## MUST KNOW CONCEPTS

## Course Code \& Course Name : 19CSC11 \& Design and Analysis of Algorithm Year/Sem/Sec <br> : II/IVA\&B

| S.No. | Term | Notation (Symbol) | Concept / Definition / Meaning / Units / Equation / Expression | Units |
| :---: | :---: | :---: | :---: | :---: |
| Unit-I : INTRODUCTION |  |  |  |  |
| 1. | Algorithm |  | Sequence of instructions for solving a problem |  |
| 2. | pseudo code |  | Mixture of a natural language and programming language |  |
| 3. | Time efficiency |  | How much amount of time needed to execute |  |
| 4. | Space efficiency |  | How much amount of space needed to execute |  |
| 5. | Exact Algorithm |  | Solving the problem exactly |  |
| 6. | Approximate Algorithm |  | solving it approximately |  |
| 7. | sorting problem | TUNTI | Rearrange the items of a given list in non decreasing order |  |
| 8. | searching problem |  | Finding a given value, |  |
| 9. | Analysis Framework |  | 1.Measuring an Input's Size <br> 2. Units for Measuring Running Time <br> 3. Orders of Growth <br> 4. Worst-Case, Best-Case, and Average-Case Efficiencies <br> 5. Recapitulation of the Analysis Framework |  |
| 10. | O-notation |  | $\mathrm{t}(\mathrm{n}) \leq \operatorname{cg}(\mathrm{n}) \quad$ for all $\mathrm{n} \geq \mathrm{n} 0$. |  |
| 11. | $\Omega$-notation |  | $t(n) \geq \operatorname{cg}(n)$ for all $n \geq n_{0}$. |  |
| 12. | e -notation |  | $c_{2} g(n) \leq t(n) \leq c_{1} g(n) \quad$ for all $n \geq n_{0}$. |  |
| 13. | Asymptotic Notations |  | - O-notation |  |


|  |  |  | - Omega -notation <br> - $\Theta$-notation |
| :---: | :---: | :---: | :---: |
| 14. | Fundamental Data Structures |  | - Linear Data Structures <br> - Graphs <br> - Trees |
| 15. | Vertices |  | a collection of points |
| 16. | Edges |  | A collection of points connected by line segments |
| 17. | Characteristics of Algorithm |  | Simplicity, Time consuming, easy to understand, generality. |
| 18. | Methods specifying for an algorithm |  | Flow chart, Natural language, Program |
| 19. | Understanding the Problem |  | It is the first step in solving the problem |
| 20. | The main measure for efficiency algorithm are |  | Time and space |
| 21. | Algorithmic analysis count |  | The number of arithmetic and the operations that are required to run the program |
| 22. | The concept of order Big O is important because | $\begin{aligned} & 1 G N 1 N G \\ & E \operatorname{con} \\ & \hline \end{aligned}$ | It can be used to decide the best algorithm that solves a given problem |
| 23. | Non-recursive function |  | Does not references itself |
| 24. | Recursive function |  | Function which calls itself again and again |
| 25. | What are the case does exist in complexity theory |  | Best case,Worst case,Average case |
| Unit-II : BACKTRACKING |  |  |  |
| 26. | Disjoint Operations |  | A disjoint-set data structure is a data structure that keeps track of a set of elements partitioned into a number of disjoint (nonoverlapping) subsets. |


| 27. | Two Operations of Disjoint set |  | Find Union |  |
| :---: | :---: | :---: | :---: | :---: |
| 28. | Find |  | Determine which subset a particular element is in. This can be used for determining if two elements are in the same subset. |  |
| 29. | Union |  | Join two subsets into a single subset. |  |
| 30. | Graph |  | A Graph consists of a finite set of vertices(or nodes) and set of Edges which connect a pair of nodes |  |
| 31. | Spanning tree |  | A spanning tree is a sub-graph of an undirected connected graph, which includes all the vertices of the graph with a minimum possible number of edges. |  |
| 32. | Minimum Spanning Tree |  | A minimum spanning tree is a spanning tree in which the sum of the weight of the edges is as minimum as possible. |  |
| 33. | The minimum spanning tree from a graph is found using the following algorithms: |  | 1.Prim's Algorithm <br> 2.Kruskal's Algorithm |  |
| 34. | Hamiltonian circuit |  | A cycle that passes through all the vertices of the graph exactly once. |  |
| 35. | Eight-queens problem |  | Classic puzzle of placing eight queens on an $8 \times 8$ chessboard |  |
| 36. | Spanning Tree Applications | - | Computer Network Routing Protocol Cluster Analysis Civil Network Planning |  |
| 37. | Subset Problem |  | Subset sum problem is to find subset of elements that are selected from a given set whose sum adds up to a given number |  |
| 38. | Divide and Conquer method |  | Smaller sub problems, sub problems are solved recursively |  |
| 39. | Applications of divide and conquer |  | Binary search, quick sort, merge sort, multiplication of large integers |  |
| 40. | Backtracking |  | Depth-first node generation with bounding method. |  |


