

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

:

:

MKC

2021-22

ECE

DECCIO DICITAL COMMUNICATION SYSTEMS

Course Code & Course Name

19ECC10- DIGITAL COMMUNICATION SYSTEMS III / V /A, B, C

Year/Sem/Sec

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
	Unit-I : SA	MPLING PI	ROCESS & WAVE FORM CODING	
1.	Transmitter	Tx	It is a collection of electronic components and circuits that converts the electrical signal into a signal suitable for transmission over a given medium	-
2.	Communication Channel	-	It is the medium by which the electronic signal is sent from one place to another	-
3.	Types of media in transmitting signal	-	Electrical conductors: Optical media, Free space, System-specific media (e.g., water is the medium for sonar).	-
4.	Receivers	Rx	It is a collection of electronic components and circuits that accepts the transmitted message from the channel and converts it back into a form understandable by humans.	-
5.	Transceivers	TxR	It is an electronic unit that incorporates circuits that both send and receive signals.	-
6.	Attenuation	t	Signal attenuation , or degradation, exists in all media of wireless transmission. It is proportional to the square of the distance between the transmitter and receiver	-
7.	Noise	-	It is random, undesirable electronic energy that enters the communication system via the communicating medium and interferes with the transmitted message.	-
8.	Nyquist rate	W	Then Nyquist rate is given as, Nyquist rate = 2W samples/sec.	-
9.	Aliasing effect	-	Aliasing effect takes place when sampling frequency is less than Nyquist rate.	-
10.	Quantizing process	-	The conversion of analog sample of the signal into digital from	-
11.	Idle channel noise	-	Idle channel noise is the coding noise measured at the receiver output with zero transmitter input	-
12.	Prediction error	-	The different between the actual sample of the process at the time of interest and the prediction output is called prediction error	-

13.	Sampling	-	Converting continuous time signal to a digital signal.	-
14.	Source encoder	-	Represent the transmitted data more efficiently and remove redundant information	-
15.	Coding	-	Assigning a binary code to each finite amplitude in the analog signal	-
16.	Quantization	-	Converting the amplitude of the analog signal to a digital value	-
17.	Channel encoder	-	Control the noise and to detect and correct the errors that can occur in the transmitted data due the noise	-
18.	Channel decoder	-	Detects and corrects the errors in the signal gained from the channel	-
19.	Source decoder	-	Decompresses the data into its original format	-
20.	Delta modulation	DM	Transmits only one bit per symbol, Present sample value is compared with the previous sample value, to check the amplitude changes. Step size is fixed	-
21.	Adaptive Delta Modulation	ADM	Overcome the slope overload and granular noise	-
22.	Differential PCM	DPCM	Adjacent samples of the signal carry the same information with little difference, the encoded signal contains some redundant information.	-
23.	ADPCM Receiver	-	This DE quantized value is added to the value generated by the adaptive predictor to produce the reconstructed speech sample.	-
24.	LPC signal	-	The LP coefficients and error signal is multiplexed and transmitted. This signal is called LPC signal.	-
25.	Synthesizer	-	Reconstruct the speech signal from LPC is called synthesizer.	-
	Unit-	II : BASEBA	AND PULSE TRANSMISSION	
26.	Line code	-	It is the code used for data transmission of a digital signal over a transmission line. This process of coding is chosen so as to avoid overlap and distortion of signal such as inter-symbol interference.	-
27.	Properties of Line Coding	-	 For a given bandwidth, the power is efficiently used. The probability of error is much reduced. Error detection is done and the bipolar too has a correction capability. Power density is much favorable. 	-
28.	Types of Line Coding	-	UnipolarPolarBi-polar	-
29.	Unipolar Signaling	-	Unipolar signaling is also called as On-Off Keying or simply OOK. The presence of pulse represents a 1 and	-

