

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

IQAC

MUST KNOW CONCEPTS

MKC

2021-22

Subject		19ECC17 – DIGITAL IMAGE PROCESSING		
S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
	Unit-I:	DIGITAL IN	IAGE FUNDAMENTALS	
1.	Image		An image may be defined as two dimensional light intensity function $f(x, y)$ where x and y denote spatial co-ordinate and the amplitude or value of f at any point (x, y) is called intensity or grayscale or brightness of the image at that point.	-
2.	Dynamic Range		The range of values spanned by the gray scale is called dynamic range of an image. Image will have high contrast, if the dynamic range is high and image will have dull washed out gray look if the dynamic range is low.	-
3.	Brightness		Brightness of an object is the perceived luminance of the surround. Two objects with different surroundings would have identical luminance but different brightness.	-
4.	Tapered Quantization		If gray levels in a certain range occur frequently while others occurs rarely, the quantization levels are finely spaced in this range and coarsely spaced outside of it. This method is sometimes called Tapered Quantization.	-
5.	Contrast		It is defined as the difference in intensity between the highest and lowest intensity levels in an image	-
6.	Gray level		Gray level refers to a scalar measure of intensity that ranges from black to grays and finally to white	-
7.	Color model		A Color model is a specification of 3D- coordinates system and a subspace within that system where each color is represented by a single point	-
8.	Hardware oriented color models		1. RGB model 2. CMY model 3. YIQ model 4. HSI model	-

ECE

9.	Hue & saturation	Hue is a color attribute that describes a pure color where saturation gives a measure of the degree to which a pure color is diluted by white light	-
10.	Applications of color models	1. RGB model used for color monitor & color video camera 2. CMY modelused for color printing 3. HIS modelused for color image processing 4. YIQ model used for color picture transmission	-
11.	Resolution	Resolution is defined as the smallest number of discernible detail in an image. Spatial resolution is the smallest discernible detail in an image and gray level resolution refers to the smallest discernible change is gray level	-
12.	Pixel	A digital image is composed of a finite number of elements each of which has a particular location or value. These elements are referred to as pixels or image elements or picture elements or pels elements	-
13.	Digital image	When x, y and the amplitude values of f all are finite discrete quantities, we call the image as digital image	-
14.	Steps involved in DIP	1. Image Acquisition 2. Preprocessing 3.Segmentation4. RepresentationandDescription5. RecognitionInterpretation	-
15.	Recognition and Interpretation	Recognition means is a process that assigns a label to an object based on the information provided by its descriptors. Interpretation means assigning meaning to a recognized object	-
16.	Elements of DIP system	1. Image Acquisition 2. Storage 3.Processing 4. Display	-
17.	Categories of digital storage	1. Short term storage for use during processing. 2. Online storage for relatively fast recall. 3. Archival storage for infrequent access	-
18.	Types of light receptors	The two types of light receptors are Cones and Rods	-
19.	Subjective brightness and Brightness adaptation	Subjective brightness means intensity as preserved by the human visual system. Brightness adaptation means the human visual system can operate only from scotopic to glare limit. It cannot operate over the range simultaneously. It accomplishes this large variation by changes in its overall intensity	-
20.	Weber ratio	The ratio of increment of illumination to background of illumination is called as weber ratio.(ie) $\Delta i/i$ If the ratio ($\Delta i/i$) is small, then small percentage of change in intensity is needed (ie) good brightness	-

