MUTHAYAMMAL ENGINEERING COLLEGE
(An Autonomous Institution)
(Approved by AICTE, New Delhi, Accredited by NAAC \& Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu.

MUST KNOW CONCEPTS
CIVIL
2020-21

Course code \& Course Name : 19CED02 \& Mechanics of Solids
Year/Sem/Sec : II/III

S.NO	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equati on/Expression	Units
UNIT I STRESS AND STRAIN				
1	Strain	e	Change in length by original length when load is applied (dL/L) dL = pL/Ae	No Unit
2	Young's Modulus	E	Stress/Strain	$\mathrm{N} / \mathrm{mm}^{2}$
3	Bulk modules	K	Stress /Volumetric strain $K=\sigma / \mathrm{e}_{\mathrm{v}}$	$\mathrm{N} / \mathrm{mm}^{2}$
4	Poisson's ratio	μ	Lateral or secondary strain / linear or primary strain $=1 / \mathrm{m}$	No unit
5	Volumetric strain	e_{v}	Change in volume / original volume dv/v	No unit
6	Relationshi pb/w young's and Bulk modulus		$E=3 K(1-2 / m)$	$\mathrm{N} / \mathrm{mm}^{2}$
7	Modulus of rigidity	G, N or G	Ratio of shear stress to shear strain $\tau / \mathrm{e}_{\text {s }}$	$\mathrm{N} / \mathrm{mm}^{2}$
8	Longitudin al strain	e	Stress/ young's modulus $\mathrm{e}=\mathrm{\sigma} / \mathrm{E}$	No unit
9	Compressiv e stress	σ	Compressive load / Area= P/A	$\mathrm{N} / \mathrm{mm}^{2}$
10	Thermal strain	e	A actual expansion allowed/ original length (aTL-s) /L	No unit
11	Thermal stress	σ	Thermal strain X Young's modulus σ $=((\alpha T L-s) / L) X E$	$\mathrm{N} / \mathrm{mm}^{2}$
12	Tensile strain	e_{1}	The Increment of length to its actual length $\mathrm{e}_{\mathrm{l}}=\partial \mathrm{L} / \mathrm{L}$	No unit
13	Lateral strain	e_{t}	Change in breadth (depth)/Original breadth (depth) ($\partial \mathbf{b} / \mathrm{b}$ or $\partial \mathbf{d} / \mathrm{d}$)	No unit

14	Strain energy	U	The strain energy stored by the body within elastic limit $U=\sigma^{2} \mathrm{v} / 2 \mathrm{E}$	Nm or J
15	Proof resilience	U_{p}	$\mathrm{U}=\sigma_{\mathrm{p}}{ }^{2} \mathrm{v} / 2 \mathrm{E}$	Nm or J
16	Modulus of resilience	-	Proof resilience per unit volume($\left.\sigma_{p}{ }^{2} / 2 E\right)$	Nm or J
17	Stress	σ	Load/ Area	$\mathrm{N} / \mathrm{mm}^{2}$
18	Types of strain	e	Tensile, Compressive , Volumetric and Shear strain	No unit
19	Types of stress	σ	1.Normal stress 2. Shear stress	$\mathrm{N} / \mathrm{mm}^{2}$
20	Elasticity	-	The body tends to undergo deformation	-
21	Hooke's Law		Stress is directly proportional to strain within elastic limit	-
22	Factor of saftey	-	Ultimate stress/ Permissible stress	-
23	Poisson's ratio	μ	Lateral strain/Longitudinal strain	-
24	Relation between E \& C	-	$C=E / 2(1+\mu)$	$\mathrm{N} / \mathrm{mm}^{2}$
25	Volumetric strain	$\delta \mathrm{v}$	ठv/v	mm^{3}
UNIT II SHEAR AND BENDING IN BEAMS				
26	Shear force		Algebraic sum forces acting on one side of the section or other section	N
27	Beam	-	Beam is a structural member which is supported along the length and subjected to external loads acting transversely .	-
28	Bending moment for point load	M	Load X distance	N-M
29	Bending moment for udl	M	Load X Distance X Distance/2	N-M
30	Moment of Inertia for rectangular	I	$\mathrm{I}=\mathrm{bd}^{3} / 12$	Mm ${ }^{4}$
31	Bending moment equation	M	$\mathrm{M} / \mathrm{I}=\sigma_{\mathrm{b}} / \mathrm{y}=\mathrm{E} / \mathrm{R}$	N-M

