

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

MUST KNOW CONCEPTS

MKC

MATHS

2021-22

Course Code & Course Name : 19BSS23&Transforms and Partial Differential Equations

Year/Sem/Sec : II / III / CSE B

S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/ Equation/Expression	Units
		Uni	it-I Fourier Transforms	
1	Transform	X	A Transformation is a process that manipulate a polygon of other two dimentional objects on a plane or coordinate system. Mathematical transformations describe how two dimentional figures move around a plane or coordinate system.	r
2	Types of transformation		 Dilation Reflection Rotation Shear Translation 	
3	Fourier Transform		It is a way of transforming a continuous signal into the frequency domain.	
4	Discrete Fourier Transform (DFT)	DECICN	It is a discrete numerical equivalent using sums instead of integrals that can be computed on a digital computer.	
5	Applications of DFT	E	As one of the applications DFT and then inverse DFT can be used to compute standard convolution product and thus to perform linear filtering.	
6	Uses of Fourier Transform		The Fourier Transform of a musical chord is a mathematical representation of the amplitudes of the individual notes that make it up.	
7	Uses of Fourier Transform		 X-ray diffraction Electron microscopy NMR spectroscopy IR spectroscopy Fluorescence spectroscopy Image Processing 	

8	Time Domain		The original signal depends on time.
9	Frequency Domain		The original signal depends on frequency.
10	Difference between Time and Frequency Domain analysis		 The time domain analysis examine the amplitude vs time characteristics of a measuring signal. Frequency domain analysis replaces the measured signal with the group of sinusoidal which, when added together, produce the waveform equivalent to original.
11	Fourier Transform Pair		If f(x) is a given function, then Fourier transform and its inverse Fourier transform are called Fourier transform pair.
12	Fourier Transform Pair	F[f(x)] = F(s)	If $f(x)$ is a given function, then $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \cdot e^{isx} dx = F(s)$ and $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) \cdot e^{-isx} ds$ are called Fourier transform pair.
13	Properties of Fourier Transforms	Z	 Convolution Theorem Correlation Theorem Wiener – Khinchin Theorem Parseval's Theorem
14	Linear property		If $F[f(x)] = F(s)$ and $F[g(x)] = G(s)$ then $F[af(x) \pm bg(x)] = aF(s) \pm bG(s)$
15	Shifting theorem		If $F[f(x)] = F(s)thenF[f(x-a)] = e^{ias}F(s)$
16	Change of scale property		If $F[f(x)] = F(s)$ then $F[f(ax)] = \frac{1}{a}F(\frac{s}{a})$
17	Modulation theorem	DESIGN	If $F[f(x)] = F(s)$ then $F[f(x)cosax] = \frac{1}{2}[F(s+a) + F(s-a)]$
18	Convolution theorem	*	The Fourier transform of the convolution of two functions $f(x)$ and $g(x)$ is the product of their Fourier transform $F[(f(x) * g(x)] = F(S)G(S) = F[f(x)]F[g(x)].$
19	Convolution	F[f(x)] = F(s) $F[g(x)]$ = G(s)	If $F[f(x)] = F(s)$ and $F[g(x)] = G(s)$ then convolution of $f(x)$ & $g(x)$ is defined as $ (f * g) (x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)g(x-t)dt $
20	Applications of Convolution		 It is used to merge signals It is used to apply operations like smooting and filtering images where the primary task is selecting the appropriate filter template or mask. It is used to find gradient of the image.

