

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MATHS

MKC

2021-22

Course Code & Course Name : 19BSS24/Discrete Mathematics

Year/Sem/Sec

: III / V / CSE

S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning / Units / Equation / Expression	Units
		Unit	-I : LOGIC AND PROOFS	
1.	Proposition		It is a declarative sentence which is either true or false but not both.	
2.	Statement Formula	\angle	It is an expression which is a string consisting of variables (Captial letters with or with out subscripts), parenthesis and connectives symbols.	
3.	Logical Connectives	$\sim, \vee, \wedge, \land, \rightarrow, \leftrightarrow$	Negation, Conjunction, Disjunction, Conditional, Bi Conditional.	
	Truth Table		A truth table is a table consists of the truth values (True or False)	
4.	Negation	~	The negation of a statement is generally formed by introducing he word "not" at a proper place in the given statement.	
	Conjunction (And)	• E	If both P and Q have the truth values T, then $P \land Q$ has the truth value T. Otherwise $P \land Q$ has the truth value F.	
5.	Disjunction (OR)	V	P V Q has the truth value T if any one of P or Q has the truth value T	
6.	Biconditional	↔	The Statement $P \leftrightarrow Q$ has the truth value T whenever both P and Q have same truth values.	
7.	Tautology		A Statement formula which is always true is called a Tautology.	

8.	Contradiction		A Statement formula which is always true is called a Contradiction.
9.	Contingency		A Statement formula which is neither tautology nor contradiction is called Contingency.
10.	Converse, Contrapositiv e and Inverse		$P \rightarrow Q$ is a conditional statementConverse of $P \rightarrow Q$ is $Q \rightarrow P$ Contra positive of $P \rightarrow Q$ is $\sim Q \rightarrow \sim P$ Inverse of $P \rightarrow Q$ is $\sim P \rightarrow \sim Q$.
11.	Idempotent Laws	\geq	1. $P \land P \leftrightarrow P$ 2. $P \lor P \leftrightarrow P$
12.	Identity Laws		1. $P \land T \leftrightarrow P$ 2. $P \lor F \leftrightarrow P$
13.	De Morgans Laws	X	1. $\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$ 2. $\sim (p \lor q) \leftrightarrow (\sim p \land \sim q)$
14.	Double Negation Law		$\sim (\sim p) \leftrightarrow p$
15.	Proposition	X	It's a declarative sentence which is either true or false but not both.
16.	Statement Formula	SIGNI	It is an expression which is a string consisting of variables (Capital letters with or without subscripts), parenthesis and connectives symbols.
17.	Quantifiers	E	It is one which is used to quantify the nature of variables.
18.	Types of Quantifiers		1. Universal Quantifier 2. Existential Quantifier
19.	Universal Quantifier	(x) or $\forall x$	The quantifier "for all x " is called the Universal Quantifier.
20.	Existential Quantifier	(∃ <i>x</i>)	The quantifier "some x " is called the Existential Quantifier.

			T	
21.	Disjunctive Normal Form	DNF	A Statement formula which is equivalent to a given formula and which consists of a sum of elementary products is called a Disjunctive Normal Form.	
22.	Conjunctive Normal Form	CNF	A Statement formula which is equivalent to a given formula and which consists of a product of elementary Sum is called a Conjunctive Normal Form.	
23.	Principal Disjunctive Normal Form	PDNF	For a given Statement formula, an equivalent formula consisting of disjunction of min terms only is known as Principal Disjunctive Normal Form.	
24.	Principal Conjunctive Normal Form	PCNF	For a given Statement formula, an equivalent formula consisting of conjunction of max terms only is known as Principal Disjunctive Normal Form	
25.	Predicate Calculus		Predicate Calculus deals with the study of predicates.	
		Uni	it-II : COMBINATORICS	\neg
26.	Permutation	nPr	The process of arranging things is called Permutation.	
27.	Combination	nC _r	The process of selecting things is called Combination.	
28.	Generating function.	$G(\mathbf{x}) = \sum_{n=0}^{\infty} a_n x^n$	The generating function of a sequence $a_0, a_1, a_2, \dots, a_n$, is the expression $G(x) = \sum_{n=0}^{\infty} a_n x^n$	
29.	Principle of Inclusion and Exclusion for two variables		$ A_1 \cup A_2 = A_1 + A_2 - A_1 \cap A_2 $	
30.	The principle of Inclusion – Exclusion for		$ A_1 \cup A_2 \cup A_3 = A_1 + A_2 + A_3 - A_1 \cap A_2 - A_1 \cap A_3 $	- A ₂

