

ECE

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

:

:

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

Course Code & Course Name

Year/Sem/Sec

19GES24 – DIGITAL PRINCIPLES & SYSTEM DESIGN II / III / A, B & C

Subje	ct Code/Name	19GES24/DIGITAL PRINCIPLES AND SYSTE	M DESIGN
S.No	Term	NotationConcept/Definition/Meaning/Units/Equ(tion/ExpressionSymbol)	a Units
	UNIT	I - BOOLEAN ALGEBRA AND LOGIC GATES	
1	Digital Electronics	Digital (electronic) circuits operate on digital signals (0 and 1).	
2	Number system	Decimal Number system (0-9) base 10 Binary Number system(0 and 1) base 2 Octal Number system (0-7) base8 Hexadecimal Number system(0-9, A- base 16	F)
3	Signed Numbers	Signed numbers contain both sign an magnitude of the number. Generally, the sign is placed in front of number. If sign bit is zero, which indicates the binary number is positive. Similarly, sign bit is one, which indicates the bina number is negative.	ne if
4	Representation of Signed Binary Numbers	Sign-Magnitude form 1's complement form 2's complement form	
5	Un-Signed Binary Numbers	The bits present in the un-signed bina number holds the magnitude of a number That means, if the un-signed bina number contains 'N' bits, then all N bi	er. ry

		represent the magnitude of the number	
6	1's complement form	The 1's complement of a number is obtained by complementing all the bits of signed binary number (1 change into 0, 0 change into 1)	
7	The 2's complement	The 2's complement of a binary number is obtained by adding one to the 1's complement of signed binary number. So, 2's complement of positive number gives a negative number. Similarly, 2's complement of negative number gives a positive number.	
		That means, if you perform two times 2's complement of a binary number including sign bit, then you will get the original signed binary number.	
8	Code and binary code.	The group of symbols is called as code. The digital data is represented, stored and transmitted as group of bits. This group of bits is also called as binary code.	
9	Types of binary code	 Weighted codes Un weighted codes Error detecting and correcting codes 	
10	WEIGHTED CODE	The weighted code are those that obey the position weighting principle, which states that the position of each number represent a specific weight.	
11	Un weighted codes	The Non - Weighted Code are not positionally weighted. In other words, codes that are not assigned with any weight to each digit position.	
12	Commutative law	x + y = y + x x.y = y.x	
13	Associative Law	x + (y + z) = (x + y) + z x.(y.z) = (x.y).z	

		1			
14	Distributive Law			x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z)	
15	Duality theorem			This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a corresponding Dual function.	
16	DeMorgan's Theorem			1. $(x + y)' = x' \cdot y'$ 2. $(x \cdot y)' = x' + y'$	
17	Boolean function		N	It is described by an algebraic expression consists of binary variable , constant and logic operators.	
18	min terms	m		Boolean product terms are called as min terms . It denoted by "m"	
19	Canonical SoP	∑m	くく	Canonical Sum of Products form. In this form, each product term contains all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP form is also called as sum of min terms form.	
20	Max terms	M DES	516	Boolean sum terms are called as Max terms. It denoted by "M"	
21	Canonical PoS	пМ	E	Canonical Product of Sums form. In this form, each sum term contains all literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called as product of Max terms form.	
22	Karnaugh or K-Map			It is graphical representation of Boolean functions and is used to simplify Boolean functions .K map is a matrix of squares and each square or Cell represents a minterm or maxterm from of Boolean expression	
23	don't care			If don't care terms also present, then place don't cares 'x' in the respective cells of K- map. Consider only the don't cares 'x' that are helpful for grouping maximum number of adjacent zeroes. In those cases,	

		treat the don't care value as '0'.
24	Tabulation method	It is difficult to simplify the functions using K-Maps. Because, the number of cells in K-map gets doubled by including a new variable.
25	Logic Gates	 Basic Logic gate - NOT,AND,OR Universal Logic gate - NAND, NOR Special Logic gate - EX OR, EX NOR
26	NAND and NOR implementatio n	Logic circuits designed using universal gates
		UNIT II - COMBINATIONAL LOGIC
27	Combinational circuits	It is consist of Logic gates. These circuits operate with binary values. The output(s) of combinational circuit depends on the combination of present inputs
28	Analysis and design procedure	Circuit is analysed to make sure that given circuit is combinational and by using design procedure we implement the combinational circuit.
29	Analysis procedure	Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.
30	Design procedure	 1. The problem definition. 2. The no of available and required output variable is determined 3. The input and output variables are assigned letter symbols. 4. The truth table that defines the required relationship between inputs and outputs