21	21 Parseval's identity		If $f(x)$ is defined $(-\infty, \infty)$ and $F[f(x)] = F(s)$ then $\int_{-\infty}^{\infty} f(x) ^2 dx = \int_{-\infty}^{\infty} F(s) ^2 dx.$
22	// -		The sum (or intergral) of the square of the function is equal to the sum (or intergral) of the square of its transform.
23	Fourier sine transform pair	$F_{s}[f(x)] = F_{S}(s)$	The Fourier sine transform of $f(x)$ is $F_s[f(x)] = F_S(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin sx dx$ The inverse Fourier sine transform of $F_s(s)$ is defined by $f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^\infty F_s(s) \sin sx ds$
24		c[f(x)] = c(s)	The Fourier sine transform of $f(x)$ is $F_c[f(x)] = F_c(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) cossx \ dx$ The inverse Fourier sine transform of $F_c(s)$ is defined by $f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^\infty F_c(s) cossxds$
25	Self reciprocal		If the fourier transform of f(x) is f(s) then f(x) is said to be self –reciprocal under fourier transform.
	Un	nit-IIZ – Tra	ansforms and Difference Equations
26	Z- Transform (one sided or unilateral)	Z	Let $\{f(n)\}\$ be a sequence defined for $n=0,1,2,3,$ and $f(n)=0$ for $n<0$ then its Z- transform is defined as $Z[f(n)]=F[z]=\sum_{n=0}^{\infty}f(n)Z^{-n}$
27	Z- Transform (two sided or bilateral)		Let $\{f(n)\}\$ be a sequence defined for all integers then its Z- transform is defined as $Z[f(n)] = F[z] = \sum_{n=-\infty}^{\infty} f(n) Z^{-n}$
28	Uses of Z-Transform		The Z-Transform is a mathematical tool commonly used for the analysis and synthesis of discrete time control system.
29	Differentiation in then Z-Domain		If $Z[f(n)] = F[z]$ then $Z[nf(n)] = -Z\frac{d}{dz}F[z]$
30	Second Shifting Theorem	ESIGN	If $Z[f(n)] = F[z]$ then i) $Z[f(n+1)] = ZF[z] - Zf[0]$ ii) $Z[f(n+2)] = Z^2F[z] - Z^2f[0] - Zf[0]$ iii) $Z[f(n+k)] =$ $Z^kF[z] - Z^kf[0] - Z^{k-1}f[1] - Z^{k-2}f[2] - \cdots - Z^{k-(k-1)}$ iv) $Z[f(n-k)] = Z^{-k}F[z]$
31	Initial value theorem		$ If z[f(n)] = F[z]then f(0) = \lim_{z \to \infty} F[z]. $
32	Final value theorem		$Ifz[f(n)] = F[z]$ then $\lim_{n\to\infty} f[n] = \lim_{z\to 1} (z-1)F[z].$
33	Convolution theorem of Z		If $Z[f(n)] = F[z] \& Z[g(n)] = G[z]$ then $Z^{-1} \{ f(n) * g(n) \} = \mathbf{F}(\mathbf{z}) G(z)$

	Transform.	
34	Convolution of two functions *	$f(n) * g(n) = \sum_{k=0}^{n} f(k) \cdot g(n-k).$
35	Z- Transform of cosnθ	$Z[cosn\theta] = \frac{z(z - cos\theta)}{z^2 - 2zcos\theta + 1}$ $Z[sinn\theta] = \frac{zsin\theta}{z^2 - 2zcos\theta + 1}$
36	Z- Transform of $sinn\theta$	$Z[sinn\theta] = \frac{zsin\theta}{z^2 - 2zcos\theta + 1}$
37	Advantages of Z-transform	(i) It is easy and time consuming to solve difference equation.(ii)It is faster than Laplace transform to solve difference equation.
38	Unit step sequence $u(k)$	$u(k):\{1,1,1,\ldots\} = \begin{cases} 1, & k \ge 0 \\ 0, & k < 0 \end{cases}$
39	Zeros	When $X(Z)$ is a rational function. i.e., a ration of polynomial in Z , then the roots of the numerator polynomial are referred to as the zeros of $X(Z)$.
40	Poles	When $X(Z)$ is a rational function. i.e., a ration of polynomial in Z , then the roots of the denominator polynomial are referred to as the poles of $X(Z)$.
41	Z-Transform at work	 Z-Transform takes a sequence of X_n numbers and transform it into an expression X(Z) that depends on the variable Z but not n. That's the transform part. So the problem is transformed from the sampled time domain (n) to the Z domain
42	Applications of Z-Transforms	The field of signal processing is essentially a field of signal analysis in which they are reduced to their mathematical components and evaluated. One important concept in signal processing is that of the Z-Transform, which converts unwidely sequences into forms that can be easily dealt with. Z-Transforms are used in many signal processing systems.
43	Uses of Z- Transforms	It can be used to solve differential equations with constant coefficients.
44	Differentiation in the Z-Domain	If $Z[f(n)] = F[z]$ then $Z[nf(n)] = -z \frac{d}{dz} F[z]$
45	Damping Rule	If $Z[u(n)] = U[z]$ Then $Z[a^{-n}u(n)] = U[az]$ which is called Damping rule because the geometric factor a^{-n} when $ a > 0$ damps the function $u(n)$
46	Difference Equation	A difference equation is relation between the difference of an unknown function at one or more general values of the argument.

