(Approved by AICTE, New Delhi, Accredited by NAAC \& Affiliated to Anna University)

MUST KNOW CONCEPTS
MKC
MATHS

Course Code \& Course Name : 19BSS24/Discrete Mathematics

Year/Sem/Sec				
S.No.	Term	Notation (Symbol)	Concept / Definition / Meaning/ Units / Equation / Expression	Units
Unit-I : LOGIC AND PROOFS				
1.	Proposition		It is a declarative sentence which is either true or false but not both.	
2.	Statement Formula		It is an expression which is a string consisting of variables (Captial letters with or with out subscripts), parenthesis and connectives symbols.	
3.	Logical Connectives	$\begin{gathered} \sim, V, \Lambda \\ \rightarrow, \leftrightarrow \end{gathered}$	Negation, Conjunction, Disjunction, Conditional, Bi Conditional.	
4.	Truth Table		A truth table is a table consists of the truth values (True or False)	
	Negation		The negation of a statement is generally formed by introducing he word "not" at a proper place in the given statement.	
	Conjunction (And)		If both P and Q have the truth values T , then $\mathrm{P} \wedge \mathrm{Q}$ has the truth value T . Otherwise $\mathrm{P}^{\wedge} \mathrm{Q}$ has the truth value F.	
5.	Disjunction (OR)	v	$\mathrm{P} \vee \mathrm{Q}$ has the truth value T if any one of P or Q has the truth value T	
6.	Biconditional	\leftrightarrow	The Statement $\mathrm{P} \leftrightarrow Q$ has the truth value T whenever both P and Q have same truth values.	
7.	Tautology		A Statement formula which is always true is called a Tautology.	

	three variables			
31.	Recurrence relation		An equation that expresses a_{n} the general term of the sequence (a_{n})in terms of one or more of the previous terms of the sequence namely $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots, \mathrm{a}_{\mathrm{n}-1}$ for all integers n with $\mathrm{n} \geq \mathrm{n}_{0}$ where n_{0} is a non-negative integer is called Recurrence relation.	
32.	Linear recurrence relation		A recurrence relation of the form $c_{0} a_{n}+c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}=f(n)$ is called a linear recurrence relation of degree k with constant coefficients, where $c_{0}, c_{1}, . . c_{k}$ are real numbers and $c_{k} \neq 0$.	
33.	Homogeneou s recurrence relation	$f(n)=0$	If $f(n)=0$, then the given recurrence relation is called homogeneous recurrence relation.	
34.	Non- Homogeneou s recurrence relation	$f(n) \neq 0$	If $f(n) \neq 0$, then the given recurrence relation is called homogeneous recurrence relation.	
35.	Characteristic equation of order 2		$c_{0} r^{2}+c_{1} r+c_{2}=0, r \neq 0$ is called the characteristic equation.	
36.	Recurrence relation for the Fibonacci sequence		Fibonacci sequence recurrence relation $f_{n}=f_{n-1}+f_{n-2}$	
37.	Complementa ry function of the recurrence relation, if the roots are real and unequal		$a_{n}=k_{1} r^{n}+k_{2} r^{n}$	
38.	Complementa ry function of the recurrence relation, if the roots are real		$a_{n}=\left(k_{1}+k_{2} n\right) r^{n}$	

	and equal			
39.	Complementa ry function of the recurrence relation, if the roots are Imaginary		$a_{n}=r^{n}\left(k_{1} \cos n \theta+k_{2} \sin n \theta\right)$	
40.	Generating function of the sequence $1,1,1,1 \ldots$ is		$\mathrm{G}(\mathrm{x})=\sum_{n=0}^{\infty} x^{n}$	
41.	Generating function of the sequence $1,2,3,4 \ldots$ is		$\mathrm{G}(\mathrm{x})=\sum_{n=0}^{\infty}(n+1) x^{n}$	
42.	Generating function of the sequence $1, a, a^{2}, a^{3} \ldots$ i s		$G(x)=\frac{1}{1-a x} \text {, for }\|a x\|<1$	
43.	Generalisatio n of the Pigeonhole principle		If n pigeons are accommodated in m pigeonholes and $n>m$, then one of the pigeonholes must contain atleast $\left[\frac{n-1}{m}\right\rfloor$ pigeons	
44.	Circular permutations		If the objects are arranges in a circle (or any closed curve), we get circular permutation and the number of circular permutations will be different from the number of linear permutations.	
45.	Number of different circular permutations of n objects		$(n-1)!$	
46.	Number of different circular arrangements		$\frac{(n-1)!}{2}$	

