

MUTHAYAMMAL ENGINEERING COLLEGE (An Autonomous Institution)

MKC

2021-2022

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University) Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MUST KNOW CONCEPTS

BME & MDE

	Subject	19 19	9BMC04 – SIGNALS AND SYSTEMS & 9MDC03 – BIOSIGNALS AND SYSTEMS	
UNIT-1 SIGNALS AND SYSTEMS				
S.No	Term	Notation (Symbol)	Concept/Definition/Meaning/Units/Equa tion/Expression	Units
1	Continuous time signal		Continuous time signal is an infinite and uncontrollable sequence of numbers, as are the possible values each number can have.	-
2	Discrete time signal		A discrete-time signal is a finite sequence of numbers, with finite possible values for each number.	-
3	Deterministic signal		A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time.	-
4	Random signal	-	A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time.	-
5	Even signal	L DESIGN	A signal is referred to as an even if it is identical to its time-reversed counterparts; $x(t) = x(-t)$.	-
6	Odd signal	-	A signal is odd if $x(t) = -x(-t)$. An odd signal must be 0 at t=0, in other words, odd signal the origin	-
7	Energy signal	-	A signal x(t) is said to be energy signal if and only if the total normalized energy is finite and non-zero. Ie. 0 <e< 4<="" td=""><td>-</td></e<>	-
8	Power signal	-	The signal $x(t)$ is said to be power signal, if and only if the normalized average power p is finite and non-zero. Ie. 0	-
9	Classification of signals	_	Continuous Time and Discrete Time Signals	_

Deterministic and rand	lom signal
Even and Odd Signals	
Davis die and America di	o Cionala
Periodic and Aperiodic	c Signais
Energy and Power Sig	nals
An impulse signal has zero va	llue except at
t = 0. It has infinitely high values to the tensor of the tensor of the tensor of t	lue $t = 0$.
Continuous-Time Signal	
10 Unit impulse $\delta t = 1, t = 0$	
signal $t = 0$	-
Discrete-Time Signal	
$\delta n = 1 n = 0$	
$0 \ n \neq 0$	
A unit step signal has unity va	alue for $t \ge 0$
else zero value.	
Continuous-Time Signal	
11 Unit step signal $ut = 1 t \ge 0$	_
0 t < 0	
Discrete-Time Signal	
$u(n) = 1$ $n \ge 0$	
$0 \ n < 0$	lon value for
A famp step signal has unity s $t \ge 0$ otherwise it has zero va	
$t \ge 0$, other wise it has zero va	luc
Unit ramp $r(t) = t$, $t \ge 0$	
$\begin{array}{c c} 12 & \text{signal} \\ \hline & & \\ 0, & t < 0 \end{array}$	-
Discrete-Time Signal	
$r(n)=n, n\geq 0$	
0, <i>n</i> <0	
linear and Non-linear	Systems
Time Variant and Time	e Invariant
Systems	
COLO Ilinear Time variant and	d linear Time
13 Classification _ invariant systems	_
• Static and Dynamic Sy	ystems
Causal and Non-causa	l Systems
• Stable and Unstable St	veteme
• Stable and Unstable S	ystems
A system is said to be linear v	vhen it
satisfies superposition and hor	mogenate
14 Linear and non principles. Consider two syste	ems with -
inputs as $x_1(t)$, $x_2(t)$, and output	uts as $y_1(t)$,
y ₂ (t) respectively.	
A system is said to be time va	riant if its
15 Time Variant - Instant output characteristic	cs vary with -
Invariant time. Otherwise, the system is	s considered

