

11.

12.

13.

 Ω -notation

θ -notation

Asymptotic Notations

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS

MKC

2020-21

CSE Course Code & Course Name :

19CSC11 & Design and Analysis of Algorithm

J	(ear/Sem/Sec	: II/IVA&B	
S.No.	Term	NotationConcept / Definition / Meaning / Units / Equation / Expression	Units
		Unit-I : INTRODUCTION	
1.	Algorithm	Sequence of instructions for solving a problem	
2.	pseudo code	Mixture of a natural language and programming language	
3.	Time efficiency	How much amount of time needed to execut	e
4.	Space efficiency	How much amount of space needed to execute	
5.	Exact Algorithm	Solving the problem exactly	
6.	Approximate Algorithm	solving it approximately	
7.	sorting problem	Control Rearrange the items of a given list in non decreasing order	
8.	searching problem	Finding a given value,	
9.	Analysis Framework	1.Measuring an Input's Size2. Units for Measuring Running Time3. Orders of Growth4. Worst-Case, Best-Case, and Average-CaseEfficiencies5. Recapitulation of the Analysis Framework	2
10.	O-notation	t (n) \leq cg(n) for all n \geq n0.	

 $t(n) \ge cg(n)$

•

 $c_2g(n) \le t(n) \le c_1g(n)$

O-notation

for all $n \ge n_0$.

for all $n \ge n_0$.

		Omega - notation
		• • - notation
	Eurodemental Data	Linear Data Structures
	Structures	
14.	Structures	• Graphs
		• Trees
15.	Vertices	a collection of points
16.	Edges	A collection of points connected by line segments
	Champetonistics of	
17.	Algorithm	understand generality
		understand, generanty.
18.	Methods specifying for	Flow chart, Natural language, Program
	an algorithm	
10	Understanding the	It is the first step in solving the problem
19.	Problem	
	The main measure for	Time and space
20.	efficiency algorithm	
	are	
	Algorithmic analysis	The number of arithmetic and the operations
21.	count	that are required to run the program
	The concept of order	It can be used to deside the best clearithm
22	Big O is important D E	that solves a given problem
<i></i>	because	that solves a given problem
	Estd.	2000
23.	Non-recursive	Does not references itself
	lunction	
24.	Recursive function	Function which calls itself again and again
	What are the case does	Best case,Worst case,Average case
25.	exist in complexity	
	theory	
	Unit-II : BA	ACKTRACKING
		A disjoint-set data structure is a data
26	Disisint Onesetient	structure that keeps track of a set of elements
26.	Disjoint Operations	partitioned into a number of disjoint (non-
		overlapping) subsets.

27	Two Operations of	Find
27.	Disjoint set	Union
20		Determine which subset a particular element
28.	Find	is in. This can be used for determining if two elements are in the same subset
29.	Union	Join two subsets into a single subset.
30.	Graph	A Graph consists of a finite set of vertices(or nodes) and set of Edges which connect a pair
		of nodes
		A spanning tree is a sub-graph of an
31.	Spanning tree	all the vertices of the graph with a minimum
		possible number of edges.
		A minimum spanning tree is a spanning tree
32.	Minimum Spanning	in which the sum of the weight of the edges
	Tree	is as minimum as possible.
	The minimum	1.Prim's Algorithm
22	spanning tree from a	2.Kruskal's Algorithm
33.	the following	
	algorithms:	
		A cycle that passes through all the vertices of
34.	Hamiltonian circuit	the graph exactly once.
35	Fight-queens problem	Classic puzzle of placing eight queens on an
	Light queens problem	8×8 chessboard
	Spanning Tree	Computer Network Routing Protocol
36.	Applications	Cluster Analysis Civil Network Planning
37.	Subset Problem	Subset sum problem is to find subset of elements that are selected from a given
		set whose sum adds up to a given number
38.	Divide and Conquer	Smaller sub problems, sub problems are
	metnoa	solvea recursively
39.	Applications of divide	Binary search, quick sort, merge sort,
	and conquer	multiplication of large integers
40.	Backtracking	Depth-first node generation with bounding
		method.

