

MUTHAYAMMAL ENGINEERING COLLEGE

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MKC

2021-2022

MUST KNOW CONCEPTS

CIVIL

Course Code & Course Name

19CED07 / MECHANICS OF FLUIDS

Year/Sem/Sec

: II/III

:

	Subject MECHANICS OF FLUIDS				
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equation/ Expression	Units	
	UNIT	I FLUID PROP	PERTIES AND STATICS		
1	Fluid Mechanics	$\left \right\rangle$	Fluid Mechanics is the branch of science which deals with the study of behavior of the fluids at rest as well as in motion	-	
2	Mass Density	ρ	Mass of fluid /volume of fluid	Kg/m	
3	Weight Density	W	Mass of fluid x acceleration ($\rho \times g$)	N/m^3	
4	Weight Density of Water	W water	1000×9.81	N/m^3	
5	Specific Volume	v	volume of fluid / Mass of fluid	m^3/kg	
6	Specific Gravity) E S I S N I N	Weight density of liquid/ Weight density of water.	No unit	
7	Viscosity	Estd	Resistance to the movement of one later of the fluid over the other adjacent layer of the fluid	-	
8	Dynamic Viscosity	μ	The shear stress required to produce unit rate of shear deformation	N- s/m ²	
9	Kinematic Viscosity	υ	The ratio between the dynamic viscosity and density of fluid	m ² /s	
10	Control volume	V	A specified large number of fluid and thermal devices have mass flow in and out of a system	-	
11	Compressibility	β	Compressibility is the reciprocal of the bulk modulus of elasticity	-	
12	Surface Tension	σ	The tangential force per unit length acting at right angles on either side of the surface		
13	Capillarity	θ	It is the phenomenon of rise or fall of liquid surface relative to out side liquid surface	Degre e	
14	Total pressure	F	The force exerted by a static fluid on a surface either plane or a curved when the fluid comes in contact with the surfaces.	N/m ²	

15	Center pressure	h*	The application of the total pressure on surface	N/m ²
16	Center of buoyancy	-	The point, through which the force of buoyancy is supposed to act.	-
17	Buoyancy	-	Body is immersed in a fluid, upward force equal to the weight of the fluid displaced by the body	-
18	Pressure Intensity	р	It is defined as the force acting per unit area.	N/m2
19	Modulus Of Elasticity	K or E	Ratio of the stress applied to body or substance to the resulting strain within the elastic limit	N/m m ²
20	Work	W	A task or tasks to be undertaken	N-m or J
21	Energy	Е	The strength and vitality required for sustained physical or mental activity	N-m or J
22	Power	Р	The ability or capacity to do something or act in a particular way	watts
23	Specific weight	W	The force exerted by gravity on a unit volume of a fluid	N/ma
24	Momentum	М	The quantity of motion of a moving body, measured as a product of its mass and velocity.	kg- m/s
25	Shear stress	τ	unit of load (or weight) divide by the unit of area	N/m ²
	UNIT II	- FLUID KIN	EMATICS AND DYNAMICS	
26	Bernoulli's theorem		It states that in a steady, ideal flow of an incompressible fluid, the total energy at any point of the fluid is constant.	-
27	Pascal's law		The pressure or intensity of pressure at a point in a static fluid is equal in all direction	-
28	Hydrostatic law	$\langle \rangle$	The rate of increase of pressure in a vertically downward direction must be equal to the specific weight of the fluid at that point	_
29	Stream function	DESIGNIN	As the scalar function of space and time, such that its partial derivative with respect to any direction gives the velocity component at right angles to that direction	-
30	Velocity potential function	<u>Ф</u> .	Scalar function of space and time such that its negative derivative with respect to any direction gives the fluid velocity in that direction	_
31	Stream line	-	An imaginary line drawn through a flowing fluid in such a way that the tangent at any point on it indicates the velocity at that point.	-
32	Equipotential line	-	A line along which the velocity potential Φ is constant	-
33	Flow net	-	A grid obtained by drawing a series streamlines and equipotential lines	-
34	Meta centre	-	The point about which a body starts oscillating when the body is tilted by a small angle	-
35	Local acceleration	-	The rate of increase of velocity with respect to time at a given point in a flow field	-
			The rate of change of velocity due to the change	

