

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

MUST KNOW CONCEPTS

MKC

CSE 2020-21

Course Code & Course Name : 19CSC01-Data Structures and Algorithms

Year/Sem/Sec : II/III/B

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
		Unit-I:	Introduction	
1.	Data		Data are simply values or sets of values	
2.	Information		Processed Data	
3.	Datum		Singular form of Data	
4.	Data		Plural form of Data	
5.	Data structures	DS	Way of organizing data in a computer called DS	
6.	Classification of DS		Static data structures, Dynamic data structures	
7.	Static data structures		Fixed size data structure.EX: Array, pointers, structures	
8.	Dynamic data structures		Variable size data structure. Ex: linked lists, stacks, queues, trees	
9.	Types of data structure		Linear data structure., Non-linear data structure	
10.	Linear data structures		Data are arranged in sequential order	
11.	Non-linear data structure		Data structures that don't have a linear relationship between its adjacent elements but have a hierarchical relationship	
12.	Abstract data type	ADT	Set of operations for which the implementation of the data structure is not specified	
13.	Primitive data types		Each variable has a specific data typeit tells - size, range called primitive data types	
14.	4 basic primitive data	_	Integer, floating-point, character and	

	types	Pointer
15.	Pointer	Special type of variables that are used to store address of another variable
16.	Searching	Finding an element position in a given array called searchingtype: linear search, binary search
17.	Efficiency of DS	Efficient Algorithm that takes least possible running time and consumes least memory space
18.	Asymptotic analysis	Measures the performance of the algorithm with the change in the order of the input size
19.	Case complexity	Worst case complexity, best case complexity and average case complexity
20.	Asymptotic complexity	Approximate measure of time complexity is called Asymptotic complexity
21.	Asymptotic notations	Is measured with the help of asymptotic notations
22.	Time complexity	Quantifies the amount of time taken by an algorithm to run as a function
23.	List of Asymptotic Notations	Theta notation, Omega notation and Big-O notation
24.	Logn	A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
25.	N (linear)	A small amount of processing is done on each input element
	<u>, </u>	Unit-II : Stacks And Queues
26.	Array	Fixed-size DS
27.	Recursion function	Recursion is an approach in which a function calls itself with an argument
28.	Stack	Stack is an ordered collection of elements in which insertions and deletions are restricted to one end called top
29.	Тор	Insertions and deletions of stack take place in top pointer