32	Section modules	Z	$\mathrm{Z}=\mathrm{I} / \mathrm{y}$	mm^{3}
33	Moment of resistance	M	$\mathrm{M}=\mathrm{obb} \mathrm{X} \mathrm{z}$	N-mm
34	Maximum bending stress	σ_{b} max	$\left(\mathrm{M}_{\max } / \mathrm{I}\right) \mathrm{X} \mathrm{y}$	$\mathrm{N} / \mathrm{mm}^{2}$
35	Section modules of rectangular	Z	$\mathrm{Z}=\mathrm{bd}^{2} / 6$	mm^{3}
36	Bending Moment	M	Algebraic sum of moments	Nm
37	Cantilever beam	-	A beam is fixed at one end and other end is free	-
38	Simply supported beam	-	A beam which it has simply supported at both the ends	-
39	Overhangin g beam	-	A beam extends beyond the supports	-
40	Fixed beam	-	A Beam which is fixed at both the ends	-
41	Continuous beam	-	A beam which it has more than two supports	-
42	Types of Loading	-	Point Load, UDL , UVL	-
43	Point Load	-	A Load which is acting at an single point in a beam	-
44	UDL	-	A Load which it is distributed uniformly throughout the beam	-
45	UVL		A Load which varies along the length of the beam	-
46	Types of supports	-	Roller support , Pinned support, Fixed Support	-
47	Point of Contraflexu re	-	Point at which BM changes sign + ve to -ve	-
48	Sagging BM	-	Moment on left side of beam is clockwise or right side is anticlockwise	-
49	Hogging BM	-	Moment on left side of beam is anticlockwise or right side is clockwise	-
50	Maximum BM	-	The shear force changes of sign or the shear force is zero	-
UNIT III DEFLECTION				
51	Moment of inertia of circular	I	$\Pi \mathrm{d}^{4} / 64=\mathrm{I}$	mm^{4}

	section			
52	Moment of Inertia of hollow circle	I	$\Pi\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right) / 64$	mm ${ }^{4}$
53	Section Modulus of triangle	Z	$\mathrm{Z}_{\mathrm{AB}}=\mathrm{bh}^{3} / 4$	$\mathrm{N} / \mathrm{mm}^{2}$
54	Section modulus of 'I' section	Z	$\mathrm{Z}=\mathrm{BD}^{3}-\mathrm{bd}^{3} / 6 \mathrm{D}$	$\mathrm{N} / \mathrm{mm}^{2}$
55	Moment area method of slope	Θ	1/EI X Area of BM diagram	radians
56	Moment area method of deflection	y	1/EI X \times X Area of BM diagram	mm2
57	Deflection	y	Y=EI. y	mm
58	Slope	Θ	EI. $d y / d x=\theta$	radians
59	Bending moment	M	EI. $\mathrm{d}^{2} \mathrm{y} / \mathrm{dx} \mathrm{x}^{2}=\mathrm{M}$	N-M
60	Shear force	F	EI. $d^{3} y / d x^{3}=F$	N
61	The rate of loading	W	$\mathrm{W}=E I . \mathrm{d}^{4} \mathrm{y} / \mathrm{dx}{ }^{4}$	KN
62	Area for rectangular	A	$\mathrm{A}=\mathrm{LX} \mathrm{b}$ (Multiplication of length and breadth)	m^{2}
63	Area for triangular section	A	$\mathrm{A}=1 / 2 \mathrm{Xb} \mathrm{Xh}$ (Multiplications of half of the length and breadth)	m^{2}
64	Rectangular moment of inertia	I	$\mathrm{A}=\mathrm{bd}^{3} / 12$	mm ${ }^{4}$
65	Methods for Deflection	-	1. Double integration method 2. Moment area method 3. Macaulay's method	-
66	Slope for Simply supported P.L	Θ	$\Theta_{\mathrm{A}}=\Theta_{\mathrm{B}}=\mathrm{WL}^{2} / 16 \mathrm{EI}$	radians
67	Deflection for simply	y	$\mathrm{Y}=\mathrm{WL}^{3} / 48 \mathrm{EI}$	mm