			270	
			are derived.	
			5.The simplified Booleanfunction for each output is obtained.	
			6. The logic diagram is drawn.	
			Half adder is a combinational circuit,	
			which performs the addition of two single	
31	Half Adder		bits A & B and produce two outputs sum	
			and carry.	
			Full adder is a combinational circuit,	
			which performs the addition of three	
			bits A, B and C _{in} . Where, A & B are the	
			two parallel significant bits and C _{in} is the	
32	Full Adder		carry bit, which is generated from	
			previous stage. This Full adder also	
			produces two outputs sum, S & carry, C _{out} ,	
			which are similar to Half adder.	
			The 4-bit binary adder performs	
			the addition of two 4-bit numbers. Let the	
			4-bit binary numbers,	
33	4-bit Binary		A=011 binary numbers, $A=A_{3}A_{2}A_{1}A_{0}$ and $B=$	
55	Adder		$B_{3}B_{2}B_{1}B_{0}$, we can implement	
			4-bit binary adder in one of the two	
			following ways.	
			The parallel adder causes a unstable factor	
			on carry bit, and produces longest	
34	Carry look-		propagation delay. That limit can be	
	ahead		overcome by this technique	
			The circuit, which performs the	
			subtraction of two binary numbers, is	
35	Binary subtractor		known as Binary subtractor. We can	
		DESIG	implement Binary subtractor in following	
			two methods.1's and 2's complement form	
			When the binary sum is greater than 1001,	
_	Rules of BCD		The addition of binary 6(0110) to the	
36	adder		binary sum converts it to the correct BCD	
	uuuuu		representation	
			Its compares two digital or binary	
			numbers in order to find out whether one	
	Magnitude		binary number is equal, less than or	
37	comparator		greater than. logically design a circuit -two	
			inputs one for A and B and have three	
			output terminals, $A > B$, $A = B$, $A < B$.	
			Decoder is 'n' input lines and maximum	
			of 2^n output lines. One of these outputs	
38	Decoder		will be active High based on the	
			combination of inputs present, when the	
			decoder is enabled.	
<u> </u>		1		

	1	I		
39	Encoder		An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has maximum of 2 ⁿ input lines and 'n' output lines.	
40	Encoder Applications		Encoders are used to translate rotary or linear motion into a digital signal. Usually this is for the purpose of monitoring or controlling motion parameters such as speed, rate, direction, distance or position.	
41	Priority encoder		If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.	
42	Multiplexer		Multiplexer is a combinational circuit that has maximum of 2 ⁿ data inputs, 'n' selection lines and single output line. One of these data inputs will be connected to the output based on the values of selection lines.	
43	De- Multiplexer	2	De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has single input, 'n' selection lines and maximum of 2^n outputs.	
44	Applications of Multiplexer and Demultiplexer	DESIG	Communication System – Multiplexer and Demultiplexer both are used in communication systems to carry out the process of data transmission. A De- multiplexer receives the output signals from the multiplexer ; and, at the receiver end, it converts them back to the original form	
45	Code conversion	C	Code converter is a circuit that makes the two systems compatible eventhough each uses a different binary codes.	
46	Gray code		The reflected binary code or Gray code is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). Gray codes are very useful in the normal sequence of binary numbers generated by the hardware that may cause an error or ambiguity during the transition from one number to the next. Gray code is not weighted code	

47	BCD	It is also called as 8421 code because each of the four bits is given a 'weighting' according to its column value in the binary system. The least significant bit (lsb) has the weight or value 1, the next bit, going left, the value 2.	
48	Excess-3 codes	It is unweighted and can be obtained by adding 3 to each decimal digit then it can be represented by using 4 bit binary number for each digit	
49	HDL introduction	 1.Hardware description language is a language that describes the hardware of a digital circuit in a textual form. 2. It can be used to represent logic diagrams, Boolean expressions and more complex digital circuits. 3.two applications of HDL processing Simulation Synthesis 	
50	HDL models of comblnational circuits	 Gate level modeling Data level modeling Behaviour modelling 	
	UNIT	III - SYNCHRONOUS SEQUENTIAL LOGIC	
51	Memory Elements	There are two types of memory elements based on the type of triggering that is suitable to operate it. Latches DESIC Flip-flops OUR FUTURE	Memory Elements
52	Latches	Latches operate with enable signal, which is level sensitive	Latches
53	Flip-Flops	Memory element used in clocked sequential circuits	Flip-Flops
54	Shift Register	The one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip- flops. The group of flip-flops, which are used to hold (store) the binary data is known as register.	Register

