MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)
(Approved by AICTE, New Delhi, Accredited by NAAC \& Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu
MUST KNOW CONCEPTS

$\mathbf{C S}$

Course Code \& Course Name
19GES24 - DIGITAL PRINCIPLES \& SYSTEM
Year/Sem/Sec
DESIGN
: II / III

| Subject Code/Name | | 19GES24 /DIGITAL PRINCIPLES AND SYSTEM DESIGN | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| S.No | Term | | Notation (Symbol) | Concept/Definition/Meaning/Unit
 s/Equation/Expression | Units |
| UNIT I BOOLEAN ALGEBRA AND LOGIC GATES | | | | | |

			all N bits represent the magnitude of the number	
6	1's complement form		The 1's complement of a number is obtained by complementing all the bits of signed binary number (1 change into 0,0 change into 1)	
7	The 2's complement		The 2's complement of a binary number is obtained by adding one to the 1's complement of signed binary number. So, 2's complement of positive number gives a negative number. Similarly, 2's complement of negative number gives a positive number. That means, if you perform two times 2's complement of a binary number including sign bit, then you will get the original signed binary number.	
8	Code and binary code.		The group of symbols is called as code. The digital data is represented, stored and transmitted as group of bits. This group of bits is also called as binary code.	
9	Types of binary code		- Weighted codes - Un weighted codes	
10	WEIGHTED CODE	Estd.	The weighted code are those that obey the position weighting principle, which states that the position of each number represent a specific weight.	
11	Un weighted codes		The Non - Weighted Code are not positionally weighted. In other words, codes that are not assigned with any weight to each digit position.	
12	Commutative law		$\begin{aligned} & x+y=y+x \\ & x \cdot y=y \cdot x \end{aligned}$	
13	Associative Law		$\begin{aligned} & x+(y+z)=(x+y)+z \\ & x \cdot(y \cdot z)=(x \cdot y) \cdot z \end{aligned}$	

| 31 | Carry look-
 ahead | | The parallel adder causes a unstable
 factor on carry bit, and produces
 longest propagation delay. That
 limit can be overcome by this |
| :--- | :--- | :--- | :--- | :--- |
| technique | | | |

			lines.	
40	Applications of Demultiplexer		$\begin{array}{ll}\text { Communication } & \text { System }- \\ \text { Multiplexer and } & \text { Demultiplexer }\end{array}$ both are used in communication systems to carry out the process of data transmission. A Demultiplexer receives the output signals from the multiplexer; and, at the receiver end, it converts them back to the original form	
41	De-Multiplexer		De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has single input, ' n ' selection lines and maximum of 2^{n} outputs.	
42	Parity Bit		A parity bit is a check bit, which is added to a block of data for error detection purposes. It is used to validate the integrity of the data. The value of the parity bit is assigned either 0 or 1	
43	Types of Parity Bit Generator		- Even parity generator - Odd parity generator	
44	Parity checker		Parity checker checks error in the transmitted data, which contains message bits along with parity bit.	
45	Types of Parity checker	$\begin{gathered} \hline \text { DESIGNING } \\ \text { ESTO. } \\ \hline \end{gathered}$	- Even parity checker - Odd parity checker	
46	Gray code		The reflected binary code or Gray code is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). Gray codes are very useful in the normal sequence of binary numbers generated by the hardware that may cause an error or ambiguity during the transition from one number to the next. Gray code is not weighted code	
47	BCD		It is also called as 8421 code because each of the four bits is given a 'weighting' according to its column value in the binary system.	

			The least significant bit (lsb) has the weight or value 1 , the next bit, going left, the value 2 .	
48	Excess-3 codes		It is unweighted and can be obtained by adding 3 to each decimal digit then it can be represented by using 4 bit binary number for each digit	
49	Design procedure		1.The problem definition. 2.The no of available and required output variable is determined 3.The input and output variables are assigned letter symbols. 4.The truth table that defines the required relationship between inputs and outputs are derived. 5.The simplified Booleanfunction for each output is obtained. 6. The logic diagram is drawn.	
50	Analysis procedure	$\begin{aligned} & \text { DESIGVING } \\ & \text { Estd. } \end{aligned}$	Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.	

