.

107	Error correction codes		To correct the errors, present in the received data bit stream so that, we will get the original data. Error correction codes also use the similar strategy of error detection codes	
108	Parity Code		A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.	
109	Types of Parity Codes		1.Even Parity Code 2. Odd Parity Code	
110	Even parity		Checks if there is an even number of ones; if so, parity bit is zero. When the number of one's is odd then parity bit is set to 1.	
111	Odd Parity		Checks if there is an odd number of ones; if so, parity bit is zero. When the number of one's is even then parity bit is set to 1.	
112	Hamming code		It adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error.	
113	Programmable Array Logic	2	PAL is a programmable logic device that has Programmable AND array & fixed OR array.	
114	Programmable Logic Array		PLA is a programmable logic device that has both Programmable AND array & Programmable OR array.	
115	PROM (Programmable read-only memory)	DESIG	It can be programmed by user. Once programmed, the data and instructions in it cannot be changed.	
116	EPROM (Erasable Programmable read only memory)	E	It can be reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it, erase all the previous data.	
117	EEPROM (Electrically erasable programmable read only memory)		The data can be erased by applying electric field, no need of ultra violet light. We can erase only portions of the chip.	
118	Sequential programmable devices		Sequential programmable devices include both gates and flip-flops. In this way, the device can be programmed to perform a variety of sequential-circuit functions.	

		1		T I
119	Sequential programmable devices Types		 Sequential (or simple) programmable logic device (SPLD) Complex programmable logic device (CPLD) Field-programmable gate array (FPGA) 	
120	Sequential (or simple) programmable logic device (SPLD)		The SPLD includes flip-flops, in addition to the AND-OR array, within the integrated circuit chip. A PAL or PLA is modified by including a number of flip-flops connected to form a register	
121	Complex programmable logic device (CPLD)		It is a collection of individual PLDs on a single integrated circuit. A programmable interconnection structure allows the PLDs to be connected to each other in the same way that can be done with individual PLDs	
122	Field-programm able gate array (FPGA)		FPGA logic block consists of lookup tables, multiplexers, gates, and flip-flops. A lookup table is a truth table stored in an SRAM and provides the combinational circuit functions for the logic block	
123	Application Specific Integrated Circuit(ASIC)		These are usually designed from root level based on the requirement of the particular application. Examples are chips used in toys, the chip used for interfacing of memory and microprocessor	
124	Advantages of ASIC		 The small size of ASIC makes it a high choice for sophisticated larger systems. As a large number of circuits built over a single chip, this causes high-speed applications. ASIC has low power consumption. ASIC has no timing issues and post-production configuration. 	
125	ASIC Types	DESIG Es	Programmable FUTURE 1. FPGAs 2. PLDs Semi Custom 1.Gate Array Based i) Structured Gate ii) Channel-less iii) Channeled 2.Standard Cell Based Full Custom	
		F	Placement Questions	
126	Simplification		$1899.981 \div \sqrt{1444.12 - 119.910}$ % of $34.975 + 4.932 * 104.292 = ?$ Ans: 528	
·				

127	Profit and Percentage	A box contains six pink balls and four orange balls and three balls drawn one after other Find the probability of all three balls being Pink balls if the balls drawn are not replaced? Ans: 1/6	
128	Number Series	Find the wrong term in the following number series? 90, 86, 95, 79, 103, 68, 117 Ans: 103	
129	Number Series	What value should come in the place of question mark in the given series? 19, 23, 32, 48, 73, 109, ? Ans: 158	f
130	Relation ship	Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and sister of S. M is the mother of E. V is the sister-in law of S, who has only two siblings. S is the aunt of J. T is the niece of B. E does not have any child. If J is married to X, then how is X related to E? Ans: Cannot be determined	S
131	Computer Awareness	The address of input/output device or memory is carried by the and the data to be transferred is carried by the Ans: Address bus, Data bus	
132	Directions	A man started walking from his place. He goes 5m south. He turns 90 degree anticlockwise and walks for 7m. Now he turns left and goes 3m. After turning right, he walks for 4m, again he walks for 3m after turning left. Now he turns towards west and walks for 5m. He again walks for 5m before he stops. What is the shortest distance between his starting point and ending point? Ans: 1m	2
133	Speed and Time	A bag contains 4 red marbles, 5 green marbles and 6 pink marbles. If 3 marbles are taken at randomly, then find the probability that 2 marbles are Pink?	
134	Time and Work	Ans: 27/91 A can do a work in 15 days, B can do it in 12 days but C can do (3/4)th of the work in 18 days. Find the time taken by all together to complete the work?	

			Ans: 5 5/23 days	
135	Time and Work		A contractor hired 40 men to complete a project in 15 days. 40 men started working, after 9 days the contractor notices that only three-fifth of the work gets completed. Then how many extra men can be employed to complete the remaining work on time?	
136	Carry flag		Ans: 0 Set when carry occurs after an operation, otherwise reset.	
137	Parity flag		Set if the result of an operation contains even number of 1 bits, otherwise reset.	
138	Stack Pointer		Stack pointer is a special purpose 16-bit register in the Microprocessor, which holds the address of the top of the stack.	
139	Program Counter		Program counter holds the address of either the first byte of the next instruction to be fetched for execution.	
140	Bus	7	A bus is a group of conducting lines that carriers data, address, & control signals.	
141	Tri-state Logic		Three Logic Levels are used and they are High, Low, High impedance state.	
142	Hardware Interrupts	ΙK	TRAP, RST7.5, RST6.5, RST5.5, INTR.	
143	Software Interrupts	DESIG	RST0, RST1, RST2, RST3, RST4, RST5, RST6, RST7.UR FUTURE	
144	Addressing Modes	E	Immediate, Direct, Register, Register indirect, Implied addressing modes.	
145	Quality Factor Mean		The Quality factor is also defined, as Q. So it is a number, which reflects the lossness of a circuit. Higher the Q, the lower are the losses.	
146	Assembler		Assembler is used to translate the high level language program to machine code.	
147	Emulator		Emulators are used to test and debug the hardware and software of an external system.	
148	Compiler		Compiler is used to translate the high-level language program into machine code at a time.	

149	BIU	Bus interface unit is responsible for transferring the data addresses on the buses necessary for -execution unit.	
150	Multiplexing	Using a single bus for two different functions is called multiplexing.	

Signatures:

Faculty Team 1. Dr.S.S.Selvarasu, ASP/ECE 1.

Prepared 2. Dr.P.Padmaloshani, ASP/ECE 2.

HoD