		1		r
55	Types Of shift Register	5 1 1	Serial In – Serial Out shift register Serial In – Parallel Out shift register Parallel In – Serial Out shift register Parallel In – Parallel Out shift register	Types Of Register
56	Johnson Ring Counter	I v s t f i	The Johnson Ring Counter or "Twisted Ring Counters", is another shift register with feedback exactly the same as the standard <i>Ring Counter</i> above, except that this time the inverted output Q of the last flip-flop is now connected back to the input D of the first flip-flop as shown below.	
57	Required Components of Serial Adder/Subtra ctor		Required 2 register and one FA and one FF	Required Componen ts of Serial Adder/Sub tractor
58	Sequential Circuit	i s c t	The sequential circuit contains a set of inputs and output(s). The output(s) of sequential circuit depends not only on the combination of present inputs but also on the previous output(s). Previous output is nothing but the present state.	
59	Types of Sequential Circuits		Asynchronous sequential circuits Synchronous sequential circuits	
60	Synchronous sequential circuits	t	Output changes at discrete interval of time. It is a circuit based on an equal state time or a state time defined by external means such as clock	
61	Asynchronous sequential circuits	Est	Output can be changed at any instant of time by changing the input. It is a circuit whose state time depends solely upon the internal logic circuit delays.	
62	Types of Triggering	Ι	Level triggering Edge triggering	
63	S-R Flip Flop		It is basically a one-bit memory bistable device that has two inputs, one which will "SET" the device (meaning the output = "1"), and is labelled S and one which will "RESET" the device (meaning the output = "0"), labelled R.	
64	J-K Flip Flop	a	It is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output	

			condition that can occur when both inputs S and R are equal to logic level "1".	
65	D Flip Flop		It is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level	
66	T Flip Flop		These are basically a single input version of JK flip flop. This modified form of JK flip-flop is obtained by connecting both inputs J and K together. This flip-flop has only one input along with the clock input.	
67	Master Slave Flip Flop		The master-slave flip-flop eliminates all the timing problems by using two SR flip- flops connected together in a series configuration. One flip-flop acts as the "Master" circuit, which triggers on the leading edge of the clock pulse while the other acts as the "Slave" circuit, which triggers on the falling edge of the clock pulse.	
68	Propagation Delay Time	K	The Interval of time required after an input signal has been applied for the resulting output change to occur.	
69	Characteristics of register		 i. Memory Register (or) Buffer Register ii. Shift Register 	
70	Buffer Register	DESIG	It is a simplest form of registers which is simply used to store binary information.	
71	Shift Register	E	A register may input and output data in serial or parallel form. A number of flip flops connected together in such a way that data may be shifted into and out of the register.	
72	Universal Shift Register		A shift registers which can shift the data in both directions as well as loads it parallel.	
73	Uni-directional shift register		A shift registers which can shift the data in only one direction.	
74	Bi-directional shift register		A shift registers which can shift the data in both directions.	

75	Counter	It is a digital sequential logic device that will go through a certain predefined states based on the application of the input pulses.	
76	HDL for sequential circuits	In verilog HDL there are two methods for defining a circuit: > Structural modeling > Behaviour modelling	
	UNIT-	V - ASYNCHRONOUS SEQUENTIAL LOGIC	
77	Asynchronous circuit	The circuit in which the change in the input signals can affect the memory elements at any instants of the time.	
78	Different modes of operation	The different modes of operation are fundamental mode and sequential mode circuits.	
79	Ripple counters	Counter circuits made from cascaded J-K flip-flops where each clock input receives its pulses from the output of the previous flip-flop invariably exhibit a ripple effect, where false output counts are generated between some steps of the count sequence.	
80	Race condition	Race condition (race) is a condition in sequential circuits in which two or more variables change at one time.	
81	Non-critical race	The final stable state does not depend on the change order of state variables	
82	Critical race	The change order of state variables will result in different stable states	
83	State assignment	State assignment is the process of assignment of binary values to the states of the reduced state table in the design of asynchronous circuits.	
84	Cycle	If an input change induces a feedback transitions through more than one unstable state	

85	Hazard		Hazard is the unwanted transient i.e Spike or glitch that occurs due to unequal propagation delays through a combination circuit.
86	Stable state		The time sequence of input, output and FF states can be enumerated in a state table it is also called as transition table.
87	Transition Table		Transition table is useful to analyze an asynchronous circuit from the circuit diagram
88	Glitch		The unwanted switching transients that may appear at the output of a circuit
89	Static hazard		Static hazard is a condition, which result in a single momentary incorrect output due to change is a single input variable when the output is expected to remain in the same state.
90	Cause for Essential Hazard		Operational error generally caused by an excessive delay to a Feedback variable in response to an input change, leading to a transition to an improper state.
91	Flow Table		It is similar to a transition table except the states are represented by letter symbols .
92	Faults in asynchronous sequential circuits	DESIG	 (1) Hazards (2) Oscillations FUTURE (3) Critical races
93	Static 1 hazard		If the outputs before and after the change of input are both 1 with an incorrect output 0 in between.
94	Static 0 hazard		If the outputs before and after the change of input are both 0 with an incorrect output 1 in between
95	Compatible pairs		Two states are said to be compatible, if in every column of the corresponding rows in the flow table, there are identical states and if there is no conflict in the output values.