31. Pop operation Removing an element from stack 32. Peek operation Viewing top element of stack 33. Empty stack If top=-1 represent empty stack 34. Ful If top=maxsize-1 represent full stack 35. Queue Queue is an ordered collection of elements in which insertions and deletions take place in 2 ends 36. Rear end The end from which elements are added referred to rare end 37. Front end End from which deletions are made is referred to as the front end 38. Priority queue Priority queue is a collection of elements, each containing a key referred as the priority for that element 39. Enqueue Inserting an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Pur points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out (principle followed by stack) 49. Max heap The key at root must be maximum	ack	Inserting an element in stack	Push operation	30.
33. Empty stack 34. Ful 35. Queue Queue is an ordered collection of elements in which insertions and deletions take place in 2 ends 36. Rear end The end from which elements are added referred to rear end 37. Front end End from which deletions are made is referred to as the front end 38. Priority queue Priority queue is a collection of elements, each containing a key referred as the priority for that element 39. Enqueue Inserting an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow Checking queue is full (contain all elements in array) called overflow Checking queue is full (contain all elements in array) called overflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out (principle followed by stack queue) The key at root must be maximum	om stack	Removing an element from stack	Pop operation	31.
34. Ful If top=maxsize-I represent full stack 35. Queue Queue is an ordered collection of elements in which insertions and deletions take place in 2 ends 36. Rear end The end from which elements are added referred to rear end 37. Front end End from which deletions are made is referred to as the front end 38. Priority queue Priority queue is a collection of elements, each containing a key referred as the priority for that element 39. Enqueue Removing an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Pur points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out (principle followed by stack queue) 49. Max heap The key at root must be maximum	tack	Viewing top element of stack	Peek operation	32.
35. Queue Queue is an ordered collection of elements in which insertions and deletions take place in 2 ends 36. Rear end The end from which elements are added referred to rear end 37. Front end End from which deletions are made is referred to as the front end 38. Priority queue Priority queue is a collection of elements, each containing a key referred as the priority for that element 39. Enqueue Inserting an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out (principle followed by stack queue) 49. Max heap The key at root must be maximum	stack	If top=-1 represent empty stack	Empty stack	33.
elements in which insertions and deletions take place in 2 ends 36. Rear end The end from which elements are added referred to rear end 37. Front end End from which deletions are made is referred to as the front end 38. Priority queue Priority queue is a collection of elements, each containing a key referred as the priority for that element 39. Enqueue Inserting an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out (principle followed by stack queue) 49. Max heap The key at root must be maximum	nt full stack	If top=maxsize-1 represent full stack	Ful	34.
referred to rear end 37. Front end End from which deletions are made is referred to as the front end 38. Priority queue Priority queue is a collection of elements, each containing a key referred as the priority for that element 39. Enqueue Inserting an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out(principle followed by stack queue) The key at root must be maximum	insertions and	elements in which insertions	Queue	35.
referred to as the front end Priority queue is a collection of elements, each containing a key referred as the priority for that element 39. Enqueue Inserting an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum	nents are added		Rear end	36.
elements, each containing a key referred as the priority for that element 39. Enqueue Inserting an element in queue 40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum			Front end	37.
40. Dequeue Removing an element from queue 41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum	g a key referred	elements, each containing a key refer	Priority queue	38.
41. Front Ptr points to 1,st element of queue 42. Rear Ptr points to last element of queue 43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum	ieue	Inserting an element in queue	Enqueue	39.
42. Rear Ptr points to last element of queue 43. Types of queues 44. Applications of stacks 45. Underflow 46. Overflow 47. LIFO Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum	om queue	Removing an element from queue	Dequeue	40.
43. Types of queues Linear queues, Circular queues and Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow 46. Overflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum	of queue	Ptr points to 1,st element of queue	Front	41.
Priority queue 44. Applications of stacks Reversing a string Balanced parenthesis Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum	of queue	Ptr points to last element of queue	Rear	42.
Evaluation of arithmetic expressions 45. Underflow Checking queue is empty (contain no elements in array) called underflow Checking queue is full (contain all elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) First in first out(principle followed by stack queue) The key at root must be maximum	r queues and		Types of queues	43.
elements in array) called underflow Checking queue is full (contain all elements in array) called overflow Last in first out (principle followed by stack) First in first out(principle followed by stack queue) Max heap The key at root must be maximum	-		Applications of stacks	44.
elements in array) called overflow 47. LIFO Last in first out (principle followed by stack) 48. FIFO First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum	=		Underflow	45.
stack) 48. FIFO First in first out(principle followed by stack queue) 49. Max heap The key at root must be maximum			Overflow	46.
stack queue) 49. Max heap The key at root must be maximum	le followed by		LIFO	47.
	le followed by	` I I	FIFO	48.
among all keys present in binary heap			Max heap	49.
The key at root must be minimum among all keys present in binary heap		-	Min heap	50.

Unit-III :_Linked List				
51.	Structure	Structure is a collection of variables belongings to the different data type		
52.	Dynamic memory allocation	The process of allocating memory at runtime is known as dynamic memory allocation		
53.	Malloc()	Allocates requested size of bytes in memeory		
54.	Free	Releases previously allocated memory		
55.	Realloc	Modify the size of previously allocated space		
56.	Singly linked list	Linked list elements are not stored at contiguous location		
57.	Doubly linked list	Contains an extra pointer, typically called previous pointer, together with next pointer and data		
58.	Circularly linked list	Linked list where all nodes are connected to form a circle. There is no null at the end		
59.	Operations of linked list	Creation, insertion(in first, middle and last), deletion(in first, middle and last), searching, traversing		
60.	Application of linked list	Polynomial manipulation Stacks and Queues		
61.	Infix notation	X + Y ,Operators are written in-between their operands		
62.	Postfix notation	X Y +, Operators are written after their operands.		
63.	Prefix notation	+ X Y, Operators are written before their operands		
64.	Other name for Postfix notation	Reverse Polish notation		
65.	Other name for Prefix notation	also known as "Polish notation		
66.	Post fix expression for (a+b*c)/d	abc*+d/		
67.	Pre fix expression for (a+b*c)/d	/+a*bcd		