			adaptation. If the ratio $(\Delta i/i)$ is large, then	
			large percentage of change in intensity is	
			needed (ie) poor brightness adaptation	
			Illumination is the amount of source light	
			incident on the scene. It is represented as	
21.	Illumination and		i(x, y). Reflectance is the amount of light	-
	reflectance		reflected by the object in the scene. It is	
			represented by $r(x, y)$	
			Zooming may be viewed as over sampling.	
22	Zooming of digital		It involves the creation of new pixel	
22.	images		locations and the assignment of gray levels	-
			to those new locations	
			Luminance measured in lumens (lm), gives	
23.	Luminance		a measure of the amount of energy an	-
			observer perceiver from a light source.	
			An image can be expanded in terms of a	
			discrete set of basis arrays called basis	
			images. These basis images can be	
24	Imaga Transform		generated by unitary matrices.	
24.	mage maistorm		Alternatively, a given NxN image can be	-
			viewed as an N^2x1 vectors. An image	
			transform provides a set of coordinates or	
			basis vectors for vector space	
25	Applications of		1) To reduce band width 2) To reduce	_
25.	transform		redundancy 3) To extract feature.	-
	UN	NIT II – IMAG	E ENHANCEMENT	
			The objective of enhancement technique is	
26	Image enhancemen	t	to process an image so that the result is	
26.	technique		more suitable than the original image for a	-
	toomique		particular application	
			i) Spatial domain refers to image plane itself	
			& approaches in this category are based on	
27.	2 categories of image		direct manipulation of picture image.	-
	ennancement		ii) Frequency domain methods based on	
			modifying the image by Fourier transform.	
			Contrast stretching reduces an image of	
			higher contrast than the original by	
28.	Contrast stretching		darkening the levels	-
			below m and brightening the levels above m	
			in the image	
			Highlighting a specific range of grey levels	
			in an image often is desired. Applications	
29.	Grey level slicing		include enhancing features such as masses	-
			of water in satellite imagery and enhancing	
			flaws in x-ray images	
			The difference between 2 images $f(x,y)$ and	
_			h(x,y) expressed as $g(x,y)=f(x,y)-h(x,y)$ is	
30.	Image subtraction		obtained by computing the difference	-
			between all pairs of corresponding pixels	
		_	from f and h	
31.	Image averaging		An important application of image	_
			averaging is in the field of astronomy,	

		where imaging with very low light levels is	
		routine, causing sensor noise frequently to	
		render single images virtually useless for	
		analysis	
		Mask is the small 2-D array in which the	
		values of mask co-efficient determines the	
32.	Masking	nature of process. The enhancement	-
		technique based on this type of approach is	
		referred to as mask processing.	
		The histogram of a digital image with gray	
		levels in the range [0, L-1] is a discrete	
33.	Histogram	function h(rk)=nk. rk-kth gray level; nk-	-
		number of pixels in the image having gray	
		level rk.	
		The median filter replaces the value of a	
34.	Median filter	pixel by the median of the gray levels in the	-
		neighborhood of that pixel	
		Spatial filtering is the process of moving the	
		filter mask from point to point in an image.	
25	Spotial filtaning	For linear spatial filter, the response is given	
55.	Spatial Intering	by a sum of products of the filter	-
		coefficients, and the corresponding image	
		pixels in the area spanned by the filter mask	
		The 100 th percentile is maximum filter is	
	Maximum filter and	used in finding brightest points in an image.	
36.	Minimum filter	The 0 th	-
	Minimum inter	percentile filter is minimum filter used for	
		finding darkest points in an image.	
		1. Electronic printing and medical imaging	
37	Sharpening filters	to industrial application	_
57.	Sharpening inters	2. Autonomous target detection in smart	_
		weapons.	
38	Types of derivative filters	1. Perwitt operators 2. Roberts cross	_
50.	Types of derivative inters	gradient operators 3. Sobel operators	
		1. Guassian noise 2. Rayleigh noise 3.	
39	Types of noise models	Erlang noise 4. Exponential noise 5.	_
57.	Types of noise models	Uniform noise	
		6. Impulse noise	
		Image sensors, scanners, image acquisition,	
		modify the pixel values, changing the	
	Possible ways for adding	background or foreground of an image,	
40.	noise in images	addition of two images, arithmetic	-
	6	operations between two images and image	
		processing algorithms are the possible ways	
		I for adding noise in images.	
		Spatial averaging is the process of finding	
41.	Spatial averaging	out average of a center pixel and its	
		neighbors. For linear spatial averaging, the	
		response is given by a sum of products of	-
		the average filter mask, and the	
		corresponding image pixels in the area	
		spanned by the filter mask	