96	Maximal compatibles		The maximal compatible is a group of compatibles that contains all the possible combinations of compatible states	
97	Types of hazards		Static hazard, Dynamic hazard, Essential hazard.	
98	Primitive flow table		primitive flow is the flow table that has only one stable state in each row.	
99	Secondary variables of asynchronous sequential circuits		The present state and the next state variables in asynchronous sequential circuits are called Secondary / excitation variables.	
100	Application areas of asynchronous sequential circuits		 i. Used where speed is important ii. Require only few components. iii. Used where the input change at any time independent of clock. iv. Communication between two units where each has own independent clock. 	
101	State of sequential circuit	\overline{N}	The binary information stored in the memory elements at any given time defines the "state" of sequential circuit.	
	UNIT	v - Memoi	RY AND PROGRAMMABLE LOGIC	
102	Types Of Memory	DESIG	 Primary memory (RAM and ROM). Secondary memory(hard drive,CD,etc.) 	
103	Random Access Memory	E	It is a volatile memory as the data loses when the power is turned off. The programs and data that the CPU requires during execution of a program are stored in this memory.	
104	RAM Types		 SRAM (Static Random Access Memory) DRAM (Dynamic Random Access Memory). 	
105	Read Only Memory (ROM)		Stores crucial information essential to operate the system, like the program essential to boot the computer. It is not volatile	
106	ROM Types		ROM, PROM, EPROM, and EEPROM.	

107	Error detection codes		To detect the errors, present in the received data bit stream. These codes contain some bits, which are included appended to the original bit stream	
108	Error correction codes		appended to the original bit stream. To correct the errors, present in the received data bit stream so that, we will get the original data. Error correction codes also use the similar strategy of error detection codes	
109	Parity Code		A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.	
110	Types of Parity Codes		1.Even Parity Code 2. Odd Parity Code	
111	Even parity	Checks if there is an even number of ones; if so, parity bit is zero. When the number of one's is odd then parity bit is set to 1.		
112	Odd Parity	/	Checks if there is an odd number of ones; if so, parity bit is zero. When the number of one's is even then parity bit is set to 1.	
113	Hamming code	R	It adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error.	
114	Programmable Array Logic		PAL is a programmable logic device that has Programmable AND array & fixed OR array.	
115	Programmable Logic Array	<u>DESIG</u>	PLA is a programmable logic device that has both Programmable AND array & Programmable OR array.	
116	PROM (Programmabl e read-only memory)		It can be programmed by user. Once programmed, the data and instructions in it cannot be changed.	
117	EPROM (Erasable Programmable read only memory)		It can be reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it, erase all the previous data.	
118	EEPROM (Electrically erasable programmable read only		The data can be erased by applying electric field, no need of ultra violet light. We can erase only portions of the chip.	

	memory)			
119	Sequential programmable devices		Sequential programmable devices include both gates and flip-flops. In this way, the device can be programmed to perform a variety of sequential-circuit functions.	
120	Sequential programmable devices Types		 Sequential (or simple) programmable logic device (SPLD) Complex programmable logic device (CPLD) Field-programmable gate array (FPGA) 	
121	Sequential (or simple) programmable logic device (SPLD)		The SPLD includes flip-flops, in addition to the AND-OR array, within the integrated circuit chip. A PAL or PLA is modified by including a number of flip-flops connected to form a register	
122	Complex programmable logic device (CPLD)		It is a collection of individual PLDs on a single integrated circuit. A programmable interconnection structure allows the PLDs to be connected to each other in the same way that can be done with individual PLDs	
123	Field programmable gate array (FPGA)		FPGA logic block consists of lookup tables, multiplexers, gates, and flip-flops. A lookup table is a truth table stored in an SRAM and provides the combinational circuit functions for the logic block	
124	Application Specific Integrated Circuit(ASIC)	DESIG	These are usually designed from root level based on the requirement of the particular application. Examples are chips used in toys, the chip used for interfacing of memory and microprocessor	
125	Advantages of ASIC		 The small size of ASIC makes it a high choice for sophisticated larger systems. As a large number of circuits built over a single chip, this causes high-speed applications. ASIC has low power consumption. ASIC has no timing issues and post-production configuration. 	
126	ASIC Types		 Programmable FPGAs PLDs Semi Custom Gate Array Based 	