68.	Head	First node of list
69.	Fields of Single linked list node	Data and next
70.	Next	Address of next node of list
71.	Fields of Double linked list node	Data, next and previous
72.	previous	Address of previous node of list
73.	Isempty of list ()	If head== NULL represent empty list
74.	Traversing	Operation perform viewing of all element in the list
75.	Structure	Structure is a collection of variables belongings to the different data type
	Unit-IV : T	rees
76.	Tree	A tree is a non-linear data structure, which represents hierarchical relationship between individual data items
77.	Height of a Tree	Length of the longest path from the root to a leaf
78.	Path in a tree	Sequence of distinct nodes in which successive nodes are connected by edges
79.	Leaf node	A node that has no children
80.	Binary tree nodes	A binary tree is a tree in which every non-leaf node has atmost two children
81.	Full binary tree	A full binary tree is a tree in which all leaves are on the same leve
82.	Complete binary tree	Is a binary tree in which every level, except possibly the last, is completely filled
83.	Right-skewed binary tree	Binary tree is a tree, which has only right child nodes
84.	Representing a binary tree	Linear representation using arrays. Linked representation using pointers.
85.	Tree traversal	Moving through all the nodes in the binary tree
86.	Types of tree traversal	Preorder traversal, Inorder traversal and Postorder traversal

87.	Tasks performed for	Visiting a node.	
	traversing a binary tree	Traverse the left subtree	
		Traverse the right subtree	
88.	Preorder traversal	Process the root node	
		Traverse the left subtree	
		Traverse the right subtree.	
89.	Inorder traversal	Traverse the left subtree.	
		Process the root node.	
		Traverse the right subtree	
90.	Postorder traversal	Traverse the left subtree	
		Traverse the right subtree.	
		Process the root node	
91.	Binary search tree	Binary tree, in which, the values in any left subtree is less than the value of its parent node, the values in any right subtree is greater than the value of its parent node and the left and right subtrees of each node are again binary search trees	
92.	Property of heap	Structure property and Heap property	
93.	Structure property	It is a complete binary tree.	
94.	Heap property	Heap property - For a "max heap", the property is that the value of each node is always less than or equal to the value of its parent.	
95.	Root	In a tree data structure, the first node is called as Root Node	
96.	Parent node	The node which has child / children	
97.	Siblings	nodes which belong to same Parent	
98.	Degree	total number of children of a node is called as DEGREE of that Node	
99.	AVL Tree	Balanced Binary search tree	
100.	Balanced factor	Height of left subtree- Height of right subtree	

Unit-V : Sorting And Hashing				
101.	Hashing	Searching technique in O(1) time		
		complexity		
102.	Hash function	Hash_key=key mod tablesize		
103.	Collision in hashing	When an element is inserted, it hashes		
		to the same value as an already inserted		
104.	Separate chaining	element, and then it produces collision. Separate chaining is a collision		
104.	Separate chamming	resolution technique to keep the list of		
		all elements that hash to the same		
		value		
10=	0 11 '			
105.	Open addressing	Open addressing is a collision resolving strategy in which, if collision occurs		
		alternative cells are tried until an empty		
		cell is found		
106.	Types of collision	Linear probing		
	resolution strategies in	Quadratic probing		
	open addressing			
107.	Probing	Process of getting next available hash		
		table array cell		
108.	Linear probing	F(i)=i. $Hi(x)=(hash(x)+f(i))mod$		
	1 0	tablesize . I=1,2,3,4		
109.	Quadratic probing	$F(i)=i^2$. $Hi(x)=(hash(x)+f(i))mod$		
110.	Sorting	tablesize . I=1,2,3,4 A sorting algorithm is used to rearrange		
110.	Sorting	a given array or list elements in		
		ascending or descending order.		
111.	Types of internal	Bubble Sort		
	sorting	Insertion Sort		
		Selection Sort		
		Quick Sort		
		Merge Sort		
		Heap Sort		
112.	Classification of sorting	Internal sorting and external sorting		
113.	Internal sorting	internal sorting the data that has to be sorted will be in the main memory		
114.	External sorting	External sorting it will on disks, outside		
114.		main memory		
115	Types of external	Two-way merge sort ,radix sort		
115.	sorting	, . ,		
	1	<u>I</u>		

