(Approved by AICTE, New Delhi, Accredited by NAAC \& Affiliated to Anna University)

MUST KNOW CONCEPTS

Subject Code/Name		19ECC04 / DIGITAL SYSTEM DESIGN		
S.No	Term	$\begin{aligned} & \text { Notation } \\ & \text { (Symbol) } \end{aligned}$	Concept/Definition/Meaning/Units/Equation /Expression	Units
UNIT I- BASIC CONCEPTS OF DIGITAL SYSTEMS AND LOGIC FAMILIES				
1	Digital Electronics		Digital (electronic) circuits operate on digital signals (0 and 1).	
2	Number system		Decimal Number system (0-9) base 10 Binary Number system (0 and 1) base 2 Octal Number system (0-7) base8 Hexadecimal Number system(0-9, A- F) base 16	
3	Signed Numbers		Signed numbers contain both sign and magnitude of the number. Generally, the sign is placed in front of number. If sign bit is zero, which indicates the binary number is positive. Similarly, if sign bit is one, which indicates the binary number is negative.	
4	Representation of Signed Binary Numbers	DE	Sign-Magnitude form 1's complement form 2's complement form	
5	Un-Signed Binary Numbers		The bits present in the un-signed binary number holds the magnitude of a number. That means, if the un-signed binary number contains ' N ' bits, then all N bits represent the magnitude of the number	
6	1's complement form		The 1's complement of a number is obtained by complementing all the bits of signed binary number (1 change into 0,0 change into 1)	
7	The 2's complement		The 2's complement of a binary number is obtained by adding one to the 1 's complement of signed binary number. So, 2's complement of positive number gives a negative number. Similarly, 2's complement of negative number gives a positive number. That means, if you perform two times 2 's	

			complement of a binary number including sign bit, then you will get the original signed binary number.
8	Code and binary code.		The group of symbols is called as code. The digital data is represented, stored and transmitted as group of bits. This group of bits is also called as binary code.
9	Types of binary code		- Weighted codes - Un weighted codes
10	WEIGHTED CODE		The weighted code are those that obey the position weighting principle, which states that the position of each number represent a specific weight.
11	Un weighted codes		The Non - Weighted Code are not positionally weighted. In other words, codes that are not assigned with any weight to each digit position.
12	Commutative law		$\begin{aligned} & x+y=y+x \\ & x \cdot y=y \cdot x \end{aligned}$
13	Associative Law		$\begin{aligned} & x+(y+z)=(x+y)+z \\ & x \cdot(y \cdot z)=(x \cdot y) \cdot z \end{aligned}$
14	Distributive Law		$\begin{aligned} & x \cdot(y+z)=x \cdot y+x \cdot z \\ & x+(y \cdot z)=(x+y) \cdot(x+z) \end{aligned}$
15	Duality theorem		This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a corresponding Dual function.
16	DeMorgan's Theorem		$\begin{aligned} & \text { 1. }(x+y)^{\prime}=x^{\prime} \cdot y^{\prime} \\ & \text { 2. }(x . y)^{\prime}=x^{\prime}+y^{\prime} \end{aligned}$
17	Boolean function		It is described by an algebraic expression consists of binary variable, constant and logic operators.
18	min terms	m	Boolean product terms are called as min terms. It denoted by " m "

