

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution) (Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MKC

2020-2021

MUST KNOW CONCEPTS

Course Code & Course Name

19GES24 – DIGITAL PRINCIPLES & SYSTEM DESIGN

Year/Sem/Sec

	DESIGN	
:	II / III	

:

Subje	ct Code/Name	19GES24 /DIGI	TAL PRINCIPLES AND SYSTEM D	ESIGN
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Unit s/Equation/Expression	Units
	UNIT	I - BOOLEAN ALGE	BRA AND LOGIC GATES	
1	Digital Electronics		Digital (electronic) circuits operate on digital signals (0 and 1).	
2	Number system		Decimal Number system (0-9) base 10 Binary Number system(0 and 1) base 2 Octal Number system (0-7) base8 Hexadecimal Number system(0-9, A- F) base 16	
3	Signed Numbers	Estd.	Signed numbers contain both sign and magnitude of the number. Generally, the sign is placed in front of number. If sign bit is zero, which indicates the binary number is positive. Similarly, if sign bit is one, which indicates the binary number is negative.	
4	Representation of Signed Binary Numbers		Sign-Magnitude form 1's complement form 2's complement form	
5	Un-Signed Binary Numbers		The bits present in the un-signed binary number holds the magnitude of a number. That means, if the un-signed binary number contains 'N' bits, then	

			all N bits represent the magnitude	
			of the number	
			The 12 ment of a ment of a	
	1, 1,		The 1's complement of a number is obtained by complementing all the	
6	1's complement form		bits of signed binary number (1	
	lorm		change into 0, 0 change into 1)	
			The 2's complement of a binary	
			number is obtained by adding one	
			to the 1's complement of signed binary number. So, 2's	
			binary number. So, 2's complement of positive number	
			gives a negative number.	
7	The 2's		Similarly, 2's complement of	
/	complement		negative number gives a positive number.	
			That means, if you perform two times 2's complement of a binary	
			number including sign bit, then	
			you will get the original signed	
			binary number.	
			The group of symbols is called	
8	Code and		as code. The digital data is represented, stored and transmitted	
0	binary code.		as group of bits. This group of bits	
			is also called as binary code.	
			Weighted codes	
9	Types of binary code		• Un weighted codes	
	code			
			The weighted code are those that	
10	WEIGHTED	DESIGNING	obey the position weighting principle, which states that the	
10	CODE	Estd.	position of each number represent a	
		55	specific weight.	
	Un weighted		The Non - Weighted Code are not	
11	codes		positionally weighted. In other words, codes that are not assigned	
11			with any weight to each digit	
			position.	
			$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	
12	Commutative law		$\mathbf{x}.\mathbf{y} = \mathbf{y}.\mathbf{x}$	
	law			
			y + (y + z) - (y + y) + z	
13	Associative Law		x + (y + z) = (x + y) + z	
			$\mathbf{x}.(\mathbf{y}.\mathbf{z}) = (\mathbf{x}.\mathbf{y}).\mathbf{z}$	

14	Distributive Law		x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z)
15	Duality theorem		This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a corresponding Dual function.
16	DeMorgan's Theorem		1. $(x + y)' = x' \cdot y'$ 2. $(x \cdot y)' = x' + y'$
17	Boolean function		It is described by an algebraic expression consists of binary variable , constant and logic operators.
18	min terms	m	Boolean product terms are called as min terms . It denoted by "m"
19	Canonical SoP	Σ m DESIGNING	Canonical Sum of Products form. In this form, each product term contains all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP form is also called as sum of min terms form.
20	Max terms	M Estd.	Boolean sum terms are called as Max terms . It denoted by "M"
21	Canonical PoS	πМ	Canonical Product of Sums form. In this form, each sum term contains all literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called as product of Max terms form.
22	Karnaugh or K- Map		It is graphical representation of Boolean functions and is used to simplify Boolean functions .K map is a matrix of squares and each square or Cell represents a minterm or maxterm from of Boolean expression