	three variables		
31.	Recurrence relation		An equation that expresses a_n the general term of the sequence (a_n) in terms of one or more of the previous terms of the sequence namely $a_{0,a_1,a_2,\ldots,a_{n-1}}$ for all integers n with $n \ge n_0$ where n_0 is a non-negative integer is called Recurrence relation.
32.	Linear recurrence relation		A recurrence relation of the form $c_0a_n + c_1a_{n-1} + c_2a_{n-2} + \dots + c_ka_{n-k} = f(n)$ is called a linear recurrence relation of degree k with constant coefficients, where $c_0, c_1, \dots c_k$ are real numbers and $c_k \neq 0$.
33.	Homogeneou s recurrence relation	f(n) = 0	If $f(n) = 0$, then the given recurrence relation is called homogeneous recurrence relation.
34.	Non- Homogeneou s recurrence relation	$f(n) \neq 0$	If $f(n) \neq 0$, then the given recurrence relation is called homogeneous recurrence relation.
35.	Characteristic equation of order 2	$\mathbf{\mathbf{X}}$	$c_0r^2 + c_1r + c_2 = 0$, $r \neq 0$ is called the characteristic equation.
36.	Recurrence relation for the Fibonacci sequence	$ \begin{array}{c} f_n = f \\ n_1 + f_{n_2} \\ 2 \end{array} $	Fibonacci sequence recurrence relation $f_n=f_{n-1}+f_{n-2}$
37.	Complementa ry function of the recurrence relation, if the roots are real and unequal	E	$std-2000$ $a_n = k_1 r^n + k_2 r^n$
38.	Complementa ry function of the recurrence relation, if the roots are real		$a_n = (k_1 + k_2 n) r^n$

	and equal	
39.	Complementa ry function of the recurrence relation, if the roots are Imaginary	$a_n = r^n (k_1 cosn\theta + k_2 sinn\theta)$
40.	Generating function of the sequence 1,1,1,1 is	$G(x) = \sum_{n=0}^{\infty} x^n$
41.	Generating function of the sequence 1,2,3,4 is	$G(x) = \sum_{n=0}^{\infty} (n+1)x^n$
42.	Generating function of the sequence $1, a, a^2, a^3 \dots i$ s	$G(x) = \frac{1}{1-ax} , for ax < 1$
43.	Generalisatio n of the Pigeonhole principle	If n pigeons are accommodated in m pigeonholes and $n > m$, then one of the pigeonholes must contain atleast $\left\lfloor \frac{n-1}{m} \right\rfloor$ pigeons
44.	Circular permutations SIG	If the objects are arranges in a circle (or any closed curve), we get circular permutation and the number of circular permutations will be different from the number of linear permutations.
45.	Number of different circular permutations of n objects	(<i>n</i> – 1)!
46.	Number of different circular arrangements	$\frac{(n-1)!}{2}$