30. Variations in Unipolar signaling - • Non Return to Zero NRZ - 31. Return to Zero NRZ A High in data is represented by a positive pulse called as Mark, which has a duration 1 ₀ equal to the symbol bit duration. A Low in data input has no pulse. - 32. Unipolar Return to Zero NRZ - A High in data, though represented by a Mark pulse, its duration T ₀ is less than the symbol bit duration. 33. Methods of Polar - - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration 1 ₀ is less than the symbol bit duration. - 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - Bipolar RZ - 38. Power Spectral Density PSD The function which describes how the means of detecting data error without introducing additional error detection bits inct the data sequence. - 40. Band width compression - Some codes such	30. Variations in Unipolar Signaling • Non Return to Zero NRZ 31. Return to Zero NRZ • Return to Zero RZ 31. Return to Zero NRZ • High in data is represented by a positive pulse called as Mark, which has a duration T ₀ equal to the symbol bit duration. A Low in data imput has no pulse. 32. Unipolar Return to Zero RZ • A High in data, though represented by a Mark pulse, its duration T ₀ is less than the symbol bit duration. 33. Methods of Polar • Polar NRZ 34. Polar NRZ • In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a positive pulse, its duration T ₀ is less than the symbol bit duration. 35. Polar RZ • In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration T ₀ is less than the symbol bit duration. 36. Bipolar Signaling • This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling • Bipolar NZ 38. Power Spectral Density FSD 39. Error detection • Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression • Some codes such as multil				the absence of pulse represents a 0.	
30. Unipolar signaling - - Return to Zero RZ - 31. Verior Non- Return to Zero RZ - A High in data is represented by a positive pulse called as Mark, which has a duration To equal to the symbol bit duration. - 32. Zero RZ - A High in data is represented by a Mark pulse, its duration To is less than the symbol bit duration. - 33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - - Polar NRZ - 35. Polar NRZ - In this type of Polar signaling, a High in data is represented by a mositive pulse, while a Low in data is represented by a mositive pulse, while a Low in data is represented by a Mark pulse, its duration. - 36. Bipolar Signaling - In this type of Polar signaling, a High in data is represented by a Mark pulse, its duration. - 37. Signaling - In this type of Polar signaling, a High in data is represented by a Mark pulse, its duration. - 38. Bipolar Signaling - - - 39. Error detection - Bipolar RZ - 39. Error detection - Some codes such as multilevel codes increase the efficienc	30. Unipolar signaling - - Return to Zero RZ - 31. Unipolar Non- Return to Zero RZ - A High in data is represented by a positive pulse called as Mark, which has a duration To equal to the symbol bit duration. A Low in data imput has no pulse. - 32. Zero RZ - A High in data, though represented by a signaling. - 33. Methods of Polar Signaling - - - - 34. Polar NRZ - - - - - 35. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a mask pulse, its duration To is less than the symbol bit duration. - - 36. Bipolar Signaling - - - - - 37. Signaling - - - - - - 38. Power Spectral Density - <td>20</td> <td>Variations in</td> <td></td> <td>Non Return to Zero NRZ</td> <td></td>	20	Variations in		Non Return to Zero NRZ	
31. Unipolar Non-Return to Zero NRZ A High in data is represented by a positive pulse called as Mark, which has a duration Ta equal to the symbol bit duration. A Low in data input has no pulse. 32. Zero RZ - a Mark pulse, its duration To is less than the symbol bit duration. 33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data, incoging represented by a positive pulse, while a Low in data is represented by a positive pulse, while a Low in data is represented by a positive pulse, while a Low in data is represented by a megative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 37. Methods of Bipolar Signaling - In this type of a signal guilt in the call as duo-binary signal. - 38. Power Spectral Density PSD - Bipolar RZ - - 39. Frror detection - - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits i	31. Unipolar Non-Return to Zero NRZ A High in data is represented by a positive pulse called as Mark, which has a duration TA low in data input has no pulse. 32. Zero NRZ A High in data is represented by a positive pulse called as Mark, which has a duration. A Low in data input has no pulse. 33. Signaling A High in data, though represented by a Signaling. 34. Polar NRZ • Polar NRZ 35. Polar NRZ • Normality possible of the symbol bit duration. 36. Polar Signaling • Polar Signaling, a High in data, though represented by a negative pulse, while a Low in data is represented by a Mark pulse, its duration. 36. Bipolar Signaling • This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar • Bipolar NRZ • Bipolar NRZ 38. Power Spectral Density PSD • Bipolar NRZ • Bipolar NRZ 39. Frror detection • Bipolar NRZ • Bipolar NRZ • Bipolar NRZ 39. Frror detection • Bipolar NRZ • Bipolar NRZ • Bipolar NRZ 39. Frror detection • Bipolar NRZ • Bipolar NRZ • Bipolar NRZ 39. Frror detection • Bipola	30.	Unipolar signaling	-	Return to Zero RZ	-
31. Return to Zero NRZ pulse called as Mark, which has a duration T ₀ equal to the symbol bit duration. A Low in data input has no pulse. 32. Unipolar Return to Zero RZ A High in data, though represented by a Mark pulse, its duration I is less than the symbol bit duration. 33. Methods of Polar Signaling Polar NRZ Polar NRZ 34. Polar NRZ Polar NRZ Polar RZ 35. Polar Signaling In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a Mark pulse, its duration. In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration. 36. Bipolar Signaling This is an encoding technique which has three voltage levels namely +, and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling The function which describes how the power of a signal of distributed at various requencies, in the frequency domain is called as Power Spectral Density Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity For same transmitted energy some codes increas	31. Return to Zero NRZ pulse called as Mark, which has a duration T ₀ equal to the symbol bit duration. A Low in data input has no pulse. 32. Unipolar Return to Zero RZ A High in data, though represented by a Mark pulse, its duration T ₀ is less than the symbol bit duration. 33. Methods of Polar Signaling Polar NRZ Polar NRZ 34. Polar NRZ Polar NRZ 35. Polar RZ In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration I is less than the symbol bit duration. 36. Bipolar Signaling In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration I is less than the symbol bit duration. 37. Signaling In this type of Polar signaling and three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 38. Power Spectral Density PSD 7 Bipolar RZ 39. Error detection 40. Band width compression 41. Noise Immunity 42. Manchester encoding 43. Nyquist Criterion for Zero-IS1 43. Nyquist Criterion for Zero-IS1 <td></td> <td></td> <td></td> <td>A High in data is represented by a positive</td> <td></td>				A High in data is represented by a positive	
31. Return to Zero NRZ	31. Return to Zero NRZ -	01	Unipolar Non-		pulse called as Mark, which has a	
Zero NKZduration. A Low in data input has no pulse.31.Unipolar Return to Zero RZ-A High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration.33.Methods of Polar SignalingPolar NKZ34.Polar NRZ-In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse35.Polar RZ-In this type of Polar signaling, a High in data is represented by a Mark pulse, its duration To is less than the symbol bit duration36.Bipolar Signaling Bipolar Signaling Signaling37.Methods of Bipolar Signaling Dewer Spectral Density38.Power Spectral DensityPSD39.Error detection Compression40.Band width compression41.Noise Immunity42.Manchester encoding43.Nyquist Criterion for Zero-ISI43.Nyquist Criterion for Zero-ISI43.Nyquist Criterion for Zero-ISI43.Nyquist Criterion for Zero-ISI43.Nyquist Criterion for Zero-ISI43.Nyquist Criterion for Zero-ISI<	Zero NKZ duration. A Low in data input has no pulse. 32. Unipolar Return to A High in data, though represented by 33. Methods of Polar - 33. Methods of Polar - 34. Polar NRZ - 9 Polar NRZ - 9 Polar NRZ - 10. His type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - 11. In this type of Polar signaling, a High in data, though represented by a mark pulse, its duration To is less than the symbol bit duration. - 35. Polar RZ - - - 36. Bipolar Signaling - - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD - Bipolar NRZ - - 39. Error detection - - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. -	31.	Return to	-	duration T_0 equal to the symbol bit	-
32. Unipolar Return to Zero RZ - A High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. 33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data is represented by a mark pulse, its duration To is less than the symbol bit duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - Bipolar NRZ 38. Power Spectral Density PSID The function which describes how the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encodi	32. Unipolar Return to Zero RZ - A High in data, though represented by a Mark pulse, its duration I o is less than the symbol bit duration. 33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data is represented by a Mark pulse, its duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 38. Power Spectral Density PSD Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bis into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same		Zero NKZ		duration. A Low in data input has no pulse.	
32. Zero RZ - a Mark pulse, its duration To is less than the symbol bit duration. 33. Methods of Polar - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a megative pulse. - - 35. Polar RZ - In this type of Polar signaling, a High in data, is represented by a Mark pulse, its duration To is less than the symbol bit duration. - - 36. Bipolar Signaling - - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - - 37. Signaling - - Bipolar NRZ - - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - - 39. Error detection - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. - 40. Band width compression - For same transmitted energy some codes produces les	32. Zero RZ - a Mark pulse, its duration T ₀ is less than the symbol bit duration. 33. Signaling - Polar NRZ - 34. Polar NRZ - Nethods of Polar - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a mark pulse, its duration To is less than the symbol bit duration. 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, and 0. Such a signal is called as duo-binary signal. - 37. Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the means of detecting data error without introducing additional error detection bits into the data sequence. - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization		Unipolar Return to		A High in data, though represented by	
33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. - 41. Noise Immunity - For same transmi	33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - - This is an encoding technique which has signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. - 41. Noise Immunity - For same transmitted energy some codes produce	32.	Zero RZ	_	a Mark pulse, its duration T_0 is less than the	-
33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - - 35. Polar RZ - In this type of Polar signaling, a High in data is represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - - - 37. Methods of Bipolar Signaling - - - 38. Power Spectral Density PSD - - - 79. Error detection - - - - 39. Error detection - - - - 40. Band width compression - - - - 41. Noise Immunity - - - - - 42. Manchester encoding - - - - - 43. Nyquist Criterion for Zero-ISI - - - - - 43. Nyquist Criterion for Zero-ISI <t< td=""><td>33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration. - - 36. Bipolar Signaling - - - - 37. Methods of Bipolar Signaling - - - - 38. Power Spectral Density PSD - - - - 39. Error detection - - - - - - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - - - - - - 43. Nyquist Criterion for Zero-ISI - - - - - - - 43. Nyquist Criterion for Zero-</td><td></td><td></td><td></td><td>symbol bit duration.</td><td></td></t<>	33. Methods of Polar Signaling - Polar NRZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration. - - 36. Bipolar Signaling - - - - 37. Methods of Bipolar Signaling - - - - 38. Power Spectral Density PSD - - - - 39. Error detection - - - - - - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - - - - - - 43. Nyquist Criterion for Zero-ISI - - - - - - - 43. Nyquist Criterion for Zero-				symbol bit duration.	
33. Signaling - Polar RZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a megative pulse. - - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - - This is an encoding technique which has signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD Pipolar RZ - - 39. Error detection - - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth to a given data rate, thus more information transmitted per unit band width. - 41. Noise Immunity - - Manchester econing is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. -	33. Signaling - Polar RZ - 34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration T is less than the symbol bit duration. - - 36. Bipolar Signaling - <t< td=""><td></td><td>Methods of Polar</td><td></td><td>Polar NRZ</td><td></td></t<>		Methods of Polar		Polar NRZ	
34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a megative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 37. Methods of Bipolar Signaling - - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 38. Power Spectral Density - • Bipolar NZ - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - - 40. Band width compression - - Some codes such as multilevel codes producing additional error than other in the presence of noise. - 41. Noise Immunity - - - - - 42. Manchester encoding - - - - -	34. Polar NRZ - In this type of Polar signaling, a High in data is represented by a positive pulse, while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - - 38. Power Spectral Density PSD PSD The function which describes how the power of a signal got distributed at various requences, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection hits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes end to bins into the presence of noise. 43. Nyquist Criterio	33.	Signaling	-	Polar RZ	-
34. Polar NRZ - data is represented by a positive pulse, while a Low in data is represented by a negative pulse, while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration. To is less than the symbol bit duration. - 36. Bipolar Signaling - - - 37. Methods of Bipolar Signaling - - 38. Power Spectral Density - - 39. Error detection - - - 39. Error detection - - - - 40. Band width compression - - - - 41. Noise Immunity - - - - - 42. Manchester encoding - - - - - 43. Nyquist Criterion for Zero-ISI - - - - - - 44. Noise Immunity - - - - - - - - - - - -	34. Polar NRZ - data is represented by a positive pulse, while a Low in data is represented by a negative pulse, while a Low in data is represented by a magative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration. To is less than the symbol bit duration. - 36. Bipolar Signaling - - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NZ - 38. Power Spectral Density - Bipolar RZ - - 39. Error detection - - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth dutilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - - - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - -				In this type of Polar signaling, a High in	
34. Four FALL - an expresented by a point of pulse, in while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - - - - 37. Methods of Bipolar Signaling - - - - 38. Power Spectral Density - - - - - 39. Error detection - - Bipolar RZ - - - 40. Band width compression - - - - - - 41. Noise Immunity - <td>34. Four Max - while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD PBD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43.</td> <td></td> <td>Polar NR7</td> <td></td> <td>data is represented by a positive pulse</td> <td></td>	34. Four Max - while a Low in data is represented by a negative pulse. - 35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD PBD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43.		Polar NR7		data is represented by a positive pulse	
35. Polar RZ In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration T ₀ is less than the symbol bit duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 38. Power Spectral Density - Bipolar NZ - 39. Error detection - - The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - <t< td=""><td>35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - • Bipolar NRZ - 38. Power Spectral Density PSD • Bipolar RZ - 39. Error detection - - The function which describes how the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 41. Noise Immunity - - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 42. Manchester encoding - - Manchester encoding is therefore - 43. Nyquist Criterion for Zero-ISI - - Nyquist Criterion for Zero-ISI - - 43. Nyquist Criterion for Zero-ISI</td><td>34.</td><td></td><td>-</td><td>while a Low in data is represented by a</td><td>-</td></t<>	35. Polar RZ - In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - • Bipolar NRZ - 38. Power Spectral Density PSD • Bipolar RZ - 39. Error detection - - The function which describes how the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 41. Noise Immunity - - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 42. Manchester encoding - - Manchester encoding is therefore - 43. Nyquist Criterion for Zero-ISI - - Nyquist Criterion for Zero-ISI - - 43. Nyquist Criterion for Zero-ISI	34.		-	while a Low in data is represented by a	-
35. Polar RZ In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - For same transmitted nergy some codes produces lesser bit detection error than other in the presence of noise. - 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - </td <td>35. Polar RZ In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - For same transmitted nergy some codes produces lesser bit detection error than other in the presence of noise. - 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 43. Nyquist Criterion for Zero-ISI - Nyquist Criterion for Zero-ISI - 43. Nyquist Criterion for Zero-ISI - - Nyquist Criterion of a ses. - 43</td> <td></td> <td></td> <td></td> <td>negative nulse</td> <td></td>	35. Polar RZ In this type of Polar signaling, a High in data, though represented by a Mark pulse, its duration To is less than the symbol bit duration. - 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - For same transmitted nergy some codes produces lesser bit detection error than other in the presence of noise. - 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 43. Nyquist Criterion for Zero-ISI - Nyquist Criterion for Zero-ISI - 43. Nyquist Criterion for Zero-ISI - - Nyquist Criterion of a ses. - 43				negative nulse	
35. Polar RZ - If this type of 10kh signaling, 11kg if it of the symbol bit duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such - a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - • Bipolar NRZ 38. Power Spectral Density PSD Pipolar RZ - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 39. Error detection - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 40. Band width compression - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI -	35. Polar RZ - data, though represented by a Mark pulse, its duration T ₀ is less than the symbol bit duration. 36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - - Bipolar NRZ - 38. Power Spectral Density PSD - Bipolar RZ - 39. Error detection - - Bipolar error detection bits into the data sequence. - 40. Band width compression - - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - - Night means itted sequence of an accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Z				In this type of Polar signaling a High in	
35. Four K2 Gata, ibogin represented by a Mark pulse, its duration. 36. Bipolar Signaling This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling Bipolar NRZ 38. Power Spectral Density PSD 39. Error detection The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 39. Error detection Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. Nyquist Criterion for Zero-ISI 43. Nyquist Criterion for Zero-ISI Nyquist proposed a condition for	35. Four for the symbol bit duration. 36. Bipolar Signaling - 37. Methods of Bipolar Signaling - 37. Methods of Bipolar Signaling - 38. Power Spectral Density - 39. Error detection - 39. Error detection - 30. Band width compression - 31. Noise Immunity - 40. Band width compression - 41. Noise Immunity - 42. Manchester encoding - 43. Nyquist Criterion for Zero-ISI -		Polar R7		data though represented by a Mark pulse	
36. Bipolar Signaling	36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD Bipolar RZ - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	35.		-	its duration To is loss than the symbol bit	-
36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. - 37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. - 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 42. Manchester encoding - Manchester encoding is therefore - 43. Nyquist Criterion for Zero-ISI - - Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted -	36. Bipolar Signaling - This is an encoding technique which has three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. - 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - - Nature torde recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI <td< td=""><td></td><td></td><td></td><td>duration</td><td></td></td<>				duration	
36. Bipolar Signaling - three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - Bipolar NRZ - 37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. - 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. - 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted th	36. Bipolar Signaling - three voltage levels namely +, - and 0. Such a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - Bipolar NRZ - 37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient ba				This is an encoding technique which has	
36. Bipolar Signaling - three voltage levels hamlely +, - and 0. such - a signal is called as duo-binary signal. 37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - - Nyquist proposed a condition for pulses <i>p(l)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	36. bipolar Signaling - three voltage levels hamlely +, - and 0. Such - 37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	20	Director Cionatin a		three welts as levels nemely be and 0. Such	
37. Methods of Bipolar Signaling - Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes that accurate clock recovery from a data stream is possible. 42. Manchester encoding - Manchester considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted	37.Methods of Bipolar Signaling-Bipolar NRZ38.Power Spectral DensityPSDThe function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density-39.Error detection-Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal	56.	bipolar Signaling	-	three voltage levels namely +, - and 0. Such	-
37. Methods of Bipolar Signaling - - Bipolar NKZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	37. Methods of Bipolar Signaling • Bipolar NRZ - 38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.		$\mathbf{X}_{1} = 1_{1}$		a signal is called as duo-binary signal.	
38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth or a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	38. Power Spectral Density PSD The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density - 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. - 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	37.	Methods of Bipolar	-	• Bipolar NKZ	-
38. Power Spectral Density PSD PSD Ine function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	38.Power Spectral DensityPSDIne function which describes how the power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density39.Error detection-Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.		Signaling		• Bipolar KZ	
38. Power Spectral Density PSD power of a signal got distributed at various frequencies, in the frequency domain is called as Power Spectral Density 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - - Nave zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	38. Power Spectral Density PSD power of a signal got distributed at various frequency domain is called as Power Spectral Density 39. Error detection - Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence. 40. Band width compression - Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses <i>p(t)</i> to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				The function which describes how the	
Bensity Frequencies, in the frequency domain is called as Power Spectral Density 39. Error detection - 40. Band width compression - 41. Noise Immunity - 42. Manchester encoding - 43. Nyquist Criterion for Zero-ISI - 43. Nyquist Criterion for Zero-ISI -	DensityIfrequencies, in the frequency domain is called as Power Spectral Density39.Error detection-Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISINyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	38.	Power Spectral	PSD	power of a signal got distributed at various	-
39.Error detection-Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	39.Error detection-Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISINyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.		Density		frequencies, in the frequency domain is	
39.Error detection-Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	39.Error detection-Some codes such as duo binary provide the means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				called as Power Spectral Density	
39.Error detection-means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	39.Error detection-means of detecting data error without introducing additional error detection bits into the data sequence.40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				Some codes such as duo binary provide the	
40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	39.	Error detection	_	means of detecting data error without	-
40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted				introducing additional error detection bits	
40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	40.Band width compression-Some codes such as multilevel codes increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				into the data sequence.	
40.Band width compression-increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	40.Band width compression-increase the efficiency of the bandwidth utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				Some codes such as multilevel codes	
40.Band width compression-utilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	40.Band width compressionutilization by allowing a reduction in required bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				increase the efficiency of the bandwidth	
43. compression required bandwidth for a given data rate, thus more information transmitted per unit band width. 41. Noise Immunity - For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise. 42. Manchester encoding - Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. - 43. Nyquist Criterion for Zero-ISI - Nyquist criterion a channel with sufficient bandwidth to allow the spectrum of all the transmitted	A3.Compressionrequired bandwidth for a given data rate, thus more information transmitted per unit band width.41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	40	Band width	_	utilization by allowing a reduction in	-
41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	10.	compression		required bandwidth for a given data rate,	
41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted-				thus more information transmitted per unit	
41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses p(t) to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	41.Noise Immunity-For same transmitted energy some codes produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass				band width.	
41.Noise Immunity-produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	41.Noise Immunity-produces lesser bit detection error than other in the presence of noise.42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass				For same transmitted energy some codes	
42.Manchester encodingManchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	42.Manchester encoding-Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass	41.	Noise Immunity	-	produces lesser bit detection error than	-
42.Manchester encodingManchester encodingManchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	42.Manchester encodingManchester encodingManchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass				other in the presence of noise.	
42. Manchester encoding - considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. 43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted	42.Manchester encoding-considered to be self-clocking, which means that accurate clock recovery from a data stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				Manchester encoding is therefore	
43. Nyquist Criterion for Zero-ISI 43. Nyquist Criterion for Zero-ISI	43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses $p(t)$ 43. Nyquist Criterion for Zero-ISI - a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.	42	Manchester	_	considered to be self-clocking, which means	_
43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses $p(t)$ 43. Nyquist Criterion for Zero-ISI - a channel with sufficient bandwidth to -	43.Nyquist Criterion for Zero-ISI-stream is possible.43.Nyquist Criterion for Zero-ISI-Nyquist proposed a condition for pulses $p(t)$ to have zero-ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.		encoding		that accurate clock recovery from a data	
43. Nyquist Criterion for Zero–ISI - Allow the spectrum of all the transmitted $-$	43. Nyquist Criterion for Zero-ISI - Nyquist proposed a condition for pulses $p(t)$ a channel with sufficient bandwidth to - allow the spectrum of all the transmitted signal to pass.				stream is possible.	
43. Nyquist Criterion for Zero–ISI - to have zero–ISI when transmitted through a channel with sufficient bandwidth to - allow the spectrum of all the transmitted	43. Nyquist Criterion for Zero–ISI - to have zero–ISI when transmitted through a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.				Nyquist proposed a condition for pulses $p(t)$	
43. for Zero-ISI - a channel with sufficient bandwidth to - allow the spectrum of all the transmitted	43. for Zero-ISI - a channel with sufficient bandwidth to allow the spectrum of all the transmitted signal to pass.		Nyquist Critorion		to have zero-ISI when transmitted through	
allow the spectrum of all the transmitted	allow the spectrum of all the transmitted signal to pass.	43.	for Zoro ICI	-	a channel with sufficient bandwidth to	-
anow the speed and the transmitted	signal to pass.		101 Ze10-131		allow the spectrum of all the transmitted	
signal to pass					signal to pass.	