		The harmonic filter operation is given by	
42.	Harmonic mean filter	This filter is working well for salt noise but	-
		fails for pepper noise	
12	Transfer function of	The contraharmonic filter is used to reduce	
43.	contraharmonic filter	salt and pepper noise.	-
		The RGB color model is an additive color	
		model in which the red, green,	
		and blue primary colors of light are added	
11	PCP Color model	together in various ways to reproduce a	
44.	KOB COlor model	broad array of colors. The name of the	-
		model comes from the initials of the	
		three additive primary colors, red, green,	
		and blue	
		HSV is a cylindrical color model that	
		remaps the RGB primary colors into	
		dimensions that are easier for humans to	
45.	HSV Color model	understand. Like the Munsell Color System,	-
		these dimensions are hue, saturation, and	
		value. Hue specifies the angle of the color	
		on the RGB color circle	
		The Fourier Transform is an important	
		image processing tool which is used to	
		decompose an image into its sine and cosine	
16	DET	components. The output of the	
40.	DFI	transformation represents the image in the	-
		Fourier or frequency domain, while the	
		input image is the spatial domain	
		equivalent.	
		The discrete cosine transform	
		(DCT) represents an image as a sum of	
47	DCT	sinusoids of varying magnitudes and	_
Ψ7.	Der	frequencies. The dct2 function computes the	
		two-dimensional discrete cosine transform	
		(DCT) of an image.	
		The Walsh-Hadamard transform is a non-	
		sinusoidal, orthogonal transform widely	
		used in signal and image processing. In this	
48	Walsh Transform	transform, the signal is decomposed into a	_
		set of basis functions (similar to harmonics	
		in Fourier). These basis functions are the	
		Walsh functions, rectangular or square	
		waves with +1 or -1	
		The KL Transform is also known as the	
		Hoteling transform or the Eigen Vector	
10		transform. The KL Transform is based on	
49.	KL Transform	the statistical properties of the image and	-
		has several important properties that make it	
		useful for image processing particularly for	
		image compression	
50	Relationship between	An image is denoted by $f(x,y)$ and p,q are	
50.	pixels	used to represent individual pixels of the	-
	1	ımage	

	Unit-III : IMAGE RESTORATION & SEGMENTATION			
51.	Image Restoration	Restoration attempts to reconstruct or recover an image that has been degraded by using a clear knowledge of the degrading phenomenon	-	
52.	Properties in Linear Operator	1. Additivity 2. Homogenity	-	
53.	Additivity property in Linear Operator	H[f1(x,y)+f2(x,y)]=H[f1(x,y)]+H[f2(x,y)] The additive property says that if H is the linear operator, the response to a sum of two is equal to the sum of the two responses.	-	
54.	Homogenity property in Linear Operator	H[k1f1(x,y)]=k1 $H[f1(x,y)]$ The homogeneity property says that, the response to a constant multiple of any input is equal to the response to that input multiplied by the same constant.	-	
55.	Algebraic approach	The concept of algebraic approach is to estimate the original image which minimizes a predefined criterion of performances.	-	
56.	Two methods of algebraic approach	1. Unconstraint restoration approach 2. Constraint restoration approach	-	
57.	Gray-level interpolation	Gray-level interpolation deals with the assignment of gray levels to pixels in the spatially transformed image	-	
58.	Noise probability density function	The spatial noise descriptor is the statistical behavior of gray level values in the noise component of the model	-	
59.	Geometric transformation	Transformation is used to alter the co- ordinate description of image. The basic geometric transformations are 1. Image translation 2. Scaling 3. Image rotation	-	
60.	Image translation and scaling	Image translation means reposition the image from one co-ordinate location to another along straight line path. Scaling is used to alter the size of the object or image (i.e) a co-ordinate system is scaled by a factor.	-	
61.	Unconstrained restoration	In the absence of any knowledge about the noise 'n', a meaningful criterion function is to seek an such that H approximates of in a least square sense by assuming the noise term is as small as possible. Where H = system operator. = estimated input image. g = degraded image.	-	
62.	Spatial relocation of pixels	The point is the most frequent method, which are subsets of pixels whose location in the input (distorted) and output (corrected) imaged is known precisely.	-	
63.	Estimating the degradation function	1. Observation 2. Experimentation 3. Mathematical modeling. The simplest approach to restoration is direct inverse	-	