23	don't care Tabular method		If don't care terms also present, then place don't cares 'x' in the respective cells of K-map. Consider only the don't cares 'x' that are helpful for grouping maximum number of adjacent zeroes. In those cases, treat the don't care value as '0'. It is difficult to simplify the functions using K-Maps. Because, the number of cells in K-map gets doubled by including a new variable. Boolean product terms are called as min terms .	
25	Min terms	m	It denoted by "m"	
		UNIT II - COMBIN	ATIONAL LOGIC	
26	Combinational circuits		It is consist of Logic gates. These circuits operate with binary values. The output(s) of combinational circuit depends on the combination of present inputs	
27	Types of Logical Gate		 Basic Logic gate – NOT,AND,OR Universal Logic gate – NAND, NOR Special Logic gate – EX OR, EX NOr 	
28	Half Adder	DESIGNING	Half adder is a combinational circuit, which performs the addition of two binary numbers A and B are of single bit. It produces two outputs sum, S & carry, C.	
29	Full Adder	Esta.	Full adder is a combinational circuit, which performs the addition of three bits A, B and C _{in} . Where, A & B are the two parallel significant bits and C _{in} is the carry bit, which is generated from previous stage. This Full adder also produces two outputs sum, S & carry, C _{out} , which are similar to Half adder.	
30	4-bit Binary Adder		The 4-bit binary adder performs the addition of two 4-bit numbers. Let the 4-bit binary numbers, $A=A_{3}A_{2}A_{1}A_{0}$ and $B=B_{3}B_{2}B_{1}B_{0}$. We can implement 4-bit binary adder in one of the two following ways.	

	- 1		I	
31	Carry look- ahead		The parallel adder causes a unstable factor on carry bit, and produces longest propagation delay. That limit can be overcome by this technique	
32	Binary subtractor		The circuit, which performs the subtraction of two binary numbers, is known as Binary subtractor. We can implement Binary subtractor in following two methods.1's and 2's complement form	
33	Rules of BCD adder		When the binary sum is greater than 1001, The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation	
34	Magnitude comparator		Its compares two digital or binary numbers in order to find out whether one binary number is equal, less than or greater than. logically design a circuit -two inputs one for A and B and have three output terminals, $A > B$, $A =$ B, $A < B$.	
35	Decoder		Decoder is 'n' input lines and maximum of 2^n output lines. One of these outputs will be active High based on the combination of inputs present, when the decoder is enabled.	
36	Encoder		An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has maximum of 2^n input lines and 'n' output lines.	
37	Encoder Applications	Estd.	Encoders are used to translate rotary or linear motion into a digital signal. Usually this is for the purpose of monitoring or controlling motion parameters such as speed, rate, direction, distance or position.	
38	Priority encoder		If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.	
39	Multiplexer		Multiplexer is a combinational circuit that has maximum of 2 ⁿ data inputs, 'n' selection lines and single output line. One of these data inputs will be connected to the output based on the values of selection	

			lines.	
40	Applications of Demultiplexer		Communication System – Multiplexer and Demultiplexer both are used in communication systems to carry out the process of data transmission. A De- multiplexer receives the output signals from the multiplexer ; and, at the receiver end, it converts them back to the original form	
41	De-Multiplexer		De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has single input, 'n' selection lines and maximum of 2^n outputs.	
42	Parity Bit		A parity bit is a check bit, which is added to a block of data for error detection purposes. It is used to validate the integrity of the data. The value of the parity bit is assigned either 0 or 1	
43	Types of Parity Bit Generator		 Even parity generator Odd parity generator 	
44	Parity checker	\sim	Parity checker checks error in the transmitted data, which contains message bits along with parity bit.	
45	Types of Parity checker	DESIGNING Estd.	• Even_parity checker • Odd parity checker 2000	
46	Gray code		The reflected binary code or Gray code is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). Gray codes are very useful in the normal sequence of binary numbers generated by the hardware that may cause an error or ambiguity during the transition from one number to the next. Gray code is not weighted code	
47	BCD		It is also called as 8421 code because each of the four bits is given a 'weighting' according to its column value in the binary system.	

