MUST KNOW CONCEPTS
MATHS

Course Code \& Course Name
Year/Sem/Sec
: 19BSS23\&Transforms and Partial Differential Equations
: II / III / CSE B

S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/ Equation/Expression	Units
Unit-I Fourier Transforms				
1	Transform		A Transformation is a process that manipulate a polygon or other two dimentional objects on a plane or coordinate system. Mathematical transformations describe how two dimentional figures move around a plane or coordinate system.	
2	Types of transformation		1. Dilation 2. Reflection 3. Rotation 4. Shear 5. Translation	
3	Fourier Transform		It is a way of transforming a continuous signal into the frequency domain.	
4	Discrete Fourier Transform (DFT)		It is a discrete numerical equivalent using sums instead of integrals that can be computed on a digital computer.	
5	Applications of DFT		As one of the applications DFT and then inverse DFT can be used to compute standard convolution product and thus to perform linear filtering.	
6	Uses of Fourier Transform		The Fourier Transform of a musical chord is a mathematical representation of the amplitudes of the individual notes that make it up.	
7	Uses of Fourier Transform		1. X-ray diffraction 2. Electron microscopy 3. NMR spectroscopy 4. IR spectroscopy 5. Fluorescence spectroscopy 6. Image Processing	

21	Parseval's identity		If $\mathrm{f}(\mathrm{x})$ is defined $(-\infty, \infty) \operatorname{andF}[f(x)]=\mathrm{F}(\mathrm{s})$ then $\int_{-\infty}^{\infty}\|f(x)\|^{2} d x=\int_{-\infty}^{\infty}\|F(s)\|^{2} d x$.	
22	Concept of parseval's Theorem		The sum (or intergral) of the square of the function is equal to the sum (or intergral) of the square of its transform.	
23	Fourier sine transform pair	$\begin{gathered} \mathrm{F}_{\mathrm{s}}[f(x)]= \\ F_{S}(s) \end{gathered}$	The Fourier sine transform of $f(x)$ is $\mathrm{F}_{\mathrm{s}}[f(x)]=F_{S}(s)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x$ The inverse Fourier sine transform of $F_{s}(s)$ is defined by $f(x)=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_{s}(s) \sin s x d s$	
24	Fourier cosine transform pair	$\begin{aligned} & \mathrm{F}_{\mathrm{c}}[f(x)]= \\ & F_{c}(s) \end{aligned}$	The Fourier sine transform of $f(x)$ is $\mathrm{F}_{\mathrm{c}}[f(x)]=F_{c}(s)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \operatorname{coss} x d x$ The inverse Fourier sine transform of $F_{c}(s)$ is defined by $f(x)=\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_{c}(s) \operatorname{coss} x d s$	
25	Self reciprocal		If the fourier transform of $f(x)$ is $f(s)$ then $f(x)$ is said to be self-reciprocal under fourier transform.	
Unit-II Z - Transforms and Difference Equations				
26	Z- Transform (one sided or unilateral)		Let $\{f(n)\}$ be a sequence defined for $\mathrm{n}=0,1,2,3, \ldots$ and $f(n)=0$ for $\mathrm{n}<0$ then its Z- transform is defined as $Z[f(n)]=F[z]=\sum_{n=0}^{\infty} f(n) Z^{-n}$	
27	Z- Transform (two sided or bilateral)		Let $\{f(n)\}$ be a sequence defined for all integers then its Z - transform is defined as $Z[f(n)]=F[z]=\sum_{n=-\infty}^{\infty} f(n) Z^{-n}$	
28	Uses of Z-Transform		The Z-Transform is a mathematical tool commonly used for the analysis and synthesis of discrete time control system.	
29	Differentiation in then Z-Domain		If $Z[f(n)]=F[z]$ then $Z[n f(n)]=-Z \frac{d}{d z} F[z]$	
30	Second Shifting Theorem	$E S \mid U$	If $Z[f(n)]=F[z]$ then i). $Z[f(n+1)]=Z F[z]-Z f[0]$ ii). $Z[f(n+2)]=Z^{2} F[z]-Z^{2} f[0]-Z f[0]$ iii). $Z[f(n+k)]=$ $Z^{k} F[z]-Z^{k} f[0]-Z^{k-1} f[1]-Z^{k-2} f[2]-\cdots-Z^{k-(k-1)}$ iv). $Z[f(n-k)]=Z^{-k} F[z]$	
31	Initial value theorem		$\begin{aligned} & \text { If } z[f(n)]=F[z] \text { then } \\ & f(0)=\lim _{z \rightarrow \infty} F[z] . \end{aligned}$	
32	Final value theorem		$\begin{aligned} & \operatorname{If} z[f(n)]=F[z] \\ \text { then } \lim _{n \rightarrow \infty} f[n]= & \lim _{z \rightarrow 1}(z-1) F[z] . \end{aligned}$	
33	Convolution theorem of Z		$\begin{aligned} & \text { If } Z[f(n)]=F[z] \& Z[g(n)]=G[z] \text { then } \\ & \mathrm{Z}^{-1}\{f(n) * g(n)\}=\mathbf{F}(\mathbf{z}) \mathrm{G}(\mathrm{z}) \end{aligned}$	