UNIT III - SYNCHRONOUS SEQUENTIAL LOGIC

| 51 | Memory
 Elements | There are two types of memory
 elements based on the type of
 triggering that is suitable to operate
 it.
 Latches
 Flip-flops | Memory
 Elements |
| :--- | :--- | :--- | :--- | :--- |

52	Latches		Latches operate with enable signal, which is level sensitive	Latches
53	Flip-Flops		Memory element used in clocked sequential circuits	Flip-Flops
54	Register		The one flip-flop can store one-bit of information. In order to store multiple bits of information, we require multiple flip-flops. The group of flip-flops, which are used to hold (store) the binary data is known as register.	Register
55	Types Of Register		```Serial In - Serial Out shift register Serial In - Parallel Out shift register Parallel In - Serial Out shift register Parallel In - Parallel Out shift register```	Types Of Register
56	Johnson Ring Counter		The Johnson Ring Counter or "Twisted Ring Counters", is another shift register with feedback exactly the same as the standard Ring Counter above, except that this time the inverted output Q of the last flip-flop is now connected back to the input D of the first flipflop as shown below.	
57	Required Components of Serial Adder/Subtracto r	DESIGNING	Required 2 register and one FA and one FF	Required Component s of Serial Adder/Subt ractor
58	Sequential Circuit		The sequential circuit contains a set of inputs and output(s). The output(s) of sequential circuit depends not only on the combination of present inputs but also on the previous output(s). Previous output is nothing but the present state.	
59	Types of Sequential Circuits		Asynchronous sequential circuits Synchronous sequential circuits	
60	Synchronous sequential circuits		Output changes at discrete interval of time. It is a circuit based on an equal state time or a state time defined by external means such as	

			clock	
61	Asynchronous sequential circuits		Output can be changed at any instant of time by changing the input. It is a circuit whose state time depends solely upon the internal logic circuit delays.	
62	Types of Triggering		Level triggering Edge triggering	
63	S-R Flip Flop		It is basically a one-bit memory bistable device that has two inputs, one which will "SET" the device (meaning the output $=" 1 "$), and is labelled S and one which will "RESET" the device (meaning the output = " 0 "), labelled R.	
64	J-K Flip Flop		It is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level " 1 ".	
65	D Flip Flop		It is a modified Set-Reset flip-flop with the addition of an inverter to prevent the S and R inputs from being at the same logic level	
66	T Flip Flop	Ste.	These are basically a single input version of JK flip flop. This modified form of JK flip-flop is obtained by connecting both inputs J and K together. This flip-flop has only one input along with the clock input.	
67	Master Slave Flip Flop		The master-slave flip-flop eliminates all the timing problems by using two SR flip-flops connected together in a series configuration. One flip-flop acts as the "Master" circuit, which triggers on the leading edge of the clock pulse while the other acts as the "Slave" circuit, which triggers on the falling edge of the clock pulse.	
68	Propagation Delay Time		The Interval of time required after an input signal has been applied for the resulting output change to occur.	

69	$\begin{array}{l}\text { Characteristics } \\ \text { of register }\end{array}$		$\begin{array}{c}\text { i. Memory Register (or) } \\ \text { Buffer Register }\end{array}$		
ii. Shift Register				$]$	It is a simplest form of registers
:---					
which is simply used to store binary					
information.	,				

79	Race condition		Race condition (race) is a condition in sequential circuits in which two or more variables change at one time.	
80	Non-critical race		The final stable state does not depend on the change order of state variables	
81	Critical race		The change order of state variables will result in different stable states	
82	State assignment		State assignment is the process of assignment of binary values to the states of the reduced state table in the design of asynchronous circuits.	
83	Cycle		If an input change induces a feedback transitions through more than one unstable state	
84	Hazard		Hazard is the unwanted transient i.e.. Spike or glitch that occurs due to unequal propagation delays through a combination circuit.	
85	Stable state		The time sequence of input, output and FF states can be enumerated in a state table it is also called as transition table.	
86	Transition Table		Transition table is useful to analyze an asynchronous circuit from the circuit diagram	
87	Glitch	NK	The unwanted switching transients that may appear at the output of a circuit	
88	Static hazard	- $=$ -	Static hazard is a condition, which result in a single momentary incorrect output due to change is a single input variable when the output is expected to remain in the same state.	
89	Cause for Essential Hazard		Operational error generally caused by an excessive delay to a Feedback variable in response to an input change, leading to a transition to an improper state.	

90	Flow Table		It is similar to a transition table except the states are represented by letter symbols .	
91	Faults in asynchronous sequential circuits		(1) Hazards (2) Oscillations (3) Critical races	
92	Static 1 hazard		If the outputs before and after the change of input are both 1 with an incorrect output 0 in between.	
93	Static 0 hazard		If the outputs before and after the change of input are both 0 with an incorrect output 1 in between	
94	Compatible pairs		Two states are said to be compatible, if in every column of the corresponding rows in the flow table, there are identical states and if there is no conflict in the output values.	
95	Maximal compatibles		The maximal compatible is a group of compatibles that contains all the possible combinations of compatible states	
96	Types of hazards		Static hazard, Dynamic hazard, Essential hazard.	
97	Primitive flow table		primitive flow is the flow table that has only one stable state in each row.	
98	Secondary variables of asynchronous sequential circuits	Esto.	The present state and the next state variables in asynchronous sequential circuits are called Secondary / excitation variables.	
99	Application areas of asynchronous sequential circuits		i. Used where speed is important ii. Require only few components. iii. Used where the input change at any time independent of clock. iv. Communication between two units where each has own independent clock.	