			The least significant bit (lsb) has	
			the weight or value 1, the next bit,	
			going left, the value 2.	
			It is unweighted and can be	
			It is unweighted and can be	
48	Excess-3 codes		obtained by adding 3 to each	
48	Excess-5 codes		decimal digit then it can be	
			represented by using 4 bit binary	
			number for each digit	
			1. The problem definition.	
			2. The no of available and required	
			output	
			variable is determined	
			3. The input and output variables are	
			assigned letter symbols.	
40	Design		4. The truth table that defines the	
49	procedure		required	
			relationship between inputs and	
			outputs are	
			derived.	
			5.The simplified Booleanfunction	
			for each	
			output is obtained.	
			6. The logic diagram is drawn.	
			Label all gate outputs that are a	
			function of input variables with	
			arbitrary symbols. Determine the	
			Boolean functions for each gate	
			output.	
			Label the gates that are a function	
			of input variables and previously	
	Analysis		labeled gates with other arbitrary	
50	procedure		symbols.	
	r	Estd.	Find the Boolean functions for	
			these gates.	
		Estd	Repeat the process outlined in step	
		LUCU.	2 until the outputs of the circuit are	
			obtained. By repeated substitution	
			of previously defined functions,	
			obtain the output Boolean functions	
			in terms of input variables.	
	UNI	Г III - SYNCHRONOI	US SEQUENTIAL LOGIC	
			There are two types of memory	
			elements based on the type of	
			triggering that is suitable to operate	
51	Memory			Memory
51	Memory Elements		it.	Memory Elements
51	•			•

52	Latches		Latches operate with enable signal, which is level sensitive	Latches
53	Flip-Flops		Memory element used in clocked sequential circuits	Flip-Flops
54	Register		The one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip-flops. The group of flip-flops, which are used to hold (store) the binary data is known as register.	Register
55	Types Of Register		Serial In – Serial Out shift register Serial In – Parallel Out shift register Parallel In – Serial Out shift register Parallel In – Parallel Out shift register	Types Of Register
56	Johnson Ring Counter		The Johnson Ring Counter or "Twisted Ring Counters", is another shift register with feedback exactly the same as the standard <i>Ring Counter</i> above, except that this time the inverted output Q of the last flip-flop is now connected back to the input D of the first flip- flop as shown below.	
57	Required Components of Serial Adder/Subtracto r		Required 2 register and one FA and one FF YOUR FUTURE	Required Component s of Serial Adder/Subt ractor
58	Sequential Circuit	Estd.	The sequential circuit contains a set of inputs and output(s). The output(s) of sequential circuit depends not only on the combination of present inputs but also on the previous output(s). Previous output is nothing but the present state.	
59	Types of Sequential Circuits		Asynchronous sequential circuits Synchronous sequential circuits	
60	Synchronous sequential circuits		Output changes at discrete interval of time. It is a circuit based on an equal state time or a state time defined by external means such as	

			clock	
			Output can be changed at any	
	Asynchronous		instant of time by changing the	
61	sequential		input. It is a circuit whose state time	
01	circuits		depends solely upon the internal	
	Checalts		logic circuit delays.	
			Level triggering	
	Types of		Edge triggering	
62	Triggering			
	Inggening			
			It is basically a one-bit memory	
			bistable device that has two inputs,	
			one which will "SET" the device	
63	S-R Flip Flop		(meaning the output = "1"), and is	
0.5			labelled S and one which will	
			"RESET" the device (meaning the	
			· · ·	
			output = "0"), labelled R. It is basically a gated SR flip-flop	
			with the addition of a clock input	
64	J-K Flip Flop		circuitry that prevents the illegal or	
			invalid output condition that can	
			occur when both inputs S and R are	
			equal to logic level "1".	
			It is a modified Set-Reset flip-flop	
65	D Flip Flop		with the addition of an inverter to	
	r ·r		prevent the S and R inputs from	
			being at the same logic level	
			These are basically a single input	
			version of JK flip flop. This	
			modified form of JK flip-flop is	
66	T Flip Flop	Estd.	obtained by connecting both inputs	
			J and K together. This flip-flop has	
		Fetd	only one input along with the clock	
		LJUU.	input.	
			The master-slave flip-flop	
			eliminates all the timing problems	
			by using two SR flip-flops	
			connected together in a series	
67	Master Slave		configuration. One flip-flop acts as	
	Flip Flop		the "Master" circuit, which triggers	
			on the leading edge of the clock	
			pulse while the other acts as the	
			"Slave" circuit, which triggers on	
			the falling edge of the clock pulse.	
			The Interval of time required after	
68	Propagation		an input signal has been applied for	
00	Delay Time		the resulting output change to	
			occur.	
L	1	1	1	1