	Transform.			
34	Convolution of two functions	*	$f(n) * g(n)=\sum_{k=0}^{n} f(k) \cdot g(n-k)$.	
35	Z- Transform of $\cos n \theta$		$Z[\cos n \theta]=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}$	
36	Z- Transform of $\operatorname{sinn} \theta$		$Z[\sin n \theta]=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}$	
37	Advantages of Ztransform		(i) It is easy and time consuming to solve difference equation. (ii)It is faster than Laplace transform to solve difference equation.	
38	Unit step sequence	$u(k)$	$u(k):\{1,1,1, \ldots . .\}= \begin{cases}1, & k \geq 0 \\ 0, & k<0\end{cases}$	
39	Zeros		When $\mathrm{X}(\mathrm{Z})$ is a rational function. i.e., a ration of polynomial in Z , then the roots of the numerator polynomial are referred to as the zeros of $\mathrm{X}(\mathrm{Z})$.	
40	Poles		When $X(Z)$ is a rational function. i.e., a ration of polynomial in Z , then the roots of the denominator polynomial are referred to as the poles of $\mathrm{X}(\mathrm{Z})$.	
41	Z-Transform at work		- Z-Transform takes a sequence of X_{n} numbers and transform it into an expression $X(Z)$ that depends on the variable Z but not n. That's the transform part. - So the problem is transformed from the sampled time domain (n) to the Z domain	
42	Applications of ZTransforms	$E S I G N$	The field of signal processing is essentially a field of signal analysis in which they are reduced to their mathematical components and evaluated. One important concept in signal processing is that of the Z-Transform , which converts unwidely sequences into forms that can be easily dealt with. Z-Transforms are used in many signal processing systems.	
43	Uses of Z- Transforms		It can be used to solve differential equations with constant coefficients.	
44	Differentiation in the Z-Domain		If $Z[f(n)]=F[z]$ then $Z[n f(n)]=-z \frac{d}{d z} F[z]$	
45	Damping Rule		If $Z[u(n)]=U[z]$ Then $Z\left[a^{-n} u(n)\right]=U[a z]$ which is called Damping rule because the geometric factor a^{-n} when $\|a\|>0$ damps the function $u(n)$	
46	Difference Equation		A difference equation is relation between the difference of an unknown function at one or more general values of the argument.	

	engineering		solution of a differential equation. They are useful to find out the dynamics of the solution.
60	Application of Fourier series		1. Image Processing 2. Heat distribution mapping 3. Wave simplification 4. Light simplification 5. Radiation measurements
61	Real life application of Fourier series		1. Signal Processing 2. Approximation Theory 3. Control Theory
62	Application of Fourier series in Engineering		The Fourier series has many such applications in electrical engineering, vibration analysis, acoustics, optics, signal processing, image processing, quantum mechanics, econometrics, thin-walled shell theory, etc...
63	Uses of Fourier series		- Fourier series are particularly suitable for expansion of periodic functions. - We come across many periodic functions in voltage, current, flex, density, applied force, potential and electromagnetic force in electricity. - Fourier series are very useful in electrical engineering problems.
64	Advantage of Fourier series		- The main advantage of Fourier analysis is that very little information is lost from the signal during the transformation. - The Fourier transform maintains information on amplitude, harmonics, and phase and uses all parts of the waveform to translate the signal into the frequency domain.
65	Disadvantage of exponential Fourier series		The major disadvantage of exponential Fourier series is that it cannot be easily visualized as sinusoids.
66	Limitations of Fourier series		It can be used only for periodic inputs and thus not applicable for aperiodic one. It cannot be used for unstable or even marginally stable systems.
67	Bernoulli's Formula	$\int u d v$	$\int u d v=u v-u^{\prime} v_{1}+u^{\prime \prime} v_{2}-\ldots \ldots \ldots \quad=$
68	Purpose of Bernoulli's equation		The Bernoulli equation is an important expression relating pressure, height and velocity of a fluid at one point along its flow.
69	Parseval's Theorem		Let $f(x)$ be a periodic function defined in the interval (a, b) then $\frac{a_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left[a_{n}^{2}+b_{n}^{2}\right]=\frac{1}{b-a} \int_{a}^{b}[f(x)]^{2} d x$ if the interval is (a,b)
70	Root Mean Square (RMS) Value	\bar{y}	Let $f(x)$ be a periodic function defined in the interval (a,b) then $\bar{y}=\sqrt{\frac{1}{b-a} \int_{a}^{b}[f(x)]^{2} d x}$ is called the Root Mean Square (RMS) Value of $\mathrm{f}(\mathrm{x})$ and it is denoted by \bar{y}.