		filtering, an estimate $F^{(u,v)}$ of the transform of the original image simply by dividing the transform of the degraded image $G^{(u,v)}$	
64.	Rubber sheet transformation	Geometric transformations may be viewed as the process of printing an image on a rubber sheet and then stretching the sheet according to some predefined set of rules .Therefore they are also called as rubber sheet transformations	-
65.	Lagrange multiplier	The Lagrange multiplier is a strategy for finding the local minima and maxima of a function subject to equality constraints. This is mainly used in the image restoration process like image acquisition, image storage and transmission.	-
66.	Blur in image	The blur is caused by lens that is improper manner, relative motion between camera and scene and atmospheric turbulence. It will introduce bandwidth reduction and make the image analysis as complex. To prevent the issues, blur is removed from the images.	-
67.	Bit plane slicing	Instead of highlighting gray level ranges, highlighting the contribution made to total image appearance by specific bits might be desired. Suppose that each pixel in an image is represented by 8 bits. Imagine that the image is composed of eight 1-bit planes, ranging from bit plane 0 for LSB to bit plane-7 for MSB	-
68.	Formula for negative and log transformation	Negative: $S=L-1-r$; Log: $S = c \log(1+r)$ Where c-constant and >0	-
69.	Image Negatives	The negative of an image with gray levels in the range $[0, L-1]$ is obtained by using the negative transformation, which is given by the expression. $s = L-1-r$ Where s is output pixel r is input pixel	-
70.	Point processing	Image enhancement at any Point in an image depends only on the gray level at that point is often referred to as Point processing	-
71.	Difference between Enhancement and Restoration	Enhancement technique is based primarily on the pleasing aspects it might present to the viewer. For example: Contrast Stretching. Whereas Removal of image blur by applying a deblurrings function is considered a restoration technique.	_
72.	Indirect estimation	Indirect estimation method employ temporal or spatial averaging to either obtain a restoration or to obtain key elements of an image restoration algorithm	_
73.	Blur impulse response	This parameter is measured by isolating an image of a suspected object within a picture	-

74.	Noise levels	The noise of an observed image can be estimated by measuring the image covariance over a region of constant background luminence	-
75.	Algebraic approach	The concept of algebraic approach is to estimate the original image which minimizes a predefined criterion of performances.	
	Unit-IV : WAVEL	LETS AND IMAGE COMPRESSION	
76.	Image compression	Image compression refers to the process of redundancy amount of data required to represent the given quantity of information for digital image. The basis of reduction process is removal of redundant data.	-
77.	Data Compression	Data compression requires the identification and extraction of source redundancy. In other words, data compression seeks to reduce the number of bits used to store or transmit information.	-
78.	Types of Data compression	1. Lossless compression can recover the exact original data after compression. It is used mainly for compressing database records, spreadsheets or word processing files, where exact replication of the original is essential. 2. Lossy compression will result in a certain loss of accuracy in exchange for a substantial increase in compression. Lossy compression is more effective when used to compress graphic images and digitized voice where losses outside visual or aural perception can be tolerated.	_
79.	Need for Compression	In terms of storage, the capacity of a storage device can be effectively increased with methods that compress a body of data on its way to a storage device and decompress it when it is retrieved. 1. In terms of communications, the bandwidth of a digital communication link can be effectively increased by compressing data at the sending end and decompressing data at the receiving end. 2. At any given time, the ability of the Internet to transfer data is fixed. Thus, if data can effectively be compressed wherever possible, significant improvements of data throughput can be achieved. Many files can be combined into one compressed document making sending easier	-
80.	Different Compression Methods	Run Length Encoding (RLE) Arithmetic coding Huffman coding and Transform coding	-

81.	Interpixel redundancy	The value of any given pixel can be predicted from the values of its neighbors. The information carried by is small. Therefore the visual contribution of a single pixel to an image is redundant. Otherwise called as spatial redundant geometric redundant or inter pixel redundant. Eg: Run length coding	-
82.	Run length coding	Run-length Encoding or RLE is a technique used to reduce the size of a repeating string of characters. This repeating string is called a run; typically RLE encodes a run of symbols into two bytes, a count and a symbol. RLE can compress any type of data regardless of its information content, but the content of data to be compressed affects the compression ratio. Compression is normally measured with the compression ratio	-
83.	Compression ratio	Compression Ratio = original size / compressed size	-
84.	Wavelet Transform	A major disadvantage of the Fourier Transform is it captures <i>global</i> frequency information, meaning frequencies that persist over an entire signal. This kind of signal decomposition may not serve all applications well, for example Electrocardiography (ECG) where signals have short intervals of characteristic oscillation. An alternative approach is the Wavelet Transform, which decomposes a function into a set of wavelets	-
85.	Wavelet	A Wavelet is a wave-like oscillation that is localized in time, an example is given below. Wavelets have two basic properties: scale and location. Scale (or dilation) defines how "stretched" or "squished" a wavelet is. This property is related to frequency as defined for waves. Location defines where the wavelet is positioned in time (or space).	-
86.	Source encoder	Source encoder performs three operations 1) Mapper -this transforms the input data into non-visual format. It reduces the interpixel redundancy. 2) Quantizer - It reduces the psycho visual redundancy of the input images .This step is omitted if the system is error free. 3) Symbol encoder- This reduces the coding redundancy .This is the final stage of encoding process.	-
87.	Channel encoder	The channel encoder reduces the impact of the channel noise by inserting redundant bits into the source encoded data. Eg: Hamming code	-

