

CSE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

2020-2021

MKC

Course Code & Course Name : Year/Sem/Sec :

19CSE01-Internet of Things II/IV/A

	Subject	19CSE01-Internet of Things	
S.No	Term	NotationConcept/Definition/Meaning/Units/Equa(Symbol)tion/Expression	Units
		UNIT I : Introduction	
1	Internet of things	- Network in which all physical objects are connected to the internet through network devices or routers and exchange data. Iot allows objects to be controlled remotely across existing network infrastructure.	-
2	Application of IOT	 Smart home Wearables Smart city Smart grids Connected car 	-
3	IOT characteristics	Est for a connectivity Est for a connectivity Dynamic nature Enormous scale Sensing Heterogeneity	-
4	IOT advantages	 Communication Automation and control Information Monitor Automation of daily tasks leads to better monitoring of devices Efficient and saves time 	_
5	Disadvantages	- Compatibility • Complexity • Privacy/security • Safety	-

			Includes modio/device lover notwork	
6	Four-layered	-	Includes media/device layer, network layer, service and application support	-
0	architecture			
			layer, and application layer.	
7	Five-layered		Includes perception layer, network layer,	-
/	architecture	-	middleware layer, application layer, and	
			business layer. The internet gateway receives the	
			6 1	-
8	Internet gateway	-	aggregated and digitized data and routes it over wi-fi, wired lans, or the internet, to	
			stage 3 systems for further processing.	
			Sensors collect data from the environment	
9	Sensors			-
9	Sensors	-	or object under measurement and turn it into useful data.	
			Data that needs more in-depth processing, and where feedback doesn't have to be	-
10	Data center	-	immediate, gets forwarded to physical data	
			center or cloud-based systems, where more	
			powerful it systems can analyze, manage,	
			and securely store the data → Focus on value	
			 Focus on value Take a holistic view 	-
11	Design principles of iot	\sim	 Put safety first Consider the context 	
11		-		
			 Build a strong brand Brototume early and often 	
			 Prototype early and often Use data responsibly 	
			 Cost 	
			 Network 	-
			 Features with an iot connected 	
			product	
		1	 User interface 	
12	Design considerations		Power	
12	in an iot system		size of the device	
		ECTONE	\sim Antenna T L R E	
		LUIVII	 Cloud 	
		Eate	 Interoperability 	
		CSU	 Security 	
			 Direct communication between 	_
			machines	
			 Hardware based technology 	
13	M2m technology	-	 Do not necessarily rely on internet 	
	BJ		connection	
			Normally communicates with a	
			single machine at a time	
			An essential part of the iot and provides	-
			efficient means to perform many of the	
14	Device management	-	management tasks for devices such asdevice	
			configuration, software upgrades, fault	
			management	
	Developments in		 battery-powered devices with ultra- 	_
15	hardware and network	-	low power cellular connections	
	technologies		 devices that harvest energy from 	
L	- 0	I		

		[
			their environment	
			smart bandwidth management and	
			protocol switching	
			multi-radio/multi-rate to switch	
			between bands or bit rates	
			The ability to exchange pieces of	
			information using telecommunications	-
			technologies has changed the world, and	
16	The need for	-	will continue to do so for the foreseeable	
	networking		future, with applications emerging in	
			nearly all contexts of contemporary and	
			future living.	
			Developments in hardware and network	_
			technologies	
			 battery-powered devices with ultra- 	
			low power cellular connections	
17	Local and wide area		 devices that harvest energy from 	
17	networking		their environment	
	networking			
			smart bandwidth management and rests and spritching	
			protocol switching	
			multi-radio/multi-rate to switch	
			between bands or bit rates	
			Billions of devices interact and generate data	-
18	Data management		at exponential growth rates, data	
10			management is of critical importance as it	
		~	sets the basis upon which any other	
			processes can rely and operate	
			Big data, heterogeneous data, real-world	-
19	Key characteristics of		data, real-time data, temporal data, spatial	
17	m2m data		data, polymorphic data, proprietary data,	
		× /	security and privacy data	
			With the prevalence of RFID, WSNS, and	-
			advanced networked embedded devices, all	
20	Business processes in	ESIGNU	information exchange between the real-	
20	iot	the last the state of the state	world and enterprise systems can be done	
		Ect	automatically without any human	
		LSU	intervention and at blazing speeds.	
			Describes a general category of services	-
			related to cloud computing and remote	
			access. It recognizes the vast number of	
21	Everything as a service	-	products, tools, and technologies	
			that are now delivered to users as a service	
			over the internet.	
			Machine-to-machine communication is two	_
			machines "communicating," or exchanging	
			data, without human interfacing or	
22	M2M and ict analytics		interaction. This includes serial connection,	
LL	M2M and iot analytics	-		
			powerline connection (PLC), or wireless	
			communications in the industrial Internet of	
	17 1 1		Things.	
23	Knowledge	-	Knowledge management is the concept of	-
-	management		knowledge, which in every day usage	

