

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)

MKC

2021-2022

Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS (MKC)

ECE

Course Code & Course Name	:	19ECE24 & Computer Architecture and Organization
Year/Sem/Sec	:	III/V/A,B&C

S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation/ Expression	Units
	Unit I	Introduct	ion to Computer Architecture and Organization	
1	Digital computer	_	Fast-electronic calculating machine that accepts digitized information from the user, process it according to the sequence of instructions and provides the processed information to the user.	-
2	Computer program	_	The sequence of instructions stored in the internal storage	-
3	CPU	DE	The ALU in conjunction with control unit is called central processing unit (CPU)	-
4	ENIAC	_	ENIAC (Electronic Numerical Integrator and Computer is the first electronic computer.	-
5	CPU execution time	_	Time the CPU spends computing for a particular task.	-
6	CPU throughpu t rate	-	Ratio of number of machine instructions executed per second to the number of machine instructions per program.	-
7	Megaflops	MFLOPS	 It is the performance metric used to assess the super computer performance. It is the ratio of number of floating-point operations in a program and execution time in micro seconds. 	-

	Benchmark		Benchmark programs are used for checking the	
8	programs	-	performance of the processor for different	-
	programs		applications.	
	Program		A special purpose register that is used to store	
9	Counter	-	the address of the next instruction to be	-
	register		executed.	
10	Instruction		Register used to hold the instruction that is	
10	Register	-	currently being executed.	-
			Microcomputer	
			Mini computer	
	Computer		Personal computer	
11	types	_	Portable notebook computer	-
11	according		Workstations	
	to size		Mainframe	
			• Server	
			Supercomputer	
	Basic		Input unit	
12	functional		Output unit	
12	units of	-	Memory unit	-
	computer		• ALU	
	1	-	Control unit EDVAC (Electronic Discrete Variable	
13	EDVAC			
15	EDVAC	-	Computer) is the first program stored	-
			computer.	
14	CPU time	_	Time the CPU spends computing for particular	-
			task	
	Types of		Desktop Benchmark	
15	Benchmark	- DE	SI • Server Benchmark TURE	-
	programs		Embedded Benchmark	
			System Performance Evaluation	
	SPEC		Corporation rating.	
16	rating	-	• It is the ration of running time of a	-
			reference computer to running time of	
	D: - 1 1		the computer under test.	
	Basic levels		Register level	
	in the		Processor level	
17	digital	-		-
	system			
	design			
	Processor		• CPU	
18	level	-	Memory	-
	system		IO devices	
ı				

	design component s		
19	Register level system design component s	 Registers Counters Combinational circuits Small sequential circuits 	-
20	Types of PLD	 Read Only Memory (ROM) Programmable Logic Array (PLA) Programmable Array Logic (PAL) 	-
21	Fixed point number system	Number system in which radix point is fixed	-
22	Floating point number system	Number system in which radix point is said to float.	-
23	Three fields in floating point number representat ion	 Sign Significant digits (Mantissa) Exponent 	-
24	Single precision IEEE standard for floating point number	 Field 1 - Sign - 1 bit URE Field 2 - Exponent - 8 bits Field 3 - Mantissa - 23 bits 	-
25	Double precision IEEE standard for floating point number	 Field 1 - Sign - 1 bit Field 2 - Exponent - 1 bit Field 3 - Mantissa - 52 bits 	-

Unit II Arithmetic Unit and Data Path Design				
26	Data path unit	-	The data path unit is a collection of functional units capable of performing all arithmetic and logic operations.	-
27	Booth's algorithm	-	Booth algorithm is a technique for multiplication that works equally well for both negative and positive multiplier.	-
28	Division algorithms	-	Restoring division algorithm,Non-restoring division algorith	-
29	Guard bits	-	In floating-point arithmetic guard bits which are extra bits used in the intermediate steps of calculations to get maximum accuracy in the final result.	-
30	Chopping		Chopping is the simplest method of truncation or removal of guard bits.	-
31	Coprocessor	-	Coprocessor is a separate instruction processor that implements special functions with low-cost and fast hardware.	-
32	Coprocessor trap	- DESU	When coprocessor is not connected in the system and coprocessor instructions are included in the program, the program control is transferred to a predetermined memory location where a software routine implementing the desired coprocessor instruction is stored. This type interrupt generated by the CPU is called coprocessor trap.	-
33	Von Neumann rounding	- E	Von Neumann rounding is the simplest method of truncation.	-
34	Problems in floating-point arithmetic	-	 Mantissa overflow, mantissa underflow, exponent overflow and exponent underflow a 	-
35	Algorithms used for multiplication	-	Roberson's algorithm andBooth's algorithm	-
36	Parts of a processor unit	-	Data Processing unitControl unit	-
37	Types of Adders	-	Serial AdderParallel Adder	-

