

## MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.



|      |                                     | MUS                   | T KNOW CONCEPTS MKC                                                                                                                                                                                                                               |       |
|------|-------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | MATHS                               |                       | 2021-22                                                                                                                                                                                                                                           |       |
|      | rse Code & Course Na<br>:/Sem/Sec   | me :                  | 19BSS23&Transforms and Partial Differential Equation<br>II / III / -                                                                                                                                                                              | IS    |
| S.No | Term                                | Notation<br>( Symbol) | Concept/Definition/Meaning/Units/<br>Equation/Expression                                                                                                                                                                                          | Units |
|      |                                     | Uni                   | t-I Fourier Transforms                                                                                                                                                                                                                            |       |
| 1    | Transform                           | Z                     | A Transformation is a process that manipulate a polygon or<br>other two dimentional objects on a plane or coordinate<br>system. Mathematical transformations describe how two<br>dimentional figures move around a plane or coordinate<br>system. |       |
| 2    | Types of<br>transformation          | $\mathbf{b}$          | <ol> <li>Dilation</li> <li>Reflection</li> <li>Rotation</li> <li>Shear</li> <li>Translation</li> </ol>                                                                                                                                            |       |
| 3    | Fourier Transform                   |                       | It is a way of transforming a continuous signal into the frequency domain.                                                                                                                                                                        |       |
| 4    | Discrete Fourier<br>Transform (DFT) | DESIGN                | It is a discrete numerical equivalent using sums instead of integrals that can be computed on a digital computer.                                                                                                                                 |       |
| 5    | Applications of DFT                 | l.                    | As one of the applications DFT and then inverse DFT can<br>be used to compute standard convolution product and thus<br>to perform linear filtering.                                                                                               |       |
| 6    | Uses of Fourier<br>Transform        |                       | The Fourier Transform of a musical chord is a mathematical representation of the amplitudes of the individual notes that make it up.                                                                                                              |       |
| 7    | Uses of Fourier<br>Transform        |                       | <ol> <li>X-ray diffraction</li> <li>Electron microscopy</li> <li>NMR spectroscopy</li> <li>IR spectroscopy</li> <li>Fluorescence spectroscopy</li> <li>Image Processing</li> </ol>                                                                |       |

| 8  | Time Domain                                                 |                                     | The original signal depends on time.                                                                                                                                                                                                                                                    |
|----|-------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Frequency Domain                                            |                                     | The original signal depends on frequency.                                                                                                                                                                                                                                               |
| 10 | Difference between<br>Time and Frequency<br>Domain analysis |                                     | <ul> <li>The time domain analysis examine the amplitude vs time characteristics of a measuring signal.</li> <li>Frequency domain analysis replaces the measured signal with the group of sinusoidal which, when added together, produce the waveform equivalent to original.</li> </ul> |
| 11 | Fourier Transform<br>Pair                                   | ~                                   | If $f(x)$ is a given function, then Fourier transform and its inverse Fourier transform are called Fourier transform pair.                                                                                                                                                              |
| 12 | Fourier Transform<br>Pair                                   | F[f(x)] = F(s)                      | If f(x) is a given function, then $F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \cdot e^{isx} dx = F(s)$<br>and $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) \cdot e^{-isx} ds$ are called Fourier transform pair.                                        |
| 13 | Properties of<br>Fourier Transforms                         | $\angle$                            | <ul> <li>Convolution Theorem</li> <li>Correlation Theorem</li> <li>Wiener – Khinchin Theorem</li> <li>Parseval's Theorem</li> </ul>                                                                                                                                                     |
| 14 | Linear property                                             |                                     | If $F[f(x)] = F(s)$ and $F[g(x)] = G(s)$ then<br>$F[af(x) \pm bg(x)] = aF(s) \pm bG(s)$                                                                                                                                                                                                 |
| 15 | Shifting theorem                                            |                                     | If $F[f(x)] = F(s)thenF[f(x-a)] = e^{ias}F(s)$                                                                                                                                                                                                                                          |
| 16 | Change of scale<br>property                                 |                                     | If $F[f(x)] = F(s)$ then $F[f(ax)] = \frac{1}{a}F\left(\frac{s}{a}\right)$                                                                                                                                                                                                              |
| 17 | Modulation theorem                                          | DESIGN                              | If $F[f(x)] = F(s)$ then<br>$F[f(x)cosax] = \frac{1}{2}[F(s+a) + F(s-a)]$                                                                                                                                                                                                               |
| 18 | Convolution<br>theorem                                      | *                                   | The Fourier transform of the convolution of two functions $f(x)$ and $g(x)$ is the product of their Fourier transform $F[(f(x) * g(x)] = F(S)G(S) = F[f(x)]F[g(x)].$                                                                                                                    |
| 19 | Convolution                                                 | F[f(x)] $= F(s)$ $F[g(x)]$ $= G(s)$ | If $F[f(x)] = F(s)$ and $F[g(x)] = G(s)$ then convolution<br>of $f(x)$ & $g(x)$ is defined as<br>$(f * g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)g(x - t)dt$                                                                                                            |
| 20 | Applications of<br>Convolution                              |                                     | <ul> <li>It is used to merge signals</li> <li>It is used to apply operations like smooting and filtering images where the primary task is selecting the appropriate filter template or mask.</li> <li>It is used to find gradient of the image.</li> </ul>                              |