24	Three categories of risks	_	 relates to information, understanding, or skill you get from experience or education.within the context of iot solutions, information is data that has been contextualized, categorized, calculated, and condensed Risks that are inherent in any Internet system, but that product/IoT designers may not be aware of Specific risks that are unique to IoT devices Safety to ensure no harm is caused by, 	_
25	Device management	-	for instance, misusing actuators Maintain the list of device identities and map these into owners. It must also work with the identity and access management layer to manage access controls over device.	-
		UNIT	II: IoT Protocols	
26	View		A view is a representation of one or more structural aspects of an architecturethat illustrates how the architecture addresses one or more concerns held by one or more of its stakeholders.	-
27	Viewpoint		A viewpoint is a collection of patterns, templates, and conventions forconstructing one type of view. It defines the stakeholders whose concerns are reflected in the viewpoint and the guidelines, principles, and template models for constructing its views	-
28	Functional View	ESIGNI	In a first step, the Unified Requirements are mapped to the different Functionality Groups of the IoT Functional Model.Next, clusters of requirements of similar functionality are formed and a Functional Component for these requirements defined.	-
29	IoT Process Management	-	Relates to the integration of traditional process management systems with the IoT. The overall aim is to provide the functional concepts and interfaces necessary to augment traditional (business) processes with the idiosyncrasies of the IoT world.	-
30	Two Functional Components in IoT Process Management	-	 Process Modelling; Process Execution.	-
31	Process Modelling	-	The main function of the Process Modelling FC is to provide the tools necessary for modelling processes using the standardised notation, i.e. using novel modeling concepts specifically addressing	-

			the idiosyncrasies of the IoT ecosystem	
32	Process Execution		The Process Execution FC is responsible for deploying process models to the execution environments	-
33	Service Organisation	-	The Service Organisation FG (see Fig. 8.4) is the central Functional Group that acts as a communication hub between several other Functional Groups	-
34	Three Functional Components in Service Organisation	_	 Service Orchestration; Service Composition; Service Choreography. 	-
35	Virtual Entity		The Virtual Entity FG contains functions for interacting with the IoT System on the basis of Virtual Entity, as well as functionalities for discovering and looking up services that can provide information about VEs, or which allow the interaction with virtual entities.	-
36	Functional Components in Virtual Entity	-	 VE Resolution; VE &IoT Service Monitoring; VE Service. 	-
37	Communication Functional group	\leq	The Communication FG is an abstraction, modelling the variety of interaction schemes derived from the many technologies belonging to IoT systems and providing a common interface to the IoT Service.	-
38	Three functional components in Communication FG		 The Communication FG consists of three functional components: Hop To Hop Communication; Network Communication; End To End Communication. 	-
39	Five functional components in security	ESIGNI	 Authorisation; J T U R E Key Exchange & Management; Trust & Reputation; Identity Management; Authentication. 	-
40	Identity Management	-	The Identity Management FC addresses privacy questions by issuing andmanaging pseudonyms and accessory information to trusted subjects so that they can operate (use or provide services) anonymously.	_
41	Key Exchange and Management	-	The Key Exchange and Management (KEM) FC is involved to enable secure communications between two or more IoT- A peers that do not have initial knowledge of each other or whose interoperability is not guaranteed, ensuring integrity and confidentiality.	-