71	Half Range series		1. If $\mathrm{f}(\mathrm{x})$ is Half range cosine series then $b_{n}=0$ 2. If $\mathrm{f}(\mathrm{x})$ is Half range sine series then $a_{0}, a_{n}=0$
72	Advantage of Half range Fourier series		A Half range Fourier series is a Fourier series defined on an interval instead of the more common, with the implication that the analyzed function should be extended to as either an even or odd function.
73	Harmonic Analysis		The process of finding the Fourier series for a function given by numerical values is known as Harmonic Analysis $\begin{aligned} f(x)=\frac{a_{0}}{2}+ & \left(a_{1} \cos x+b_{1} \sin x\right) \\ & +\left(a_{2} \cos 2 x+b_{2} \sin 2 x\right) \\ & +\left(a_{3} \cos 3 x+b_{3} \sin 3 x\right)+\cdots \end{aligned}$
74	Application of Harmonic Functions		Harmonic functions are important in the areas of applied mathematics, engineering and mathematical physics. They are used to solve problems involving steady state temperatures, two-dimensional electrostatics and ideal fluid flow.
75	Uses of Harmonic analysis		The analysis of harmonics is the process of calculating the magnitudes and phases of the fundamental and high order harmonics of the periodic waveforms.
Unit- IV Boundary Value Problems			
76	Boundary value problem		A boundary value problem is differential equation together with a set of additional restraints, called the boundary conditions.
77	Boundary Condition		A Boundary value problem is a differential equation together with a set of additional constrains.
78	Initial value problem		The auxiliary conditions are at one point of the independent variable
79	Wave equation		The wave equation is an important second-order linear partial differential equation for the description of waves.
80	Heat equation		The heat equation is an important partial differential equation which describes the distribution of heat(or variation in temperature) in a given region over time.
81	One dimensional wave equation		$\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}$
82	The constant a^{2} in wave equation		$a^{2}=\frac{T}{m}=\frac{\text { Tension }}{\text { mass per unit length of the string }}$
83	One dimensional heat equation		$\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$
84	The constant a^{2} in heat equation		$\alpha^{2}=\frac{k}{\rho c}=\frac{\text { Thermal conductivity }}{(\text { Density })(\text { Specific heat })}$
85	Assumption made in the derivative of one dimensional wave		- The motion takes place entirely in one plane. The mass of the string per unit length is constant. - The tension T is constant at all times and at all points of he deflected string. - The string is perfectly flexible, i.e., it can transmit

			tension but not bending or sheering forces
86	In One dimensional heat equation, what is α^{2}		$\alpha^{2}=\frac{k}{\rho c}=\frac{\text { Thermal conductivity }}{(\text { Density })(\text { Specific heat })}$
87	Gradient	$\frac{\partial u}{\partial x}$	The rate of change of temperature with respect to distance is called temperature (or) gradient
88	Steady state condition		Steady state condition in heat flow means that the temperature at any point in the body does not vary with time. $\frac{\partial u}{\partial t}=0$.
89	Thermally insulated		If an end of heat conducting body is Thermally insulated means that no heat through that section. Mathematically the temperature gradient is zero at that point. i.e., $\frac{\partial u}{\partial x}=0 .$
90	Fourier law of heat conduction	k	The rate at which heat across any area (A)is proportional to the area and to the temp gradient normal to the curve .
91	Specific Heat		The amount of heat required to produce a given temperature change in a body is proportional to the mass of the body and to the temperature change. This constant of proportionality is known as the specific heat of the conducting material.
92	Classification of second order Quasi Linear PDE		$\begin{aligned} & B^{2}-4 A C<0 \text { Elliptic Equation } \\ & B^{2}-4 A C=0 \text { Parabolic Equation } \\ & B^{2}-4 A C>0 \text { Hyperbolic Equation } \\ & \hline \end{aligned}$
93	Fourier law of heat conduction.		The rate at which heat flows across any area is proportional to the area and to the temperature gradient normal to the curve. This constant of proportionality is known as thermal conductivity of the material. It is known as Fourier law of heat conduction
94	Difference between the solutions of one dimensional wave equation and one dimensional heat equation.		The correct solution of one dimensional wave equation is of periodic in nature. But the solution of heat flow equation is not periodic in nature.
95	Steady state solution of two dimensional heat equation		When the heat flow is along curves, instead straight lines, the curve lying in parallel planes, the flow is called two dimensional. The two dimensional heat flow equations $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
96	Two dimensional heat flow equation		$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$. i.e., $\nabla^{2} u=0$ this is known as Laplace's equation.
97	Steady State in heat conduction		In steady state, the temperature at any point depends only on the position of the point and is independent of the time t.
98	Unsteady State in heat conduction		In unsteady state, the temperature at any point of the body depends on the position of the point and also the time t.
99	Application		- In electrostatics, a common problem is to find a function which describes the electric potential of a