69	Characteristics of register		i. Memory Register (or) Buffer Register ii. Shift Register	
70	Buffer Register		It is a simplest form of registers which is simply used to store binary information.	
71	Shift Register		A register may input and output data in serial or parallel form. A number of flip flops connected together in such a way that data may be shifted into and out of the register.	
72	Universal Shift Register		A shift registers which can shift the data in both directions as well as loads it parallel.	
73	Uni-directional shift register		A shift registers which can shift the data in only one direction.	
74	Bi-directional shift register		A shift registers which can shift the data in both directions.	
75	Counter		It is a digital sequential logic device that will go through a certain predefined states based on the application of the input pulses.	
	UNIT-I	V - ASYNCHRONC	US SEQUENTIAL LOGIC	
76	Asynchronous	Estd	The circuit in which the change in the input signals can affect the memory elements at any instants of	

76	Asynchronous circuit	Estd.	the input signals can affect the memory elements at any instants of the time.
77	Different modes of operation		The different modes of operation are fundamental mode and sequential mode circuits.
78	Ripple counters		Counter circuits made from cascaded J-K flip-flops where each clock input receives its pulses from the output of the previous flip-flop invariably exhibit a ripple effect, where false output counts are generated between some steps of the count sequence.

79	Race condition		Race condition (race) is a condition in sequential circuits in which two or more variables change at one time.
80	Non-critical race		The final stable state does not depend on the change order of state variables
81	Critical race		The change order of state variables will result in different stable states
82	State assignment		State assignment is the process of assignment of binary values to the states of the reduced state table in the design of asynchronous circuits.
83	Cycle	\sim	If an input change induces a feedback transitions through more than one unstable state
84	Hazard		Hazard is the unwanted transient i.e Spike or glitch that occurs due to unequal propagation delays through a combination circuit.
85	Stable state		The time sequence of input, output and FF states can be enumerated in a state table it is also called as transition table.
86	Transition Table		Transition table is useful to analyze an asynchronous circuit from the circuit diagram
87	Glitch	DESIGNING	The unwanted switching transients that may appear at the output of a circuit
88	Static hazard	Esta.	Static hazard is a condition, which result in a single momentary incorrect output due to change is a single input variable when the output is expected to remain in the same state.
89	Cause for Essential Hazard		Operational error generally caused by an excessive delay to a Feedback variable in response to an input change, leading to a transition to an improper state.

			It is similar to a transition table
90	Flow Table		It is similar to a transition table except the states are represented by letter symbols .
91	Faults in asynchronous sequential circuits		 (1) Hazards (2) Oscillations (3) Critical races
92	Static 1 hazard		If the outputs before and after the change of input are both 1 with an incorrect output 0 in between.
93	Static 0 hazard		If the outputs before and after the change of input are both 0 with an incorrect output 1 in between
94	Compatible pairs		Two states are said to be compatible, if in every column of the corresponding rows in the flow table, there are identical states and if there is no conflict in the output values.
95	Maximal compatibles		The maximal compatible is a group of compatibles that contains all the possible combinations of compatible states
96	Types of hazards		Static hazard, Dynamic hazard, Essential hazard.
97	Primitive flow table		primitive flow is the flow table that has only one stable state in each row.
98	Secondary variables of asynchronous sequential circuits	Estd.	The present state and the next state variables in asynchronous sequential circuits are called Secondary / excitation variables.
99	Application areas of asynchronous sequential circuits		 i. Used where speed is important ii. Require only few components. iii. Used where the input change at any time independent of clock. iv. Communication between two units where each has own independent clock.