			in a fluid flow.	
37	Venturimeter		Used for measuring the rate of flow of a fluid flowing through a pipe	-
38	Orifice meter	-	Device used for measuring the rate of flow of fluid through a Pipe. It is a cheaper device as compared to Venturimeter	_
39	Pitot tube	-	Used for measuring the velocity of flow at any point in a pipe or a channel.	-
40	Momentum equation	-	The net force acting on a fluid mass is equal to the change in momentum of flow per unit time in that direction	-
41	Angular deformation	-	The average change in the angle contained by two adjacent sides	-
41	Discharge	Q	Amount of fluid passing a section of a stream in unit time	m ³ /s
42	Dynamics of fluid flow		The study of fluid motion with the forces causing flow	-
43	Compressible flow		The density of the fluid changes from point to point	-
44	Incompressible flow	-	The density is constant for the fluid flow	-
45	Rotational flow	-/	The fluid particle flowing along streamlines	-
46	Irrotational flow		Fluid particle while flowing along stream lines, do not rotate about their own axis	
47	Velocity	v	A fluid effectively describes everything about the motion of a fluid	m/s
48	Angular velocity	ω	The rate of velocity at which an object or a particle is rotating around a center or a specific point in a given time period	rad/se c
49	Acceleration	a	The acceleration of a fluid particle is the rate of change of its velocity	m/s2
50	Angular acceleration	Fstd	A quantitative expression of the change in angular velocity that a spinning object undergoes per unit time	
	1	UNIT III FLOV	W THROUGH PIPES	
51	Viscous flow	-	Flow is said to be viscous if the Renold's number is less than 2000 (or) the flows inlayers i.e. Re <2000	
52	Kinetic energy correction factor	α	the ratio of the kinetic energy of the flow per sec based on actual velocity across a section to the kinetic energy of the flow per sec based on average velocity across the same section	
53	Momentum correction factor	β	the ratio of momentum of the flow per sec based on actual velocity to the momentum of the flow per sec based on average velocity across the section	
54	Laminar Flow	-	A flow is said to be laminar if Renolds number is less than 2000 is known as Laminar flow	

	1	1		
			A flow is said to be laminar if Renolds number	
55	Turbulent Flow	-	is greater than 4000 is known as Turbulent	
			flow The line which gives the sum of pressure head	
56	Undroulie gradient line	UCI	The line which gives the sum of pressure head	
56	Hydraulic gradient line	HGL	and datum head of a flowing fluid in a pipe with	
			respect the reference line	
-7		TEL	The line which gives the sum of pressure head,	
57	Total energy line	TEL	datum head and kinetic head of a flowing fluid	
			in a pipe with respect to some reference line	
50	S		Sypon is along bend pipe which is used to	
58	Sypon	-	transfer liquid from a reservoir at a higher	-
			elevation to another reservoir at a lower level	
50			Losses in a pipe is mainly due to the frictional	
59	Major losses in a pipe	-	resistance caused by the shear force between the	-
			fluid particles and boundary walls	
60	Minor losses in a pipe	-	Head due to change of velocity of the flowing	_
00			fluid in magnitude or direction.	
61	Co-efficient of friction		Ratio of actual discharge to theoretical	_
01			discharge of the pipe	
62	Equivalent pipeline	_		_
02	Equivalent pipeline		Consisting of several pipes of different lengths and diameters $h_f =$ $4FLV^2$ $h_f =$ $2gD$	
	Loss of head due to	-		
63	friction in pipes	hf		-
	incetion in pipes	~ <	2gD	
	Sudden enlargement of		$he = (V_1 - V_2)^2$	
64	the pipe	he		-
			2g	
65	Sudden contraction of the	hc	$hc = 0.5 V_2$	
05	pipe	ne	2g	-
			$h_i = 0.5 V_2$	
66	Entrance of the pipe	hi		-
			2g	
	Expression for drop of		$P1-P2 = 32 \mu \bar{U}L$	
67	Expression for drop of pressure	P1-P2	YOUR FUT	-
	pressure		ρgD	
		Esto	A	
68	Hydraulic mean depth	М	m = ====	-
			Р	
60	Gravity	~	An object is the ratio between the density of an	mlas
69	Gravity	g	object to a reference liquid	m/s2
70	Discharge	0	The amount of fluid passing a section of a	
70	Discharge	Q	stream in unit time is called the discharge	m3/s
				N
71	Force	F	Force represents as a vector, which means it has	(kg.m
			both magnitude and direction.	/s2)
			Ennormated here and it is a	Ń
72	Weight	W	Force exerted by gravity on a unit volume of a	(kg.m
			fluid.	/s2)
70	T	m		N-m
73	Torque	Т	A force that tends to cause rotation	or J
		1		1
74	Laminar Flow	Re	Re < 2000	