47	Order of a Difference Equation	The order of a Difference Equation is the difference between the largest and the smallest arguments occurring in the difference equation divided by the unit of increment.
48	Solution of a Difference Equation	The solution of the Difference Equation is an expression for $y(n)$ which satisfies the given difference equation.
49	Procedure to solve Difference equation using Z-Transform	 Apply the Z-Transform to the difference equation. Substitute the initial conditions. Solve for the difference equation in the Z-Transform domain. Find the solution in the time domain by applying the inverse Z-Transform.
50	Inverse Z-Transform	The Inverse Z-Transform of $Z[f(n)] = F[z]$ is defined as $Z^{-1}[f(z)] = f(n)$
	Ur	nit – III Fourier Series
51	Fourier Series	A series of sine and cosine of an angle and its multiples of the form $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n con nx + \sum_{n=1}^{\infty} b_n \sin nx$ is called the Fourier series . Where a_0 , a_n and b_n are Euler (or) Fourier constants.
52	Periodic Function	A function $f(x)$ is said to be periodic, if and only if $f(x+p) = f(x)$ is true for some value of p and every value of x. The smallest value of p is called the period of the function $f(x)$
53	Dirichlet's conditions	 f(x)is well defined in the defined interval. f(x)has a finite number of finite discontinuities in the defined interval. f(x)has at most a finite number of maxima and minima in the defined interval.
54	Uses of Dirichlet's condition	The Dirichlet's conditions are sufficient conditions for a real-valued, periodic function f to be equal to the sum of its Fourier series at each point where f is continuous.
55	Odd function	A function $f(x)$ is said to be odd, if and only if $f(-x) = -f(x)$
56	Even function	A function $f(x)$ is said to be odd, if and only if $f(-x) = f(x)$
57	Neither even nor odd function	A function $f(x)$ is said to be Neither even nor odd function, if and only if $f(-x) \neq f(x) \neq -f(x)$
58	Types of intervals in Fourier series	1. $(0,2\pi)$ 2. $(-\pi,\pi)$ 3. $(0,2l)$ 4. $(-l,l)$
59	Importance of Fourier series in	The Fourier series of functions in the differential equation often gives some prediction about the behavior of the

	engineering	solution of a differential equation. They are useful to find out the dynamics of the solution.
60	Application of Fourier series	1. Image Processing 2. Heat distribution mapping 3. Wave simplification 4. Light simplification 5. Radiation measurements
61	Real life application of Fourier series	 Signal Processing Approximation Theory Control Theory
62	Application of Fourier series in Engineering	The Fourier series has many such applications in electrical engineering, vibration analysis, acoustics, optics, signal processing, image processing, quantum mechanics, econometrics, thin-walled shell theory, etc
63	Uses of Fourier series	 Fourier series are particularly suitable for expansion of periodic functions. We come across many periodic functions in voltage, current, flex, density, applied force, potential and electromagnetic force in electricity. Fourier series are very useful in electrical engineering problems.
64	Advantage of Fourier series	 The main advantage of Fourier analysis is that very little information is lost from the signal during the transformation. The Fourier transform maintains information on amplitude, harmonics, and phase and uses all parts of the waveform to translate the signal into the frequency domain.
65	Disadvantage of exponential Fourier series	The major disadvantage of exponential Fourier series is that it cannot be easily visualized as sinusoids.
66	Limitations of Fourier series	It can be used only for periodic inputs and thus not applicable for aperiodic one. It cannot be used for unstable or even marginally stable systems.
67	Bernoulli's Formula $\int u dv$	$\int u dv = uv - u'v_1 + u''v_2 - \dots$
68	Purpose of Bernoulli's equation	The Bernoulli equation is an important expression relating pressure, height and velocity of a fluid at one point along its flow.
69	Parseval's Theorem	Let $f(x)$ be a periodic function defined in the interval (a,b) then $\frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} [a_n^2 + b_n^2] = \frac{1}{b-a} \int_a^b [f(x)]^2 dx$ if the interval is (a,b)
70	Root Mean Square (RMS) Value \bar{y}	Let $f(x)$ be a periodic function defined in the interval (a,b) then $\bar{y} = \sqrt{\frac{1}{b-a}} \int_a^b [f(x)]^2 dx$ is called the Root Mean Square (RMS) Value of $f(x)$ and it is denoted by \bar{y} .