100	State of sequential circuit		The binary information stored in the memory elements at any given time defines the "state" of sequential circuit.		
	UNIT V - MEMORY AND PROGRAMMABLE LOGIC				
101	Types Of Memory		 Primary memory (RAM and ROM). Secondary memory(hard drive,CD,etc.) 		
102	Random Access Memory		It is a volatile memory as the data loses when the power is turned off. The programs and data that the CPU requires during execution of a program are stored in this memory.		
103	RAM Types		 SRAM (Static Random Access Memory) DRAM (Dynamic Random Access Memory). 		
104	Read Only Memory (ROM)		Stores crucial information essential to operate the system, like the program essential to boot the computer. It is not volatile		
105	ROM Types		ROM, PROM, EPROM, and EEPROM.		
106	Error detection codes		To detect the errors, present in the received data bit stream. These codes contain some bits, which are included appended to the original bit stream.		
107	Error correction codes	DESIGNING Estd.	To correct the errors, present in the received data bit stream so that, we will get the original data. Error correction codes also use the similar strategy of error detection codes		
108	Parity Code		A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.		
109	Types of Parity Codes		1.Even Parity Code 2. Odd Parity Code		
110	Even parity		Checks if there is an even number of ones; if so, parity bit is zero. When the number of one's is odd then parity bit is set to 1.		

			
111	Odd Parity		Checks if there is an odd number of ones; if so, parity bit is zero. When the number of one's is even then parity bit is set to 1.
112	Hamming code		It adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error.
113	Programmable Array Logic		PAL is a programmable logic device that has Programmable AND array & fixed OR array.
114	Programmable Logic Array		PLA is a programmable logic device that has both Programmable AND array & Programmable OR array.
115	PROM (Programmable read-only memory)		It can be programmed by user. Once programmed, the data and instructions in it cannot be changed.
116	EPROM (Erasable Programmable read only memory)		It can be reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it, erase all the previous data.
117	EEPROM (Electrically erasable programmable read only memory)		The data can be erased by applying electric field, no need of ultra violet light. We can erase only portions of the chip.
118	Sequential programmable devices	DESIGNING	Sequential programmable devices include both gates and flip-flops. In this way, the device can be programmed to perform a variety of sequential-circuit functions.
119	Sequential programmable devices Types	Lotu.	 Sequential (or simple) programmable logic device (SPLD) Complex programmable logic device (CPLD) Field-programmable gate array (FPGA)
120	Sequential (or simple) programmable logic device (SPLD)		The SPLD includes flip-flops, in addition to the AND–OR array, within the integrated circuit chip. A PAL or PLA is modified by including a number of flip-flops connected to form a register
121	Complex programmable logic device (CPLD)		It is a collection of individual PLDs on a single integrated circuit. A programmable interconnection structure allows the PLDs to be

r	T		· · · · · · · · · · · · · · · · · · ·		
			connected to each other in the same way that can be done with individual PLDs		
122	Field-programm able gate array (FPGA)		FPGA logic block consists of lookup tables, multiplexers, gates, and flip-flops. A lookup table is a truth table stored in an SRAM and provides the combinational circuit functions for the logic block		
123	Application Specific Integrated Circuit(ASIC)		These are usually designed from root level based on the requirement of the particular application. Examples are chips used in toys, the chip used for interfacing of memory and microprocessor		
124	Advantages of ASIC		 The small size of ASIC makes it a high choice for sophisticated larger systems. As a large number of circuits built over a single chip, this causes high-speed applications. ASIC has low power consumption. ASIC has no timing issues and post-production configuration. 		
125	ASIC Types	DESIGNING Estd.	 Programmable FPGAs PLDs Semi Custom Gate Array Based Structured Gate Channel-less 		
	GATE/Placement Related Questions				
126	Simplification		$1899.981 \div \sqrt{1444.12} - 119.910 \%$ of $34.975 + 4.932 * 104.292 = ?$ Ans: 528		
127	Profit and Percentage		A box contains six pink balls and four orange balls and three balls drawn one after other. Find the probability of all three balls being Pink balls if the balls drawn are not replaced?		