41	Backtracking		Electrical engineering, Robotics, Artificial
41.	applications		Intelligence, Network communication
42.	Application of Graphs:		Physics and Chemistry, Mathematics, Social Science
43.	Mid value in binary search		mid = (low + high) /2, low-0 th value and high-last value
44.	Which method used to find Hamiltonian circuit		Backtracking
45.	N - Queens problem		The problem is to area n-queens on an n-by-n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal.
46.	Hamiltonian cycle		A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once.
47.	vertex coloring.	\otimes	t is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring.
48.	Binary search working	\sim	Binary search works by dividing the array into 2 halves around the middle element
49.	Graph DE51	IGNING	Consists of a set of vertices, and set of edges
50.	Graph types	Estd.	BFS,DFS
	U	Jnit-III : GF	REEDY METHOD
51.	Greedy Method		Greedy Method is also used to get the optimal solution
52.	Applications of Greedy Algorithms		Finding an optimal solution (Activity selection, Fractional Knapsack, Job Sequencing, Huffman Coding). 2. Finding close to the optimal solution for NP-Hard problems like TSP.
53.	spanning tree		A spanning tree is a subset of an undirected Graph that has all the vertices connected by minimum number of edges

54.	Warshalls algorithm	Solve all pair shortest path problem
55.	Floyds algorithm	Find optimal solution
56.	Greedy technique used in	Minimum spanning tree, shortest path problem
57.	Examples of Greedy Algorithms	Prim's Minimal Spanning Tree Algorithm.Travelling Salesman Problem.Graph - Map Coloring.Kruskal's Minimal Spanning Tree Algorithm.Dijkstra's Minimal SpanningTree Algorithm.Graph - Vertex Cover.Knapsack Problem.Job Scheduling Problem.
58.	Assignment problem	Assign a number of jobs to an equal number of machines so as to minimize the total assignment cost for execution of all the jobs
59.	single source shortest path algorithm	find minimum distance from source vertex to any other vertex
60.	All pair shortest path algorithm	find all pair shortest path problem from a given weighted graph
61.	Knapsack Problem	Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack
62.	applications of Knapsa ck problem:	Home Energy Management. Cognitive Radio Networks. Resource management in software.
63.	job sequencing problem	find a sequence of jobs, which is completed within their deadlines and gives maximum profit.
64.	Analysis for job sequencing problem	O(n2)
65.	Minimum spanning tree	Minimum spanning tree is the spanning tree where the cost is minimum among all the spanning trees.
66.	Single source shortest path problem	The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph.

67.	single-source shortest path application	Dijkstra's algorithm is on popular algorithms for so source shortest path prob	e of the most lving many single- lem
68.	Time Complexity of Dijkstra's Algorithm	O (V 2)	
69.	Jobsequencing proble ms has the time complexity	O(n2)	
70.	Memory function	provides the smallest pos	ssible search time
71.	Warshalls algorithm	Solve all pair shortest pat	h problem
72.	Floyds algorithm	Find optimal solution	
73.	Properties of spanning trees	A spanning tree does not Any vertex can be reache vertex.	have any cycle. d from any other
74.	state-space tree	The processing of backtra by constructing a tree of This is known as state-sp	acking is resolved choices being made. ace tree.
75.	Knapsack problem	The knapsack problem is combinatorial optimizatio items, each with a weight determine the number of in a collection so that the than or equal to a given live value is as large as possible	a problem in on: Given a set of and a value, each item to include total weight is less mit and the total ole.
	Uni	IV : DYNAMIC PROGRAMMING	
76.	Dynamic programming	ESTO Reduce the time complex solution	ity, provide optimal
77.	Advantages of dynamic programming	Computing Fibonacci nur binomial coefficient	nbers, completing
78.	Applications of dynamic programming	Find shortest path betwee vertices	en all pair of
79.	chained matrix multiplication	Given a sequence of mathematic efficient way to multiply together.	rices, find the most these matrices
80.	chained matrix multiplication complexity	O (n3)	