71	Half Range series	1. If $f(x)$ is Half range cosine series then $b_n = 0$ 2. If $f(x)$ is Half range sine series then $a_0, a_n = 0$
		A Half range Fourier series is a Fourier series defined on
72	Advantage of Half	an interval instead of the more common, with the
	range Fourier series	implication that the analyzed function should be extended to as either an even or odd function.
		The process of finding the Fourier series for a function
		given by numerical values is known as Harmonic Analysis
		$f(x) = \frac{a_0}{2} + (a_1 \cos x + b_1 \sin x)$
73	Harmonic Analysis	
		$+ (a_2 \cos 2x + b_2 \sin 2x)$
		$+ (a_3 \cos 3x + b_3 \sin 3x) + \cdots$
		Harmonic functions are important in the areas of applied
	Application of	mathematics, engineering and mathematical physics. They
74	Application of Harmonic Functions	are used to solve problems involving steady state
	Transforme Tunetions	temperatures, two-dimensional electrostatics and ideal
		fluid flow.
75	Uses of Harmonic	The analysis of harmonics is the process of calculating the
13	analysis	magnitudes and phases of the fundamental and high order harmonics of the periodic waveforms.
	Unit- IV	Boundary Value Problems
	Poundary value	A boundary value problem is differential equation together
76	Boundary value problem	with a set of additional restraints, called the boundary
	problem	conditions.
77	Boundary Condition	A Boundary value problem is a differential equation
	Initial value	together with a set of additional constrains. The auxiliary conditions are at one point of the
78	problem	independent variable
	problem	The wave equation is an important second-order linear
79	Wave equation	partial differential equation for the description of waves.
90	Heat a quation	The heat equation is an important partial differential
80	Heat equation	equation which describes the distribution of heat(or variation in temperature) in a given region over time.
	One dimensional	
81	wave equation	$\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$
82	The constant a^2 in	$a^2 = \frac{T}{} = \frac{Tension}{}$
02	wave equation	m mass per unit length of the string
83	One dimensional	$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$
	heat equation	ot ox -
84	The constant a^2 in	$\alpha^{2} = \frac{k}{k} = \frac{Thermal\ conductivity}{(Possible 1)(Consider box)}$
	heat equation	$\frac{\alpha - \frac{1}{\rho c} - \frac{1}{(Density)(Specific heat)}}{Density(Specific heat)}$
	Assumption made in	• The motion takes place entirely in one plane. The mass of the string per unit length is constant.
85	Assumption made in the derivative of one	 The tension T is constant at all times and at all
	dimensional wave	points of he deflected string.
		 The string is perfectly flexible, i.e., it can transmit
L	1	and same as periodicy months in the transmit