	-			
42	Information View	-	Information View focuses on the description, the handling and the life cycle of the information and the flow of information through the system and the components involved.	-
43	Push-pattern	-	The Push-pattern is a one-way communication between two parties in which a server sends data to a pre-defined client that receives the data.	-
44	Subscribe/Notify- pattern	-	The Subscribe/Notify-pattern allows an asynchronous way of communication between two parties without the client waiting for the server response.	-
45	IoT Service Resolution	·	The Functional Component IoT Service Resolution hosts the Service Descriptions that are needed for looking up and discovering IoT Services. Thus the resolution component offers methods to insert, update, and delete Service Descriptions	-
46	Deployment and Operation view	Z	The Deployment and Operation view aims at providing users of the IoT Reference Model with a set of guidelines to drive them through the different design choices that they have to face while designing the actual implementation of their services	-
47	IoT Domain Model diagram	\otimes	IoT Domain Model diagram is used as a guideline to describe the specific application domain and to this extent UML diagrams can be used to further detail the interaction among the many elements composing the target application;	-
48	Technologies that can be found in IoT systems	ESIGNI	 Sensor & Actuator Networks; RFIDs and smart tags; WiFi or other unconstrained technologies; Cellular networks. 	-
49	Architectural perspective	-	An architectural perspective is a collection of activities, tactics, and guidelines that are used to ensure that a system exhibits a particular set of related quality properties that require consideration across a number of the system's architectural views.	-
50	Quality property	-	A quality property is an externally visible, non-functional property of a system such as performance, security, or scalability.	-
		UNIT II	I : Web Of Things	
51	Internet of Things Vision	-	Through the exploitation of identification, data capture, processing and communication capabilities, the IoT makes full use of things to offer services to all	-

			kinds of applications, whilst ensuring that	
			security and privacy requirements are	
			fulfilled.	
			IOT ecosystem comprises of users and	-
52	IoT Ecosystem	-	stakeholders, IOT enabling technology,	
			IOT viable marketplace.	
			the Key Enabling Technologies (KET), of	_
			the High-Level Expert Group identified the	
			enabling technologies, crucial to many	
	Key Enabling		of the existing and future value chains	
53	Technologies	-	Nanotechnologies, Micro and Nano	
	reemologies		electronics, Biotechnology Advanced	
			C	
			Systems	
	Multicom		The chips designed to accomplish	-
54	chips	-	integration of existing Wi-Fi networks into	
	emps		the mobile ecosystem	
			The Internet is not only a network of	-
			computers, but it has evolved into	
			a network of devices of all types and sizes,	
55	55 Internet of everything		vehicles, smartphones, home appliances,	
55		-	toys, cameras, medical instruments and	
			industrial systems, all connected, all	
			communicating and sharing information all	
			the time.	
			Strategic Research and Innovation Agenda	_
	Strategic Research and		(SRIA) is the result of a discussion	
56	Innovation Agenda		involving the projects and stakeholders	
	inno varion i igenaa		involved in the IERCactivities	
			The IERC vision is that the major	_
			objectives for IoT are the creation of	
57	The IERC vision		smart environments/spaces and self-aware	
57	The IERC VISION	_	-	
		E C L C N L L	things for climate, food, energy, mobility,	
	D	FALGNI	digital society and health applications.	
			Internet of Things Strategic Research	-
		EST	Agenda (SRA) has identified and described	
			the main Internet of Things applications,	
58	Vertical domains	-	which span numerous applications are	
			referred to as "vertical" domains: smart	
			energy, smart health, smart buildings,	
			smart transport, smart living.	
			The vision of a pervasive IoT requires the	-
50	Hommontal damain		integration of the various vertical domains	
59	Horizontal domain	-	into a single, unified, horizontal domain	
			which is often referred to as smart life.	
			Intelligent Transportation Systems	-
			 Smart Lightning 	
60	IoT applications in		Structural health	
60	Cities	-		
			Smart Parking	
			Waste Management	