| 41. | Backtracking applications |  | Electrical engineering, Robotics, Artificial Intelligence, Network communication |
| :---: | :---: | :---: | :---: |
| 42. | Application of Graphs: |  | Physics and Chemistry, Mathematics, Social Science |
| 43. | Mid value in binary search |  | mid $=($ low + high $) / 2$, low- $0^{\text {th }}$ value and high-last value |
| 44. | Which method used to find Hamiltonian circuit |  | Backtracking |
| 45. | N- Queens problem |  | The problem is to area $n$-queens on an $n$-by- n chessboard so that no two queens charge each other by being same row or in the same column or the same diagonal. |
| 46. | Hamiltonian cycle |  | A Hamiltonian cycle is a closed loop on a graph where every node (vertex) is visited exactly once. |
| 47. | vertex coloring. |  | $t$ is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. |
| 48. | Binary search working |  | Binary search works by dividing the array into 2 halves around the middle element |
| 49. | Graph DE | UNINC | Consists of a set of vertices, and set of edges |
| 50. | Graph types | EStO | BFS,DFS |
| Unit-III : GREEDY METHOD |  |  |  |
| 51. | Greedy Method |  | Greedy Method is also used to get the optimal solution |
| 52. | Applications of Greedy Algorithms |  | Finding an optimal solution (Activity selection, Fractional Knapsack, Job Sequencing, Huffman Coding). 2. Finding close to the optimal solution for NP-Hard problems like TSP. |
| 53. | spanning tree |  | A spanning tree is a subset of an undirected Graph that has all the vertices connected by minimum number of edges |


| 54. | Warshalls algorithm |  | Solve all pair shortest path problem |  |
| :---: | :---: | :---: | :---: | :---: |
| 55. | Floyds algorithm |  | Find optimal solution |  |
| 56. | Greedy technique used in |  | Minimum spanning tree, shortest path problem |  |
| 57. | Examples of Greedy Algorithms |  | Prim's Minimal Spanning Tree Algorithm. Travelling Salesman Problem. <br> Graph - Map Coloring. <br> Kruskal's Minimal Spanning Tree Algorithm. <br> Dijkstra's Minimal Spanning <br> Tree Algorithm. <br> Graph - Vertex Cover. <br> Knapsack Problem. <br> Job Scheduling Problem. |  |
| 58. | Assignment problem |  | Assign a number of jobs to an equal number of machines so as to minimize the total assignment cost for execution of all the jobs |  |
| 59. | single source shortest path algorithm |  | find minimum distance from source vertex to any other vertex |  |
| 60. | All pair shortest path algorithm |  | find all pair shortest path problem from a given weighted graph |  |
| 61. | Knapsack Problem |  | Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack |  |
| 62. | applications of Knapsa ck problem: |  | Home Energy Management. Cognitive Radio Networks. <br> Resource management in software. |  |
| 63. | job sequencing problem | - $=0$ | find a sequence of jobs, which is completed within their deadlines and gives maximum profit. |  |
| 64. | Analysis for job sequencing problem |  | O(n2) |  |
| 65. | Minimum spanning tree |  | Minimum spanning tree is the spanning tree where the cost is minimum among all the spanning trees. |  |
| 66. | Single source shortest path problem |  | The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph. |  |


| 67. | single-source shortest path application |  | Dijkstra's algorithm is one of the most popular algorithms for solving many singlesource shortest path problem |
| :---: | :---: | :---: | :---: |
| 68. | Time Complexity of Dijkstra's Algorithm |  | O (V2) |
| 69. | Jobsequencing proble ms has the time complexity |  | O(n2) |
| 70. | Memory function |  | provides the smallest possible search time |
| 71. | Warshalls algorithm |  | Solve all pair shortest path problem |
| 72. | Floyds algorithm |  | Find optimal solution |
| 73. | Properties of spanning trees |  | A spanning tree does not have any cycle. Any vertex can be reached from any other vertex. |
| 74. | state-space tree |  | The processing of backtracking is resolved by constructing a tree of choices being made. This is known as state-space tree. |
| 75. | Knapsack problem |  | The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. |
| Unit-IV : DYNAMIC PROGRAMMING |  |  |  |
| 76. | Dynamic programming | Esto | Reduce the time complexity, provide optimal solution |
| 77. | Advantages of dynamic programming |  | Computing Fibonacci numbers, completing binomial coefficient |
| 78. | Applications of dynamic programming |  | Find shortest path between all pair of vertices |
| 79. | chained matrix multiplication |  | Given a sequence of matrices, find the most efficient way to multiply these matrices together. |
| 80. | chained matrix multiplication complexity |  | O (n3) |