	Systems		as time invariant.	
16	Causal and Non-Causal Systems	-	A system is said to be causal if its output depends upon present and past inputs, and does not depend upon future input.	-
			For non causal system, the output depends upon future inputs also.	
17	Stable systems	-	The system is said to be stable only when the output is bounded for bounded input.	-
18	Unstable systems	-	For a bounded input, if the output is unbounded in the system then it is said to be unstable.	-
19	Static systems	ė	A static system is a system in which output at any instant of time depends on the input sample at the same time.	-
20	Dynamics systems		A dynamic system is a system in which output at any instant of time depends on the input sample at the same time as well as at other times	-
21	Basic Operations on signals		Addition, subtraction, multiplication, differentiation, and integration fall under the category of basic signal operations acting on the dependent variables.	-
22	Amplitude scaling		Amplitude scaling is a very basic operation performed on signals to vary its strength.	-
23	Addition		This particular operation involves the addition of amplitude of two or more	-
24	Multiplication	DESIGN	multiplication of amplitude of two or more signals at each instance of time or any other independent variables is done which are common between the signals	-
25	Pulse signal	Est	A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value	-
	UNIT -	2 ANALYSIS	OF CONTINUOUS TIME SIGNALS	
26	Fourier series	-	any periodic function or periodic signal into the sum of a set of simple oscillating functions, namely sines and cosines	-
27	Fourier transform	-	The Fourier transform is commonly used to convert a signal in thetimespectrum to a frequencyspectrum.	-
28	Dirichlet condition for Fourier transform	-	 the function X(t) should be signal values in any finite time To. The function X(t) should have a finite number of discontinuities in the interval To. 	-

29	Bilateral Laplace Transform	_	The bilateral Laplace transform can represent both causal and non-causal time functions.	-
30	Unilateral Laplace Transform	-	The unilateral Laplace transform is restricted to causal time functions	-
31	Region convergence	-	The Region of Convergence is the area in the pole/zero plot of the transfer function in which the function exists	-
32	Properties of ROC	-	 ROC does not contain any poles The system is stable if is ROC 	-
33	Types of Fourier series	-	 Trigonometric Fourier Series Exponential Fourier Series Cosine Fourier Series 	-
34	Fourier Series Analysis		If f(t) is a periodic function of period T, then under certain conditions, its Fourier Series.	-
35	Laplace Transform		Laplace transform is the integral transform of the given derivative function with real variable t to convert into complex function with variables.	-
36	Inverse Laplace Transform		In the inverse Laplace transform, we are provided with the transform $F(s)$ and asked to find what function we have initially. The inverse transform of the function $F(s)$ is given by:	-
			$f(t) = L^{-1}{F(s)}$	
37	Time-CT Signal	Est	A continuous time signal is a function that is continuous, meaning there are no breaks in the signal.	-
38	Initial Value Theorem	-	The initial value theorem is a theorem used to relate frequency domain expressions to the time domain behavior as time approaches zero.	-
39	Final Value Theorem	-	The final value theorem is used to determine the final value in time domain by applying just the zero frequency component to the frequency domain representation of a system	-
40	Fourier Cosine Transform	-	If (t) is even function ie. $f(-t) = f(t)$ Then Fourier cosine transform is given by FC $(\omega) = \sqrt{2\pi} \int f(t) \cos \omega t dt \infty 0$ And inverse Fourier cosine transform is given by $f(t) = \sqrt{2\pi} \int FC(\omega) \cos \omega t d\omega$	-