116.	Time complexity of	Θ (n)	
110.	bubble sort		
117.	Divide-and-conque	Divide: Break the given problem into	
		subproblems of same type.Conquer:	
		Recursively solve these	
		subproblemsCombine: Appropriately	
		combine the answers	
118.		Bubble sort	
110.	Not a stable sorting	Buote soft	
	algorithm		
119.	Not a stable sorting	Merge sort	
	algorithm		
100	0(11000)	Dynamics assert on an amount size a	
120.	O(nlogn)	Running merge sort on an array of size n	
		which is already sorted	
121.	O(n log n))	The time complexity of a quick sort	
		algorithm	
122.	Time complexity of	Θ (n)	
	insertion sort		
123.	Mod function %	Returns remainder value	
123.	Wiod function //	rectains remainder variae	
124.	7%8	7	
125.	10%8	2	
125.	10,00		
Placem	ent Questions		
126.	Last in last out	Stack is also called as	
127.	Queue	Is a pile in which items are	
		added at one end and removed from the	
		other	
128.	Stack	is very useful in situation when	
120.		data have to stored and then retrieved in	
		reverse order	
		To volide Grade	
129.	Stack	DS used for depth first traversal	
130.	Queue	What data structure is used in breadth first	
130.	Zucuc	search of a graph to hold nodes	
131.	Dequeues	A is a linear list in which	
		insertions and deletions are made to from	
		either end of the structure.	
400	ADDECE	The next and the desired to the second to th	
132.	ABDECF	The post-order traversal of the binary tree	
		is DEBFCA. Find out the pre-order	
		traversal	