88.	Types of decoder	Source decoder- has two components a) Symbol decoder- This performs inverse operation of symbol encoder. b) Inverse mapping- This performs inverse operation of mapper. Channel decoder-this is omitted if the system is error free.	-
89.	Variable Length Coding	variable Length Coding is the simplest approach to error free compression. It reduces only the coding redundancy. It assigns the shortest possible codeword to the most probable gray levels.	-
90.	Huffman coding	1. Huffman coding is a popular technique for removing coding redundancy. 2. When coding the symbols of an information source the Huffman code yields the smallest possible number of code words, code symbols per source symbol. Limitation: For equiprobable symbols, Huffman coding produces variable code words	-
91.	Region growing	Region growing is a procedure that groups pixels or subregions in to layer regions based on predefined criteria. The basic approach is to start with a set of seed points and from there grow regions by appending to each seed these neighbouring pixels that have properties similar to the seed.	
92.	Local threshold	If Threshold T depends both on $f(x,y)$ and $p(x,y)$ is called local.	
93.	Adaptive threshold	If Threshold T depends on the spatial coordinates x and y the threshold is called dynamic or adaptive where $f(x,y)$ is the original image.	
94.	Hough transform	The edges are linked through hough transform by using intersecting of 2 lines equations. The straight line equation is $y = mx+b$. In polar coordinates $\rho=x\cos\theta+y\sin\theta$ where $\rho \& \theta$ are the coordinates of parameter space. The hough transform of a straight line in the x,y space is a single point in ρ , θ space.	
95.	Region splitting and merging	Region splitting and merging is a segmentation process in which an image is initially subdivided into a set of arbitrary ,disjoint regions and then the regions are merger and /or splitted to satisfy the basic conditions.	
96.	Coding systems in JPEG	1. A lossy baseline coding system, which is based on the DCT and is adequate for most compression application. 2. An extended coding system for greater compression, higher precision or progressive reconstruction applications. 3. A lossless	

		independent coding system for reversible	
		compression	
		The acronym is expanded as "Joint	
		Photographic Expert Group". It is an	
97.	JPEG	international standard in 1992. It perfectly	
		Works with color and grayscale images,	
		Many applications e.g., satellite, medical.	
		The acronym is expanded as "Moving	
00	MDEC	Picture Expert Group". It is an international	
90.	MFEG	standard in 1992. It perfectly Works with	
		video and also used in teleconferencing	
		P-frame is called predictive frame. A P-	
		frame is the compressed difference between	
99.	P-frame	the current	
		frame and a prediction of it based on the	
		previous I or P-frame	
		B-frame is the bidirectional frame. A B-	
		frame is the compressed difference between	
		the current	
100.	B-frame	frame and a prediction of it based on the	
		previous I or P-frame or next P-frame.	
		Accordingly the decoder must have access	
		to both past and future reference frames.	
	Unit-V : IMAGE	E REPRESENTATION AND RECOGNITION	
		- based on external characteristics (its	
		boundary)	
101.	Region representation	- based on internal characteristics (nixels	
		comprising the region)	
		- boundary descriptors such as boundary	
		length diameter curvature etc.	
102.	Region description	- regional descriptors such as area	-
		perimeter compactness mean value etc	
		represent a boundary by a connected	
103	Chain codes	sequence of straight-line segments of	_
105.	Chull Couch	specified length and direction	
		a digital boundary can be approximated by a	
		polygon minimum perimeter polygons -	
104	Polygonal approximations	enclose a boundary by a set of concatenated	_
10.11		cells and produce a minimum perimeter that	
		fits the cell strip	
		merge points along a boundary until the	
		least square error line fit of the points	
		merged exceeds a preset threshold; repeat	
105.	Merging	the procedure for the new points along the	-
		boundary: at the end of the procedure the	
		intersections of adjacent line segments form	
		the vertices of the polygon	
		subdivide a segment successively into two	
		parts until a given criterion is satisfied for	
106.	Splitting	example, a requirement might be that the	-
		maximum perpendicular distance from a	
		boundary segment to the line joining two	
L			