		tension but not bending or sheering forces.
86	In One dimensional heat equation, what is α^2	$\alpha^2 = \frac{k}{\rho c} - \frac{Thermal\ conductivity}{(Density\)(Specific\ heat)}$
87	Gradient $\frac{\partial u}{\partial x}$	The rate of change of temperature with respect to distance is called temperature (or) gradient
88	Steady state condition	Steady state condition in heat flow means that the temperature at any point in the body does not vary with time. $\frac{\partial u}{\partial t} = 0$.
89	Thermally insulated	If an end of heat conducting body is Thermally insulated means that no heat through that section. Mathematically the temperature gradient is zero at that point. i.e., $\frac{\partial u}{\partial r} = 0.$
90	Fourier law of heat conduction k	The rate at which heat across any area (A)is proportional to the area and to the temp gradient normal to the curve.
91	Specific Heat	The amount of heat required to produce a given temperature change in a body is proportional to the mass of the body and to the temperature change. This constant of proportionality is known as the specific heat of the conducting material.
92	Classification of second order Quasi Linear PDE	B ² - 4AC <0 Elliptic Equation B ² - 4AC =0 Parabolic Equation B ² - 4AC >0 Hyperbolic Equation
93	Fourier law of heat conduction.	The rate at which heat flows across any area is proportional to the area and to the temperature gradient normal to the curve. This constant of proportionality is known as thermal conductivity of the material. It is known as Fourier law of heat conduction
94	Difference between the solutions of one dimensional wave equation and one dimensional heat equation.	The correct solution of one dimensional wave equation is of periodic in nature. But the solution of heat flow equation is not periodic in nature.
95	Steady state solution of two dimensional heat equation	When the heat flow is along curves, instead straight lines, the curve lying in parallel planes, the flow is called two dimensional. The two dimensional heat flow equations $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
96	Two dimensional heat flow equation	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. \text{ i.e., } \nabla^2 u = 0 \text{ this is known as Laplace's equation.}$
97	Steady State in heat conduction	In steady state, the temperature at any point depends only on the position of the point and is independent of the time t.
98	Unsteady State in heat conduction	In unsteady state, the temperature at any point of the body depends on the position of the point and also the time t.
99	Application	In electrostatics, a common problem is to find a function which describes the electric potential of a

	T	
		given region. If the region does not contain charge, the potential must be a solution to Laplace's
		equation (a so-called harmonic function).
		• The boundary conditions in this case are the
		Interface conditions for electromagnetic fields. If
		there is no current density in the region, it is also
		possible to define a magnetic scalar potential using
		a similar procedure.
		Boundary value problems for large scale nonlinear
		evolution equations are often required in engineering and
100	Uses of Boundary	scientific applications. Some examples are: incompressible
100	value Problems	Navier-Stokes equations, problems in elasticity,
		cosmology, material science, semiconductor device
		simulation
	Unit-V I	Partial Differential Equations
	$\partial \partial$	
		A PDE is one which involves partial derivatives.
101	Partial Differential Equations (PDE) $\frac{\partial x}{\partial x}, \frac{\partial y}{\partial y},$	
		For example $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$ is a PDE.
	$\partial x \partial y$	
		A PDE is a mathematical equation that involves two or
		more independent variables, an unknown function
102	Concept of PDE	(dependent on those variables), and partial derivatives of
		the unknown function with respect to the independent
		variable.
	Linear PDE	A PDE is said to be linear, if the dependent variable and
103		the partial derivatives occur in the first degree only.
		A PDE is said to be non linear, if the dependent variable
104	Non Linear PDE	and the partial derivatives occur in more than one degree.
		By eliminating arbitrary constants that occur in the
		functional relation between the dependent and
105	E	independent variables
105	Formation of PDE	By eliminating arbitrary functions from a given
	DECICA	relation between the dependent and independent
	DESIGN	variables.
	-	The order of a PDE is the order of the highest partial
106	Order of PDE	differential coefficient occurring in it.
		differential coefficient occurring in it.
107	Decree of DDE	The degree of the highest derivative is the degree of the
107	Degree of PDE	PDE.
	Order of DDE cot hy	The elimination of one arbitrary function will result in a
100	Order of PDE got by	PDE of the first order. The elimination of two arbitrary
108	eliminating arbitrary	functions will result in equations of second order and so
	functions	on.
	Method to solve the	The general form of a first order PDE is $f(x, y, z, p, q) =$
109	first order PDE	0, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.
110	Types of solution of	1. Complete Solution (or) Integral
	a PDE	2. Singular Solution (or) Integral