44.	Roll-off factor	r	$r = \frac{\text{Excess Bandwidth}}{\text{Minimum Bandwidth}} = \frac{\omega_x}{\omega_b / 2} = \frac{2\omega_x}{\omega_b}$	-
45.	Inter symbol Interference	_	Transmit digital data which demands more bandwidth which exceeds channel bandwidth, spreading will occur and cause signal pulses to overlap. This overlapping is called Inter Symbol Interference.	-
46.	Eye Pattern	_	The eye pattern is experimental method that contains all the information concerning the degradation of quality.	-
47.	Adaptive equalization	-	An equalizer is a filter that compensates for the dispersion effects of a channel. Adaptive equalizer can adjust its coefficients continuously during the transmission of data.	-
48.	Pre channel equalization	-	Requires feedback channelCauses burden on transmission.	-
49.	Post channel equalization	_	Achieved prior to data transmission by training the filter with the guidance of a training sequence transmitted through the channel so as to adjust the filter parameters to optimum values.	-
50.	Equalization	_	To make the signal free from ISI, and to ensure a maximum signal to noise ratio, we need to implement a method called Equalization.	-
Unit-III : PASS BAND TRANSMISSION				
51.	Power Spectrum of BPSK Modulated Signal	_	Continuing with our simplifying assumption of zero initial phase of the carrier and with no pulse shaping filtering	-
52.	power spectrum S(f) of BPSK	S(f)	$S(f) = \frac{1}{4} \left[U_B \left(f - f_c \right) + U_B \left(f + f_c \right) \right]$	-
53.	Quadrature Phase - Shift Keying	QPSK	QPSK is an expanded version from binary PSK where in a symbol consists of two bits and two orthonormal basis functions are used. A group of two bits is often called a "dibit".	-
54.	Product modulator	-	Product modulator, which is also supplied with a locally generated reference signal that is a replica of the carrier wave	-
55.	Low-pass filter	_	Low-pass filter, designed to remove the double-frequency components of the product modulator output and pass the zero-frequency components.	-
56.	Sampler	-	Sampler, which uniformly samples the output of the low-pass filter at where; the local clock governing the operation of the sampler is synchronized with the clock responsible for bit-timing in the transmitter.	-
57.	Decision-making device	-	Decision-making device, which compares the sampled value of the low-pass filters	-