		end points does not exceed a preset	
		threshold	
		• a simple functional representation that can	
		be used to describe and reconstruct the	
107	S is a strength	boundary with appropriate accuracy	
107.	Signatures	• the simplest signature is a plot of the	-
		distance from the centroid to the boundary	
		as a function of angle:	
		The region boundary can be partitioned by	
		following the contour of S and marking the	
108	Boundary segments	points at which a transition is made into or	_
100.	Doundary segments	out of a component of the convex	
		deficiency	
		MAT algorithm: (1) for each point in the	
		WAT algorithm. (1) for each point in the	
100	The sheleter of a maxim	region we find its closest point in boundary, (2) if a point has more then and such a	
109.	The skeleton of a region	(2) If a point has more than one such a	-
		neighbor \rightarrow a point belongs to the medial	
		axis (skeleton) of the region	
		topology - the study of properties of a figure	
110.	Topological descriptors	that are unaffected by any deformation	-
		except tearing or folding	
		Texture, as observed in wood grain, stone,	
		cloth, grass, etc., is an important region	
111	Texture	description No formal definition;	_
111.	Texture	intuitively this descriptor provides measures	-
		of properties, such as smoothness,	
		coarseness, regularity, etc.	
112	statistical	smoothness, coarseness, graininess (using	
112.	statistical	moments, entropy, etc.)	-
112	atmuatural	arrangement of image primitives, such as	
115.	structural	regularity of parallel lines	-
114		based on properties of Fourier spectrum	
114.	spectral	(periodic patterns in an image)	-
		Morphological operators - tools for	
		extracting image components that are useful	
115.	Morphology	in the representation and description of	
		region shape (examples: erosion, dilation,	
		etc.)	
		removes pixels from the periphery of a	
116.	Erosion	region (it also removes single pixels)	
		adds a layer of pixels around a periphery of	
117	Dilation	a region (it also fill small holes within	
11/.	Dilation	regions)	
		The language of mathematical morphology	
118.	set theory	is set theory	
		a combination of an arcsion followed by a	
		dilation (opening up the spaces between	
110	Opening	touching regions removing rimit	
119.	Opening	touching regions, removing pixels in	
		regions which are too small to contain the	
		structuring element)	
1.00		a combination of an dilation followed by an	
120.	Closing	erosion (fusing narrow brakes, eliminating	
		small holes, filling gaps smaller than the	

		structuring element)				
121.	Shape factor	Perimeter2/Area				
122.	Neural Network based classifier	Neural networks are complex models, which try to mimic the way the human brain develops classification rules. A neural net consists of many different layers of neurons, with each layer receiving inputs from previous layers, and passing outputs to further layers				
123.	Perceptron	A perceptron is a neural network unit (an artificial neuron) that does certain computations to detect features or business intelligence in the input data.				
124.	Network Architecture	Network architecture is the design of a computer network. It is a framework for the specification of a network's physical components and their functional organization and configuration, its operational principles and procedures, as well as communication protocols used				
125.	Activation Function	The activation function is a non-linear transformation that we do over the input before sending it to the next layer of neurons or finalizing it as output. Types of Activation Functions – Several different types of activation functions are used in Deep Learning				
Placement Questions						
126.	Image	An Image may be defined as a two dimensional function f (x,y) where x & y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x,y) is called intensity or gray level of the image at that point. When x,y and the amplitude values of f are all finite, discrete quantities we call the image as Digital Image	-			
127.	Image Sampling	Digitization of spatial coordinates (x,y) is called Image Sampling. To be suitable for computer processing, an image function f(x,y) must be digitized both spatially and in magnitude.	-			
128.	Quantization	Digitizing the amplitude values is called Quantization. Quality of digital image is determined to a large degree by the number of samples and discrete gray levels used in sampling and quantization.	-			
129.	Dynamic Range	The range of values spanned by the gray scale is called dynamic range of an image. Image will have high contrast, if the dynamic range is high and image will have	-			