| 21 | Parseval's identity                    |                          | If f(x) is defined $(-\infty, \infty)andF[f(x)] = F(s)$ then<br>$\int_{-\infty}^{\infty}  f(x) ^2 dx = \int_{-\infty}^{\infty}  F(s) ^2 dx.$                                                                                                                           |
|----|----------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22 | Concept of                             |                          | The sum (or intergral) of the square of the function is equal                                                                                                                                                                                                          |
| 22 | parseval's Theorem                     |                          | to the sum (or intergral) of the square of its transform.                                                                                                                                                                                                              |
| 23 | Fourier sine<br>transform pair         | $F_{s}[f(x)] = F_{S}(s)$ | The Fourier sine transform of f(x) is<br>$F_{s}[f(x)] = F_{s}(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx$ The inverse Fourier sine transform of $F_{s}(s)$ is defined by<br>$f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_{s}(s) \sin sx ds$ |
| 24 | Fourier cosine<br>transform pair       | $F_{c}[f(x)] = F_{c}(s)$ | The Fourier sine transform of f(x) is<br>$F_{c}[f(x)] = F_{c}(s) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) cossx \ dx$ The inverse Fourier sine transform of $F_{c}(s)$ is defined by<br>$f(x) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_{c}(s) cossxds$    |
| 25 | Self reciprocal                        |                          | If the fourier transform of $f(x)$ is $f(s)$ then $f(x)$ is said<br>to be self –reciprocal under fourier transform.                                                                                                                                                    |
|    |                                        | Unit-II Z – Tra          | ansforms and Difference Equations                                                                                                                                                                                                                                      |
| 26 | Z- Transform (one sided or unilateral) | X                        | Let $\{f(n)\}$ be a sequence defined for $n = 0, 1, 2, 3,$ and $f(n) = 0$ for $n < 0$ then its Z- transform is defined as $Z[f(n)] = F[z] = \sum_{n=0}^{\infty} f(n) Z^{-n}$                                                                                           |
| 27 | Z- Transform (two sided or bilateral)  | $\leq$                   | Let $\{f(n)\}$ be a sequence defined for all integers then its<br>Z- transform is defined as<br>$Z[f(n)] = F[z] = \sum_{n=-\infty}^{\infty} f(n) Z^{-n}$                                                                                                               |
| 28 | Uses of Z-Transform                    |                          | The Z-Transform is a mathematical tool commonly used<br>for the analysis and synthesis of discrete time control<br>system.                                                                                                                                             |
| 29 | Differentiation in then Z-Domain       |                          | If $Z[f(n)] = F[z]$ then $Z[nf(n)] = -Z \frac{d}{dz} F[z]$                                                                                                                                                                                                             |
| 30 | Second Shifting<br>Theorem             | DESIGN                   | If $Z[f(n)] = F[z]$ then <b>ODER E</b><br>i). $Z[f(n+1)] = ZF[z] - Zf[0]$<br>ii). $Z[f(n+2)] = Z^2F[z] - Z^2f[0] - Zf[0]$<br>iii). $Z[f(n+k)] =$<br>$Z^kF[z] - Z^kf[0] - Z^{k-1}f[1] - Z^{k-2}f[2] - \dots - Z^{k-(k-1)}$<br>iv). $Z[f(n-k)] = Z^{-k}F[z]$             |
| 31 | Initial value theorem                  |                          | $If \ z[f(n)] = F[z] then$ $f(0) = \lim_{z \to \infty} F[z].$                                                                                                                                                                                                          |
| 32 | Final value theorem                    |                          | If z[f(n)] = F[z]<br>then $\lim_{n \to \infty} f[n] = \lim_{z \to 1} (z - 1)F[z].$                                                                                                                                                                                     |
| 33 | Convolution                            |                          | If $Z[f(n)] = F[z] \& Z[g(n)] = G[z]$ then                                                                                                                                                                                                                             |