	of n objects		
47.	The principle of Mathematical induction		Let P(n) be a statement or proposition involving the nature number 'n' (i) If P(1) is true (ii) Under the assumption that when P(k) is true, P(k+1) is true, then we conclude that a statement P(n) is true for all natural numbers 'n'
48.	Well-ordering Property		Every non empty set of non negative integers has a least element.
49.	Pigeonhole principle		If (n+1) pigeon occupies 'n' holes then atleast one hole has more than 1 pigeon.
50.	Principle of strong induction		P(j) is true for j =1,2k and shows that P(k+1) must also be true based on this assumption. This is called strong induction.
		1	Unit-III : GRAPHS
51.	Graph	G = G(V, E)	A graph $G = G(V, E)$ consists of a non-empty set V, called the set of vertices (nodes, points) and a set E of ordered or unordered pairs of elements of V called the set of edges, such that there is a mapping from the set E to the set of ordered or unordered pairs of elements of V.
52.	Directed graph		If in a graph $G = G(V, E)$, each edge $e \in E$ is associated with an ordered pair of vertices, then G is called a directed graph or Digraph.
53.	Undirected Graph	SIGNI	If each edge is associated with an unordered pair of vertices, then G is called an undirected graph.
54.	Simple graph		A graph in which there is only one edge between a pair of vertices is called a simple graph.
55.	Multi Graph		A graph which contains some parallel edges is called a multigraph.
56.	Pseudo Graph		A graph in which loops and parallel edges are allowed is called a pseudo graph.
57.	Regular graph		Every vertex of a simple graph has the same degree.

58.	Complete graph		There exists an edge between every pair of vertices.
59.	Degree of a Vertex	deg(v)	The degree of a vertex in an undirected graph is the number of edges incident with it, with the exception that a loop at a vertex contributes twice to the degree of that vertex.
60.	Pendant Vertex		If the degree of a vertex is one then it is called pendant vertex.
61.	Bipartite graph	\leq	If the vertex set of a simple graph $G = G(V, E)$ can be partitioned into two subsets V ₁ and V ₂ such that every edge of G connects a vertex in V ₁ and and a vertex V ₂ , then G is called a bipartite graph.
62.	Completely Bipartite graph		If each vertex of V_1 is connected with every vertex of V_2 by an edge, then G is called Completely Bipartite graph
63.	Adjacency Matrix	$A = \lfloor a_{ij} \rfloor$	$= \begin{cases} 1, if there exist an edge between v_i and v_j \\ 0, & otherwise \end{cases}$
64.	Incidence Matrices Path Matrix	$B = \lfloor b_{ij} \rfloor$ $P = \lfloor p_{ij} \rfloor$	$= \begin{cases} 1 & , when \ edge \ e_j \ incident \ on \ v_i \\ 0 & , & otherwise \end{cases}$
65.	Graph Isomorphism DE	SIGNI E	If G ₁ & G ₂ are isomorphic then G ₁ & G ₂ have (i)the same number of vertices (ii)the same number of edges (iii) an equal number of vertices with a given degree
66.	Path		Starting with the vertex v_1 , one can travel along edges $(v_1, v_2), (v_2, v_3), \dots$ and reach the vertex v_k .
67.	Length of the path		the number of edges appearing in the sequence of a path.
68.	Cycle or Circuit		A path which originate and ends in the same node
69.	Eulerian Path		A path of a graph G is called an Eulerian path, if

		it includes each of edges of G exactly once.	
70.	Eulerian Circuit	(i)Starting and ending points (vertices) are same.(ii)Cycle should contain all the edges of the graph but exactly once.	
71.	Eulerian Graph	A graph containing an Eulerian circuit is called an Eulerian graph.	
72.	Hamiltonian Path	A path of graph G is called a Hamiltonian path,if it includes each vertex of g exactly once.	
73.	Hamiltonian Circuit	Cycle should contain all the vertices of graph but exactly once, except the starting and ending vertices.	
74.	Hamiltonian Graph	A graph containing an Hamiltonian circuit is called an Hamiltonian graph.	
75.	Connected Graph	An undirected graph is said to be connected if a path between every pair of distinct vertices of the graph.	
		Unit-IV : ALGEBRAIC SYSTEMS	
76.	Semi Group	Closure property: $a * b \varepsilon G$, for all $a, b \varepsilon G$ Associative property: $(a * b) * c = a * (b *)$, for all $a, b, c \varepsilon G$	
77.	Monoid DE	Closure property: $a * b \varepsilon G$, for all a , $b\varepsilon G$ Associative property: $(a * b) * c = a * (b * c)$, for all a , b , $c \varepsilon G$ Identity element: : $a * e = e * a = a$ for all $a \varepsilon G$	
78.	Semi group Homomorphi sm	Let $(S,*)$ and (T,Δ) be any two semi group. A mapping $g: S \to T$ such that for any two elements $a, b \in S$. $g(a*b) = g(a)\Delta g(b)$ is called a semi group homomorphism.	
79.	Group	Closure property: $a * b \varepsilon G$, for all $a, b \varepsilon G$	