| 81. | Optimal binary search trees |  | An optimal binary search tree, sometimes called a weight-balanced binary tree |  |
| :---: | :---: | :---: | :---: | :---: |
| 82. | Traveling sales person problem. |  | The Travelling Salesman Problem (TSP) is the challenge of finding the shortest yet most efficient route for a person to take given a list of specific destinations. |  |
| 83. | Reliability design |  | Reliability is the probability that a product will continue to work normally over a specified interval of time, under specified conditions |  |
| 84. | Optimization problem |  | To maximize or minimize some values.Ex: Finding the shortest path between two vertices in a graph. |  |
| 85. | Polynomial time algorithm. |  | For input size n , if worst-case time complexity of an algorithm is $\mathrm{O}(\mathrm{nk})$, where k is a constant |  |
| 86. | Optimal binary search trees complexity analysis |  | $\mathrm{O}(\mathrm{n} 3)$ |  |
| 87. | Floyd Warshall Algorithm |  | The problem is to find shortest distances between every pair of vertices in a given edge weighted directed Graph. |  |
| 88. | The most popular solutions to the Traveling Salesman Problem |  | The Brute-Force Approach The Branch and Bound Method The Nearest Neighbor Method YOUR FIUTIRE |  |
| 89. | 0/1 knapsack problem | $E S t C$ | put these items in a knapsack of capacity W to get the maximum total value in the knapsack |  |
| 90. | Dynamic programming |  | methods can be used to solve the matrix chain multiplication problem |  |
| 91. | Techniques in lower bound theory |  | - Comparisons Trees. <br> - Oracle and adversary argument <br> - State Space Method |  |
| 92. | Real-world TSP <br> Applications |  | Google Map |  |


| 93. | Combinatorial optimization Problems |  | Combinatorial optimization is a subfield of mathematical optimization that is related to operations research, algorithm theory, and computational complexity theory |
| :---: | :---: | :---: | :---: |
| 94. | Maximum Flow problem |  | Maximum amount of flow that the network would allow to flow from source to sink. |
| 95. | Fundamental Data Structures |  | - Linear Data Structures <br> - Graphs <br> - Trees |
| 96. | Vertices |  | a collection of points |
| 97. | Edges |  | A collection of points connected by line segments |
| 98. | Characteristics of Algorithm |  | Simplicity, Time consuming, easy to understand, generality. |
| 99. | Methods specifying for an algorithm |  | Flow chart, Natural language, Program |
| 100 | Recursive function |  | Function which calls itself again and again |
| Unit-V : BRANCH AND BOUND\&NP-HARD,NP-COMPLETE PROBLEMS |  |  |  |
| 101 | P-class |  | Problems are solvable in polynomial time |
| 102 | NP-class |  | Problems are verifiable in polynomial time. |
| 103 | Branch and Bound applications | $\frac{11 N 0}{200}$ | Knapsack Problem <br> N -Queens Problem <br> Traveling Salesman Problem |
| 104 | class does a CNFsatisfiability problem |  | NP complete |
| 105 | The choice of polynomial class has led to the development of an extensive theory called $\qquad$ |  | computational complexity |
| 106 | Travelling Sales man Problem | TSP | The problem is to find the shortest possible route. |
| 107 | Branch and bound |  | It is generally used for solving combinatorial optimization problems. |