|    | theorem of Z                     | $Z^{-1}{f(n) * g(n)} = \mathbf{F}(\mathbf{z}) G(z)$                                                                                                                                                                                                                                                                                                                               |
|----|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Transform.                       |                                                                                                                                                                                                                                                                                                                                                                                   |
| 34 | Convolution of two<br>functions  | $f(n) * g(n) = \sum_{k=0}^{n} f(k) \cdot g(n-k).$                                                                                                                                                                                                                                                                                                                                 |
| 35 | Z- Transform of<br>cosnθ         | $Z[cosn\theta] = \frac{z(z - cos\theta)}{z^2 - 2zcos\theta + 1}$ $Z[sinn\theta] = \frac{zsin\theta}{z^2 - 2zcos\theta + 1}$                                                                                                                                                                                                                                                       |
| 36 | Z- Transform<br>of <i>sinnθ</i>  | $Z[sinn\theta] = \frac{zsin\theta}{z^2 - 2zcos\theta + 1}$                                                                                                                                                                                                                                                                                                                        |
| 37 | Advantages of Z-<br>transform    | <ul> <li>(i) It is easy and time consuming to solve difference equation.</li> <li>(ii) It is faster than Laplace transform to solve difference equation.</li> </ul>                                                                                                                                                                                                               |
| 38 | Unit step sequence $u(k)$        | $u(k):\{1,1,1,\dots\} = \begin{cases} 1, & k \ge 0\\ 0, & k < 0 \end{cases}$                                                                                                                                                                                                                                                                                                      |
| 39 | Zeros                            | When $X(Z)$ is a rational function. i.e., a ration of polynomial in Z, then the roots of the numerator polynomial are referred to as the zeros of $X(Z)$ .                                                                                                                                                                                                                        |
| 40 | Poles                            | When $X(Z)$ is a rational function. i.e., a ration of polynomial in Z, then the roots of the denominator polynomial are referred to as the poles of $X(Z)$ .                                                                                                                                                                                                                      |
| 41 | Z-Transform at work              | <ul> <li>Z-Transform takes a sequence of X<sub>n</sub> numbers and transform it into an expression X(Z) that depends on the variable Z but not n. That's the transform part.</li> <li>So the problem is transformed from the sampled time domain (n) to the Z domain</li> </ul>                                                                                                   |
| 42 | Applications of Z-<br>Transforms | The field of signal processing is essentially a field of signal<br>analysis in which they are reduced to their mathematical<br>components and evaluated. One important concept in<br>signal processing is that of the Z-Transform , which<br>converts unwidely sequences into forms that can be easily<br>dealt with. Z-Transforms are used in many signal<br>processing systems. |
| 43 | Uses of Z-<br>Transforms         | It can be used to solve differential equations with constant coefficients.                                                                                                                                                                                                                                                                                                        |
| 44 | Differentiation in the Z-Domain  | If $Z[f(n)] = F[z]$ then $Z[nf(n)] = -z \frac{d}{dz} F[z]$                                                                                                                                                                                                                                                                                                                        |
| 45 | Damping Rule                     | If $Z[u(n)] = U[z]$ Then $Z[a^{-n}u(n)] = U[az]$ which is<br>called Damping rule because the geometric factor $a^{-n}$<br>when $ a  > 0$ damps the function $u(n)$                                                                                                                                                                                                                |
| 46 | Difference Equation              | A difference equation is relation between the difference of<br>an unknown function at one or more general values of the                                                                                                                                                                                                                                                           |

| _  |                                                                | argument.                                                                                                                                                                                                                                                                           |
|----|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 | Order of a<br>Difference Equation                              | The order of a Difference Equation is the difference<br>between the largest and the smallest arguments occurring<br>in the difference equation divided by the unit of increment.                                                                                                    |
| 48 | Solution of a<br>Difference Equation                           | The solution of the Difference Equation is an expression for $y(n)$ which satisfies the given difference equation.                                                                                                                                                                  |
| 49 | Procedure to solve<br>Difference equation<br>using Z-Transform | <ol> <li>Apply the Z-Transform to the difference equation.</li> <li>Substitute the initial conditions.</li> <li>Solve for the difference equation in the Z-<br/>Transform domain.</li> <li>Find the solution in the time domain by applying<br/>the inverse Z-Transform.</li> </ol> |
| 50 | Inverse Z-Transform                                            | The Inverse Z-Transform of $Z[f(n)] = F[z]$ is defined<br>as $Z^{-1}[f(z)] = f(n)$                                                                                                                                                                                                  |
|    |                                                                | Unit – III Fourier Series                                                                                                                                                                                                                                                           |
| 51 | Fourier Series                                                 | A series of sine and cosine of an angle and its multiples of<br>the form<br>$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n con  nx + \sum_{n=1}^{\infty} b_n \sin nx$ is called the Fourier series . Where $a_0, a_n$ and $b_n$ are Euler                                          |
| 52 | Periodic Function                                              | (or) Fourier constants.<br>A function $f(x)$ is said to be periodic, if and only if<br>f(x + p) = f(x) is true for some value of p and every<br>value of x The smallest value of p is called the period of<br>the function $f(x)$                                                   |
| 53 | Dirichlet's<br>conditions                                      | <ol> <li>f(x) is well defined in the defined interval .</li> <li>f(x) has a finite number of finite discontinuities in the defined interval .</li> <li>f(x) has at most a finite number of maxima and minima in the defined interval.</li> </ol>                                    |
| 54 | Uses of Dirichlet's DESI condition                             | The Dirichlet's conditions are sufficient conditions for a real-valued, periodic function f to be equal to the sum of its Fourier series at each point where f is continuous.                                                                                                       |
| 55 | Odd function                                                   | A function $f(x)$ is said to be odd, if and only if<br>f(-x) = -f(x)                                                                                                                                                                                                                |
| 56 | Even function                                                  | A function $f(x)$ is said to be odd, if and only if<br>f(-x) = f(x)                                                                                                                                                                                                                 |
| 57 | Neither even nor odd function                                  | A function $f(x)$ is said to be Neither even nor odd function,<br>if and only if<br>$f(-x) \neq f(x) \neq -f(x)$                                                                                                                                                                    |
| 58 | Types of intervals in<br>Fourier series                        | $ \begin{array}{c} 1. (0, 2\pi) \\ 2. (-\pi, \pi) \\ 3. (0, 2l) \\ 4. (-l, l) \end{array} $                                                                                                                                                                                         |