			output to an externally supplied threshold, every seconds. If the threshold is exceeded, the device decides in favor of symbol 1; otherwise, it decides in favor of symbol 0.	
58.	Quadrature Amplitude Modulation	QAM	QAM is a combination of ASK and PSK	-
59.	Drawbacks of binary PSK system	-	It is difficult to detect +b(t) and -b(t) because of squaring in the receiver Problem, of ISI and inter channel interference are present.	-
60.	DPSK	-	The input sequence is modified. Let input sequence be $d(t)$ and output Sequence be $b(t)$. Sequence $b(t)$ changes level at the beginning of each interval in which $d(t)=1$ and it does not changes level when $d(t)=0$.	-
61.	Bit error rate for coherent binary FSK	-	$Pe = 1/2erfc\sqrt{0.6(E/No)}$	-
62.	Noise spectral density	-	N0/2	-
63.	Signal energy per bit	-	√E/2	-
64.	QPSK Receiver	-	It consists of a pair of correlators with a common input and supplied with a locally generated pair of coherent reference signals $*1(t) \& *2(t)$	-
65.	Applications of FSK Bandwidth	-	 On voice-grade lines, used up to 1200bps Used for high-frequency (3 to 30 MHz) radio transmission Used at higher frequencies on LANs that use coaxial cable. 	-
66.	Synchronization	-	It is known till now that for the coherent reception of any signal, it is necessary to synchronize the receiver to the transmitter	-
67.	Modes of Synchronization	-	Carrier SynchronizationSymbol Synchronization	-
68.	Carrier Synchronization	-	The estimation of carrier frequency and phase at the receiver is called carrier synchronization	-
69.	Symbol Synchronization	-	In order to perform the demodulation, the receiver is supposed to know the time instants at which the modulation changes its state.	-
70.	Advantage of BPSK	-	 Bandwidth which is lower than of a BFSK signal Minimum Possibility of error Very good noise immunity 	-
71.	Advantage of BFSK	-	 Easy to implement Has better noise immunity than ASK. 	-
72.	Disadvantage of BFSK	-	High bandwidth requirement FSK is extensively used in low speed	-