		dull washed out gray look if the dynamic range is low	
130.	Mach Band Effect	The spatial interaction of Luminance from an object and its surround creates a Phenomenon called the mach band effect	-
131.	Maximum Filter and Minimum Filter	The 100 th percentile is maximum filter is used in finding brightest points in an image. The 0th percentile filter is minimum filter used for finding darkest points in an image	-
132.	Median Filter	The Median filter replaces the value of a pixel by the median of the gray levels in the neighborhood of that pixel	-
133.	Averaging Filters	The output of a smoothing, linear spatial filter is the average of the pixels contain in the neighborhood of the filter mask. These filters are called averaging filters.	-
134.	Spatial Filtering	Spatial Filtering is the process of moving the filter mask from point to point in an image. For linear spatial filter, the response is given by a sum of products of the filter coefficients, and the corresponding image pixels in the area spanned by the filter mask	-
135.	Histogram	The Histogram of a digital image with gray levels in the range [0, L-1] is a discrete function h (rk) = nk, where rk is the kth gray level and nk is the number of pixels in the image having gray level rk.	-
136.	Masks or Kernels	A Mask is a two-dimensional array, in which the value of the mask coefficient determines the nature of the process, such as image sharpening	-
137.	Point Processing	Image Enhancement at any Point in an image depends only on the gray level at that point is often referred to as Point processing	-
138.	Image Enhancement	Image Enhancement is to process an image so that the output is more suitable for specific application	-
139.	Applications Of Dip	Remote Sensing, Image Transmission and storage, Medical Imaging and Astronomy	-
140.	KL Transforms	KL Transforms is an optimal in the sense that it minimizes the mean square error between the vectors X and their approximations X [^] . Due to this idea of using the Eigenvectors corresponding to largest Eigen values. It is also known as principal component transform.	-
141.	Haar Transforms	The Haar Transforms are defined on a continuous interval Xe [0,1] and for K=0,1, N-1.Where N=2^n. The integer k can be uniquely decomposed as K=2^P+Q-1	-

142.	Image Transform	An Image can be expanded in terms of a discrete set of basis arrays called basis images. Unitary matrices can generate these basis images. Alternatively, a given NXN image can be viewed as an N^2X1 vectors. An image transform provides a set of coordinates or basis vectors for vector space	-
143.	Luminance	Luminance measured in lumens (lm), gives a measure of the amount of energy an observer perceiver from a light source	
144.	Radiance	Radiance is the total amount of energy that flows from the light source, and it is usually measured in watts (w)	-
145.	Shrinking Of Digital Images	Shrinking may be viewed as under sampling. To shrink an image by one half, we delete every row and column. To reduce possible aliasing effect, it is a good idea to blue an image	-
146.	Point Processing	Image Enhancement at any Point in an image depends only on the gray level at that point is often referred to as Point processing	
147.	Mach Band Pattern	The intensity or brightness pattern perceive a darker stribe in region D and brighter stribe in region B.This effect is called Mach band pattern or effect	
148.	JPEG	The acronym is expanded as "Joint Photographic Expert Group". It is an international standard in 1992. It perfectly Works with color and grayscale images, Many applications e.g., satellite, medical.	
149.	Coding systems in JPEG	1. A lossy baseline coding system, which is based on the DCT and is adequate for most compression application. 2. An extended coding system for greater compression, higher precision or progressive reconstruction applications. 3. A lossless independent coding system for reversible compression.	
150.	Arithmetic coding	In arithmetic coding one to one corresponds between source symbols and code word doesn't exist where as the single arithmetic code word assigned for a sequence of source symbols. A code word defines an interval of number between 0 and 1.	

Faculty Team Prepared

Signatures

1. Mr.V.Ramesh

2. Dr.T.R.GaneshBabu

3. Dr.C.Selvi

Mr.V.Ramesh, AP /ECE Dr.T.R.GaneshBabu, Prof / ECE Dr.C.Selvi, ASP /ECE HoD