	supported P.L			
68	Slope for UDL	Θ	Ө = WL²/24EI	radians
69	Deflection for UDL	y	y =5/384*WL3/EI	
70	Moment of Inertia	I	The sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation	mm ${ }^{4}$
71	Structure	-	The arrangement of and relations between the parts or elements	-
72	Point load	p	The load applied to a single point	
74	Uniformly distributed load	udl	A load that is distributed or spread across the whole region of an element varying load	uvl

87	Indetermina te Structures.	-	The structures cannot be solving using conditions of equilibrium alone and additional conditions are required	-
88	Slopes	(θ	Angular shift at any point of the beam between the no-load condition and loaded beam	Rad
89	Deflections	δ	The degree to which a structural element is displaced under a load	mm
90	Plane frame	-	The structures constructed with straight elements connected together by rigid and/or hinged connections	-
91	Rigid joined frame	-	The load-resisting skeleton constructed with straight or curved members interconnected by mostly rigid connections	-
92	Pin joined frame		Generally, transfer the applied loads by inducing axial tensile or compressive forces in the individual members	-
93	Portal frame		A rigid structural frame consisting essentially of two uprights connected at the top by a third member	-
94	Moment at a hinged end of a simple beam	-	Zer	-
95	Unknown moments are expressed in terms of	-	Slopes (θ) and Deflections (Δ)	-
96	$M-\theta$ relationship for a simply supported beam	-	$M / E I=4 \theta$	-
97	Trussed Beam	-	A beam strengthened by providing ties and struts	-
98	Plane strain	-	Normal strain and shear strain directed perpendicular to the plane of body is assumed to be zero	-
99	Plane stress	-	Plane stress exists when one of the three principal stresses is zero	-
100	Maximum shear stress	τ	$\sigma_{1}-\sigma_{2} / 2$	$\mathrm{N} / \mathrm{mm}^{2}$
UNIT V TORSION OF SHAFTS AND SPRING				

101	Torsional equation	-	$T / J=\frac{\tau}{R}=\frac{C \theta}{L}$	-
102	Polar modulus	Z_{p}	It is the ratio between polar moment of inertia and radius of shaft ($\mathrm{Zp}=\mathrm{J} / \mathrm{R}$)	-
103	Stiffness	K	Stiffness of the spring is load required to preclude unit deflection $K=c^{4} / 64 R^{3} n$	N / mm
104	Power transmitted by shaft	P	$\mathrm{P}=\frac{2 \Pi \mathrm{NT}}{60 \times 1000}$	Nm
105	Torque transmitted by shaft	T	$\mathrm{T}=\tau \times \frac{\Pi}{16}\left(\left(D^{4}-d^{4}\right) / \mathrm{D}\right)$	-
106	Helical spring shear stress	τ	$\mathrm{T}=\frac{16 W R}{\Pi d^{2}}$	$\mathrm{N} / \mathrm{mm}^{2}$
107	Helical spring Energy stored	U	$\mathrm{U}=\left(\mathrm{ob}^{2} / 8 \mathrm{E}\right) \mathrm{X}$ Volume of spring wire	Nm
108	Stiffness coefficient k_{ij}.	-	The force developed at joint ' i ' due to unit displacement at joint ' j ' while all other joints are fixed	-
109	Basic equations of stiffness matrix	-	Equilibrium forces, Compatibility of displacements, Force displacement relationships	-
110	Stiffness matrix method	-	The displacements that occur in the structure are treated as unknowns	-
111	Stiffness	k	Resistance offered by member to a unit displacement or rotation at a point	N/m
112	Stiffness factor	k	Moment required to rotate the end while acting on it through a unit rotation	N/m
113	Force	F	The push or pull on an object with mass that causes it to change velocity (to accelerate)	KN
114	Shaft	-	Equal and opposite torques are applied at the two end of the shaft	-
115	Torque	T	Product of force and radius of the shaft	Nmm
116	Power	P	T * ω	KW
117	Types of springs	-	Leaf Spring, Helical Spring	-
118	Laminated Spring	-	To absorb shocks in railway wagons	-
119	Helical spring	-	Thick spring wires coiled into a helix	-