| 59 | Importance of<br>Fourier series in<br>engineering  | The Fourier series of functions in the differential equation<br>often gives some prediction about the behavior of the<br>solution of a differential equation. They are useful to find<br>out the dynamics of the solution.                                                                                                                           |
|----|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60 | Application of<br>Fourier series                   | <ol> <li>Image Processing</li> <li>Heat distribution mapping</li> <li>Wave simplification</li> <li>Light simplification</li> <li>Radiation measurements</li> </ol>                                                                                                                                                                                   |
| 61 | Real life application<br>of Fourier series         | <ol> <li>Signal Processing</li> <li>Approximation Theory</li> <li>Control Theory</li> </ol>                                                                                                                                                                                                                                                          |
| 62 | Application of<br>Fourier series in<br>Engineering | The Fourier series has many such applications in electrical<br>engineering, vibration analysis, acoustics, optics, signal<br>processing, image processing, quantum mechanics,<br>econometrics, thin-walled shell theory, etc                                                                                                                         |
| 63 | Uses of Fourier<br>series                          | <ul> <li>Fourier series are particularly suitable for<br/>expansion of periodic functions.</li> <li>We come across many periodic functions in<br/>voltage, current, flex, density, applied force,<br/>potential and electromagnetic force in electricity.</li> <li>Fourier series are very useful in electrical<br/>engineering problems.</li> </ul> |
| 64 | Advantage of<br>Fourier series                     | <ul> <li>The main advantage of Fourier analysis is that very little information is lost from the signal during the transformation.</li> <li>The Fourier transform maintains information on amplitude, harmonics, and phase and uses all parts of the waveform to translate the signal into the frequency domain.</li> </ul>                          |
| 65 | Disadvantage of<br>exponential Fourier<br>series   | The major disadvantage of exponential Fourier series is<br>that it cannot be easily visualized as sinusoids.                                                                                                                                                                                                                                         |
| 66 | Limitations of<br>Fourier series                   | It can be used only for periodic inputs and thus not<br>applicable for aperiodic one. It cannot be used for unstable<br>or even marginally stable systems.                                                                                                                                                                                           |
| 67 | Bernoulli's Formula $\int u dv$                    | $\int u dv = uv - u'v_1 + u''v_2 - \dots$                                                                                                                                                                                                                                                                                                            |
| 68 | Purpose of<br>Bernoulli's equation                 | The Bernoulli equation is an important expression relating pressure, height and velocity of a fluid at one point along its flow.                                                                                                                                                                                                                     |
| 69 | Parseval's Theorem                                 | Let $f(x)$ be a periodic function defined in the interval (a,b)<br>then<br>$\frac{a_0^2}{4} + \frac{1}{2}\sum_{n=1}^{\infty} [a_n^2 + b_n^2] = \frac{1}{b-a} \int_a^b [f(x)]^2 dx$ if the interval is<br>(a,b)                                                                                                                                       |
| 70 | Root Mean Square<br>(RMS) Value $\bar{y}$          | Let f(x) be a periodic function defined in the interval (a,b) then                                                                                                                                                                                                                                                                                   |

| 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | $\bar{y} = \sqrt{\frac{1}{b-a}} \int_{a}^{b} [f(x)]^2 dx$ is called the Root Mean Square                                                                                                                                                                                                                                                                                                                                 |
|                                           | (RMS) Value of $f(x)$ and it is denoted by $\overline{y}$ .                                                                                                                                                                                                                                                                                                                                                              |
| Half Range series                         | 1. If $f(x)$ is Half range cosine series then $b_n = 0$<br>2. If $f(x)$ is Half range sine series then $a_0, a_n = 0$                                                                                                                                                                                                                                                                                                    |
| Advantage of Half<br>range Fourier series | A Half range Fourier series is a Fourier series defined on<br>an interval instead of the more common, with the<br>implication that the analyzed function should be extended<br>to as either an even or odd function.                                                                                                                                                                                                     |
| Harmonic Analysis                         | The process of finding the Fourier series for a function<br>given by numerical values is known as Harmonic Analysis<br>$f(x) = \frac{a_0}{2} + (a_1 \cos x + b_1 \sin x) + (a_2 \cos 2x + b_2 \sin 2x) + (a_3 \cos 3x + b_3 \sin 3x) + \cdots$                                                                                                                                                                           |
| Application of<br>Harmonic Functions      | Harmonic functions are important in the areas of applied<br>mathematics, engineering and mathematical physics. They<br>are used to solve problems involving steady state<br>temperatures, two-dimensional electrostatics and ideal<br>fluid flow.                                                                                                                                                                        |
| Uses of Harmonic<br>analysis              | The analysis of harmonics is the process of calculating the magnitudes and phases of the fundamental and high order harmonics of the periodic waveforms.                                                                                                                                                                                                                                                                 |
| Unit- IV                                  | V Boundary Value Problems                                                                                                                                                                                                                                                                                                                                                                                                |
| Boundary value problem                    | A boundary value problem is differential equation together<br>with a set of additional restraints, called the boundary<br>conditions.                                                                                                                                                                                                                                                                                    |
| Boundary Condition                        | A Boundary value problem is a differential equation together with a set of additional constrains.                                                                                                                                                                                                                                                                                                                        |
| Initial value<br>problem                  | The auxiliary conditions are at one point of the independent variable                                                                                                                                                                                                                                                                                                                                                    |
| Wave equation                             | The wave equation is an important second-order linear partial differential equation for the description of waves.                                                                                                                                                                                                                                                                                                        |
| Heat equation                             | The heat equation is an important partial differential<br>equation which describes the distribution of heat(or<br>variation in temperature) in a given region over time.                                                                                                                                                                                                                                                 |
| One dimensional<br>wave equation          | $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$                                                                                                                                                                                                                                                                                                                                              |
| The constant $a^2$ in                     | $a^2 = \frac{T}{m} = \frac{Tension}{mass \ per \ unit \ length \ of \ the \ string}}$                                                                                                                                                                                                                                                                                                                                    |
| One dimensional<br>heat equation          | $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$                                                                                                                                                                                                                                                                                                                                             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The constant $a^2$ in heat equation       | $\alpha^{2} = \frac{k}{\rho c} = \frac{Thermal \ conductivity}{(Density)(Specific \ heat)}$                                                                                                                                                                                                                                                                                                                              |
|                                           | Advantage of Half<br>range Fourier series         Harmonic Analysis         Application of<br>Harmonic Functions         Uses of Harmonic<br>analysis         Uses of Harmonic<br>analysis         Boundary value<br>problem         Boundary Condition         Initial value<br>problem         Wave equation         Heat equation         One dimensional<br>wave equation         One dimensional<br>one dimensional |