	Non unstaning		Division algorithm that does not need notoning	
20	Non-restoring		Division algorithm that does not need restoring	
38	division	-	of remainder but needs restoring of remainder if	-
	algorithm		it is negative	
39	ALU	_	Arithmetic logic unit that performs adding,	_
0,			subtracting, shifting and logical operation.	
	Three methods		Chopping	
40	of truncation	-	 Von Neumann rounding 	-
	or truncation		Rounding	
	Type of memory		DRAM - Dynamic Random-Access Memory	
41	used in main	-		-
	memory			
40	True on of ALLI		Combinational ALU	
42	Types of ALU	-	Sequential ALU	-
40	Two ways of		• Spatial	
43	ALU expansion		• Temporal	-
	Motorola 68882		Coprocessor used with M68020nCPU	
44	coprocessor	-		-
	-		1. Add the exponent and subtract the bias	
	Rules for		2. Multiply the mantissa and determine sign of	
45	floating point		result.	-
	multiplication			
			3.Normalize result	
	Rules for		1. Subtract the exponent and add the bias	
46	floating point	_	2. Divide the mantissa and determine sign of	_
	division		result.	
	uivision		3.Normalize result	
47	Robertson		Multiplication algorithm for 2's complement	
47	algorithm	DEST	operands. YOUR FUTURE	-
	T 1 1 1	_	An electronic adder that improves speed by	
48	Look ahead		reducing the amount of time required to	-
	carry adder		determine the carry bits.	
			The word that is used to select one of te	
49	Control word	-	processing options	-
	Throughput of		Proceeding options	
50	Throughput of		More than one	
50	superscalar	-		-
	processor			
		Unit II	II Control Unit Design	
F1	Combral it		Control unit issues control signals to the data	
51	Control unit	-	processing part to perform operations on data.	-
	Hardwired		Control units use fixed logic circuits to interpret	
52	control	-	instructions and generate control signals from	-
			instructions and generate control signals from	

			them.	
53	Microprogram ming		Microprogramming is a method of control unit design in which the control signal selection and sequencing information is stored in a ROM or RAM called a control memory.	-
54	Instruction pipelining	-	A process in which the fetch, decode and execute cycles for several instructions are performed simultaneously to reduce overall processing time.	-
55	Superscalar processor	-	A processor capable of parallel instruction execution and having performance level greater than one instruction per cycle is known as superscalar processor.	-
56	Instruction level parallelism		In an instruction level parallelism, the instructions in a sequence are independent and are executed in parallel by overlapping.	-
57	Micro- pipelining	-	Many times, pipeline stages are subdivided upto logic gates level called micro-pipelining.	-
58	Pipeline hazards	-	Any reason the causes the pipeline to stall is called a hazard.	-
59	Four stage pipelines		 Instruction fetch, operand loading, execute instruction and operand storing stages. 	-
60	Microprogram med control unit	- DESU	The control unit whose binary control variables are stored in memory is called a microprogrammed control unit.	-
61	Control unit design approaches	- E	• Hardwired control unit Microprogrammed control unit	-
62	Design methods of hardwired control unit	-	 State-table method Delay-element method Sequence-counter method PLA method 	-
63	Types of Hazards	-	 Structural hazards, data hazards and instruction or control hazard 	-
64	Components of microprogram	-	Microprogram sequencerControl address memoryControl memory	-

	med control		Microinstruction registerDecoder	
65	unit Processor registers	-	 Decoder Program counter (PC) Address Register (AR) Data Register (DR) Accumulator (AC) 	-
66	Components of control unit	-	Control memoryControl address registerSubroutine register	-
67	Techniques for grouping of control signals	-	Horizontal organizationVertical organization	-
68	Microprogram	-	Sequence of one or more micro-operations designed to perform specific operation	-
69	IR		Instruction Register – Register which holds the opcode of the instruction being executed	-
70	MDR	-	Memory data register that holds the instruction code/data received from / sent to the memory.	-
71	Pipeline register	- Z	Control register that holds the present microinstruction while the next address is computed and read from memory	-
72	Pipelining		Temporal overlapping of processing	-
73	Pipeline processor		Processor supporting pipelining hardware architecture	-
74	Classification of data dependent hazards	DESI	 Write after read Read after write Write after write 	-
75	Issues in implementing superscalar processors	-	 Instruction type E-unit availability True data dependency Procedural dependency Resource conflicts Output dependency Anti-dependency 	_
		Unit IV		
76	Cache memory	-	Cache memory is a small, fast memory that is inserted between the larger, slower main memory and the processor.	-
77	Non-volatile		A memory that holds data even if power is	