	1	[A see sisting super subm
			Associative property:
			(a * b) * c = a * (b * c), for all a, b, c ε G
			Identity element: :
			$a * e = e * a = a for all a \varepsilon G$
			Inverse element:
			$a * a^{-1} = a^{-1} * a = e \text{ for all } a, a^{-1} \varepsilon G$
			Closure property: a * b ε G , for all a , bε G
			Associative property:
			$(a * b) * c = a * (b * c), for all a, b, c \varepsilon G$
	Abelian		Identity element: :
80.	Group		$a * e = e * a = a for all a \varepsilon G$
			Inverse element:
			$a * a^{-1} = a^{-1} * a = e \text{ for all } a, a^{-1} \varepsilon G$
			Commutative Property:
		-16	$a * b = b * a$ for all $a, b \in G$.
	Order of		
		0(G)	
81.	group		The number of elements in a group G.
	Finite group		O(G) is finite.
82.			o (d) is inne.
	Infinite group		
83.			O(G) is infinite.
	DE	SIGNI	N.C. YOUR ENTENDE
	DE	JUNI	Let $(G,*)$ be a group. Then $(H,*)$ is said to be
84.	Subgroup	(subgroup of $(G,*)$ if $H \subseteq G$ and $(H,*)$ itself is a
		iine a	group under the operation *.
85.	Lagrange's		If G is a finite group and H is a sub group of G
	theorem		then the order of H is a divisor of order of G. The
			converse of Lagrange's theorem is false.
			(i) $(a+b)+c=a+(b+c)$ a,b,c $\in \mathbb{R}$
	Ring		(ii) There exists an element $0 \in \mathbb{R}$ called zero
86.			element such that $a+0 = 0+a = a$ for
			all a c R

			(iii)For all a c R, a+(-a) =(-a)+a = 0, -a is the negative of a.
			(iv) a+b =b+a for all a,b cR
			(v) (a.b).c =a.(b.c) for all a,b,c $\in \mathbb{R}$
			The operation * is distributive over + i.e.,for any a,b,c ¢ R,
			a.(b+c) = a.b + a.c
			(b+c).a = b.a + c.a
		\langle	In otherwords if R is an abelian group under addition with the properties (v) and (vi) then R is a ring.
			A commutative ring $(R,+,\bullet)$ with identity is called a field if every non-zero element has a
			Multiplicative inverse. Thus $(R,+,\bullet)$ is a field if
87.	Field		(i) (R,+) is abelian group and
			(ii) (R-{0},●) is also abelian group.
88.	Cyclic Group	ĎХ	A group {G,*} is said to be cyclic, if there exists an element $a \in G$ such that every element x of G can be expressed as $x=a^n$ for some integer n.
89.	Kernal of a Homomorphi sm	ker(f)	If $f: G \rightarrow G'$ is a group homomorphism ,then the set of elements of G, which are mapped into e', the identity element of G' is called the kernel of the homomorphism f.
90.	Left Co sets	SIGNI	If $\{H, *\}$ is subgroup of a group $\{G, *\}$, then the set aH , where $a \in G$, defined by aH= $\{a*h / h \in H\}$ is called the left cosetof H in G.
91.	Left Co sets	E	If {H,*} is subgroup of a group {G,*}, then the set aH , where a <i>\varepsilon</i> , defined by aH={a*h / h <i>\varepsilon</i> H is called the left cosetof H in G.
92.	Right Co sets		If {H,*} is subgroup of a group {G,*}, then the set Ha , where a ɛ G, defined by Ha={h*a / h ɛH} is called the right co set of H in G.
93.	Algebraic systems		A system consisting of non-empty set and one or more n-ary operations on the set is called an algebraic system.
94.	Homomorphi		If { <i>X</i> ,•} and { <i>Y</i> ,*} are two algebraic systems,