minimum spanning tree 134. Dijkstra algorithm Algorithm used to find shortest path in graph 135. floyd-warshall all pairs shortest path algorithm Binary Search Trees The in-order traversal of the tree will yield a sorted listing of elements of tree in 138. Edge begins at u and ends at v 139. Overflow Before inserting into stack one must check the condition 140. double ended queue The another name of dequeue is 141. Underflow efore deletion condition indicate the queue is empty 143. Front=Rear The condition indicate the queue has one node is 144. Top The pointer associated with the stack is 145. Selection If the number of records to be sorted is small, then sorting can be efficient. 146. Running time measures the as a function of the number n of items to be sorter 147. Selection sort Which of the following sorting algorithm is of divide and conquer type? 148. Quick sort Partition and exchange sort is Which of the following sorting algorithm is of divide and conquer type? 150. Direted Acyclic Graph Connected graph T without any cycles is	133.	Algorithm used to find	ruskal's algorithmPrim's algorithm	
graph 135. floyd-warshall all pairs shortest path algorithm 136. Single Source Dijkstra algorithm is also called the shortest path problem 137. Binary Search Trees The in-order traversal of the tree will yield a sorted listing of elements of tree in 138. Edge begins at u and ends at v 139. Overflow Before inserting into stack one must check the condition 140. double ended queue The another name of dequeue is 141. Underflow efore deletion condition into stack has to be checked. 142. Front=Null The condition indicate the queue has one node is 144. Top The pointer associated with the stack is		minimum spanning tree	Tuskar s argorianin riin s argorianin	
shortest path algorithm 136. Single Source Dijkstra algorithm is also called the	134.	Dijkstra algorithm		
136. Single Source Dijkstra algorithm is also called the	135.	floyd-warshall all pairs	algorithm computes the shortest paths	
Selection Sele		shortest path algorithm		
137. Binary Search Trees The in-order traversal of the tree will yield a sorted listing of elements of tree in	136.	Single Source		
a sorted listing of elements of tree in 138. Edge begins at u and ends at v 139. Overflow Before inserting into stack one must check the condition 140. double ended queue The another name of dequeue is 141. Underflow efore deletion condition into stack has to be checked. 142. Front=Null The condition indicate the queue is empty 143. Front=Rear The condition indicate the queue has one node is 144. Top The pointer associated with the stack is			shortest path problem	
In a graph if e=(u,v) means	137.	Binary Search Trees		
the condition The another name of dequeue is	138.			
140. double ended queue The another name of dequeue is 141. Underflow efore deletion condition into stack has to be checked. 142. Front=Null The condition indicate the queue is empty 143. Front=Rear The condition indicate the queue has one node is 144. Top The pointer associated with the stack is 145. Selection If the number of records to be sorted is small, then sorting can be efficient. 146. Running time measures the as a function of the number n of items to be sorter 147. Selection sort Which of the following sorting algorithm is of priority queue sorting type 148. Quick sort Partition and exchange sort is Which of the following sorting algorithm is of divide and conquer type?	139.	Overflow	Before inserting into stack one must check	
141. Underflow efore deletion condition into stack has to be checked. 142. Front=Null The condition indicate the queue is empty 143. Front=Rear The condition indicate the queue has one node is 144. Top The pointer associated with the stack is 145. Selection If the number of records to be sorted is small, then sorting can be efficient. 146. Running time measures the as a function of the number n of items to be sorter 147. Selection sort Which of the following sorting algorithm is of priority queue sorting type 148. Quick sort Partition and exchange sort is 149. Merge sort Which of the following sorting algorithm is of divide and conquer type?			the condition	
has to be checked. 142. Front=Null The condition indicate the queue is empty 143. Front=Rear The condition indicate the queue has one node is 144. Top The pointer associated with the stack is	140.	double ended queue	The another name of dequeue is	
142. Front=Null The condition indicate the queue is empty 143. Front=Rear The condition indicate the queue has one node is 144. Top The pointer associated with the stack is	141.	Underflow	efore deletion condition into stack	
143. Front=Rear The condition indicate the queue has one node is The pointer associated with the stack is			has to be checked.	
node is 144. Top The pointer associated with the stack is	142.	Front=Null	The condition indicate the queue is empty	
145. Selection If the number of records to be sorted is small, then sorting can be efficient. 146. Running time measures the as a function of the number n of items to be sorter 147. Selection sort Which of the following sorting algorithm is of priority queue sorting type 148. Quick sort Partition and exchange sort is 149. Merge sort Which of the following sorting algorithm is of divide and conquer type?	143.	Front=Rear	-	
small, then sorting can be efficient. 146. Running time measures the as a function of the number n of items to be sorter 147. Selection sort Which of the following sorting algorithm is of priority queue sorting type 148. Quick sort Partition and exchange sort is 149. Merge sort Which of the following sorting algorithm is of divide and conquer type?	144.	Тор	The pointer associated with the stack is	
number n of items to be sorter 147. Selection sort Which of the following sorting algorithm is of priority queue sorting type 148. Quick sort Partition and exchange sort is 149. Merge sort Which of the following sorting algorithm is of divide and conquer type?	145.	Selection		
is of priority queue sorting type 148. Quick sort Partition and exchange sort is Which of the following sorting algorithm is of divide and conquer type?	146.	Running time		
148. Quick sort Partition and exchange sort is 149. Merge sort Which of the following sorting algorithm is of divide and conquer type?	147.	Selection sort	Which of the following sorting algorithm	
149. Merge sort Which of the following sorting algorithm is of divide and conquer type?			is of priority queue sorting type	
is of divide and conquer type?	148.	Quick sort	Partition and exchange sort is	
150. Directed Acyclic Graph Connected graph T without any cycles is	149.	Merge sort		
called	150.	Dircted Acyclic Graph		

Faculty Team Prepared

Signatures

HoD

1.	M.Ganthimathi	,ASP	/CSE

2. R.Kavishree ,AP/CSE