| 108 | How many stages of procedure does a nondeterministic algorithm consist of? | 2 |  |
| :---: | :---: | :---: | :---: |
| 109 | The worst-case efficiency of solving a problem in polynomial time is | $\mathrm{O}(\mathrm{p}(\mathrm{n})$ ) |  |
| 110 | Tractable | Problems that can be solved in polynomial time |  |
| 111 | NP | the class of decision problems that can be solved by non-deterministic polynomial algorithms |  |
| 112 | Un decidable problems | Problems that cannot be solved by any algorithm |  |
| 113 | Example of un decidable problem | Halting problem |  |
| 114 | Backtracking problem | To solve combinational problem, optimization problem, decision problem |  |
| 115 | Applications of travelling sales man problem | planning, scheduling, logistics and packing |  |
| 116 | Approximation problem | Near optimal solution for problem |  |
| 117 | Examples for backtracking | Puzzles such as eight queens puzzle, crosswords, verbal arithmetic, Sudoku, and Peg Solitaire. |  |
| 118 | Backtracking applications | Electrical engineering, Robotics, Artificial Intelligence, Network communication |  |
| 119 | Backtracking technique used in | N Queens problem, sum of subset, Sudoku puzzle, Hamiltonian cycle |  |
| 120 | NP hard problem | Algorithm for solving it can be translated into one for solving any NP-problem (nondeterministic polynomial time) |  |
| 121 | 2-approximation algorithm | Returns a solution whose cost is at most twice the optimal |  |
| 122 | Examples of NP problem | integers, rearrange the numbers |  |


| 123 | Base Bound Theory |  | Calculation of minimum time for execute a algorithm |  |
| :---: | :---: | :---: | :---: | :---: |
| 124 | NP Hard problems |  | - The circuit-satisfiability problem <br> - Set Cover <br> - Vertex Cover <br> - Travelling Salesman Problem |  |
| 125 | NP complete problem |  | No polynomial time algorithm |  |
| Placement Questions |  |  |  |  |
| 1 | Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is: |  | Let the three integers be $x, x+2$ and $x+4$. <br> Then, $3 x=2(x+4)+3 \Leftrightarrow x=11$. <br> $\therefore$ Third integer $=x+4=15$. |  |
| 2 | Look at this series: 7, $10,8,11,9,12, \ldots$ |  | This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted. |  |
| 3 | Look at this series: 22, $21,23,22,24,23, \ldots .$ |  | In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on. |  |
| 4 | Look at this series: 53, $53,40,40,27,27, \ldots$ |  | In this series, each number is repeated, then 13 is subtracted to arrive at the next number. |  |
| 5 | Look at this series: $1.5,2.3,3.1,3.9, \ldots$ |  | In this simple addition series, each number increases by 0.8 . |  |
| 6 | Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is: | Este | Let the three integers be $x, x+2$ and $x+4$. <br> Then, $3 x=2(x+4)+3 \Leftrightarrow x=11$. <br> $\therefore$ Third integer $=x+4=15$. |  |
| 7 | Look at this series: 7, $10,8,11,9,12, \ldots$ |  | This is a simple alternating addition and subtraction series. In the first pattern, 3 is added; in the second, 2 is subtracted. |  |
| 8 | Look at this series: 22 , $21,23,22,24,23, \ldots$. |  | In this simple alternating subtraction and addition series; 1 is subtracted, then 2 is added, and so on. |  |
|  | $\left(112 \times 5^{4}\right)=$ ? |  | $\begin{aligned} & \left(112 \times 5^{4}\right)=112 \times(10) 4=112 \times \\ & 10^{4}=1120000=7000022^{4} 16 \end{aligned}$ |  |
| 9 | It was Sunday on Jan 1,2006 . The day of |  | On $31{ }^{\text {st }}$ December, 2005 it was Saturday. |  |


|  | the week Jan 1, 2010 is |  | Number of odd days from the year 2006 to the year $2009=(1+1+2+1)=5$ days. <br> $\therefore$ On $31^{\text {st }}$ December 2009, it was Thursday. <br> Thus, on $1^{\text {st }}$ Jan, 2010 it is Friday. |  |
| :---: | :---: | :---: | :---: | :---: |
| 10 | Today is Monday. After 61 days, it will be: |  | Each day of the week is repeated after 7 days. <br> So, after 63 days, it will be Monday. <br> $\therefore$ After 61 days, it will be Saturday. |  |
| 11 | If $6^{\text {th }}$ March, 2005 is Monday,The day of the week on $6^{\text {th }}$ March, 2004 is |  | The year 2004 is a leap year. So, it has 2 odd days. <br> But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. <br> $\therefore$ The day on $6^{\text {th }}$ March, 2005 will be 1 day beyond the day on $6^{\text {th }}$ March, 2004. <br> Given that, $6^{\text {th }}$ March, 2005 is Monday. <br> $\therefore 6^{\text {th }}$ March, 2004 is Sunday ( 1 day before to $6^{\text {th }}$ March, 2005). |  |
| 12 | The days in $x$ weeks $x$ days? |  | $x \text { weeks } x \text { days }=(7 x+x) \text { days }=8 x \text { days. }$ |  |
| 13 | On $8^{\text {th }} \mathrm{Feb}, 2005$ it was Tuesday. The day of the week on $8^{\text {th }} \mathrm{Feb}$, 2004 is | $\frac{1 G N 1 N g}{E S t C}$ | The year 2004 is a leap year. It has 2 odd days. <br> $\therefore$ The day on $8^{\text {th }} \mathrm{Feb}, 2004$ is 2 days before the day on $8^{\text {th }} \mathrm{Feb}, 2005$. <br> Hence, this day is Sunday. |  |
| 14 | The greatest number that will divide 43, 91 and 183 so as to leave the same remainder in each case. |  | $\begin{aligned} & \text { Required number }=\text { H.C.F. of }(91-43),(183 \\ & -91) \text { and }(183-43) \\ & \quad=\text { H.C.F. of } 48,92 \text { and } 140=4 . \end{aligned}$ |  |
| 15 | The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14 . The larger of the two numbers is: |  | Clearly, the numbers are $(23 \times 13)$ and $(23 x$ 14). <br> $\therefore$ Larger number $=(23 \times 14)=322$ |  |