• & * are binary (n-ary) operations, then a mapping $g: X \to Y$ is called homomorphism or simply morphism from $\{X, \circ\}$ to $\{Y, *\}$, if for any $x_1, x_2 \in X$, $g(x_1 \circ x_2) = g(x_1) * g(x_2)$, If a function g satisfying the above condition exists, then $\{Y, *\}$ is called the homomorphic image of $\{X, \circ\}$ 95.EpimorphismIf the homomorphism $g: X \to Y$ is onto , then g is called Epimorphism96.Monomorphis mIf the homomorphism $g: X \to Y$ is one-to-one , then g is called Epimorphism97.IsomorphismIf $g: \{X, \circ\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism98.Endomorphis mA homomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism if $Y \subseteq X$ 99.Automorphis mIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V: LATTICES AND BOOLEAN ALGEBRA		sm		where	
$g: X \to Y$ is called homomorphism or simply morphism from $\{X, o\}$ to $\{Y, *\}$, if for any $x_1, x_2 \in X$, $g(x_1 \circ x_2) = g(x_1) * g(x_2)$, If a function g satisfying the above condition exists, then $\{Y, *\}$ is called the homomorphic image of $\{X, o\}$ 95.EpimorphismIf the homomorphism $g: X \to Y$ is onto , then g is called Epimorphism96.Monomorphis mIf the homomorphism $g: X \to Y$ is one-to-one , then g is called Epimorphism97.IsomorphismIf $g_i \{X, o\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism98.Endomorphis mA homomorphism $g: \{X, o\} \to \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 99.Automorphis mIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA				• & $*$ are binary (n-ary) operations, then a	
morphism from $\{X, \circ\}$ to $\{Y, *\}$, if for any $x_1, x_2 \in X$, $g(x_1 \circ x_2) = g(x_1) * g(x_2)$, If a function g satisfying the above condition exists, then $\{Y, *\}$ is called the homomorphic image of $\{X, \circ\}$ 95.EpimorphismIf the homomorphism $g : X \to Y$ is onto , then g is called Epimorphism96.Monomorphis mIf the homomorphism $g : X \to Y$ is one-to-one , then g is called Epimorphism97.IsomorphismIf $g: \{X, \circ\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism98.Endomorphis mA homomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 99.Automorphis mIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA				mapping	
$x_1, x_2 \in X$, $g(x_1 \circ x_2) = g(x_1) * g(x_2)$, If a function g satisfying the above condition exists, then $\{Y, *\}$ is called the homomorphic image of $\{X, \circ\}$ 95.EpimorphismIf the homomorphism $g : X \to Y$ is onto , then g is called Epimorphism96.Monomorphis mIf the homomorphism $g : X \to Y$ is one-to-one , then g is called Epimorphism97.IsomorphismIf $g: \{X, \circ\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism98.Endomorphis mA homomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 99.Automorphis mIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA				$g: X \to Y$ is called homomorphism or simply	
function g satisfying the above condition exists, then $\{Y,*\}$ is called the homomorphic image of $\{X,\circ\}$ 95.EpimorphismIf the homomorphism $g: X \to Y$ is onto ,then g is called Epimorphism96.Monomorphis mIf the homomorphism $g: X \to Y$ is one-to-one ,then g is called Epimorphism97.IsomorphismIf $g: \{X, o\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism98.Endomorphis mA homomorphism $g: \{X, o\} \to \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 99.Automorphis mA homomorphism $g: \{X, o\} \to \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 100.Sub Semi groupsIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA				morphism from $\{X, o\}$ to $\{Y, *\}$, if for any	
thenthen $\{Y, *\}$ is called the homomorphic image of $\{X, \circ\}$ 95.Epimorphism96.Monomorphis97.If the homomorphism $g: X \to Y$ is one-to-one , then g is called Epimorphism97.Isomorphism98.If $g: \{X, \circ\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism98.Endomorphis m99.A homomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism $g: \{X, o\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, o\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, o\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, o\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, o\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, o\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, o\} \to \{Y, *\}$ is calle				$x_1, x_2 \in X$, $g(x_1 \circ x_2) = g(x_1) \ast g(x_2)$, If a	
95.EpimorphismIf the homomorphism $g: X \to Y$ is onto , then g is called Epimorphism96.Monomorphis mIf the homomorphism $g: X \to Y$ is one-to-one , then g is called Epimorphism97.IsomorphismIf $g: \{X, o\} \to \{Y, s\}$ is one0to-one and onto, then 					
95.Epimorphismcalled Epimorphism96.Monomorphis mIf the homomorphism $g: X \to Y$ is one-to-one , then g is called Epimorphism97.IsomorphismIf $g: \{X, \circ\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism97.IsomorphismA homomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism $f: Y \subseteq X$ 98.Endomorphis mA homomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism $f: Y \subseteq X$ 99.Automorphis mA homomorphism $g: \{X, o\} \to \{Y, *\}$ is called an endomorphism $f: Y \subseteq X$ 100.Sub Semi groupsIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *,then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA				$\{Y,*\}$ is called the homomorphic image of $\{X,\circ\}$	
95.If an analysisCalled Epimorphism96.Monomorphis mIf the homomorphism $g: X \to Y$ is one-to-one , then g is called Epimorphism97.IsomorphismIf $g: \{X, \circ\} \to \{Y, *\}$ is one0to-one and onto, then g is called isomorphism97.IsomorphismA homomorphism $g: \{X, \circ\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, \circ\} \to \{Y, *\}$ is called an endomorphism $g: \{Y, \circ\} \to \{$		Enimorphism		If the homomorphism $g : X \to Y$ is onto , then g is	
96.m, then g is called Epimorphism97.IsomorphismIf $g: \{X, \circ\} \rightarrow \{Y, *\}$ is one0to-one and onto, then g is called isomorphism97.IsomorphismA homomorphism98.Endomorphis mA homomorphism $g: \{X, \circ\} \rightarrow \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 99.Automorphis mA homomorphism $g: \{X, \circ\} \rightarrow \{Y, *\}$ is called an endomorphism, if $Y = X$ 100.Sub Semi groupsIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA	95.	2piniorpinon		called Epimorphism	
97.IsomorphismIf $g: \{X, o\} \rightarrow \{Y, *\}$ is one0to-one and onto, then g is called isomorphism97.IsomorphismIf $g: \{X, o\} \rightarrow \{Y, *\}$ is one0to-one and onto, then g is called isomorphism98.Endomorphis mA homomorphism $g: \{X, o\} \rightarrow \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 99.Automorphis mA homomorphism $g: \{X, o\} \rightarrow \{Y, *\}$ is called an endomorphism, if $Y \subseteq X$ 99.Sub Semi groupsIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *,then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA		Monomorphis		If the homomorphism $g: X \to Y$ is one-to-one	
97.Isomorphismg is called isomorphism98.Endomorphis mA homomorphism $g: \{X, o\} \rightarrow \{Y, *\}$ is called an endomorphism , if $Y \subseteq X$ 99.Automorphis mA homomorphism $g: \{X, o\} \rightarrow \{Y, *\}$ is called an endomorphism , if $Y = X$ 99.Subsemi groupsIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA	96.	m		,then g is called Epimorphism	
97.g is called isomorphism98.Endomorphis mA homomorphism $g: \{X, \circ\} \rightarrow \{Y, *\}$ is called an endomorphism , if $Y \subseteq X$ 99.Automorphis mA homomorphism $g: \{X, \circ\} \rightarrow \{Y, *\}$ is called an endomorphism , if $Y = X$ 100.Sub Semi groupsIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA		Isomorphism		If $g: \{X, \circ\} \rightarrow \{Y, *\}$ is one0to-one and onto, then	
98.mendomorphism , if $Y \subseteq X$ 99.Automorphis mA homomorphism $g: \{X, \circ\} \rightarrow \{Y, *\}$ is called an endomorphism , if $Y = X$ 100.Sub Semi groupsIf $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA	97.	loomorphion	-1	g is called isomorphism	
Image: Intermediate on the intermediate of the in		Endomorphis			
99. m endomorphism , if $Y = X$ 100. Sub Semi groups If { S ,*} is a semi group and $T \subseteq S$ is closed under the operation *, then { T ,*} is called a subsemigroup of { S ,*} Unit-V : LATTICES AND BOOLEAN ALGEBRA	98.	m		endomorphism , if $Y \subseteq X$	
100. Sub Semi groups If $\{S, *\}$ is a semi group and $T \subseteq S$ is closed under the operation *, then $\{T, *\}$ is called a subsemigroup of $\{S, *\}$ Unit-V : LATTICES AND BOOLEAN ALGEBRA		Automorphis		A homomorphism $g: \{X, \circ\} \rightarrow \{Y, *\}$ is called an	
100. Sub Semi groups under the operation *, then {T ,*} is called a subsemigroup of {S ,*} Unit-V : LATTICES AND BOOLEAN ALGEBRA A relation R on a set A is said to be reflexive, if a	99.	m		endomorphism , if $Y = X$	
100. groups under the operation *, then {1,*} is called a subsemigroup of {5,*} Unit-V : LATTICES AND BOOLEAN ALGEBRA A relation R on a set A is said to be reflexive, if a		Sub Comi		If $\{S, *\}$ is a semi group and $T \subseteq S$ is closed	
Unit-V : LATTICES AND BOOLEAN ALGEBRA	100.			-	
A relation R on a set A is said to be reflexive, if a				subsemigroup of {3,*}	
A relation R on a set A is said to be reflexive, if a		DE	Jnit-V : LAT	TICES AND BOOLEAN ALGEBRA	
Reflexive Figure And	101	Reflexive		110000	
101. R a for every $a \in A$.	101.			R a for every $a \in A$.	
A relation R on a set A is said to be symmetric, if	100	Symmetric		5	
102. Symmetric whenever a R b then b R a.	102.	-		wnenever a K b then b K a.	
Anti A relation R on a set A is said to be anti		Anti			
103.symmetricsymmetric, if whenever (a,b) and $(b,a) \in R$ then $a = b.$	103.	symmetric			
A relation R on a set A is said to be transitive, if		Transitivo		A relation R on a set A is said to be transitive, if	
104. I ranshive whenever a R b and b R C then a R c.	104.	manshive		whenever a R b and b R C then a R c.	