		3. General Solution(or) Integral
111	Complete Integral (or) Complete Solution	A solution which contains as many arbitrary constants as there are independent variables is called a complete integral or complete solution.
112	Particular Integral (or) Particular Solution	A solution obtained by giving particular values to the arbitrary constants in a complete integral is called a particular integral or particular solution.
113	General Integral (or) General Solution	A solution of a PDE which contains the maximum possible number of arbitrary functions is called a general integral or general solution.
114	Clairaut's form Z	The equation of the form $z = px + qy + f(p,q)$ is called Clairaut's form.
115	Lagrange's Linear Equation	An equation of the form $Pp + Qq = R$ is known as Lagrange's equation when P,Q,& R are functions of x , y and z .
116	Method to solve Lagrange's Linear Equation	 Method of grouping Method o Multipliers
117	Method of Grouping	In the subsidiary equation $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ if the variables can be separated in any pair of equations, then we get a solution of the form $u(x, y) = a\&v(x, y) = b$.
118	Method of Multipliers	Choose any three multipliers l , m , n which may be constants (or) function of x , $y\&z$ we have • $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{ldx + mdy + ndz}{lP + mQ + nR}$. • If it is possible to choose l , m , n such that $lP + mQ + nR = 0$, then $ldx + mdy + ndz = 0$. We get a solution • $u(x, y) = a\&v(x, y) = b$. • The multipliers l , m , n are called Lagrange's multiplier.
119	Categories of PDE of higher order with constant Coefficient	Homogeneous PDE with constant coefficients. Non-homogeneous PDE with constant coefficients
120	Homogenous and Non homogeneous PDE	A linear PDE with constant coefficients in which all the partial derivatives are of the same order is called homogeneous; otherwise it is called non-homogeneous.
121	Common types of PDE	Elliptic, Parabolic, and hyperbolic partial differential equations.
122	Application of PDE	In many engineering or science problems, such as heat transfer, elasticity, quantum mechanics, water flow and others, the problems are governed by partial differential equations.
123	Solution of PDE	A solution or integral of a partial differential equation is a relation between the independent and the dependent variables which satisfies the given partial differential equation.

124	Uses of PDE Examples of PDE	 Fluid mechanics, heat and mass transfer, and electromagnetic theory are all modeled by partial differential equations and all have plenty of real life applications. Heat and mass transfer is used to understand how drug delivery devices work, how kidney dialysis works, and how to control heat for temperature-sensitive things. It probably also explains why thermoses work. PDE'S are used to model many systems in many different fields of science and engineering. Laplace Equation Heat Equation
		Wave Equation Placement Questions
126	Percentage	Percent implies "for every hundred" and the sign % is read as percentage and x % is read as x per cent. In other words, a fraction with denominator 100 is called a per cent. For example, 20 % means 20/100
127	Probability	A probability is a number that reflects the chance or likelihood that a particular event will occur.
128	Rules of Probability	There are three basic rules associated with probability: the addition, multiplication, and complement rules. The addition rule is used to calculate the probability of event A or event B happening We express it as: P(A or B) = P(A) + P(B) - P(A and B)
129	Example of probability	The probability of flipping a coin and it being heads is 1/2, because there is 1 way of getting a head and the total number of possible outcomes is 2 (a head or tail). The probability of something which is certain to happen is 1. The probability of something which is impossible to happen is 0.
130	Permutation	Permutation is defined as arrangement of r things that can be done out of total n things. This is denoted by nPr.
131	Combination	Combination is defined as selection of r things that can be done out of total n things. This is denoted by nCr.
132	nCr and nPr stands for	In nCr and nPr, C stands for Combinations, and P stands for permutations. Now for combinations, it is the number of ways you can pick r objects out of n.
133	Average	The average of n quantities of the same kind is equal to the sum of all the quantities divided by the number of quantities;