			Smart Grid	
	IoT applications in		Photovoltaic Installations	_
61	Energy Smart Grid,	-		
	Smart Metering		 Monitoring of water, oil and gas levels in storage tanks 	
			Detection of gas levels and	_
			leakages in industrial environments	
	IoT applications in		 Distributed measurement of 	
62	Security &	-	radiation levels in nuclear power	
	Emergencies		stations surroundings to generate	
			leakage alert	
			Supply Chain Control	-
\mathcal{C}	IoT applications in		• NFC Payment	
63	Retail	-	• Intelligent ShoppingApplications	
			Smart Product Management	
			M2M Applications	-
<i>с</i> 1	IoT applications in		 Indoor Air Quality 	
64	Industrial Control		Temperature Monitoring	
			Vehicle Auto-diagnosis	
			Fall Detection	-
			Medical Fridges	
65	IoT applications in	-	Sportsmen Care	
	eHealth		Patients Surveillance	
			Ultraviolet Radiation	
	Three important user		• The individual citizens,	-
66	categories from the		• Community of citizens and	
	IoT		• The enterprises.	
		~/	Low energy protocols and algorithms	-
	Research challenges		Algorithms for analysis and processing of	
67	for smart city IoT		data acquired in the city and making sense	
	applications		out of it. IOT large scale deployment and	
			integration	
		E C L C M L	• Energy saving robust and reliable	-
		COLONII	smart sensors/actuators	
		Eate	• Technologies for data anonymity	
68	Research challenges	ESU	addressing privacy concerns	
	for Smart Energy		• Dealing with critical latencies, e.g.	
			in control loops	
			• System partitioning (local/cloud	
			based intelligence)	
			The connection of vehicles to the Internet	-
	Smart Transportation		gives rise to a wealth of new possibilities and applications which bring new	
69	and Mobility	-	functionalities to the individuals	
			and/or the making of transport easier and	
			safer	
			The role of the Internet of Things is	_
	Smart Factory and		becoming more prominent in enabling	
70	Smart Manufacturing	-	access to devices and machines, which in	
			manufacturing systems, were hidden	
			in well-designed silos.	

[
71	Top M2M application that is available in the world	-	Asset tracking Insurance Telematics	-
72	Role of the network in Internet of Everything	-	Network itself plays an important role in the word of the Internet of Things, it is a driving factor for bringing all the different systems together which work hand in hand and show us a better future or betterment in every process	-
73	Important components that exist in the Internet of Things	-	 The important components that exist in the Internet of Things are as follows: Hardware Software Verbal exchange infrastructure 	_
74	Layers of IoT protocol stack		 Layers of IoT protocol stack are: 1) Sensing and information, 2) Network connectivity, 3) Information processing layer, 4) Application layer. 	-
75	Mostly used sensors types in IoT		 Smoke sensor Temperature sensors Pressure sensor Motion detection sensors Gas sensor Proximity sensor IR sensors 	-
		UNIT IV :	IoT Business Models	
76	European Research D Cluster on the Internet of Things	ESIGNI	The European Research Cluster on the Internet of Things has created a numberof activity chains to favour close cooperation between the projects addressingIoT topics and to form an arena for exchange of ideas and open dialog onimportant research challenges.	-
77	Activity chains	-	The activity chains are defined as work streams that group together partners or specific participants from partners around welldefined technical activities that will result into at least one output or delivery that will be used in addressing the IERC objectives.	-
78	IERC Activity Chain 05	-	IERC Activity Chain 05 is cross-project activity focused on making a valued contribution to IoT privacy, security and governance among the EC funded research projects in the area of Internet of Things.	-
79	Contribution From FP7 Projects	-	1. FP7 iCore Access Framework2. IoT@WorkCapabilityBaseAccess	-