58.	Complete graph		There exists an edge between every pair of vertices.
59.	Degree of a Vertex	deg(v)	The degree of a vertex in an undirected graph is the number of edges incident with it, with the exception that a loop at a vertex contributes twice to the degree of that vertex.
60.	Pendant Vertex		If the degree of a vertex is one then it is called pendant vertex.
61.	Bipartite graph		If the vertex set of a simple graph $G=G\langle V, E\rangle$ can be partitioned into two subsets V_{1} and V_{2} such that every edge of G connects a vertex in V_{1} and and a vertex V_{2}, then G is called a bipartite graph.
62.	Completely Bipartite graph		If each vertex of V_{1} is connected with every vertex of V_{2} by an edge, then G is called Completely Bipartite graph
63.	Adjacency Matrix	$A=\left\lfloor a_{i j}\right\rfloor$	$=\left\{\begin{array}{cc} 1, \text { if there exist an edge between } v_{i} \text { and } v_{j} \\ 0, & \text { otherwise } \end{array}\right.$
64.	Incidence Matrices Path Matrix	$\begin{aligned} & B=\left\lfloor b_{i j}\right\rfloor \\ & P=\left\lfloor p_{i j}\right\rfloor \end{aligned}$	$=\left\{\begin{array}{l} 1, \text { when edge } e_{j} \text { incident on } v_{i} \\ 0, \\ \text { otherwise } \end{array}\right.$
65.	Graph Isomorphism	SIGNI	If $G_{1} \& G_{2}$ are isomorphic then $G_{1} \& G_{2}$ have (i)the same number of vertices (ii)the same number of edges (iii) an equal number of vertices with a given degree
66.	Path		Starting with the vertex v_{1}, one can travel along edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots \ldots$ and reach the vertex v_{k}.
67.	Length of the path		the number of edges appearing in the sequence of a path.
68.	Cycle or Circuit		A path which originate and ends in the same node
69.	Eulerian Path		A path of a graph G is called an Eulerian path, if

			it includes each of edges of G exactly once.	
70.	Eulerian Circuit		(i)Starting and ending points (vertices) are same. (ii)Cycle should contain all the edges of the graph but exactly once.	
71.	Eulerian Graph		A graph containing an Eulerian circuit is called an Eulerian graph.	
72.	Hamiltonian Path		A path of graph G is called a Hamiltonian path, if it includes each vertex of g exactly once.	
73.	Hamiltonian Circuit		Cycle should contain all the vertices of graph but exactly once, except the starting and ending vertices.	
74.	Hamiltonian Graph		A graph containing an Hamiltonian circuit is called an Hamiltonian graph.	
75.	Connected Graph		An undirected graph is said to be connected if a path between every pair of distinct vertices of the graph.	
		Unit-IV	V : ALGEBRAIC SYSTEMS	
76.	Semi Group		Closure property: $a * b \varepsilon G$, for all $a, b \varepsilon G$ Associative property: $(a * b) * c=a *(b *), \text { for all } a, b, c \varepsilon G$	
77.	Monoid	$S I G N$	Closure property: $a * b \varepsilon G$, for all $a, b \varepsilon G$ Associative property: $(a * b) * c=a *(b * c) \text {, for all } a, b, c \varepsilon G$ Identity element: : $a * e=e * a=\text { afor all } a \varepsilon G$	
78.	Semi group Homomorphi sm		Let ($S, *$) and ($(T, \Delta$) be any two semi group. A mapping $g: S \rightarrow T$ such that for any two elements $a, b \in S . g(a * b)=g(a) \Delta g(b)$ is called a semi group homomorphism.	
79.	Group		Closure property: $a * b \varepsilon G$, for all $a, b \varepsilon G$	