|    | dimensional wave                                                                                                    | <ul> <li>The tension T is constant at all times and at all points of he deflected string.</li> <li>The string is perfectly flexible, i.e., it can transmit tension but not bending or sheering forces.</li> </ul>                                                          |
|----|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86 | In One dimensional heat equation, what is $\alpha^2$                                                                | $\alpha^{2} = \frac{k}{\rho c} = \frac{Thermal \ conductivity}{(Density)(Specific \ heat)}$                                                                                                                                                                                |
| 87 | Gradient $\frac{\partial u}{\partial x}$                                                                            |                                                                                                                                                                                                                                                                            |
| 88 | Steady state<br>condition                                                                                           | Steady state condition in heat flow means that the temperature at any point in the body does not vary with time. $\frac{\partial u}{\partial t} = 0$ .                                                                                                                     |
| 89 | Thermally insulated                                                                                                 | If an end of heat conducting body is Thermally insulated<br>means that no heat through that section. Mathematically<br>the temperature gradient is zero at that point. i.e.,<br>$\frac{\partial u}{\partial x} = 0.$                                                       |
| 90 | Fourier law of heat k                                                                                               | The rate at which heat across any area (A)is proportional to the area and to the temp gradient normal to the curve .                                                                                                                                                       |
| 91 | Specific Heat                                                                                                       | The amount of heat required to produce a given<br>temperature change in a body is proportional to the mass of<br>the body and to the temperature change. This constant of<br>proportionality is known as the specific heat of the<br>conducting material.                  |
| 92 | Classification of<br>second order Quasi<br>Linear PDE                                                               | $B^{2}- 4AC < 0$ Elliptic Equation<br>$B^{2}- 4AC = 0$ Parabolic Equation<br>$B^{2}- 4AC > 0$ Hyperbolic Equation                                                                                                                                                          |
| 93 | Fourier law of heat conduction.                                                                                     | The rate at which heat flows across any area is proportional<br>to the area and to the temperature gradient normal to the<br>curve. This constant of proportionality is known as thermal<br>conductivity of the material. It is known as Fourier law of<br>heat conduction |
| 94 | Difference between<br>the solutions of one<br>dimensional wave<br>equation and one<br>dimensional heat<br>equation. | The correct solution of one dimensional wave equation is<br>of periodic in nature. But the solution of heat flow equation<br>is not periodic in nature.                                                                                                                    |
| 95 | Steady state solution<br>of two dimensional<br>heat equation                                                        | When the heat flow is along curves, instead straight lines,<br>the curve lying in parallel planes, the flow is called two<br>dimensional. The two dimensional heat flow equations<br>$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ .         |
| 96 | Two dimensional<br>heat flow equation                                                                               | $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ i.e., $\nabla^2 u = 0$ this is known as Laplace's equation.                                                                                                                                    |
| 97 | Steady State in heat<br>conduction                                                                                  | In steady state, the temperature at any point depends only<br>on the position of the point and is independent of the time                                                                                                                                                  |
| 98 | Unsteady State in<br>heat conduction                                                                                | t.         In unsteady state, the temperature at any point of the body depends on the position of the point and also the time t.                                                                                                                                           |