			Control System	
			3. GAMBAS Adaptive Middleware	
			4. IoT-A Architecture	
			5. Governance, Security and Privacy in the	
			Butler Project	
			The iCore cognitive framework is based on	-
			the principle that any real world object and	
	FP7 iCore Access		any digital object that is available,	
80	Framework	-	accessible, observable or controllable can	
	Framework		have a virtual representation in the	
			"Internet of Things", which is called	
			Virtual Object (VO).	
			The virtual objects (VOs) are primarily	-
			targeted to the abstraction of technological	
			heterogeneity and include semantic	
81	Virtual objects	-	description of functionality that enables	
			situation-aware selection and use of	
			objects.	
			Composite virtual objects (CVOs) use the	_
			services of virtual objects. A CVOis a	
			cognitive mash-up of semantically	
82	Composite virtual	_	interoperable VOs that renders servicesin	
02	objects	~	accordance with the user/stakeholder	
			perspectives and the application	
			requirements.	
		47	Capability Based Access Control is	_
			devised according to the capability based	
83	Capability Based		authorization model in which a capability	
05	Access Control		is a communicable, unforgeable token of	
			authority.	
			Policy Decision Point is a resource-	_
			agnostic service in charge of managing	
			resource access request validation and	
		ECLONIU	decision. In the CapBAC environment it	
84	Policy Decision Point	ESTUNT	deals with the validation of the access	
0-+			rights granted in the capability against	
		EST	local policies and checking the revocation	
			status of the capabilities in the delegation	
			Chain	
			The GAMBAS project develops an	
			innovative and adaptive middleware to	_
			enable the privacy-preserving and	
85	GAMBAS project	-	automated utilization of behaviour-driven	
			services that adapt autonomously to the	
			context of users.	
			A set of requirements basedon the input of	
			external and internal stakeholders was used	-
			as a basis for theidentification of the	
86	IoT-A project		mechanisms and functionalities that	
00	IoT-A project	-		
			guarantee user dataprivacy and integrity,	
			user authentication, and trustworthiness of	
			the system.	

		I		
87	BUTLER project	-	The BUTLER platform must therefore be able to support different "Smart" domains, by providing them with communication, location and context awareness abilities, while guaranteeing their security and the privacy of the end users	-
88	SMARTIE	-	Secure and sMArterciTIEs data management	-
89	Vision of SMARTIE	-	The vision of SMARTIE isto create a distributed framework for IoT based applications sharing large volumesof heterogeneous information. This framework is envisioned to enableend-to-end security and trust in information delivery for decision-making purposes and data owner's privacy requirements.	-
90	New challenges identified for privacy, trust and reliability		 Providing trust and quality-of- information in shared information models to enable re-use across many applications. Providing secure exchange of data between IoT devices and consumers of their information. Providing protection mechanisms for vulnerable devices. 	-
91	Risks to a Smart City IoT Platform	ESIGNI	 Manipulate the sensor measurements to infiltrate the system withwrong data, e.g. to cause certain actuations Attack the sensors and actuators physically to obtain credentials Attack or impersonate network components to act as a man-in-themiddle Obtain sensitive data or cause actuation by attacking the sharingplatform with forged or malicious requests 	-
92	First Steps Towards a Secure Platform	_	Past and current projects, such as UbiSec&Sense,provide already some solutions on which a platform as outlined above can build which can be used as building blocks, but also components that need further development to be suitable for the type of platform SMARTIE aims for.	-
93	System of systems (SoS)	-	System of systems (SoS) is an entity composed of independent systems that are combinedtogether in order to interact and provide a given service, which cannot be provided by the individual systems when not cooperating.	-

			The major properties of SoS especially for	_
0.4	Major properties		application fields as those intended in the	
94	of SoS	-	SMARTIEproject are dependability,	
			security and privacy.	
			Availability	_
	Dependability in		Reliability	
95	system of system	_	• Safety	
20	comprises		 Integrity 	
	comprises		Maintainability	
			To the large extent, the IoT data may be of	
			personal nature and therefore it isimportant	-
	Privacy-preserving		to protect it from unauthorised entities	
96	Sharing of IoT Data	-	accessing it. Privacy is one of the most	
	Sharing of 101 Data		sensitive subjects in any discussion of IoT	
			protection	
			Improving the management of the public	_
a -			transportation networksto foster greater use	
97	Smart Transportation		of sustainable transport modes and to	
			providetime and cost benefits to travellers.	
			• Monitoring energy efficient in the	-
			campus considering energy	
			consumption	
			• and energy generation.	
			• Evaluating real-time behaviour of	
98	Smart campus		systems jointly acting as a	
			sustainableecosystem.	
			• Providing the user capability to	
			interact with the system to facilitate the	
			improvement of the energy efficiency.	
			Information related to location of public	_
			vehicles should be accessible to system	
	Security and Privacy		users according to the access policy and	
99	Challenges in Smart	-	privacy rules. All data exchange between	
	Transportation D	esignii	the sensor, actuators and backend server	
			should be implemented in a secure manner.	
		EST	Access to the data of the sensor should be	-
			controlled based on access control and	
			privacy rules. Hence only certain services	
	Security and Privacy		of the entity monitoring could read or act	
100	Challenges in Smart	-	over them especially in the case the	
100	campus		monitoring entity is a third party. The	
			exchange will require mechanisms	
			including data protection and integrity in	
			the transfer between the different parties.	
		UNIT	V: Applications	
			To start a project in industry environment	_
			the expected benefit, the expected value to	
101	Value creation in iot	-	the company has to be estimated and later	
			needs to be re-evaluated and proved during	