105.	Partial ordering	A relation R on a set A is called a partial ordering if R is reflexive, anti symmetric and transitive.
106.	Poset	A set A together with a partial order relation R is called partially ordered set or poset.
107.	Hasse diagram	The pictorial representation of a poset is called Hasse diagram
108.	Upper bound	When A is a subset of a poset $\{P, \leq\}$ and if u is an element of P such that a \leq u for all elements $a \in A$, then u is called an upper bound of A.
109.	Lower bound	When A is a subset of a poset $\{P, \leq\}$ and if 1 is an element of P such that $1 \leq a$ for all elements $a \in A$, then 1 is called a lower bound of A.
110.	LUB	The element x is called the least upper bound of the subset A of a poset $\{P, \leq \}$, if x is an upper bound that is less than every other upper bound of A.
111.	GLB	The element y is called the greatest lower bound of the subset A of a poset $\{P, \leq \}$, if y is an lower bound that is greater than every other lower bound of A.
112.	Lattice	A partially ordered set $\{L, \leq\}$ in which every pair of elements has a least upper bound and a greatest lower bound is called a lattice.
113.	Sub lattice	A non empty subset M of a lattice $\{L, \lor, \land\}$ is called a sub lattice of L, iff M is closed under both the operations \land and \lor
114.	Idempotent	If $\{L, \leq \}$ is a lattice , then for any $a, b, c \in L$, $a \lor a = a$ and $a \land a = a$
115.	Commutative	If $\{L, \leq \}$ is a lattice , then for any $a, b, c \in L$, $a \lor b = b \lor a$ and $a \land b = b \land a$
116.	Associative	If $\{L, \leq \}$ is a lattice , then for any $a, b, c \in L$, $a \lor (b \lor c) = (a \lor b) \lor c$ and $a \land (b \land c) = (a \land b) \land c$