			$\text { Average }=\frac{\text { Sum of quantities }}{\text { Number of quantities }}$	
134	The concept of Time and Work		Time and work problems deal with the simultaneous performance involving the efficiency of an individual or a group and the time taken by them to complete a piece of work. Work is the effort applied to produce a deliverable or accomplish a task.	
135	The concept of ratio \& Proportion		Ratio: A ratio is the comparison of two homogeneous quantities, or a ratio is the division of two quantities a and b having the same units. It is denoted by $\mathrm{a}: \mathrm{b}$ (read as "a ratio b") or a / b. Probability: It is defined by Equality between two Ratios.	
136	Arithmetic Progression(AP)		Arithmetic progression(AP) or arithmetic sequence is a sequence of numbers in which each term after the first is obtained by adding a constant, d to the preceding term. The constant d is called common difference. An arithmetic progression is given by $a,(a+d),(a$ $+2 \mathrm{~d}),(\mathrm{a}+3 \mathrm{~d}), \ldots$ where $\mathrm{a}=$ the first term, $\mathrm{d}=$ the common difference	
137	Geometric Progression(GP)		Geometric Progression(GP) or Geometric Sequence is sequence of non-zero numbers in which theratio of any term and its preceding term is always constant. It is denoted by $\mathrm{a}, \mathrm{ar}^{2}, \mathrm{ar}^{3}$	
138	Prime Number		Prime number: A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. For example, 2, 3, 5, 7, 11, 13, etc. are prime numbers.	
139	Co-Prime Number	$E s t$	Two numbers are said to be relatively prime, mutually prime, or co-prime to each other when they have no common factor or the only common positive factor of the two numbers is 1 . In other words, two numbers are said to be coprimes if their H.C.F. is 1.	
140	L.C.M		L.C.M. is the least non-zero number in common multiples of two or more numbers. The least number which is exactly divisible by each one of the given numbers is called their L.C.M.	
141	Methods of finding the L.C.M. of a given set of numbers?		(i) Factorization Method: Resolve each one of the given numbers into a product of prime factors. Then, L.C.M. is the product of highest powers of all the factors. (ii) Division Method (short-cut): Arrange the given numbers in a row in any order. Divide by a number which divided exactly at least two of the given numbers and carry forward the numbers	

			which are not divisible. Repeat the above process till no two of the numbers are divisible by the same number except 1 . The product of the divisors and the undivided numbers is the required L.C.M. of the given numbers.	
142	H.C.F		The highest common factor of two or more numbers is the greatest number which divides each ofthem exactly without any remainder.	
143	Reciprocal or Inverse Ratio		If the antecedent and consequent of a ratio interchange their places. The new ratio is called the inverse ratio of the first ratio. In other words, if $a \neq$ $0, b \neq 0$ then the reciprocal ratio of $a: b$ is . Clearly, is same as $b: a$. Thus the reciprocal ratio of $\mathrm{a}: \mathrm{b}$ is $\mathrm{b}: \mathrm{a}$	
144	Selling Price (SP) \& Cost Price (CP)		The price at which goods are sold is called the selling price. The price at which goods are bought is called the cost price	
145	Profit		When the selling price is more than the cost price, then the trader makes a profit. It is denoted by Profit = SP - CP .	
146	Loss	It	When the selling price is less than the cost price, then the trader makes a loss. It is given as Loss = CP - SP.	
147	Simple Interest	S	Simple interest is determined by multiplying the daily interest rate by the principal by the number of days that elapse between payments.	
148	The terms involved in calculating Simple Interest?		S.I = PNR/100 Where, $\mathrm{P}=$ Principle $\mathrm{N}=$ No.of Years $\mathrm{R}=$ Rate of Interest	
149	Compound Interest		Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, and can thus be regarded as "interest on interest".	
150	Odd one out	$E S t$	A person or thing that is different from or kept apart from others that form a group or set is called as odd one out Example : Apple, Onion, potato, Brinjal In this Apple is Odd one out because it is a fruit while remaining are vegetables	

Faculty Team Prepared

1. P.Jothi