| 100 | State of
 sequential
 circuit | The binary information stored in
 the memory elements at any given
 time defines the "state" of
 sequential circuit. | |
| :---: | :--- | :--- | :--- | :--- |
| UNIT V - MEMORY AND PROGRAMMABLE LOGIC | | | |

111	Odd Parity		Checks if there is an odd number of ones; if so, parity bit is zero. When the number of one's is even then parity bit is set to 1 .	
112	Hamming code		It adds a minimum number of bits to the data transmitted in a noisy channel, to be able to correct every possible one-bit error.	
113	Programmable Array Logic		PAL is a programmable logic device that has Programmable AND array \& fixed OR array.	
114	Programmable Logic Array		PLA is a programmable logic device that has both Programmable AND array \& Programmable OR array.	
115	PROM (Programmable read-only memory)		It can be programmed by user. Once programmed, the data and instructions in it cannot be changed.	
116	EPROM (Erasable Programmable read only memory)		It can be reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it, erase all the previous data.	
117	EEPROM (Electrically erasable programmable read only memory)		The data can be erased by applying electric field, no need of ultra violet light. We can erase only portions of the chip.	
118	Sequential programmable devices	DESIGNING F-1-9	Sequential programmable devices include both gates and flip-flops. In this way, the device can be programmed to perform a variety of sequential-circuit functions.	
119	Sequential programmable devices Types	-	1. Sequential (or simple) programmable logic device (SPLD) 2. Complex programmable logic device (CPLD) 3. Field-programmable gate array (FPGA)	
120	Sequential (or simple) programmable logic device (SPLD)		The SPLD includes flip-flops, in addition to the AND-OR array, within the integrated circuit chip. A PAL or PLA is modified by including a number of flip-flops connected to form a register	
121	Complex programmable logic device (CPLD)		It is a collection of individual PLDs on a single integrated circuit. A programmable interconnection structure allows the PLDs to be	

| | | | connected to each other in the same
 way that can be done with
 individual PLDs |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 122 | Field-programm
 able gate array
 (FPGA) | | FPGA logic block consists of
 lookup tables, multiplexers, gates,
 and flip-flops. A lookup table is a
 truth table stored in an SRAM and
 provides the combinational circuit
 functions for the logic block |

GATE/Placement Related Questions

| 126 | Simplification | | $1899.981 \div \sqrt{ } 1444.12-119.910 \%$
 of $34.975+4.932 * 104.292=?$
 Ans: 528 |
| :---: | :--- | :--- | :--- | :--- |
| 127 | Profit and
 Percentage | A box contains six pink balls and
 four orange balls and three balls
 drawn one after other. Find the
 probability of all three balls being | |
| Pink balls if the balls drawn are not | | | |
| replaced? | | | |

			Ans: 1/6	
128	Number Series		Find the wrong term in the following number series? 90, 86, 95, 79, 103, 68, 117 Ans: 103	
129	Number Series		What value should come in the place of question mark in the given series? $19,23,32,48,73,109, ?$ Ans: 158	
130	Relation ship		Eight persons B, E, J, K, M, S, T and V are in a family with three different generations. J is the son of B. E is the daughter of K and sister of S. M is the mother of $E . V$ is the sister-in-law of S, who has only two siblings. S is the aunt of $\mathrm{J} . \mathrm{T}$ is the niece of B. E does not has any child. If J is married to X, then how is X related to E ? Ans: Cannot be determined	
131	Computer Awareness	DESIGNING	The address of input/output device or memory is carried by the \qquad and the data to be transferred is carried by the Ans: Address bus, Data bus	
132	Directions	EStD.	A man started walking from his place. He goes 5 m south. He turns 90 degree anticlockwise and walks for 7 m . Now he turns left and goes 3 m . After turning right, he walks for 4 m , again he walks for 3 m after turning left. Now he turns towards west and walks for 5 m . He again walks for 5 m before he stops. What is the shortest distance between his starting point and ending point? Ans: 1m	

144	Addressing Modes		Immediate, Direct, Register, Register indirect, Implied addressing modes.	
145	Quality Factor Mean		The Quality factor is also defined, as Q. So it is a number, which reflects the lossness of a circuit. Higher the Q, the lower are the losses.	
146	Assembler		Assembler is used to translate the high level language program to machine code.	
147	Emulator		Emulators are used to test and debug the hardware and software of an external system.	
148	Compiler		Compiler is used to translate the high-level language program into machine code at a time.	
149	BIU	Bus interface unit is responsible for transferring the data addresses on the buses necessary for -execution unit.		
150	Multiplexing		Using a single bus for two different functions is called multiplexing.	

Faculty Team Prepared

1. Ms.S.Priya, AP/ECE

Signatures