			modems having bit rates below 1200 b/s	
73.	Types of Coherent Quadrature Modulation Techniques	-	Quadrature Phase Shift Keying (QPSK)Minimum Shift Keying (MSK)	-
74.	Aims of Digital Communication syatems	-	 To provide a reliable performance To reduce the probability of error Efficient utilization of channel bandwidth 	-
75.	Disadvantage of DPSK	-	 Error rate in DPSK is higher than that in BPSK Effect of noise is higher in DPSK than that in BPSK 	-
	U	nit-IV : ERI	ROR CONTROL CODING	
76.	Block Codes	_	It operate on a block of bits. Block codes are referred to as (n, k) codes. A block of k information bits are coded to become a block of n bits.	_
77.	Creating block codes	-	The block codes are specified by (n.k). The code takes k information bits and computes (n-k) parity bits from the code generator matrix.	-
78.	Convolutional codes	-	It is widely used as channel codes in practical communication systems for error correction	-
79.	Operation of a convolutional encoder	-	a) State diagram representation. b) Tree diagram representation. c) Trellis diagram representation.	-
80.	Trellis Diagram Representation	-	The trellis diagram of a convolutional code is obtained from its state diagram. All state transitions at each time step are explicitly to retain the time dimension, as is present in the corresponding tree diagram.	-
81.	Vitterbi Decoding Algorithm	-	An efficient search algorithmPerforming ML decoding rule.Reducing the computational complexity.	-
82.	Linearity property	-	The sum of any two code word is also a valid code word	-
83.	Cyclic property	-	Every cyclic shift of a valid code vector produces another valid code vector.	-
84.	Transparency with respect to line codes	-	The line code is said to be transparent if the synchronization between the transmitter and receiver is maintained for any type of input data sequence.	-
85.	Syndrome of linear block code	S=YHT	The non zero output of the produce YHT is called syndrome & it is used to detect errors in y. Syndrome is denoted by S &	-
86.	Code efficiency	-	The code efficiency is the ratio of message bits in a block to the transmitted bits for that block by the encoder	-
87.	Linear code	-	A code is linear if modulo-2 sum of any two code vectors produces another code vector.	-