			Associative property: $(a * b) * c=a *(b * c) \text {, for all } a, b, c \varepsilon G$ Identity element: : $a * e=e * a=\text { afor all } a \varepsilon G$ Inverse element: $a * a^{-1}=a^{-1} * a=\text { efor all } a, a^{-1} \varepsilon G$
80.	Abelian Group		Closure property: $a * b \varepsilon G$, for all $a, b \varepsilon G$ Associative property: $(a * b) * c=a *(b * c) \text {, for all } a, b, c \varepsilon G$ Identity element: : $a * e=e * a=\text { afor all } a \varepsilon G$ Inverse element: $a * a^{-1}=a^{-1} * a=e \text { for all } a, a^{-1} \varepsilon G$ Commutative Property: $a * b=b * a \text { for all } a, b \varepsilon G \text {. }$
81.	Order of group	$O(G)$	The number of elements in a group G.
82.	Finite group		$O(G)$ is finite.
83.	Infinite group		$O(G)$ is infinite.
84.	Subgroup		Let $\left(G_{,},^{*}\right)$ be a group.Then $\left(H_{p^{*}}\right)$ is said to be subgroup of $(G, *)$ if $H \subseteq G$ and $(H, *)$ itself is a group under the operation *.
85.	Lagrange's theorem		If G is a finite group and H is a sub group of G then the order of H is a divisor of order of G . The converse of Lagrange's theorem is false.
86.	Ring		(i) $(a+b)+c=a+(b+c) \quad a, b, c \in R$ (ii) There exists an element $0 € \mathrm{R}$ called zero element such that $a+0=0+a=a$ for all $a \in R$

		"	(iii) For all $a \in R, a+(-a)=(-a)+a=0,-a$ is the negative of a . (iv) $a+b=b+a$ for all $a, b \in R$ (v) (a.b).c $=a$.(b.c) for all $a, b, c \in R$ The operation * is distributive over + i.e.,for any $a, b, c \in R$, $\begin{aligned} & a \cdot(b+c)=a \cdot b+a \cdot c \\ & (b+c) \cdot a=b \cdot a+c \cdot a \end{aligned}$ In otherwords if R is an abelian group under addition with the properties (v) and (vi) then R is a ring.	
87.	Field		A commutative ring ($\mathrm{R},+, \bullet$) with identity is called a field if every non-zero element has a Multiplicative inverse. Thus ($\mathrm{R},+, \bullet$) is a field if (i) $(R,+)$ is abelian group and (ii) $(\mathrm{R}-\{0\}, \bullet)$ is also abelian group.	
88.	Cyclic Group		A group $\{\mathrm{G}, *\}$ is said to be cyclic, if there exists an element $a \varepsilon G$ such that every element x of G can be expressed as $\mathrm{x}=\mathrm{a}^{\mathrm{n}}$ for some integer n .	
89.	Kernal of a Homomorphi sm	$\operatorname{ker}(\mathrm{f})$	If $f: G \rightarrow G$ is a group homomorphism , then the set of elements of G, which are mapped into e^{\prime}, the identity element of G^{\prime} is called the kernel of the homomorphism f .	
90.	Left Co sets	$S\|G N\|$	If $\left\{H,{ }^{*}\right\}$ is subgroup of a group $\{G, *\}$, then the set aH , where $a \varepsilon G$, defined by $\mathrm{aH}=\left\{\mathrm{a}^{*} \mathrm{~h} /\right.$ $\mathrm{h} \varepsilon H\}$ is called the left cosetof H in G .	
91.	Left Co sets	\square	If $\left\{H,{ }^{*}\right\}$ is subgroup of a group $\{G, *\}$, then the set aH , where $a \varepsilon G$, defined by $\mathrm{aH}=\left\{\mathrm{a}^{*} \mathrm{~h} /\right.$ $\mathrm{h} \varepsilon H\}$ is called the left cosetof H in G.	
92.	Right Co sets		If $\left\{H,{ }^{*}\right\}$ is subgroup of a group $\left\{G,{ }^{*}\right\}$, then the set Ha , where $a \varepsilon G$, defined by $\mathrm{Ha}=\left\{\mathrm{h}^{*} \mathrm{a} /\right.$ $\mathrm{h} \varepsilon H\}$ is called the right co set of H in G.	
93.	Algebraic systems		A system consisting of non-empty set and one or more n-ary operations on the set is called an algebraic system.	
94.	Homomorphi		If $\{X, \circ\}$ and $\{Y, *\}$ are two algebraic systems,	