| 99  | Application                                               |                                                                                                         | <ul> <li>In electrostatics, a common problem is to find a function which describes the electric potential of a given region. If the region does not contain charge, the potential must be a solution to Laplace's equation (a so-called harmonic function).</li> <li>The boundary conditions in this case are the Interface conditions for electromagnetic fields. If there is no current density in the region, it is also possible to define a magnetic scalar potential using a similar procedure.</li> </ul> |
|-----|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100 | Uses of Boundary value Problems                           | ~                                                                                                       | Boundary value problems for large scale nonlinear<br>evolution equations are often required in engineering and<br>scientific applications. Some examples are: incompressible<br>Navier-Stokes equations, problems in elasticity,<br>cosmology, material science, semiconductor device<br>simulation                                                                                                                                                                                                              |
|     |                                                           | Unit-V F                                                                                                | Partial Differential Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 101 | Partial Differential<br>Equations (PDE)                   | $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \\ \frac{\partial^2}{\partial x \partial y}$ | A PDE is one which involves partial derivatives.<br>For example $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$ is a PDE.                                                                                                                                                                                                                                                                                                                                                          |
| 102 | Concept of PDE                                            | X                                                                                                       | A PDE is a mathematical equation that involves two or<br>more independent variables, an unknown function<br>(dependent on those variables), and partial derivatives of<br>the unknown function with respect to the independent<br>variable.                                                                                                                                                                                                                                                                      |
| 103 | Linear PDE                                                |                                                                                                         | A PDE is said to be linear, if the dependent variable and<br>the partial derivatives occur in the first degree only.                                                                                                                                                                                                                                                                                                                                                                                             |
| 104 | Non Linear PDE                                            |                                                                                                         | A PDE is said to be non linear , if the dependent variable<br>and the partial derivatives occur in more than one degree .                                                                                                                                                                                                                                                                                                                                                                                        |
| 105 | Formation of PDE                                          | DESIGN                                                                                                  | <ul> <li>By eliminating arbitrary constants that occur in the functional relation between the dependent and independent variables</li> <li>By eliminating arbitrary functions from a given relation between the dependent and independent variables.</li> </ul>                                                                                                                                                                                                                                                  |
| 106 | Order of PDE                                              |                                                                                                         | The order of a PDE is the order of the highest partial differential coefficient occurring in it.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 107 | Degree of PDE                                             |                                                                                                         | The degree of the highest derivative is the degree of the PDE.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 108 | Order of PDE got by<br>eliminating arbitrary<br>functions |                                                                                                         | The elimination of one arbitrary function will result in a<br>PDE of the first order. The elimination of two arbitrary<br>functions will result in equations of second order and so<br>on.                                                                                                                                                                                                                                                                                                                       |
| 109 | Method to solve the first order PDE                       |                                                                                                         | The general form of a first order PDE is $f(x, y, z, p, q) = 0$ , where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$ .                                                                                                                                                                                                                                                                                                                                                            |

|     |                          | 1. Complete Solution (or ) Integral                                                      |
|-----|--------------------------|------------------------------------------------------------------------------------------|
|     | Types of solution of     | 1                                                                                        |
| 110 | Types of solution of     | 2. Singular Solution (or ) Integral                                                      |
|     | a PDE                    | 3. General Solution(or ) Integral                                                        |
|     | Complete Integral        | A solution which contains as many arbitrary constants as                                 |
| 111 | Complete Integral        | A solution which contains as many arbitrary constants as                                 |
| 111 |                          | there are independent variables is called a complete                                     |
|     | Solution                 | integral or complete solution.                                                           |
| 110 | Particular Integral      | A solution obtained by giving particular values to the                                   |
| 112 |                          | arbitrary constants in a complete integral is called a                                   |
|     | Solution                 | particular integral or particular solution.                                              |
|     | General Integral         | A solution of a PDE which contains the maximum possible                                  |
| 113 |                          | number of arbitrary functions is called a general integral or                            |
|     | Solution                 | general solution.                                                                        |
| 114 | Clairaut's form          | The equation of the form $z = px + qy + f(p,q)$ is called                                |
| 114 |                          | Clairaut's form.                                                                         |
|     |                          | An equation of the form $Pp + Qq = R$ is known as                                        |
| 115 | Lagrange's Linear        | Lagrange's equation when P,Q,& R are functions of                                        |
|     | Equation                 | x, yandz.                                                                                |
|     | Method to solve          | 1. Method of grouping                                                                    |
| 116 | Lagrange's Linear        | 2. Method o Multipliers                                                                  |
| _   | Equation                 |                                                                                          |
|     | 1                        | In the subsidiary equation $\frac{dx}{p} = \frac{dy}{0} = \frac{dz}{R}$ if the variables |
| 117 | Mathad of Councilla      |                                                                                          |
| 117 | Method of Grouping       | can be separated in any pair of equations, then we get a                                 |
|     |                          | solution of the form $u(x, y) = a \& v(x, y) = b$ .                                      |
|     |                          | Choose any three multipliers $l, m, n$ which may be                                      |
|     |                          | constants (or) function of $x, y\&z$ we have                                             |
|     |                          | • $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{ldx + mdy + ndz}{lP + mQ + nR}$ .  |
|     |                          |                                                                                          |
| 110 | Method of<br>Multipliers | • If it is possible to choose <i>l</i> , <i>m</i> , <i>n</i> such that <i>lP</i> +       |
| 118 |                          | mQ + nR = 0, then $ldx + mdy + ndz = 0$ . We                                             |
|     |                          | get a solution                                                                           |
|     |                          | u(x,y) = a&v(x,y) = b.                                                                   |
|     |                          | • The multipliers <i>l</i> , <i>m</i> , <i>n</i> are called Lagrange's                   |
|     |                          | multiplier.                                                                              |
|     | Categories of PDE        | 1. Homogeneous PDE with constant coefficients.                                           |
| 119 | e                        | 2. Non-homogeneous PDE with constant coefficients                                        |
|     | constant Coefficient     | ING TOUR FUTURE                                                                          |
|     | Homogenous and           | A linear PDE with constant coefficients in which all the                                 |
| 120 | -                        | partial derivatives are of the same order is called                                      |
|     | PDE                      | homogeneous; otherwise it is called non-homogeneous.                                     |
|     |                          | Elliptic,                                                                                |
| 121 | Common types of          | Parabolic, and                                                                           |
| 121 | PDE                      | hyperbolic partial differential equations.                                               |
|     |                          | In many engineering or science problems, such as heat                                    |
|     |                          | transfer, elasticity, quantum mechanics, water flow and                                  |
| 122 | Application of PDE       | others, the problems are governed by partial differential                                |
|     |                          | equations.                                                                               |
|     |                          | *                                                                                        |
| 102 | Solution of PDE          | A solution or integral of a partial differential equation is a                           |
| 123 | SOLUTION OF LDE          | relation between the independent and the dependent                                       |
|     |                          | variables which satisfies the given partial differential                                 |