88. Cyclic codes - Cyclic codes are the subclasses of linear block codes. They have the property that a cyclic shift of one code word. 89. Properties of cyclic - - - 90. Properties of line code - - - - 90. Properties of line code - - - - - 91. Properties of line code - - - - - - 92. Code Word -						
88. Cyclic codes - Cyclic codes are the subclasses of linear block codes. They have the property that a cyclic shift of one code word produces another code word. 89. Properties of cyclic codes - Linearity property - 90. Properties of line code - The PAM signal should have adequate timing content, - 91. Code - The PAM signal should allow error detection and error correction - 91. Code Word - The PAM signal should be transparent to digital data being transmitted - 92. Code Rate - The PAM signal should be transparent to digital data being transmitted - 93. Types of channels - Bandlimited channel - 94. Bandlimted - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth. Cannot be transmitted over such channels have a large bandwidth. - 95. Power limited channel - It is a technique used as an alternative technique used as an alternative technique used as an alternative technique used for correcting the burst - errors. 97. Weight of a codeword - The weight of a binary word is the number of positions in which they differ - dedwords is the number of positions in which they differ - codewords <td< td=""></td<>						
88. Cyclic codes Cyclic codes are the subclasses of linear block codes. They have the property that a cyclic shift of one code word produces another code word. 89. Properties of cyclic codes - Linearity property - 90. Properties of line code - Cyclic property - 90. Properties of line code - The PAM signal should have adequate timing content, - 90. Properties of line code - The PAM signal should allow error detection and error correction - 91. Code Word - It is n bit encoded block of bits. It contains message bits and parity or redundant bits - 92. Code Rate - Bandlimited channel - 93. Types of channels - Bandlimited channel - 94. Bandlimted - These channels without distorting them - 95. Power limited channel - - - - 97. Weight of a codeword - - - - 98. Distance between codeword - - - - 97. Weight of a codeword - - </td						
88. Cyclic codes - block codes. They have the property that a cyclic shift of one code word produces another code word. 89. Properties of cyclic codes - • Linearity property codes - 90. Properties of line code • The PAM signal should have adequate timing content, • The PAM signal should line event of channel noise and interference - 90. Properties of line code • The PAM signal should allow error detection and error correction • The PAM signal should allow error detection and error correction • The PAM signal should block of bits. It contains message bits and parity or redundant bits 91. Code Word • It is n bit encoded block of bits. It contains message bits (h to the total number of bits - (n) in a code word 93. Types of channels • Bandlimited channel rower signal which require larger bandwidth cannot be transmitted channel - 94. Bandlimited • It have a limited power associated with them but they have a large bandwidth. - 95. Power limited • The wight of a code word distorting them - 97. Weight of a code word • The wight of a binary word is the number of of is in the word. Alternatively, we could add the bits - 96. Interleaving • The wight of a binary word is the number of of is in the word. Alternatively, we could add the b						
88. Cyclic codes - cyclic shift of one code word produces another code word. 89. Properties of cyclic - Linearity property - 90. Properties of line code - Cyclic property - 90. Properties of line code - The PAM signal should have adequate timing content, - - 91. Code - The PAM signal should be transparent to digital data being transmitted - 91. Code Word - It is n bit encoded block of bits. It contains message bits (k) to the total number of message bits (k) to the total number of bits - (n) in a code word - 92. Code Rate - Bandlimited channel - 93. Types of channels - Bandlimited channel - 94. Bandlimted channel - It have a large bandwidth. - 95. Power limited channel - It have a large bandwidth. - 97. Weight of a codeword - - The weight of a binary word is the number of the number of the word. 98. Distance between codeword - - - - 99. Syndrome decoding						
another code word. 89. Properties of cyclic codes - Linearity property - Cyclic property 90. Properties of line code - The PAM signal should have adequate timing content, - - 90. Properties of line code - The PAM signal should allow error detection and error correction 91. Code Word - It is n bit encoded block of bits. It contains message bits and parity or redundant bits 92. Code Rate - message bits (k) to the total number of message bits (k) to the total number of bits - (n) in a code word 93. Types of channels - Bandlimited channel 94. Bandlimited Channel - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth. 95. Power limited channel - It is a technique used as an alternative errors. 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made <						
89. Properties of cyclic codes - Linearity property - 90. Properties of line code - The PAM signal should have adequate timing content, - 90. Properties of line code - The PAM signal should immune to channel noise and interference - 91. Code Word - The PAM signal should be transparent to digital data being transmitted - 92. Code Rate - It is n bit encoded block of bits. It contains message bits and parity or redundant bits - 93. Types of channels - Bandlimited channel - 94. Bandlimted - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them - 95. Power limited channel - It is a technique used as an alternative technique used as an alternative technique used for correcting the burst errors. 97. Weight of a codewords - - The weight of a binary word is the number of of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The weight of a binary word is the number of positions in which they differ 99. Syndrome decoding -						
89 codes - • Cyclic property - 90. Properties of line code - • The PAM signal should have adequate timing content, • The PAM signal should allow error detection and error correction 91. Code Word - • The PAM signal should be transparent to digital data being transmitted 92. Code Rate - It is n bit encoded block of bits. It contains message bits (k) to the total number of message bits (k) to the total number of bits (n) in a code word 93. Types of channels - Bandlimited channel 94. Bandlimited - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth. - 95. Power limited channel - The weight of a bits and parity or correcting the burst errors. 97. Weight of a codeword - - The weight of a bits and the bits 98. Distance between codewords - - - 99. Syndrome decoding - - - 100. Viterbi decoder - - - - 100. Viterbi decod						
90. Properties of line code • The PAM signal should have adequate timing content, 90. Properties of line code • The PAM signal should immune to channel noise and interference 91. Code Word • The PAM signal should allow error detection and error correction 91. Code Word • The PAM signal should be transparent to digital data being transmitted 92. Code Rate • The signal should be transparent to message bits and parity or redundant bits 93. Types of channels • These channel 94. Bandlimited Channel • These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth. Therefore signal which require larger bandwidth. Therefore signal which require larger bandwidth. 95. Power limited channel • It have a limited power associated with them but they have a large bandwidth. 96. Interleaving • It is a technique used as an alternative technique used for correcting the burst errors. 97. Weight of a codeword • The Weight of a binary word is the number of positions in which they differ 98. Distance between code words • The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding • It is a highly efficient method of decoding a bitstream that has been encoded using forward error correction based on a convol						
90. Properties of line code - timing content, - The PAM signal should immune to channel noise and interference 91. Code -						
90. Properties of line code - - The PAM signal should immune to channel noise and interference 91. Code Word - - - - 91. Code Word - It is n bit encoded block of bits. It contains message bits and parity or redundant bits - 92. Code Rate - It is n bit encoded block of bits. It contains message bits (k) to the total number of message bits (k) to the total number of bits - (n) in a code word - 93. Types of channels - Bandlimited channel Power limited channel - 94. Bandlimted channel - - - - 95. Power limited channel - - - - 96. Interleaving - It have a limited power associated with them but they have a large bandwidth. - - 97. Weight of a codeword - - The weight of a binary word is the number of dist in the word. Alternatively, we could add the bits - 98. Distance between codewords - - The distance between two binary words is the number of dist in the word. Alternatively, we could add the bits - 99. Syndrome decoding - -						
90. Properties of line code - channel noise and interference 91. Code Word - The PAM signal should be transparent to digital data being transmitted 91. Code Word - It is n bit encoded block of bits. It contains message bits and parity or redundant bits 92. Code Rate - It is defined as the ration of the number of message bits (k) to the total number of bits - (n) in a code word 93. Types of channels - Bandlimited channel Power limited channel Power limited channel number of bits diardwidth. Therefore signal which require bandwidth. Therefore signal which require larger bandwidth. Therefore signal which require cover such channels without distorting them 95. Power limited channel - 96. Interleaving - It is a technique used for correcting the burst covers. 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algori						
90. code • The PAM signal should allow error detection and error correction 91. Code Word • The PAM signal should be transparent to digital data being transmitted 91. Code Word • It is n bit encoded block of bits. It contains message bits and parity or redundant bits 92. Code Rate • It is defined as the ration of the number of message bits (k) to the total number of bits - (n) in a code word 93. Types of channels • Bandlimited channel Power limited channel 94. Bandlimted Channel • These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channel without distorting them 95. Power limited channel • The weight of a binary word is the number of 1s in the word. Alternative technique used for correcting the burst - errors. 97. Weight of a codeword • The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords • The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding • It uses the Viterbi algorithm for decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder • It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
91. Code Word - It is n bit encoded block of bits. It contains message bits and parity or redundant bits 92. Code Rate - It is n bit encoded block of bits. It contains message bits and parity or redundant bits 93. Types of channels - Bandlimited channel 94. Bandlimited - - 95. Power limited - It is a technique used for correcting them 95. Power limited - It is a technique used for correcting the burst - errors. 97. Weight of a codeword - It is a technique used for correcting the burst - errors. 98. Distance between codewords - The weight of a binary word is the number of of 1s in the word. Alternatively, we could - add the bits 99. Syndrome decoding - It is a highly efficient method of decoding a linear code word and the arrors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
 The PAM signal should be transparent to digital data being transmitted The PAM signal should be transparent to digital data being transmitted Code Word It is n bit encoded block of bits. It contains message bits and parity or redundant bits Code Rate Code Rate It is defined as the ration of the number of message bits (k) to the total number of bits - (n) in a code word Types of channels Bandlimited channel Power limited channel These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them Power limited channel It is a technique used as an alternative technique used as an alternative technique used for correcting the burst entrors. Interleaving Interleaving The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits Distance between codewords The distance between two binary words is the number of positions in which they differ It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made Witerbi decoder Witerbi decoder 						
91. Code Word - It is n bit encoded block of bits. It contains message bits and parity or redundant bits 92. Code Rate - It is defined as the ration of the number of message bits (k) to the total number of bits - (n) in a code word 93. Types of channels - Bandlimited channel - 94. Bandlimted - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channel without distorting them - 95. Power limited - It is a technique used as an alternative technique used for correcting the burst - errors. 96. Interleaving - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 97. Weight of a codewords - The distance between two binary words is the number of positions in which they differ 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a convolutional code						
91. Code Word - It is n bit encoded block of bits. It contains message bits and parity or redundant bits 92. Code Rate - It is n bit encoded block of bits. It contains message bits and parity or redundant bits 93. Types of channels - It is defined as the ration of the number of message bits (k) to the total number of bits - (n) in a code word 93. Types of channels - Bandlimited channel - 94. Bandlimted Channel - - - 95. Power limited channel - - - 96. Interleaving - It is a technique used for correcting the burst - errors. - 97. Weight of a codeword - - The weight of a binary word is the number of the burst - errors. 98. Distance between codewords - The distance between two binary words is the number of solitons in which they differ - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
91. Code Word - It is a field effect of of a the orthogen of the field o						
92. Code Rate - It is defined as the ratio of the number of message bits (k) to the total number of bits - (n) in a code word 93. Types of channels - Bandlimited channel Power limited channel - 94. Bandlimted - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them - 95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. - 96. Interleaving - It is a technique used as an alternative technique used for correcting the burst - errors. - 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits - 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ - 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made - 100. Viterbi decoder - - It uses the Viterbi algorithm for decoding a convolutional code						
92. Code Rate - message bits (k) to the total number of bits (n) in a code word 93. Types of channels - Bandlimited channel Power limited channel - 94. Bandlimted Channel - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them - 95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. - 96. Interleaving - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits - 97. Weight of a codewords - The distance between two binary words is the number of positions in which they differ - 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ - 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made - 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code -						
92. Code Rate - Intersage Oris (k) of the total number of bits - 93. Types of channels - Bandlimited channel - 94. Bandlimted Channel - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them 95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. 96. Interleaving - It is a technique used as an alternative technique used for correcting the burst errors. 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
93. Types of channels - Bandlimited channel Power limited channel - 94. Bandlimted Channel - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them - 95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. - 96. Interleaving - It is a technique used for correcting the burst errors. - 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits - 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ - 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made - 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code -						
93. Types of channels - Darktimited channel Power limited channel - 94. Bandlimted Channel - These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them - 95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. - 96. Interleaving - It is a technique used as an alternative technique used for correcting the burst errors. - 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits - 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ - 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made - 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code -						
94.Bandlimted Channel-These channels have a fixed finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them95.Power limited channel-It have a limited power associated with them but they have a large bandwidth.96.Interleaving-It is a technique used as an alternative technique used for correcting the burst errors.97.Weight of a codeword-The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits98.Distance between codewords-The distance between two binary words is the number of positions in which they differ the number of positions in which they differ99.Syndrome decoding-It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made100.Viterbi decoder-It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
94.Bandlimted Channel-Intese chainlets have a linket finite bandwidth. Therefore signal which require larger bandwidth cannot be transmitted over such channels without distorting them95.Power limited channel-It have a limited power associated with them but they have a large bandwidth.96.Interleaving-It is a technique used as an alternative technique used for correcting the burst errors.97.Weight of a codeword-The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits98.Distance between codewords-The distance between two binary words is the number of positions in which they differ99.Syndrome decoding-It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made100.Viterbi decoder-It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
94. Danumined - Danuwidit. Therefore signal which require - 94. Channel - Danuwidit. Therefore signal which require - 95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. 95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. 96. Interleaving - It is a technique used as an alternative technique used for correcting the burst - errors. 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. - 96. Interleaving - It is a technique used as an alternative technique used for correcting the burst errors. - 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits - 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ - 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made - 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code -						
95. Power limited channel - It have a limited power associated with them but they have a large bandwidth. 96. Interleaving - It is a technique used as an alternative technique used for correcting the burst errors. 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
95. Fower infinited channel - If have a infinited power associated with them but they have a large bandwidth. 96. Interleaving - It is a technique used as an alternative technique used for correcting the burst errors. 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
96.Interleaving-It is a technique used as an alternative technique used for correcting the burst errors.97.Weight of a codeword-The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits98.Distance between codewords-The distance between two binary words is the number of positions in which they differ linear code over a noisy channel, i.e. one on which errors are made99.Syndrome decoding-It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
96.Interleaving-It is a technique used for correcting the burst errors.97.Weight of a codeword-The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits98.Distance between codewords-The distance between two binary words is the number of positions in which they differ99.Syndrome decoding-It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made100.Viterbi decoder-It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
96. Interleaving - technique used for correcting the burst errors. 97. Weight of a codeword - The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
97.Weight of a codeword-The weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits98.Distance between codewords-The distance between two binary words is the number of positions in which they differ99.Syndrome decoding-It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made100.Viterbi decoder-It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code-						
97.Weight of a codeword-Ine weight of a binary word is the number of 1s in the word. Alternatively, we could add the bits98.Distance between codewords-The distance between two binary words is the number of positions in which they differ99.Syndrome decoding-It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made100.Viterbi decoder-It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
97. codeword - of is in the word. Alternatively, we could add the bits 98. Distance between codewords - The distance between two binary words is the number of positions in which they differ - 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made - 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code -						
98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
98. Distance between codewords - The distance between two binary words is the number of positions in which they differ 99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
99. Syndrome decoding - It is a highly efficient method of decoding a linear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code -						
99. Jecoding - Inear code over a noisy channel, i.e. one on which errors are made 100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
100. Viterbi decoder - It uses the Viterbi algorithm for decoding a bitstream that has been encoded using forward error correction based on a convolutional code						
100. Viterbi decoder - bitstream that has been encoded using forward error correction based on a convolutional code						
forward error correction based on a convolutional code						
convolutional code						
convolutional code						
Unit – V WIRELESS CHANNELS MODELS						
A Fixed station in a mobile radio system						
101. Base station - used for radio communication with mobile -						
101. Base station - used for radio communication with mobile - station. - - -						
101. Base station - used for radio communication with mobile - station. 102. Used off The process of transferring a mobile station						