		i) Structured Gate
		ii) Channel-less
		iii) Channeled
		2.Standard Cell Based
		➢ Full Custom
		GATE/Placement Related Questions
		1899.981 ÷ √1444.12 – 119.910 % of 34.975 +
127	Simplification	4.932 * 104.292 = ?
		Ans: 528
		A box contains six pink balls and four
		orange balls and three balls drawn one
	Ducktor	after other. Find the probability of all three
128	Profit and	balls being Pink balls if the balls drawn
	Percentage	are not replaced?
		Ans: 1/6
		Find the wrong term in the following
		number series?
129	Number Series	90, 86, 95, 79, 103, 68, 117
		Ans: 103
		What value should come in the place of
100		question mark in the given series?
130	Number Series	19, 23, 32, 48, 73, 109, ?
		A 150
		Ans: 158
		Eight persons B, E, J, K, M, S, T and V are
		in a family with three different
		generations. J is the son of B. E is the
		daughter of K and sister of S. M is the
	Relation ship	mother of E. V is the sister-in-law of S,
131		who has only two siblings. S is the aunt of
		J. T is the niece of B. E does not has any
		child.
		If J is married to X, then how is X related
		to E?
		Ans: Cannot be determined
		The address of input/output device or
		memory is carried by the and the
100	Computer	data to be transferred is carried by the
132	Awareness	
		Ans: Address bus, Data bus

133	Directions		A man started walking from his place. He goes 5m south. He turns 90 degree anticlockwise and walks for 7m. Now he turns left and goes 3m. After turning right, he walks for 4m, again he walks for 3m after turning left. Now he turns towards west and walks for 5m. He again walks for 5m before he stops. What is the shortest distance between his starting point and ending point? Ans: 1m	
134	Speed and Time		A bag contains 4 red marbles, 5 green marbles and 6 pink marbles. If 3 marbles are taken at randomly, then find the probability that 2 marbles are Pink? Ans: 27/91	
135	Time and Work		A can do a work in 15 days, B can do it in 12 days but C can do (3/4)th of the work in 18 days. Find the time taken by all together to complete the work? Ans: 5 5/23 days	
136	Time and Work		A contractor hired 40 men to complete a project in 15 days. 40 men started working, after 9 days the contractor notices that only three-fifth of the work gets completed. Then how many extra men can be employed to complete the remaining work on time?	
137	Carry flag	E	Ans: 0 YOUR FUTURE Set when carry occurs after an operation, otherwise reset.	
138	Parity flag		Set if the result of an operation contains even number of 1 bits, otherwise reset.	
139	Stack Pointer		Stack pointer is a special purpose 16-bit register in the Microprocessor, which holds the address of the top of the stack.	
140	Program Counter		Program counter holds the address of either the first byte of the next instruction to be fetched for execution.	
141	Bus		A bus is a group of conducting lines that carriers data, address, & control signals.	

142			Three Logic Levels are used and they are	
	Tri-state Logic		High, Low, High impedance state.	
	0			
	+ +		TRAP, RST7.5, RST6.5, RST5.5, INTR.	
143	Hardware			
	Interrupts			
	Software Interrupts		RST0, RST1, RST2, RST3, RST4, RST5,	
144			RST6, RST7.	
			Immediate, Direct, Register, Register	
145	Addressing		indirect, Implied addressing modes.	
	Modes		i i i i i i i i i i i i i i i i i i i	
			The Quality factor is also defined, as Q. So	
146	Quality Factor		it is a number, which reflects the lossness	
140	Mean		of a circuit. Higher the Q, the lower are the	
			losses.	
			Assembler is used to translate the high	
147	Assembler	$\Gamma \leq$	level language program to machine code.	
			Emulators are used to test and debug the	
148	Emulator		hardware and software of an external	
			system.	
	Compiler		Compiler is used to translate the high-	
149			level language program into machine code	
			at a time.	
150	BIU		Bus interface unit is responsible for	
			transferring the data addresses on the	
			buses necessary for -execution unit.	
			Using a single bus for two different	
151	Multiplexing		functions is called multiplexing.	

DESIGNING YOUR FUTURE

Estd. 2000

	Faculty Team Prepared	Signatures	HOD
1.	Mr.M.Eswaramoorthy		
2.	Mrs.G.Ranjitha		
3.	Mrs.P. Subhasundari		