|     |                              | equation.                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 124 | Uses of PDE                  | <ul> <li>Fluid mechanics, heat and mass transfer, and electromagnetic theory are all modeled by partial differential equations and all have plenty of real life applications.</li> <li>Heat and mass transfer is used to understand how drug delivery devices work, how kidney dialysis works, and how to control heat for temperature-sensitive things. It probably also explains why thermoses work.</li> </ul> |
| 125 | Examples of PDE              | <ul> <li>PDE'S are used to model many systems in many different fields of science and engineering.</li> <li>Laplace Equation</li> <li>Heat Equation</li> <li>Wave Equation</li> </ul>                                                                                                                                                                                                                             |
|     |                              | Placement Questions                                                                                                                                                                                                                                                                                                                                                                                               |
| 126 | Percentage                   | Percent implies "for every hundred" and the sign %<br>is read as percentage and x % is read as x per cent.<br>In other words, a fraction with denominator 100 is<br>called a per cent.<br>For example, 20 % means 20/100                                                                                                                                                                                          |
| 127 | Probability                  | A probability is a number that reflects the chance or likelihood that a particular event will occur.                                                                                                                                                                                                                                                                                                              |
| 128 | Rules of Probability         | There are three basic rules associated with<br>probability: the addition, multiplication, and<br>complement rules. The addition rule is used to<br>calculate the probability of event A or event B<br>happening<br>We express it as: $P(A \text{ or } B) = P(A) + P(B) - P(A$<br>and B)                                                                                                                           |
| 129 | Example of probability DESIG | The probability of flipping a coin and it being heads<br>is 1/2, because there is 1 way of getting a head and<br>the total number of possible outcomes is 2 (a head<br>or tail).<br>The probability of something which is certain to<br>happen is 1. The probability of something which is<br>impossible to happen is 0.                                                                                          |
| 130 | Permutation                  | Permutation is defined as arrangement of r things<br>that can be done out of total n things. This is<br>denoted by nPr.                                                                                                                                                                                                                                                                                           |
| 131 | Combination                  | Combination is defined as selection of r things that<br>can be done out of total n things. This is denoted by<br>nCr.                                                                                                                                                                                                                                                                                             |
| 132 | nCr and nPr stands for       | In nCr and nPr, C stands for Combinations, and P<br>stands for permutations. Now for combinations, it<br>is the number of ways you can pick r objects out of<br>n.                                                                                                                                                                                                                                                |
| 133 | Average                      | The average of n quantities of the same kind is<br>equal to the sum of all the quantities divided by the                                                                                                                                                                                                                                                                                                          |

|      |                                       | number of quantities;                                                                            |
|------|---------------------------------------|--------------------------------------------------------------------------------------------------|
|      |                                       | Sum of quantities                                                                                |
|      |                                       | Average = Number of quantities                                                                   |
|      |                                       | Time and work problems deal with the                                                             |
|      | The concept of Time                   | simultaneous performance involving the efficiency                                                |
| 134  | and Work                              | of an individual or a group and the time taken by                                                |
| 10 1 |                                       | them to complete a piece of work. Work is the                                                    |
|      |                                       | effort applied to produce a deliverable or                                                       |
|      |                                       | accomplish a task.                                                                               |
|      |                                       | Ratio: A ratio is the comparison of two                                                          |
|      | The concept of ratio                  | homogeneous quantities, or a ratio is the division of                                            |
| 135  | & Proportion                          | two quantities a and b having the same units. It is denoted by a:b (read as "a ratio b") or a/b. |
|      |                                       | Probability: It is defined by Equality between two                                               |
|      |                                       | Ratios.                                                                                          |
|      |                                       | Arithmetic progression(AP) or arithmetic sequence                                                |
|      |                                       | is a sequence of numbers in which each term                                                      |
|      |                                       | after the first is obtained by adding a constant, d to                                           |
|      | Arithmetic                            | the preceding term. The constant d is called                                                     |
| 136  | Progression(AP)                       | common difference.                                                                               |
|      |                                       | An arithmetic progression is given by $a$ , $(a + d)$ , $(a + d)$                                |
|      |                                       | +2d), (a + 3d),                                                                                  |
|      |                                       | where $a =$ the first term , $d =$ the common                                                    |
|      |                                       | difference                                                                                       |
|      |                                       | Geometric Progression(GP) or Geometric Sequence                                                  |
| 105  | Geometric                             | is sequence of non-zero numbers in which theratio                                                |
| 137  | Progression(GP)                       | of any term and its preceding term is always                                                     |
|      |                                       | constant. It is denoted by $a_1 a a^2 a a^3$                                                     |
|      |                                       | It is denoted by a, ar <sup>2</sup> , ar <sup>3</sup> Prime number: A prime number is a natural  |
|      |                                       | number greater than 1 that has no positive divisors                                              |
| 138  | Prime Number                          | other than 1 and itself.                                                                         |
| 150  |                                       | For example, 2, 3, 5, 7, 11, 13, etc. are prime                                                  |
|      |                                       | numbers.                                                                                         |
|      |                                       | Two numbers are said to be relatively prime,                                                     |
|      | Co-Prime Number DESIGNING             | mutually prime, or co-prime to each other when                                                   |
| 139  |                                       | they have no common factor or the only common                                                    |
| 139  |                                       | positive factor of the two numbers is 1.                                                         |
|      | ES                                    | In other words, two numbers are said to be co-                                                   |
|      |                                       | primes if their H.C.F. is 1.                                                                     |
| 140  |                                       | L.C.M. is the least non-zero number in common                                                    |
|      | L.C.M                                 | multiples of two or more numbers. The least                                                      |
| -    |                                       | number which is exactly divisible by each one of                                                 |
|      |                                       | the given numbers is called their L.C.M.                                                         |
|      | Mathods of finding                    | (i) Factorization Method: Resolve each one of the                                                |
|      | Methods of finding<br>the L.C.M. of a | given numbers into a product of prime factors.                                                   |
| 141  | given set of                          | Then, L.C.M. is the product of highest powers of all the factors.                                |
| 141  | numbers?                              | (ii) Division Method (short-cut): Arrange the given                                              |
|      | numbers.                              | numbers in a row in any order. Divide by a                                                       |
|      |                                       |                                                                                                  |