81.	Optimal binary search trees	An optimal binary search tree, sometimes called a weight-balanced binary tree
82.	Traveling sales person problem.	The Travelling Salesman Problem (TSP) is the challenge of finding the shortest yet most efficient route for a person to take given a list of specific destinations.
83.	Reliability design	Reliability is the probability that a product will continue to work normally over a specified interval of time, under specified conditions
84.	Optimization problem	To maximize or minimize some values.Ex: Finding the shortest path between two vertices in a graph.
85.	Polynomial time algorithm.	For input size n, if worst-case time complexity of an algorithm is O(nk), where k is a constant
86.	Optimal binary search trees complexity analysis	O (n3)
87.	Floyd Warshall Algorithm	The problem is to find shortest distances between every pair of vertices in a given edge weighted directed Graph.
88.	The most popular solutions to the Traveling Salesman Problem DE SIGNING	The Brute-Force Approach The Branch and Bound Method The Nearest Neighbor Method YOUR FUTURE
89.	0/1 knapsack problem	put these items in a knapsack of capacity W to get the maximum total value in the knapsack
90.	Dynamic programming	methods can be used to solve the matrix chain multiplication problem
91.	Techniques in lower bound theory	 Comparisons Trees. Oracle and adversary argument State Space Method
92.	Real-world TSP Applications	Google Map

93.	Combinatorial optimization Problems		Combinatorial optimization is a subfield of mathematical optimization that is related to operations research, algorithm theory, and computational complexity theory	
94.	Maximum Flow problem		Maximum amount of flow that the network would allow to flow from source to sink.	
95.	Fundamental Data Structures		Linear Data StructuresGraphsTrees	
96.	Vertices		a collection of points	
97.	Edges		A collection of points connected by line segments	
98.	Characteristics of Algorithm		Simplicity, Time consuming, easy to understand, generality.	
99.	Methods specifying for an algorithm	X	Flow chart, Natural language, Program	
100	Recursive function		Function which calls itself again and again	
	Unit-V : BRANCH AND	BOUND&	NP-HARD,NP-COMPLETE PROBLEMS	
101	P-class	>	Problems are solvable in polynomial time	
102	NP-class		Problems are verifiable in polynomial time.	
103	Branch and Bound DES applications	Estd.	Knapsack Problem N-Queens Problem Traveling Salesman Problem	
104	class does a CNF- satisfiability problem		NP complete	
105	The choice of polynomial class has led to the development of an extensi theory called	ve	computational complexity	
106	Travelling Sales man Problem	TSP	The problem is to find the shortest possible route.	
107	Branch and bound		It is generally used for solving combinatorial optimization problems.	

108	How many stages of procedure does a non- deterministic algorithm consist of?	2
109	The worst-case efficiency of solving a problem in polynomial time is	O(p(n))
110	Tractable	Problems that can be solved in polynomial time
111	NP	the class of decision problems that can be solved by non-deterministic polynomial algorithms
112	Un decidable problems	Problems that cannot be solved by any algorithm
113	Example of un decidable problem	Halting problem
114	Backtracking problem	To solve combinational problem, optimization problem, decision problem
115	Applications of travelling sales man problem	planning, scheduling, logistics and packing
116	Approximation problem	Near optimal solution for problem
117	Examples for backtracking	Puzzles such as eight queens puzzle, crosswords, verbal arithmetic, Sudoku, and Peg Solitaire.
118	Backtracking applications	Electrical engineering, Robotics, Artificial Intelligence, Network communication
119	Backtracking technique used in	N Queens problem, sum of subset, Sudoku puzzle, Hamiltonian cycle
120	NP hard problem	Algorithm for solving it can be translated into one for solving any NP-problem (nondeterministic polynomial time)
121	2-approximation algorithm	Returns a solution whose cost is at most twice the optimal
122	Examples of NP problem	integers, rearrange the numbers

123	Base Bound Theory	Calculation of minimum time for execute a algorithm
124	NP Hard problems	 The circuit-satisfiability problem Set Cover Vertex Cover Travelling Salesman Problem
125	NP complete problem	No polynomial time algorithm
		Placement Questions
1	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \iff x = 11$. \therefore Third integer = $x + 4 = 15$.
2	Look at this series: 7, 10, 8, 11, 9, 12,	This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted.
3	Look at this series: 22, 21, 23, 22, 24, 23,	In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on.
4	Look at this series: 53, 53, 40, 40, 27, 27,	In this series, each number is repeated, then 13 is subtracted to arrive at the next number.
5	Look at this series: 1.5, 2.3, 3.1, 3.9,	In this simple addition series, each number increases by 0.8.
6	Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:	Let the three integers be $x, x + 2$ and $x + 4$. Then, $3x = 2(x + 4) + 3 \iff x = 11$. \therefore Third integer $= x + 4 = 15$.
7	Look at this series: 7, 10, 8, 11, 9, 12,	This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted.
8	Look at this series: 22, 21, 23, 22, 24, 23,	In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on.
	$(112 \text{ x } 5^4) = ?$	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4=112 \text{ x}$ $10^4=1120000=7000022^416$
9	It was Sunday on Jan 1, 2006. The day of	On 31 st December, 2005 it was Saturday.