117.	Absorption	If $\{L, \leq \}$ is a lattice , then for any $a, b, c \in L$, $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$
118.	Lattice Homomorphi sm	If $\{L_1, \lor, \land\}$ and $\{L_2, +, *\}$ are two lattices, is called a lattice homomorphism from L_1 to L_2 , if for any $a, b \in L_1$, $f(a \lor b)=f(a)+f(b)$ and $f(a \land b)=f(a)*f(b)$
119.	Distributive lattice	A lattice {L, \lor , \land } is called distributive lattice, if for any elements a, b, c \in L, a \land (b \lor c)=(a \land b) \lor (a \land c) a \lor (b \land c)=(a \lor b) \land (a \lor c).
120.	Complement	If $\{L, \lor, \land, 0, 1\}$ is a bound lattice and $a \in L$, thenan element $b \in L$ is called a complement of a, $a \lor b=1$ and $a \land b=0$
121.	Boolean Algebra	A lattice which is complemented and distributive is called Boolean algebra.
122.	Dominance Law	i) a+1=1 and ii) a.0 =0
123.	Demorgan's law	(a + b)' = a'.b' and (a.b)' = a' + b'
124.	Double complement law	(a')' = a
125.	Zero and one law	0' = 1 and 1' = 0
	DESIGN	Placement Questions
126.	Prime Number	A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.
127.	Composite number	A composite number is a positive number that can be formed by multiplying two smallest positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself.
128.	Average	Sum of quantities Number of quantities