| 16 | $\left(112 \times 5^{4}\right)=$ ? |  | $\begin{aligned} & \left(112 \times 5^{4}\right)=112 \times(10) 4=112 \times \\ & 10^{4}=1120000=7000022^{4} 16 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 17 | It was Sunday on Jan 1,2006 .The day of the week Jan 1, 2010 is |  | On $31^{\text {st }}$ December, 2005 it was Saturday. <br> Number of odd days from the year 2006 to the year $2009=(1+1+2+1)=5$ days. <br> $\therefore$ On $31^{\text {st }}$ December 2009, it was Thursday. <br> Thus, on $1^{\text {st }}$ Jan, 2010 it is Friday. |  |
| 18 | Today is Monday. After 61 days, it will be: |  | Each day of the week is repeated after 7 days. <br> So, after 63 days, it will be Monday. <br> $\therefore$ After 61 days, it will be Saturday. |  |
| 19 | If $6^{\text {th }}$ March, 2005 is Monday, The day of the week on $6^{\text {th }}$ March, 2004 is |  | The year 2004 is a leap year. So, it has 2 odd days. <br> But, Feb 2004 not included because we are calculating from March 2004 to March 2005. So it has 1 odd day only. <br> $\therefore$ The day on $6^{\text {th }}$ March, 2005 will be 1 day beyond the day on $6^{\text {th }}$ March, 2004. <br> Given that, $6^{\text {th }}$ March, 2005 is Monday. <br> $\therefore 6^{\text {th }}$ March, 2004 is Sunday ( 1 day before to $6^{\text {th }}$ March, 2005). |  |
| 20 | The daysin $x$ weeks $x$ days? |  | $x$ weeks $x$ days $=(7 x+x)$ days $=8 x$ days. |  |
| 21 | On $8^{\text {th }} \mathrm{Feb}, 2005$ it was Tuesday. The day of the week on $8^{\text {th }} \mathrm{Feb}$, 2004 is |  | The year 2004 is a leap year. It has 2 odd days. <br> $\therefore$ The day on $8^{\text {th }}$ Feb, 2004 is 2 days before the day on $8^{\text {th }} \mathrm{Feb}, 2005$. <br> Hence, this day is Sunday. |  |
| 22 | Find the greatest number that will divide 43,91 and 183 so as to leave the same |  | $\begin{aligned} & \text { Required number }=\text { H.C.F. of }(91-43),(183 \\ & -91) \text { and }(183-43) \\ & \quad=\text { H.C.F. of } 48,92 \text { and } 140=4 . \end{aligned}$ |  |


|  | remainder in each case. |  |  |
| :---: | :---: | :---: | :---: |
| 23 | The H.C.F. of two numbers is 23 and the other two factors of their L.C.M. are 13 and 14. The larger of the two numbers is: | Clearly, the numbers are $(23 \times 13)$ and $(23 \times 14)$. <br> $\therefore$ Larger number $=(23 \times 14)=322$ |  |
| 24 | Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is: | Let the speeds of the two trains be $x \mathrm{~m} / \mathrm{sec}$ and y <br> $\mathrm{m} / \mathrm{sec}$ respectively. <br> Then, length of the first train $=27 x$ meters,, <br> and length of the second train $=17 y$ meters. <br> $\therefore \frac{27 x+17 y}{x+y}=23$ <br> $\Rightarrow 27 x+17 y=23 x+23 y$ <br> $\Rightarrow 4 x=6 y$$\Rightarrow=3$ |  |
|  | Faculty Team Prepar |  |  |

1. 
2. 

HoD