19	Canonical SoP	$\sum \mathrm{m}$	Canonical Sum of Products form. In this form, each product term contains all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP form is also called as sum of min terms form.
20	Max terms	M	Boolean sum terms are called as Max terms. It denoted by "M"
21	Canonical PoS	$\pi \mathrm{M}$	Canonical Product of Sums form. In this form, each sum term contains all literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called as product of Max terms form.
22	Karnaugh or KMap		It is graphical representation of Boolean functions and is used to simplify Boolean functions .K map is a matrix of squares and each square or Cell represents a minterm or maxterm from of Boolean expression
23	don't care		If don't care terms also present, then place don't cares ' x ' in the respective cells of Kmap. Consider only the don't cares ' x ' that are helpful for grouping maximum number of adjacent zeroes. In those cases, treat the don't care value as ' 0 '.
24	Tabular method		It is difficult to simplify the functions using KMaps. Because, the number of cells in K-map gets doubled by including a new variable.
25	min terms	m	Boolean product terms are called as min terms. It denoted by " m "
UNIT II - COMBINATIONAL LOGIC			
26	Combinational circuits		It is consist of Logic gates. These circuits operate with binary values. The output(s) of combinational circuit depends on the combination of present inputs
27	Types of Logical Gate		1. Basic Logic gate - NOT,AND,OR 2. Universal Logic gate - NAND, NOR 3. Special Logic gate - EX OR, EX NOr
28	Half Adder		Half adder is a combinational circuit, which performs the addition of two binary numbers A and B are of single bit. It produces two outputs sum, S \& carry, C.
29	Full Adder		Full adder is a combinational circuit, which performs the addition of three bits A, B and C_{in}. Where, A \& B are the two parallel significant bits and C_{in} is the carry bit, which is

			relationship between inputs and outputs are derived. 5.The simplified Booleanfunction for each output is obtained. 6. The logic diagram is drawn.	
50	Analysis procedure		Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.	
		UNIT III - SEQUENTIAL CIRCUITS		
51	Memory Elements		There are two types of memory elements based on the type of triggering that is suitable to operate it. Latches Flip-flops	Memory Elements
52	Latches		Latches operate with enable signal, which is level sensitive	Latches
53	Flip-Flops		Memory element used in clocked sequential circuits	Flip-Flops
54	Register		The one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip-flops. The group of flip-flops, which are used to hold (store) the binary data is known as register.	Register
55	Types Of Register	-	Serial In - Serial Out shift register Serial In - Parallel Out shift register Parallel In - Serial Out shift register Parallel In - Parallel Out shift register	Types Of Register
56	Johnson Ring Counter		The Johnson Ring Counter or "Twisted Ring Counters", is another shift register with feedback exactly the same as the standard Ring Counter above, except that this time the inverted output Q of the last flip-flop is now connected back to the input D of the first flipflop as shown below.	
57	Required Components of Serial Adder/Subtracto r		Required 2 register and one FA and one FF	Required Component s of Serial Adder/Subt ractor

69	Characteristics of register		i. Memory Register (or) Buffer Register ii. Shift Register	
70	Buffer Register		It is a simplest form of registers which is simply used to store binary information.	
71	Shift Register		A register may input and output data in serial or parallel form. A number of flip flops connected together in such a way that data may be shifted into and out of the register.	
72	Universal Shift Register		A shift registers which can shift the data in both directions as well as loads it parallel.	
73	Uni-directional shift register		A shift registers which can shift the data in only one direction.	
74	Bi-directional shift register		A shift registers which can shift the data in both directions.	
75	Counter		It is a digital sequential logic device that will go through a certain predefined states based on the application of the input pulses.	
UNIT IV - SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL CIRCUITS				
76	Asynchronous circuit		The circuit in which the change in the input signals can affect the memory elements at any instants of the time.	
77	Different modes of operation		The different modes of operation are fundamental mode and sequential mode circuits.	
78	Ripple counters		Counter circuits made from cascaded J-K flipflops where each clock input receives its pulses from the output of the previous flip-flop invariably exhibit a ripple effect, where false output counts are generated between some steps of the count sequence.	
79	Race condition		Race condition (race) is a condition in sequential circuits in which two or more variables change at one time.	
80	Non-critical race		The final stable state does not depend on the change order of state variables	
81	Critical race		The change order of state variables will result in different stable states	