75	Turbulent Flow	Re	Re > 4000	-
		UNIT IV BO	UNDARY LAYER	
76	Boundary layer	_	A real fluid flow passed a solid boundary, fluid layer is adhered to the solid boundary.	-
77	Boundary layer growth	-	Subsequent points downstream of the leading edge, the boundary layer region increases because the retarded fluid is further retarded.	-
78	Turbulent boundary	-	Downstream of transition zone, the boundary layer is turbulent and continuous to grow in thickness.	-
79	Viscous flow	-	Renold"s number is less than 2000	cm ²
80	Kinetic energy correction factor	A	The ratio of the kinetic energy of the flow per sec based on actual velocity across a section to the kinetic energy of the flow per sec based on average velocity across the same section	-
81	momentum correction factor	В	the ratio of momentum of the flow per sec based on actual velocity to the momentum of the flow per sec based on average velocity across the section	-
82	Turbulent Flow	Ň	Renolds number is greater than 4000	-
83	Displacement thickness	δ*	distance by which the boundary should be displaced to compensate for the reduction in flow rate of boundary layer formation	-
84	Momentum thickness	θ	The distance by which the boundary should be displaced to compensate for the reduction in momentum of the flowing fluid on account of boundary layer formation	-
85	Energy thickness	δ**)ESIGNIN	The distance by which the boundary should be displaced to compensate for the reduction in kinetic energy of the flowing fluid on account of boundary layer formation.	-
86	Chezy's formula	Estd	$V = C \sqrt{mi}$	-
87	Laminar sub Layer	-	In the turbulent boundary layer zone, adjacent to the solid surface of the plate the velocity variation is influenced by viscous effects.	-
88	Causes boundary layer	-	Aerodynamic forces are generated between the fluid and the object	-
89	Importance of boundary layer	-	Boundary layer can reduce the transfer of heat, CO2 and water vapor from the leaf to the environment.	-
90	Types of drag	-	parasite drag: form drag, interference drag	-
91	Force lift	-	The lift force, lifting force or simply lift is the sum of all the forces on a body that force it to move perpendicular to the direction of flow.	-
92	Circulation	-	The line intergral of the velocity along a closed path	-

93	Point separation	-	Separation point is the point where the air stops "sticking" to an object that is moving through the air.	-
94	Displacement thickness	δ*	$\delta^* = \int_0^\delta \left(1 - \frac{u}{U}\right) dy.$	-
95	Momentum thickness	θ	$\Theta = \int_0^\delta \frac{u}{U} \left[1 - \frac{u}{U} \right] dy.$	-
96	Energy thickness	δ**	$\delta^{**} = \int_0^\delta \frac{u}{U} \left[1 - \frac{u^2}{U^2} \right] dy.$	-
97	Von Karman momemtum equation	-	$\frac{\tau_0}{\rho U^2} = \frac{\partial \theta}{\partial x}$	-
98	Examples laminar flow	-	Flow of oil in measuring instruments, Rise of water in plants through their roots etc.,	-
99	characteristics of laminar flow		No slip at the boundary, The flow is rotational.	-
100	Boundary layer thickness		Velocity of the fluid is approximately equal to 0.99 times the free stream velocity of the fluid.	-
	UNIT	TV SIMILITU	DE AND MODEL STUDY	
101	Dimensional analysis	X	Mathematical technique which makes use of the study of dimensions as an aid to solution of several engineering problems	-
102	Dimensional homogeneity	\otimes	An equation is said to be dimensionally homogeneous if the dimensions of the terms on its LHS are same as the dimensions of the terms on its RHS	-
103	Buckingham's π theorem	\sim	If there are n variables in a physical phenomenon and if these variables contain m functional dimensions and are related by a dimensionally homogeneous equation,	-
104	Model	DESIGNIN	The small scale replica of an actual structure or the machine	-
105	Prototype.	Estd	The actual structure or machine	
106	Scale Ratio	_	It exists between the model and prototype if the ratio of corresponding lengths, dimensions in the model and the prototype are equal	_
107	Dynamic similarity	-	The similarity of forces at corresponding points in the model and prototype is equal.	-
108	Dimensionless numbers	-	The numbers obtained by dividing inertia force or gravity force or pressure force or elastic force or surface tension	-
109	Elastic force	-	The product of elastic stress and the area of flowing fluid.	-
110	Reynold's number	Re	The ratio of inertia force of flowing fluid and viscous force of the fluid	-