		Ans: 1/6	
Number Series		Find the wrong term in the following number series? 90, 86, 95, 79, 103, 68, 117 Ans: 103	
Number Series		What value should come in the place of question mark in the given series? 19, 23, 32, 48, 73, 109, ?	
Relation ship		 Ans: 138 Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and sister of S. M is the mother of E. V is the sister-in-law of S, who has only two siblings. S is the aunt of J. T is the niece of B. E does not has any child. If J is married to X, then how is X related to E? Ans: Cannot be determined 	
Computer Awareness	DESIGNING	The address of input/output device or memory is carried by the and the data to be transferred is carried by the FUTURE Ans: Address bus, Data bus	
Directions	Estd.	A man started walking from his place. He goes 5m south. He turns 90 degree anticlockwise and walks for 7m. Now he turns left and goes 3m. After turning right, he walks for 4m, again he walks for 3m after turning left. Now he turns towards west and walks for 5m. He again walks for 5m before he stops. What is the shortest distance between his starting point and ending point?	
	Number Series Relation ship Computer Awareness	Number Series Relation ship Computer Awareness DESIGNING Estd.	Number Series Find the wrong term in the following number series? 90, 86, 95, 79, 103, 68, 117 Ans: 103 Number Series What value should come in the place of question mark in the given series? 19, 23, 32, 48, 73, 109, ? Ans: 158 Relation ship Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and sister of S. M is the mother of E. V is the sister-in-law of S, who has only two siblings. S is the aunt of J. T is the nicee of B. E does not has any child. If J is married to X, then how is X related to E? Ans: Cannot be determined Computer Awareness DESIGNING Ams: Address bus, Data bus Directions A man started walking from his place. He goes 5m south. He turns 90 degree anticlockwise and walks for 7m. Now he turns left and goes 3m. After turning right, he walks for 7m. Now he turns left and goes 3m. After turning left. Now he turns towards west and walks for 5m. He again walks for 5m before he stops. Directions What is the shorted distance between his starting point and

	-		
			A bag contains 4 red marbles, 5 green marbles and 6 pink marbles. If 3 marbles are taken at randomly,
133	Speed and Time		then find the probability that 2 marbles are Pink?
			Ans: 27/91
			A can do a work in 15 days, B can
			do it in 12 days but C can do (3/4)th of the work in 18 days. Find
134	Time and Work		the time taken by all together to
			complete the work?
			Ans: 5 5/23 days
			A contractor hired 40 men to
			complete a project in 15 days. 40
			men started working, after 9 days the contractor notices that only
			three-fifth of the work gets
135	Time and Work		completed. Then how many extra
			men can be employed to complete
			the remaining work on time?
			Ans: 0
			Set when carry occurs after an
136	Carry flag		operation, otherwise reset.
		X	Set if the result of an operation
137	Parity flag		contains even number of 1 bits, otherwise reset.
	Stack Pointer		Stack pointer is a special purpose
138			16-bit register in the
		DESIGNING	Microprocessor, which holds the address of the top of the stack.
	Program Counter	010101110	Program counter holds the address
139		Estd.	of either the first byte of the next
			instruction to be fetched for execution.
			A bus is a group of conducting lines
140	Bus		that carriers data, address, &
			control signals. Three Logic Levels are used and
1 / 1	Tu: a4-4- T		they are High, Low, High
141	Tri-state Logic		impedance state.
	Hardware		TRAP, RST7.5, RST6.5, RST5.5,
142	Interrupts		INTR.
1.40	Software		RST0, RST1, RST2, RST3, RST4,
143	Interrupts		RST5, RST6, RST7.
L	-		

144	Addressing Modes	Immediate, Direct, Register, Register indirect, Implied addressing modes.
145	Quality Factor Mean	The Quality factor is also defined, as Q. So it is a number, which reflects the lossness of a circuit. Higher the Q, the lower are the losses.
146	Assembler	Assembler is used to translate the high level language program to machine code.
147	Emulator	Emulators are used to test and debug the hardware and software of an external system.
148	Compiler	Compiler is used to translate the high-level language program into machine code at a time.
149	BIU	Bus interface unit is responsible for transferring the data addresses on the buses necessary for -execution unit.
150	Multiplexing	Using a single bus for two different functions is called multiplexing.

Faculty Team Prepared

Signatures

1. Ms.S.Priya, AP/ECE

HOD

Estd. 2000