82	State assignment		State assignment is the process of assignment of binary values to the states of the reduced state table in the design of asynchronous circuits.	
83	Cycle		If an input change induces a feedback transitions through more than one unstable state	
84	Hazard		Hazard is the unwanted transient i.e.. Spike or glitch that occurs due to unequal propagation delays through a combination circuit.	
85	Stable state		The time sequence of input, output and FF states can be enumerated in a state table it is also called as transition table.	
86	Transition Table		Transition table is useful to analyze an asynchronous circuit from the circuit diagram	
87	Glitch		The unwanted switching transients that may appear at the output of a circuit	
88	Static hazard		Static hazard is a condition, which result in a single momentary incorrect output due to change is a single input variable when the output is expected to remain in the same state.	
89	Cause for Essential Hazard		Operational error generally caused by an excessive delay to a Feedback variable in response to an input change, leading to a transition to an improper state.	
90	Flow Table		It is similar to a transition table except the states are represented by letter symbols.	
91	Faults in asynchronous sequential circuits		(1) Hazards (2) Oscillations (3) Critical races	
92	Static 1 hazard		If the outputs before and after the change of input are both 1 with an incorrect output 0 in between.	
93	Static 0 hazard		If the outputs before and after the change of input are both 0 with an incorrect output 1 in between	
94	Compatible pairs		Two states are said to be compatible, if in every column of the corresponding rows in the flow table, there are identical states and if there is no conflict in the output values.	

95	Maximal compatibles		The maximal compatible is a group of compatibles that contains all the possible combinations of compatible states	
96	Types of hazards	Static hazard, Dynamic hazard, Essential hazard.		
97	Primitive flow table	primitive flow is the flow table that has only one stable state in each row.		
98	Secondary variables of asynchronous sequential circuits	Application areas of asynchronous sequential circuits	The present state and the next state variables in Secondary / excitation variables.	i.Used where speed is important ii. Require only few components. iii. Used where the input change at any time independent of clock. iv. Communication between two units where each has own independent clock.
100	State of sequential circuit		The binary information stored in the memory elements at any given time defines the "state" of sequential circuit.	

UNIT V - PROGRAMMABLE LOGIC DEVICES MEMORY AND VHDL

101	Types Of Memory		1. Primary memory (RAM and ROM). 2. Secondary memory(hard drive,CD,etc.)	
102	Random Access Memory		It is a volatile memory as the data loses when the power is turned off. The programs and data that the CPU requires during execution of a program are stored in this memory.	
103	RAM Types		1. SRAM (Static Random Access Memory) 2. DRAM (Dynamic Random Access Memory).	
104	Read Only Memory (ROM)	Stores crucial information essential to operate the system, like the program essential to boot the computer. It is not volatile		
105	ROM Types		ROM, PROM, EPROM, and EEPROM.	
106	Error detection codes	To detect the errors, present in the received data bit stream. These codes contain some bits, which are included appended to the original bit stream.		

107	Error correction codes		To correct the errors, present in the received data bit stream so that, we will get the original data. Error correction codes also use the similar strategy of error detection codes
108	Parity Code		A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.
109	Types of Parity Codes		1.Even Parity Code 2. Odd Parity Code
110	Even parity		Checks if there is an even number of ones; if so, parity bit is zero. When the number of one's is odd then parity bit is set to 1 .
111	Odd Parity		Checks if there is an odd number of ones; if so, parity bit is zero. When the number of one's is even then parity bit is set to 1 .
112	Hamming code		It adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error.
113	Programmable Array Logic		PAL is a programmable logic device that has Programmable AND array \& fixed OR array.
114	Programmable Logic Array		PLA is a programmable logic device that has both Programmable AND array \& Programmable OR array.
115	PROM (Programmable read-only memory)	DESIC	It can be programmed by user. Once programmed, the data and instructions in it cannot be changed.
116	EPROM (Erasable Programmable read only memory)		It can be reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it, erase all the previous data.
117	EEPROM (Electrically erasable programmable read only memory)		The data can be erased by applying electric field, no need of ultra violet light. We can erase only portions of the chip.
118	Sequential programmable devices		Sequential programmable devices include both gates and flip-flops. In this way, the device can be programmed to perform a variety of sequential-circuit functions.