	son, what is the present				
4.	as her son. If 20 years ago, the age of the mother was 10 times the age of the			45 years	years
	A mother is twice as old				
3.	Pointing to a photograph, a man said, "I have no brother, and that man's father is my father's son." Whose photograph was it?			His son	
2.	the empty space in the series; 4, 7, 12, 19, _, 39?			28	
1.	Which number should come next in the series, 48, 24, 12, Which number would fill	2000		6	
S.No	Term	Notat (Sym		Concept/Definition/Meani ng/Units/Equation/Expres sion	Units
	Subject		GENER	RAL AND APTITUDE	
125	Discharge	Q	L ³ T ⁻¹		m ³ /s
124	Torque	Т	ML ² T ⁻²		N.M
123	Momentum	М	MLT ⁻¹		kg/ms
122	Mass	М	М		kg
121	Power	Р	ML-2T-2		kW
120	Energy	Е	ML ² T ⁻²		N.m
119	Bulk Modulus	К	ML-1T-2		kg/ms
118	Density	ρ	ML ⁻³		kg/m ³
117	Viscosity	μ	ML-1T-1		kg/ms
116	Moment of inertia	Ι	The inertia o to its rotation	f a rigid rotating body with respect ".	m4
115	Volume	V		of space that a substance or object that is enclosed within a container.	m ³
114	Area	А	1 2	that expresses the extent of a two- figure or shape or planar lamina, in	
113	Undistorted model	-	If the scale ra	atio for the linear dimensions of the rototype is same	-
112	Distorted model	-	distorted mod geometrically similar to pro		-
111	Froude's number	Fe	fluid to gravi		-

	age of the mother?			
5.	If January 1, 1996, was Monday, what day of the week was January 1, 1997?		Wednesday	
6.	How many times the hands of a clock coincide in a day?		22	
7.	A shopkeeper sold an article for Rs. 2500. If the cost price of the article is 2000, find the profit percent.		25%	%
8.	A running man crosses a bridge of length 500 meters in 4 minutes. At what speed he is running?		7.5 km/s	km/s
9.	A train moving at speed of 80 km/hr crosses a pole in 7 seconds. Find the length of the train.		175 m	m
10.	Which cricketer has become the fastest cricketer to score 7,000 Test runs?		Steve Smith	
11.	Anandan Gunasekaran, who was in news recently is associated with which sport?	\otimes	Para-athletics	
12.	Who among the following has won the Davis Cup title 2019?		Rafael Nadal	
13.	Pooja Gehlot is associated with which sport?	ESIGNING YOUR F	UTURE _{Wrestling}	
14.	The newly discovered spider species named after which cricketer?	Estd. 200	Sachin Tendulkar	
15.	On a certain Principal if the Simple interest for two years is Rs 2400 and Compound interest for the two years is Rs 2544, what is the rate of Interest?		12 percent	
16.	What will the ratio of simple interest earned by certain amount at the same rate of interest for 6 years and that for 9 years.		2:3	
17.	If p is prime number, then which of the following		(p -2)	

	may also be a prime number?		
18.	What is the greatest number that will divide 1204, 3664 and 5904 leaving the same remainder?	20	
19.	The arithmetic mean of two numbers is 30 and their geometric mean is 24. What is the value of larger number?	48	
20.	What is the least value of K so that the number 6735K1 is divisible by 9?	5	
21.	Five-eight of three-tenth of four-ninth of a number is 60. What is the number?	720	
22.	Sum of a fraction and thrice its reciprocal is 31/6. What is the fraction?	9/2	
23.	How is the word "people" coded?	ch	
24.	How is the word "follow" is coded?	gi	
25.	When was the Institute for Defence Studies and Analyses (IDSA) established?	1965	

Faculty Team Prepared

Signatures

HoD

Estd. 2000

1.