103.	Mobile Station	-	It is the cellular radio service intended for use while in motion at unspecified locations. Mobile stations may be hand held personal units	-
104.	Frequency Reuse	-	The design process of selecting and allocating channel groups for all of the cellular base station within a system.	-
105.	Cluster	-	The N cells which collectively use the complete set of available frequencies.	-
106.	Channel assignment	-	Fixed channel assignmentDynamic channel assignment	-
107.	Interference	_	Another mobile in the same cell, a call in progress in a neighboring cell, other base station operating in the same frequency band	-
108.	Free Space Propagation Model	-	It is used to predict received signal strength when the transmitter and receiver have a clear, unobstructed line-of-sight path between them.	-
109.	Path loss for the free space	-	$PL(dB) = 10\log\frac{P_t}{P_r} = -10\log\left[\frac{G_t G_r \lambda^2}{(4\pi)^2 d^2}\right]$	-
110.	Brewster Angle	-	The Brewster angle is the angle at which no reflection occurs in the medium of origin. $\sin(\theta_B) = \sqrt{\frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2}}$	-
111.	Parameters of Mobile Multipath Channels	_	 Time Dispersion Parameters Coherence Bandwidth Doppler Spread and Coherence Time 	-
112.	Fast Fading	-	 High Doppler spread Coherence time c Symbol period Channel variations faster than base- band signal variations 	-
113.	Slow fading channel	-	If the baseband signal bandwidth is much greater than BD, the effects of Doppler spread are negligible at the receiver	-
114.	Doppler Shift	-	It is to the mobile velocity and the spatial angle between the direction of motion of the mobile and the direction of arrival of the wave.	-
115.	Small-Scale Multipath Measurements	-	 Direct RF Pulse System Spread Spectrum Sliding Correlator Channel Sounding Frequency Domain Channel Sounding 	-
116.	Spread spectrum channel sounder	-	A carrier signal is spread over large bandwidth by mixing it with a binary pseudo –noise (PN)	-
117.	Advantage of a spread spectrum system	-	 Cross-talk elimination Better output with data integrity Reduced effect of multipath fading Better security 	-