119	Sequential programmable devices Types		1. Sequential (or simple) programmable logic device (SPLD) 2. Complex programmable logic device (CPLD) 3. Field-programmable gate array (FPGA)	
120	Sequential (or simple) programmable logic device (SPLD)		The SPLD includes flip-flops, in addition to the AND-OR array, within the integrated circuit chip. A PAL or PLA is modified by including a number of flip-flops connected to form a register	
121	Complex programmable logic device (CPLD)		It is a collection of individual PLDs on a single integrated circuit. A programmable interconnection structure allows the PLDs to be connected to each other in the same way that can be done with individual PLDs	
122	Field-programm able gate array (FPGA)		FPGA logic block consists of lookup tables, multiplexers, gates, and flip-flops. A lookup table is a truth table stored in an SRAM and provides the combinational circuit functions for the logic block	
123	Application Specific Integrated Circuit(ASIC)		These are usually designed from root level based on the requirement of the particular application. Examples are chips used in toys, the chip used for interfacing of memory and microprocessor	
124	Advantages of ASIC		The small size of ASIC makes it a high choice for sophisticated larger systems. As a large number of circuits built over a single chip, this causes high-speed applications. > ASIC has low power consumption. $>$ ASIC has no timing issues and postproduction configuration.	
125	ASIC Types		Programmable 1. FPGAs 2. PLDs Semi Custom 1.Gate Array Based i) Structured Gate ii) Channel-less iii) Channeled 2.Standard Cell Based Full Custom	
Placement Questions				
126	Simplification		$\begin{aligned} & 1899.981 \div \sqrt{ } 1444.12-119.910 \% \text { of } 34.975+ \\ & 4.932 * 104.292=? \end{aligned}$ Ans: 528	

127	Profit and Percentage		A box contains six pink balls and four orange balls and three balls drawn one after other. Find the probability of all three balls being Pink balls if the balls drawn are not replaced? Ans: 1/6	
128	Number Series		Find the wrong term in the following number series? $90,86,95,79,103,68,117$ Ans: 103	
129	Number Series		What value should come in the place of question mark in the given series? $19,23,32,48,73,109, ?$ Ans: 158	
130	Relation ship		Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and sister of S. M is the mother of E. V is the sister-inlaw of S, who has only two siblings. S is the aunt of J. T is the niece of B. E does not has any child. If J is married to X, then how is X related to E? Ans: Cannot be determined	
131	Computer Awareness		The address of input/output device or memory is carried by the \qquad and the data to be transferred is carried by the \qquad Ans: Address bus, Data bus	
132	Directions	$D E S$	A man started walking from his place. He goes 5 m south. He turns 90 degree anticlockwise and walks for 7 m . Now he turns left and goes 3 m . After turning right, he walks for 4 m , again he walks for 3 m after turning left. Now he turns towards west and walks for 5 m . He again walks for 5 m before he stops. What is the shortest distance between his starting point and ending point? Ans: 1m	
133	Speed and Time		A bag contains 4 red marbles, 5 green marbles and 6 pink marbles. If 3 marbles are taken at randomly, then find the probability that 2 marbles are Pink? Ans: 27/91	
134	Time and Work		A can do a work in 15 days, B can do it in 12 days but C can do (3/4)th of the work in 18 days. Find the time taken by all together to complete the work?	

			Ans: 5 5/23 days	
135	Time and Work		A contractor hired 40 men to complete a project in 15 days. 40 men started working, after 9 days the contractor notices that only three-fifth of the work gets completed. Then how many extra men can be employed to complete the remaining work on time? Ans: 0	
136	Carry flag	Parity flag		Set when carry occurs after an operation, otherwise reset.
137	Stack Pointer		Set if the result of an operation contains even number of 1 bits, otherwise reset.	
139	Program Counter	Stack pointer is a special purpose 16-bit register in the Microprocessor, which holds the address of the top of the stack.		
140	Bus	Compiler	Program counter holds the address of either the first byte of the next instruction to be fetched for execution.	
148	Emulator	A bus is a group of conducting lines that carriers data, address, \& control signals.		
141	Tri-state Logic		Three Logic Levels are used and they are High, Low, High impedance state.	
142	Hardware Interrupts	Software Interrupts	Addressing Modes	Compiler is used to translate the high-level language program into machine code at a time.
hardware and software of an external system.				

149	BIU		Bus interface unit is responsible for transferring the data addresses on the buses necessary for -execution unit.	
150	Multiplexing		Using a single bus for two different functions is called multiplexing.	

Signatures:

Faculty Team	1. Dr.S.S.Selvarasu, ASP/ECE	1.
Prepared	2. Dr.P.Padmaloshani, ASP/ECE	2.

HoD