	memory		turned off.	
78	Types of ROM	_	 Masked ROM, programmable ROM (PROM), erasable PROM (EPROM) and electrically erasable programmable ROM (EEPROM) are the types of ROMs. 	-
79	Types of RAM	-	Static RAM (SRAM) andDynamic RAM (DRAM)	-
80	Virtual address	-	The addresses that processor issues to access either instruction or data are called virtual address or logical address.	-
81	Demand paging	-	The technique of getting desired page in the main memory	-
82	Segment translation		a process of converting logical address into a linear address.	-
83	page translation	-	a process of converting linear address into a physical address.	_
84	Virtual memory	- 2	Techniques that automatically swaps program or data blocks between the main memory and the secondary storage device	-
85	TLB		Translation Lookaside Buffer - The cache that stores the most recently used page table entries in it	-
86	Associative memory		A memory unit accessed by the content.	-
87	MAR	DEST	The MAR stands for memory address register. It holds the address of the active memory location.	-
88	Associative Memory also called as	<u> </u>	Content addressable memory	-
89	Address decoding techniques	-	 Absolute decoding / full decoding Linear decoding / Partial decoding 	-
90	Advanced DRAMs	-	 Enhanced DRAM, Cache DRAM Synchronous DRAM Rambus DRAM Ramlink DRAM Extended Data out DRAM 	_
91	Example of Serial access	-	Magnetic diskMagnetic tape	-

	memory		Optical memories	
92	Access Time		The time delay between receiving an address and the beginning of the actual data transfer.	-
93	Seek Time	-	Time required to move the read/write head to the proper track	-
94	Disk controller	-	A hardware interface provided to control the operation of a disk drive.	-
95	Optical memories	-	 Compact Disk Read only memory (CD-ROM) Write-once Read-Many (WORM) Erasable optical Disk 	-
96	Memory Access methods	·	Sequential accessRandom access	-
97	Advantages of DRAM	-	 Cheap More memory cells per unit area so small size 	-
98	Physical memory types	- ,	Semiconductor memoryMagnetic surface memory	-
99	Write policy to avoid the cache coherency		Write within	-
100	Efficient method of cache updating	- DESIC	Snoopy writes	-
	U	nit V In <mark>pu</mark>	it/Output and System Organization	
101	Bus	-	A subsystem that is used to connect computer components and transfer data between them	-
102	Bus master	-	The device that is allowed to initiate data transfers on the bus at any given time is called bus master.	-
103	Operating system	-	 Operating system is a program which acts as an interface between a user of a computer and computer hardware. It also provides an environment in which a user may execute programs. 	-
104	I/O mapped	-	In I/O mapped I/O, processor provides separate	-

	I/O		address range for memory and I/O devices.	
105	Memory mapped I/O	_	In memory mapped I/O, memory control signals are used to the read and write I/O operations, whereas in I/O mapped I/O, I/O control signals are used to control read/write I/O operations.	_
106	ISR	-	Special routine that is executed to service the interrupt is called interrupt service routine (ISR).	-
107	Vectored interrupt	-	If the processor produces a CALL to a predetermined memory location which is the starting address of the ISR, the address is called vector address and such interrupts are called vectored interrupt.	-
108	Interrupt		An interrupt is an event that suspends the processing of currently executing program and begins the execution of another program.	-
109	Exception	-	Events that causes interrupt is called exception.	-
110	Fault tolerance	- 2	Ability of a system to execute specified algorithms correctly regardless of the hardware or software failures.	-
111	Typical control bus signals	DESI	 MEMR (Memory Read) MEMW (Memory Read) IOR (I/O Read) IOW (I/O Read) INTR Interrupt request INTA Interrupt Acknowledgement HOLD HLDA Hold Acknowledge bus request Bus grant Reset Ready CLK 	_
112	Bus design parameters	-	 Type of bus Method of arbitration Timing Bus width Data transfer type 	-
113	Two approaches of bus arbitration	-	CentralizedDistributed	-