105.	Partial ordering		A relation R on a set A is called a partial ordering if R is reflexive, anti symmetric and transitive.	
106.	Poset		A set A together with a partial order relation R is called partially ordered set or poset.	
107.	Hasse diagram		The pictorial representation of a poset is called Hasse diagram	
108.	Upper bound		When A is a subset of a poset $\{\mathrm{P}, \leq\}$ and if u is an element of P such that $\mathrm{a} \leq \mathrm{u}$ for all elements $a \in A$, then u is called an upper bound of A.	
109.	Lower bound		When A is a subset of a poset $\{\mathrm{P}, \leq\}$ and if 1 is an element of P such that $\mathrm{l} \leq \mathrm{a}$ for all elements $a \in A$, then 1 is called a lower bound of A .	
110.	LUB		The element x is called the least upper bound of the subset A of a poset $\{\mathrm{P}, \leq\}$, if x is an upper bound that is less than every other upper bound of A.	
111.	GLB		The element y is called the greatest lower bound of the subset A of a poset $\{\mathrm{P}, \leq\}$, if y is an lower bound that is greater than every other lower bound of A.	
112.	Lattice		A partially ordered set $\{\mathrm{L}, \leq\}$ in which every pair of elements has a least upper bound and a greatest lower bound is called a lattice.	
113.	Sub lattice		A non empty subset M of a lattice $\{\mathrm{L}, \vee, \wedge\}$ is called a sub lattice of L, iff M is closed under both the operations \wedge and \vee	
114.	Idempotent	$\begin{array}{r} \text { FIUNT } \\ \\ \square \end{array}$	If $\{\mathrm{L}, \leq$ \}is a lattice , then for any $\mathrm{a}, \mathrm{b}, \mathrm{c} \in L, \mathrm{a} \vee \mathrm{a}=\mathrm{a}$ and $\mathrm{a} \wedge \mathrm{a}=\mathrm{a}$	
115.	Commutative		If $\{\mathrm{L}, \leq\}$ is a lattice, then for any $\mathrm{a}, \mathrm{b}, \mathrm{c} \in L$, $a \vee b=b \vee a$ and $a \wedge b=b \wedge a$	
116.	Associative		If $\{\mathrm{L}, \leq$ \}is a lattice, then for any $\mathrm{a}, \mathrm{b}, \mathrm{c} \in L$, $a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$	