129.	Ratio		A ratio is the comparison of two homogeneous quantities, or a ratio is the division of two quantities a and b having the same units. It is denoted by a:b
130.	Arithmetic Progression	AP	Arithmetic progression(AP) or arithmetic sequence is a sequence of numbers in which each term after the first is obtained by adding a constant.
131.	Geometric Progression	GP	Geometric Progression of non-zero numbers in which the ratio of any term and its preceding term is always constant.
132.	Probability		Probability is nothing but a chance that a given event will occur. The probability of getting success is 0.5 and failure is 0.5 .Total probability is 1.
133.	L.C.M		L.C.M. is the least non-zero number in common multiples of two or more numbers.
134.	Methods of L.C.M	$\langle \rangle$	i) Factorization Method.ii) Division Method.
135.	H.C.F	\leq	The highest common factor of two or more numbers is the greatest number which divides each of them exactly without any remainder.
136.	Reciprocal or Inverse Ratio		If the antecedent and consequent of a ratio interchange their places. The new ratio is called the inverse ratio of the first ratio.
137.	Selling Price	SISPNI	The price at which goods are sold is called the selling price.
138.	Cost Price	CP	The price at which goods are bought is called the cost price
139.	Market Value		The stock of different companies are sold and bought in the open market through brokers at stock-exchanges.
140.	Profit	Profit = SP - CP	When the selling price is more than the cost price, then the trader makes a profit.
141.	Loss	Loss = CP - SP	When the selling price is less than the cost price, then the trader makes a loss.

142.	Stock Capital		The total amount of money needed to run the company is called the stock capital
143.	Shares or Stock		The whole capital is divided into small units, called shares or stock.
144.	Simple Interest	$SI = \frac{PNR}{100}$	P - Initial principal balanceN - Number of yearsR - Interest rate
145.	Compound Interest	\langle	Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, and can thus be regarded as "interest on interest".
146.	Mean Price		The cost of a unit quantity of the mixture is called the mean price.
147.	Odd one out	~	A person or thing that is different from or kept apart from others that form a group or set is called as odd one out
148.	Speed	\sum	Speed = $\frac{\text{Distance}}{Time}$
149.	Time	$\langle \rangle$	$Time = \frac{Distance}{Speed}$
150.	Face Value	\sum	The value of a share or stock printed on the share-certificate is called its Face Value or Nominal Value or Par Value

Faculty Prepared Signatures T.Sundaresan Esto-2000

1.

HoD