		Sum of quantities
		Average = Number of quantities
		Time and work problems deal with the
	The concept of Time	simultaneous performance involving the efficiency
124	The concept of Time	of an individual or a group and the time taken by
134	and Work	them to complete a piece of work. Work is the
		effort applied to produce a deliverable or
		accomplish a task.
		Ratio: A ratio is the comparison of two
	The concept of ratio	homogeneous quantities, or a ratio is the division of
125	The concept of ratio	two quantities a and b having the same units. It is
135	& Proportion	denoted by a:b (read as "a ratio b") or a/b.
		Probability: It is defined by Equality between two
		Ratios.
		Arithmetic progression(AP) or arithmetic sequence
		is a sequence of numbers in which each term
		after the first is obtained by adding a constant, d to
	Arithmetic	the preceding term. The constant d is called
136	Progression(AP)	common difference.
		An arithmetic progression is given by a, (a + d), (a
		+2d), $(a + 3d)$,
		where $a = $ the first term , $d = $ the common
		difference
		Geometric Progression(GP) or Geometric Sequence
	Geometric	is sequence of non-zero numbers in which theratio
137	Progression(GP)	of any term and its preceding term is always
		constant.
		It is denoted by a, ar ² , ar ³
		Prime number: A prime number is a natural
	Prime Number	number greater than 1 that has no positive divisors
138	Time Number	other than 1 and itself.
		For example, 2, 3, 5, 7, 11, 13, etc. are prime
		numbers.
		Two numbers are said to be relatively prime,
	Co-Prime Number DESIGNING	mutually prime, or co-prime to each other when
139		they have no common factor or the only common
137		positive factor of the two numbers is 1.
		In other words, two numbers are said to be co-
	ESI	primes if their H.C.F. is 1.
		L.C.M. is the least non-zero number in common
140	L.C.M	multiples of two or more numbers. The least
170		number which is exactly divisible by each one of
		the given numbers is called their L.C.M.
		(i) Factorization Method: Resolve each one of the
	Methods of finding	given numbers into a product of prime factors.
	the L.C.M. of a	Then, L.C.M. is the product of highest powers of all
141	given set of	the factors.
	numbers?	(ii) Division Method (short-cut): Arrange the given
		numbers in a row in any order. Divide by a
		number which divided exactly at least two of the
		given numbers and carry forward the numbers

		which are not divisible. Repeat the above process
		till no two of the numbers are divisible by the
		same number except 1. The product of the divisors
		and the undivided numbers is the required
		L.C.M. of the given numbers.
142	H.C.F	The highest common factor of two or more
		numbers is the greatest number which divides each
		ofthem exactly without any remainder.
	Reciprocal or Inverse Ratio	If the antecedent and consequent of a ratio
143		interchange their places. The new ratio is called the
		inverse ratio of the first ratio. In other words, if a \neq
		$0, b \neq 0$ then the reciprocal ratio of a : b is . Clearly,
		is same as b: a.
		Thus the reciprocal ratio of a : b is b : a
144	Selling Price (SP) &	The price at which goods are sold is called the
	Cost Price (CP)	selling price. The price at which goods are bought
		is called the cost price
145	Profit	When the selling price is more than the cost price,
		then the trader makes a profit.
		It is denoted by Profit = SP - CP.
146	Loss	When the selling price is less than the cost price,
		then the trader makes a loss.
		It is given as Loss = CP - SP.
	Simple Interest	Simple interest is determined by multiplying the
147		daily interest rate by the principal by the number of
		days that elapse between payments. S.I = PNR/100
148	The terms involved	
	in calculating Simple Interest?	Where,
		P= Principle
		N= No.of Years
		R = Rate of Interest
149	Compound Interest	Compound interest is calculated on the principal
		amount and also on the accumulated interest of
		previous periods, and can thus be regarded as
		"interest on interest".
	Odd one out DESIGNING Est	A person or thing that is different from or kept
150		apart from others that form a group or set is called
		as odd one out
		Example : Apple, Onion, potato, Brinjal
		In this Apple is Odd one out because it is a fruit
		while remaining are vegetables

Faculty Team Prepared

Signatures

1. P.Jothi