			IoT Cloud and DatabasesIoT Middleware-	
112	The biggest players in IoT cloud	-	The biggest players in IoT cloud can be divided into a platform as a service(PaaS) and infrastructure as a service(LaaS).	-
113	Three major parts in Home automation	-	Home automation has three major parts	-
114	Zigbee protocol	-	The Zigbee protocol is very important because it is known for its low power consumption, it maintained IEEE 802.15.4(2003) standards while utilization.	-
115	major drawback in the Internet of Things development and implementation		The availability of High-speed internet will be a major drawback in the Internet of Things development and implementation because it is one of the major requirement for the Internet of things to work efficiently and effectively	-
116	energy consumption issue when the Internet of Things is implemented		Internet of Things will take a lot of energy consumption and if that's the case the solution provided will not work as efficiently as possible.	-
117	difference between the Internet of Things and sensor businesses	X	A sensor business might not need an active internet connection and it can still work without it. But, when it comes to the Internet of Things it has a control side associated with it which is necessary to monitor, exchange the information from the sensor to the central unit within an active network.	-
118	IoT Cloud	ESIGNII	IoT Cloud may be a platform for storing and process IoT information. It gathers information from devices, websites, applications, customers, and partners to trigger actions for period responses.	-
119	IoT Uses Company Names	Este	Big names like Samsung, LG, Apple, Google and Philips are all working on connected devices, as are many smaller companies and startups.	-
120	Organization support	_	Almost all well-known companies are supporting to development of IoT applications in various application such that the companies are IBM, GOOGLE, AMAZON, GE, HONEYWELL, etc.	-
121	Pulse Width Modulation	-	PWM or Pulse Width Modulation is a variation of how much time the signal is high in an analog fashion. The signal can be high or low, and the user can even change the proportion of the time.	-
122	IoT in Government	_	IoT supports the event of sensible nations and sensible cities. This includes sweetening of infrastructure antecedently	-

			mentioned (e.g., healthcare, energy, transportation, etc.), defense, and conjointly the engineering and	
			maintenance of communities.	
123	IoT in Transportation	_	At each layer of transportation, IoT provides improved communication, control, and knowledge distribution. These applications embrace personal vehicles, industrial vehicles, trains, UAVs, and alternative instrumentation. It extends throughout the complete system of all transportation parts like control, parking, fuel consumption, and more.	_
124	IoT Used protocols		 XMPP AMQP Very Simple Control Protocol (VSCP) Data Distribution Service (DDS) MQTT protocol WiFi Simple Text Oriented Messaging Protocol(STOMP) Zigbee 	-
125	databases for IoT		 influx DB Apache Cassandra RethinkDB MongoDB Sqlite 	-
		Placer	nent Questions	
	The average of 2,		We have : $(2+7+6+x)/4 = 5$ or $15+x$	-
126	7, 6 and x is 5 and the average of 18, 1, 6, x and y is 10. What is the value of y?	ESIGNII Este	$\frac{1}{20} \text{ of } x = 5 \text{ UTURE}$ Also $(18+1+6+x+y)/5 = 10, 25+5+y = 50, y = 20$	
127	How many $1/8s$ are there in $37^{-1}/_2$?	-	Required number = $(75/2 \times 8/1) = 300$.	-
128	Look at this series: 22, 21, 23, 22, 24, 23, 	-	In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on.	-
129	Look at this series: 53, 53, 40, 40, 27, 27, 	-	In this series, each number is repeated, then 13 is subtracted to arrive at the next number.	-
130	Look at this series: 1.5, 2.3, 3.1, 3.9,	-	In this simple addition series, each number increases by 0.8.	-