120	Types of Helical spring	-	Closed coiled spring, Open coiled spring	-
121	Deflection of spring	δ	$\delta=64 \mathrm{WR}^{3} \mathrm{n} / \mathrm{Cd}^{4}$	mm
122	Stiffness of spring	s	$\mathrm{Cd}^{4} / 64 \mathrm{WR}^{3} \mathrm{n}$	N / mm
123	Spring index	C	Ratio of mean diameter to diameter of wire	-
124	Solid length 125	Function of spring	-	The length of the spring under maximum compression

Placement Questions				
$\begin{gathered} \text { S.N } \\ \mathbf{o} \end{gathered}$	Term	Notation (Symbol)	Concept/Definition/M eaning/Equation/ Expression	Units
126	Sum of distribution factors at a join		1	-
127	In the displacement method of structural analysis, the basic unknowns are		Displacements	-
128	The number of simultaneous equations to be solved in the slope deflection method, is equal to		The number of joints in the structure	-
129	$M-\theta$ relationship for a simply supported beam	118-1111	$M / E I=4 \theta$	-
130	The slope of the elastic curve at the free end of a cantilever beam	θ	$W L^{3} / 6 E I$	Rad
131	Formula for Speed	S	Distance / Time	$\mathrm{m} / \mathrm{sec}$
132	Formula for Time	t	Distance / Speed	sec
133	Formula for Distance	d	Speed x Time	m
134	Area of triangle	A	(Base \times Height) / 2	m^{2}
135	What is the area of a triangle with base 5 meters and height 10 meters?	A	25	m^{2}

136	Sum of the shape function is equal to	S	1	-
137	Top most part of an arch is called	-	Crown	-
138	Shape of three hinged arch is always	-	Parabolic	-
139	Degree of indeterminacy of a fixed arch	D.O.I	3	-
140	Degree of indeterminacy of a two hinged arch	D.O.I	2	-
141	Degree of indeterminacy of a three hinged parabolic arch	D.O.I	0	-
142	Avera ge		Sum of observations / Number of observations	-
143	Specific Gravity of water	G	1	-
144	Density of aggregate	ρ	1200-1750	$\mathrm{kg} / \mathrm{m}^{3}$
145	Density of Concrete (R.C.C)	ρ	2500	$\mathrm{kg} / \mathrm{m}^{3}$
146	Density of Concrete (P.C.C)	ρ	2400	$\mathrm{kg} / \mathrm{m}^{3}$
147	The density of steel is in the range of	ρ	7750 and 8050	$\mathrm{kg} / \mathrm{m}^{3}$
148	Flexural Rigidity	H1]	Ex I	N.m ${ }^{2}$
149	The process of subdividing the given body into a number of elements is called	Or	Discretization	-
150	A numerical technique for solving boundary value problems is	-	Finite element method	-

Faculty Team Prepared

Signatures

1. M.Sanchaya