			Reduction in noise	
			Co-existence with other systems	
			 Longer operative distances 	
			Hard to detect	
			 Not easy to demodulate/decode 	
			 Difficult to jam the signals 	
			The range of frequency over which the	
118.	Doppler Spread	-	received Doppler spectrum is essentially	-
			non zero.	
			It is the time duration over which the	
119.	Coherence Time	-	channel impulse response is considered to	-
			be not varying.	
			It is used to compensate the fading channel	
120.	Diversity	-	impairments and is usually implemented by	-
			using two or more receiving antennas	
			Frequency Diversity	
			Time Diversity	
121.	Types of Diversity	-	Polarization diversity	-
			Angle Diversity	
			Space Diversity	
			The same information signal is transmitted	
100	Frequency		on different carriers, the frequency	
122.	Diversity	-	separation between them being at least the	-
	5		coherence bandwidth	
			The electric and magnetic fields of the signal	
100	Polarization		carrying the information are modified and	
123.	diversity	-	many such signals are used to send the	-
			same information.	
			Directional antennas are used to create	
124.	Angle Diversity	-	independent copies of the transmitted	-
	0 5		signal over multiple paths.	
			It is also known as antenna diversity. It	
125.	Space	_	consists of an elevated base station antenna	-
	Diversity		and a mobile antenna closed to the ground.	
		Plac	cement Ouestions	
		1 140		
126.	Communication	-	It is the medium by which the electronic	_
	Channel		signal is sent from one place to another	
127.	Types of media in	-	Electrical conductors: Optical media, Free	-
	transmitting signal		space, System-specific media.	
128.	Transceivers	TxR	It is an electronic unit that incorporates	-
		-	circuits that both send and receive signals.	
			It is random, undesirable electronic energy	
129.	Noise	-	that enters the communication system via	-
			the communicating medium and interferes	
			with the transmitted message.	
130.	Nyquist rate	W	Then Nyquist rate is given as, Nyquist rate	_
	., 1	••	= 2W samples/sec.	
131	Sampling	_	Converting continuous time signal to a	_
101.			digital signal.	
			Transmits only one bit per symbol, Present	
132.	Delta modulation	DM	sample value is compared with the previous	-
			sample value, to check the amplitude	

			changes. Step size is fixed	
133.	Power Spectral Density	PSD	The function which describes how the power of a signal got distributed at various frequencies, in the frequency domain	_
134.	Inter symbol Interference	-	Transmit digital data which demands more bandwidth which exceeds channel bandwidth, spreading will occur and cause signal pulses to overlap	-
135.	Eye Pattern	-	The eye pattern is experimental method that contains all the information concerning the degradation of quality.	-
136.	Low-pass filter	-	Low-pass filter, designed to remove the double-frequency components of the product modulator output and pass the zero-frequency components.	-
137.	Quadrature Amplitude Modulation	QAM	QAM is a combination of ASK and PSK	-
138.	Synchronization	-	It is known till now that for the coherent reception of any signal, it is necessary to synchronize the receiver to the transmitter	-
139.	Cyclic property	-	Every cyclic shift of a valid code vector produces another valid code vector.	-
140.	Linear code	-	A code is linear if modulo-2 sum of any two code vectors produces another code vector. This means any code vector can be expressed as linear combination of other code vectors.	-
141.	Simplification	-	1899.981 ÷ √1444.12 – 119.910 % of 34.975 + 4.932 * 104.292 = ? Ans: 528	-
142.	Profit and Percentage	-	A box contains six pink balls and four orange balls and three balls drawn one after other. Find the probability of all three balls being Pink balls if the balls drawn are not replaced? Ans: 1/6	_
143.	Number Series	-	Find the wrong term in the following number series? 90, 86, 95, 79, 103, 68, 117 Ans: 103	-
144.	Number Series	-	What value should come in the place of question mark in the given series? 19, 23, 32, 48, 73, 109, ? Ans: 158	-
145.	Relation ship	-	Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and	-

			sister of S. M is the mother of E. V is the sister-in-law of S, who has only two siblings. S is the aunt of J. T is the niece of B. E does not has any child. If J is married to X, then how is X related to E?	
146.	Computer Awareness		The address of input/output device or memory is carried by the and the data to be transferred is carried by the	_
147.	Directions	_	A man started walking from his place. He goes 5m south. He turns 90 degree anticlockwise and walks for 7m. Now he turns left and goes 3m. After turning right, he walks for 4m, again he walks for 3m after turning left. Now he turns towards west and walks for 5m. He again walks for 5m before he stops. What is the shortest distance between his starting point and ending point? Ans: 1m	_
148.	Speed and Time	_	A bag contains 4 red marbles, 5 green marbles and 6 pink marbles. If 3 marbles are taken at randomly, then find the probability that 2 marbles are Pink? Ans: 27/91	-
149.	Time and Work	-	A can do a work in 15 days, B can do it in 12 days but C can do (3/4)th of the work in 18 days. Find the time taken by all together to complete the work? Ans: 5 5/23 days	-
150.	Time and Work	-	A contractor hired 40 men to complete a project in 15 days. 40 men started working, after 9 days the contractor notices that only three-fifth of the work gets completed. Then how many extra men can be employed to complete the remaining work on time? Ans: 0	-

Faculty Team Prepared

Signatures

- 1. Mr.P.Madhavan
- 2. Mr.S.Bhoopalan
- 3. Mr.C.Karthick