| <u>г</u> | Г                                                        |                                                  | airran arrante and comments for an and the second state        |  |
|----------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|--|
|          |                                                          |                                                  | given numbers and carry forward the numbers                    |  |
|          |                                                          |                                                  | which are not divisible. Repeat the above process              |  |
|          |                                                          |                                                  | till no two of the numbers are divisible by the                |  |
|          |                                                          |                                                  | same number except 1. The product of the divisors              |  |
|          |                                                          |                                                  | and the undivided numbers is the required                      |  |
|          |                                                          |                                                  | L.C.M. of the given numbers.                                   |  |
| 142      | H.C.F                                                    |                                                  | The highest common factor of two or more                       |  |
|          | 11.0.1                                                   |                                                  | numbers is the greatest number which divides each              |  |
|          |                                                          |                                                  | of them exactly without any remainder.                         |  |
|          |                                                          |                                                  | If the antecedent and consequent of a ratio                    |  |
| 1.40     | Reciprocal or<br>Inverse Ratio                           |                                                  | interchange their places. The new ratio is called the          |  |
|          |                                                          |                                                  | inverse ratio of the first ratio. In other words, if a $\neq$  |  |
| 143      |                                                          |                                                  | $0, b \neq 0$ then the reciprocal ratio of a : b is . Clearly, |  |
|          |                                                          |                                                  | is same as b : a.                                              |  |
|          |                                                          |                                                  | Thus the reciprocal ratio of a : b is b : a                    |  |
|          | Selling Price (SP) &                                     |                                                  | The price at which goods are sold is called the                |  |
| 144      | Cost Price (CP)                                          |                                                  | selling price. The price at which goods are bought             |  |
|          |                                                          |                                                  | is called the cost price                                       |  |
| 145      | Profit                                                   |                                                  | When the selling price is more than the cost price,            |  |
|          |                                                          |                                                  | then the trader makes a profit.                                |  |
|          |                                                          |                                                  | It is denoted by $Profit = SP - CP$ .                          |  |
| 146      | Loss                                                     |                                                  | When the selling price is less than the cost price,            |  |
|          |                                                          | then the trader makes a loss.                    |                                                                |  |
|          |                                                          |                                                  |                                                                |  |
|          |                                                          |                                                  | It is given as Loss = CP - SP.                                 |  |
| 1 47     | Simple Interest                                          | Simple interest is determined by multiplying the |                                                                |  |
| 147      |                                                          |                                                  | daily interest rate by the principal by the number of          |  |
|          |                                                          |                                                  | days that elapse between payments.                             |  |
|          | The terms involved<br>in calculating Simple<br>Interest? | - 7.5                                            | S.I = PNR/100                                                  |  |
| 148      |                                                          |                                                  | Where,                                                         |  |
|          |                                                          |                                                  | P= Principle                                                   |  |
|          |                                                          |                                                  | N= No.of Years                                                 |  |
|          |                                                          |                                                  | R = Rate of Interest                                           |  |
| 149      | Compound Interest                                        | Compound interest is calculated on the principal |                                                                |  |
|          |                                                          | amount and also on the accumulated interest of   |                                                                |  |
|          |                                                          | previous periods, and can thus be regarded as    |                                                                |  |
|          |                                                          |                                                  | "interest on interest".                                        |  |
| 150      | Odd one out                                              | ESIGNIN                                          | A person or thing that is different from or kept               |  |
|          |                                                          |                                                  | apart from others that form a group or set is called           |  |
|          |                                                          | Fet                                              | as odd one out                                                 |  |
|          |                                                          | LOL                                              | Example : Apple, Onion, potato, Brinjal                        |  |
|          |                                                          |                                                  | In this Apple is Odd one out because it is a fruit             |  |
|          |                                                          |                                                  | while remaining are vegetables                                 |  |
|          |                                                          |                                                  |                                                                |  |

## Faculty Team Prepared

## Signatures

1. M.Balakrishnan