	the week Jan 1, 2010		Number of odd days from the year 2006 to
	is		the year $2009 = (1 + 1 + 2 + 1) = 5$ days.
			\therefore On 31 st December 2009, it was Thursday.
			Thus, on 1 st Jan, 2010 it is Friday.
10	Today is Monday. After 61 days, it will be:		Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. \therefore After 61 days, it will be Saturday.
11	If 6 th March, 2005 is Monday,The day of the week on 6 th March, 2004 is		 The year 2004 is a leap year. So, it has 2 odd days. But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. ∴ The day on 6th March, 2005 will be 1 day beyond the day on 6th March, 2004. Given that, 6th March, 2005 is Monday. ∴ 6th March, 2004 is Sunday (1 day before to 6th March, 2005).
12	The days inx weeks x days?	\sim	x weeks x days = $(7x + x)$ days = $8x$ days.
13	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	Estd.	 The year 2004 is a leap year. It has 2 odd days. ∴ The day on 8th Feb, 2004 is 2 days before the day on 8th Feb, 2005. Hence, this day is Sunday.
14	The greatest number that will divide 43, 91 and 183 so as to leave the same remainder in each case.		Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.
15	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is:		Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$

16	$(112 \text{ x } 5^4) = ?$	$(112 \text{ x } 5^4) = 112 \text{ x}(10)4=112 \text{ x}$ $10^4=1120000=7000022^416$	
17	It was Sunday on Jan 1, 2006.The day of the week Jan 1, 2010 is	On 31^{st} December, 2005 it was Saturday. Number of odd days from the year 2006 to the year $2009 = (1 + 1 + 2 + 1) = 5$ days. \therefore On 31^{st} December 2009, it was Thursday. Thus, on 1^{st} Jan, 2010 it is Friday.	
18	Today is Monday. After 61 days, it will be:	 Each day of the week is repeated after 7 days. So, after 63 days, it will be Monday. ∴ After 61 days, it will be Saturday. 	
19	If 6 th March, 2005 is Monday, The day of the week on 6 th March, 2004 is	 The year 2004 is a leap year. So, it has 2 odd days. But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. ∴ The day on 6th March, 2005 will be 1 day beyond the day on 6th March, 2004. Given that, 6th March, 2005 is Monday. ∴ 6th March, 2004 is Sunday (1 day before to 6th March, 2005). 	
20	The daysin x weeks x days?	x weeks x days = $(7x + x)$ days = $8x$ days.	
21	On 8 th Feb, 2005 it was Tuesday. The day of the week on 8 th Feb, 2004 is	 The year 2004 is a leap year. It has 2 odd days. ∴ The day on 8th Feb, 2004 is 2 days before the day on 8th Feb, 2005. Hence, this day is Sunday. 	
22	Find the greatest number that will divide 43, 91 and 183 so as to leave the same	Required number = H.C.F. of (91 - 43), (183 - 91) and (183 - 43) = H.C.F. of 48, 92 and 140 = 4.	

	remainder in each	
23	The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is:	Clearly, the numbers are (23×13) and (23×14) . \therefore Larger number = $(23 \times 14) = 322$
24	Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:	Let the speeds of the two trains be x m/sec and y m/sec respectively. Then, length of the first train = 27x meters, and length of the second train = 17y meters. $27x + 17y$ $\therefore \frac{27x + 17y}{x + y} = 23$ $\Rightarrow 27x + 17y = 23x + 23y$ $\Rightarrow 4x = 6y$ $x = 3$ $\Rightarrow \frac{x}{y} = \frac{3}{2}$

HoD

1.

2.