	Central bus		Daisy chaining	
114	arbitration	-	Polling method	-
	methods		Independent request method	
			Control & timing	
	Major		CPU communication	
115	requirement of	-	Device communication	-
	IO module		Data buffering	
			Error detection	
	Memory			
116	interfacing	-	Memory mapped I/O	-
	techniques		• I/O mapped I/O	
	Two main IO		IN port address	
117	instructions	-	• OUT port address	-
	Programmed		Computer system in which the I/O operations	
118	I/O system		are completely controlled by the CPU	-
	Interrupt			
119	driven I/O	-	a way of controlling input/output activity	-
			The method that is used to transfer information	
120	I/O interface		between internal storage and external I/O	_
120			devices	
	Three possible		devices	
	ways of data		1. Programmed I/O.	
121	transfer to or		2. Interrupt- initiated I/O.	
	from the		3. Direct memory access (DMA).	-
	peripherals			
	Peripherals		Cingle transfor (guele stepling)	
122	DMA data	DESI	 Single transfer (cycle stealing) Block transfer 	
122	transfer modes			-
	T (1/2	C	S • Demand / burst transfer	
123	Types of I/O	-	Selector channel	-
	channels		Multiplexer	
124	Intel 8089	-	IO processor that has the ability to execute IO	_
			instructions	
	Types of		Hardware redundancy	
125	redundancy	-	Software redundancy	_
-20	for fault		Information redundancy	
	tolerance		Time redundancy	
]	Placement Questions	
	DIGG		Reduced instruction set processor that use	
126	RISC	-	hardwired control. It uses separate instruction	-
<u> </u>	1		1	1

			and data cache.	
127	CISC	_	Complex instruction set processor that use micro programed control	-
128	Services offered by operating systems	-	 Memory management I/O device management File system support Job scheduling Swapping of the other programs etc. 	_
129	Types of operating system	-	 Batch Multiprogramming Time sharing Real time 	-
130	Example of real time operating system	ŀ	 PSOS. PSOS is widely used in embedded applications and is a host target type of RTOS VRTX. RT Linux Lynx. 	-
131	Protections needed for operating system		 I/O protection Memory protection CPU protection	-
132	Operating system services	DESIG	 Program execution I/O operation File system manipulation Error detection Resource allocation Accounting Protection 	-
133	System calls	-	• Provides the interface a running program and the operating system	-
134	Categories of system calls	-	Process or job controlFile manipulationInformation maintenance	-
135	System calls used for file manipulation	-	 Create file Delete file Open Close Read 	-

[1 47.1	
			• Write	
			Reposition	
			Get file attributes	
			Set file attributes	
	System calls		• End	
			• Abort	
l			• Load	
			• Execute	
			Create process	
136	for process /	-	Terminate process	-
	job control		Get process attributes	
			Set process attributes	l
			 Wait for time 	
			Wait event	
			Signal event	
			File modification	
107	System		Program language support	
137	program	-	Program loading & execution	-
			Application	
	Types of			
100	multiprocessor		Loosely coupled multiprocessor system	
138	stem	-	 Tightly coupled multiprocessor system 	-
	architecture			
	Contention		Nonconstanting	
100	problems in		Memory contention	
139	multiprocessor	DEST	Communication contention	-
	system	Last the set 1	Hotspot contention	
		E	S Cocal memories	
140	Techniques for		Better interconnection network system	
140	reducing	-	Cache memory	-
	contention		Memory allocation	
			Wait For Memory Function Complete signal that	
141	WMFC	-	enables the processor to wait for the memory	-
			operation to complete	
	Memory type		SRAM – Static Random-Access Memory	
142	used in cache	-		-
	memory			
143	The last on the		Secondary memory	-
	hierarchy scale	-		
	-		1	i

	of memory devices				
144	Application of ROM chips	-		To store Boot files	-
145	Two types of computer memory	-		 Primary memory Secondary memory	-
146	Examples of secondary storage memory	-		 Compact disk, floppy disk, pen drive, external hard drive, etc. 	-
147	Memory mapping functions	-	<	used to map the memory blocks on to their corresponding cache block.	-
148	Dirty bit	-		The bit used to indicate whether the block was recently used or not	-
149	SCSI Bus	-		SCSI (Small Component System Interconnect) is used to connect to display devices to CPU	-
150	MFC	-	6	MFC stands for Memory Function Complete; signal is used to show complete of memory operation.	-

Faculty Team Prepared

Signatures

- 1. Mr.V.Ramesh, AP/ECE
- 2. Mr.M.Eswaramoorthy, AP/ECE NO YOUR FUTURE
- 3. Mrs.A.Nivetha, AP/ECE Estd. 2000

HoD