131	When simplified, the product $(1 - 1/2)(1 - 1/3)(1 - 1/4)(1 - 1/n)$ gives:	-	Exp: $1/2 \ge 2/3 \ge 3/4 \ge \dots \ge (n-1)/n = 1/n$	-
132	Look at this series: 7, 10, 8, 11, 9, 12,	_	This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted.	-
133	In a 1000 m race Usha beats Shiny by 50 m. In the same race, by what time margin Shiny beat Mercy who runs at 4 m/s ?	-	Speed of Shiny = $50/10 = 5m/s$ Time taken by shiny to complete the race is B = 1000/5 = 200 sec. Time taken by usha to complete the race is D = 1000/4 = 250 sec. Hence, D-B = 50 sec	-
134	$(112 \text{ x } 5^4) = ?$	\mathbb{N}	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4=112 \text{ x}$ $10^4=1120000=7000022^416$	-
135	It was Sunday on Jan 1, 2006. The day of the week Jan 1, 2010 is		On 31^{st} December, 2005 it was Saturday. Number of odd days from the year 2006 to the year 2009 = $(1 + 1 + 2 + 1) = 5$ days. \therefore On 31^{st} December 2009, it was Thursday. Thus, on 1^{st} Jan, 2010 it is Friday.	-
136	The average of 2, 7, 6 and x is 5 and the average of 18, 1, 6, x and y is 10. What is the value of y?		We have: $(2+7+6+x)/4 = 5$ or $15+x$ =20 or $x = 5$ Also $(18+1+6+x+y)/5 = 10$, $25+5+y = 50$, $y = 20$	-
137	Today is Monday. After 61 days, it will be:	Este	Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. ∴ After 61 days, it will be Saturday.	-
138	10 litres of water is added to 50 litres of a solution containing 20% of alcohol in water. What is the strength of alcohol in the solution now?	_	Quantity of alcohol in 50 litres = 50*20/100 = 10 strength in 60 litre solution = $10/60*100 = 100/6 = 16\frac{2}{3}$	_
139	The days inx weeks x days?	-	x weeks x days = $(7x + x)$ days = 8x days.	-

140	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	-	 The year 2004 is a leap year. It has 2 odd days. ∴ The day on 8th Feb, 2004 is 2 days before the day on 8th Feb, 2005. Hence, this day is Sunday. 	-
141	The greatest number that will divide 43, 91 and 183 so as to leave the same remainder in each case.	-	Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.	-
142	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is:		Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$	-
143	$(112 \text{ x } 5^4) = ?$	\sim	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4=112 \text{ x}$ $10^4=1120000=7000022^416$	-
144	It was Sunday on Jan 1, 2006.The day of the week Jan 1, 2010 is		On 31^{st} December, 2005 it was Saturday. Number of odd days from the year 2006 to the year $2009 = (1 + 1 + 2 + 1) = 5$ days. \therefore On 31^{st} December 2009, it was Thursday. Thus, on 1^{st} Jan, 2010 it is Friday.	_
145	Today is Monday. After 61 days, it will D be:	esignii Este	Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. ∴ After 61 days, it will be Saturday.	-
146	If 6 th March, 2005 is Monday, The day of the week on 6 th March, 2004 is	-	 The year 2004 is a leap year. So, it has 2 odd days. But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. ∴ The day on 6th March, 2005 will be 1 day beyond the day on 6th March, 2004. Given that, 6th March, 2005 is Monday. ∴ 6th March, 2004 is Sunday (1 day before to 6th March, 2005). 	_
147	The days in x weeks x days?		x weeks x days = $(7x + x)$ days = 8x days.	-

148	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	The year 2004 is a leap year. It has 2 odd-daysThe day on 8 th Feb, 2004 is 2 daysbefore the day on 8 th Feb, 2005.Hence, this day is Sunday.
149	Find the greatest number that will divide 43, 91 and 183 so as to leave the same remainder in each case.	Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.
150	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is:	Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$

Faculty Team Prepared 1.Dr.J.Preetha 2. Signatures

HoD

Estd. 2000