117.	Absorption		If $\{\mathrm{L}, \leq\}$ is a lattice ,then for any $\mathrm{a}, \mathrm{b}, \mathrm{c} \in L$, $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$	
118.	Lattice Homomorphi sm		If $\left\{\mathrm{L}_{1}, \vee, \wedge\right\}$ and $\left\{\mathrm{L}_{2},+, *\right\}$ are two lattices, is called a lattice homomorphism from L_{1} to L_{2}, if for any $a, b \in L_{1}, f(a \vee b)=f(a)+f(b)$ and $f(a \wedge b)=f(a)^{*} f(b)$	
119.	Distributive lattice		A lattice $\{\mathrm{L}, \vee, \wedge\}$ is called distributive lattice, if for any elements $a, b, c \in L, a \wedge(b \vee c)=(a \wedge b)$ $\vee(a \wedge c)$ $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.	
120.	Complement		If $\{\mathrm{L}, \vee, \wedge, 0,1\}$ is a bound lattice and $\mathrm{a} \in L$, then an element $\mathrm{b} \in L$ is called a complement of a , $\mathrm{a} \vee \mathrm{b}=1$ and $\mathrm{a} \wedge \mathrm{b}=0$	
121.	Boolean Algebra		A lattice which is complemented and distributive is called Boolean algebra.	
122.	Dominance Law		i) $a+1=1$ and ii) a. $0=0$	
123.	Demorgan's law		$(a+b)^{\prime}=a^{\prime} . b^{\prime} \text { and }(a . b)^{\prime}=a^{\prime}+b^{\prime}$	
124.	Double complement law		$\left(a^{\prime}\right)^{\prime}=$	
125.	Zero and one law		$0^{\prime}=1 \text { and } 1^{\prime}=0$	
			acement Questions	
126.	Prime Number		A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.	
127.	Composite number		A composite number is a positive number that can be formed by multiplying two smallest positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself.	
128.	Average		$\frac{\text { Sum of quantities }}{\text { Number of quantities }}$	

129.	Ratio		A ratio is the comparison of two homogeneous quantities, or a ratio is the division of two quantities a and b having the same units. It is denoted by a:b
130.	Arithmetic Progression	AP	Arithmetic progression(AP) or arithmetic sequence is a sequence of numbers in which each term after the first is obtained by adding a constant.
131.	Geometric Progression	GP	Geometric Progression of non-zero numbers in which the ratio of any term and its preceding term is always constant.
132.	Probability		Probability is nothing but a chance that a given event will occur. The probability of getting success is 0.5 and failure is 0.5 .Total probability is 1 .
133.	L.C.M		L.C.M. is the least non-zero number in common multiples of two or more numbers.
134.	Methods of L.C.M		i) Factorization Method. ii) Division Method.
135.	H.C.F		The highest common factor of two or more numbers is the greatest number which divides each of them exactly without any remainder.
136.	Reciprocal or Inverse Ratio		If the antecedent and consequent of a ratio interchange their places. The new ratio is called the inverse ratio of the first ratio.
137.	Selling Price	$S\|S P\|$	The price at which goods are sold is called the selling price.
138.	Cost Price	CP	The price at which goods are bought is called the cost price
139.	Market Value		The stock of different companies are sold and bought in the open market through brokers at stock-exchanges.
140.	Profit	$\begin{gathered} \text { Profit }=\text { SP } \\ -\mathrm{CP} \end{gathered}$	When the selling price is more than the cost price, then the trader makes a profit.
141.	Loss	$\begin{gathered} \text { Loss }=\text { CP - } \\ \text { SP } \end{gathered}$	When the selling price is less than the cost price, then the trader makes a loss.

142.	Stock Capital		The total amount of money needed to run the company is called the stock capital	
143.	Shares or Stock		The whole capital is divided into small units, called shares or stock.	
144.	Simple Interest	$S I=\frac{P N R}{100}$	P - Initial principal balance N - Number of years R - Interest rate	
145.	Compound Interest		Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, and can thus be regarded as "interest on interest".	
146.	Mean Price		The cost of a unit quantity of the mixture is called the mean price.	
147.	Odd one out		A person or thing that is different from or kept apart from others that form a group or set is called as odd one out	
148.	Speed		$\text { Speed }=\frac{\text { Distance }}{\text { Time }}$	
149.	Time		$\text { Time }=\frac{\text { Distance }}{\text { Speed }}$	
150.	Face Value		The value of a share or stock printed on the share-certificate is called its Face Value or Nominal Value or Par Value	

Faculty Prepared

1. T.Sundaresan

Signatures