			If (<i>t</i>) is odd function ie. $f(-t) = -f(t)$	
			Then Fourier sine transform is given by	
41	Fourier Sine		$FS(\omega) = \sqrt{2\pi} \int \Box(\Box) \sin \Box \Box \Box \Box \infty 0$	
41	Transform	-	And inverse Fourier sine transform is given	-
			by	
			$\Box(\Box) = \sqrt{2} \Box \int \Box \Box(\Box) \sin \Box \Box \Box \Box$	
			Analysis of electrical and electronic	
	Application of		circuits. Breaking down complex	
12	Application of		differential equations into simpler	
42	Transform	-	polynomial forms. Laplace transform gives	-
	Transform		information about steady as well as	
			transient states.	
			In continuous time we can scale by an	
			arbitrary real number. Indiscrete-time we	
			scale only by integers.	
43	Time Scalling	_	For an integer k, define	_
	This Seatting		xk [n] =	
			x[n/k] if n is a multiple of k,	
			0 if n is not a multiple of k.	
			$xk [n] \Leftrightarrow X(kf).$	
			Time scaling of signals of signals involves	
44	Properties of		the modification of a periodicity of the	-
	Time Scalling		signal, keeping its amplitude constant.	
			$Y(t) = \beta X(t)$	
			Understanding properties of Fourier series	
	Properties of Fourier Series		makes the work simple in calculating the	
			Fourier series coefficients in the case when	
45			signals modified by some basic operations.	-
			Graphical representation of a periodic	
			signal in frequency domain represents	
			A surthesis Equation a source when two or	
16	Synthetic		A synthesis Equation occurs when two or	
40	Equation	D D D C L C A	more reactants combine to form a single	-
	Compressing in	LIJESTUN	product. OUR FUTURE	
47	Time	- East	Compressing in time requires decimation.	-
		ES	A periodic continuous time signal can be	
48	Periodic Signal	_	represented in frequency domain using	_
_	6		Fourier series	
			The Fourier transform is used to analyze	
40	Discrete time		problems involving continuous-time	
49	signal	-	signals or mixtures of continuous- and	-
			discrete-time signals	
			All Fourier methods use sinusoids of	
50	Arbitrary Signals	-	different frequencies as building blocks to	-
			represent arbitrary signals.	
	UN	NIT -3 LINEA	R TIMEINVARIANT SYSTEMS	
	The impulse		Dynamicity condition h(t)=(t)	
51	rne impuise		Causality	
51	proportion	-	Stability	-
	properties		Step response	

52	Realization structure	-	Block diagram representation of the differential equation is called realization structure	-
53	Different types of structure realization	-	 Direct form I realization Direct form II realization Cascade form realization Parallel form realization 	-
54	System function (or) Transform function	-	System function (or) Transform function H(s) is defined as the ratio of Laplace transform of the output to Laplace transform of the input Initial conditions are zero H(s)=V(s)/X(s)	-
55	Impulse response of any system	-	Impulse response h(t) is the output y(t) produced by CT system when unit impulse is applied at the input	-
56	Three Elementary operations of continuous time system		 Scalar Multiplication Adder Integrators 	-
57	Impulse response of two LTI Systems connected in parallel		If the system are connected in parallel, having responses $h1(t)$ and $h2(t)$, then their overall response is given as, h(t)=h1(t) + h2(t)	-
58	Convolution integral		The output $y(t)$ is equal to the convolution of input signal $x(t)$ and impulse response h(t) y(t)=x(t)*h(t)	-
59	Continuous	DESIGN	Continuous signal or a continuous- timesignal is a varying quantity (a signal) whose domain, which is often time, is a continuum (e.g., a connected interval of the reals)	-
60	Differential Equations	Est	An equation that shows the relationship between consecutive values of a sequence and differences among them.	-
61	Fourier series	-	To represent any periodic signal x(t), Fourier developed an expression called Fourier series.	-
62	Linear-Time Invarient System(LTI)	-	Lineartime-invariantsystems (LTIsystems) are a class of systems used in signals and systems that are both linear and time-invariant.	-
63	Block Diagram	-	A block diagram illustrates the sub-systems and signal pathswithin a larger system for processing signals.	-
64	Time-Invarient Linear system	-	Thus a time-invariant linear system G whose input x(t) is a sum of sinusoids will yield an output y(t) which is also a sum of sinusoids at the same frequencies but	-

			scaled and phase shifted	
65	Types of system	-	Continuous time system Discrete time system	-
66	Properties of LTI	-	 Commutative property of LTI systems Distributive property of LTI systems Associative property of LTI systems Static and dynamic LTI systems Invertibility of LTI systems Causality of LTI systems Stability of LTI systems Unit-step response of LTI systems 	-
67	Associative property of LTI System	-	According to associative property, both convolution integral for continuous time LTI systems and convolution sum for discrete time LTI systems are associative.	-
68	Causality for LTI System		This property says that the output of a causal system depends only on the present and past values of the input to the system	-
69	Stability for LTI System	-	A stable system is a system which produces bounded output for every bounded input.	-
70	Classification of CT LTI System		 Causal system and non causal system Time invariant and time variant system Stable and unstable system Linear and Non-linear system Static and Dynamic systems Invertible and noninvertible system 	-
71	Properties of convolution integral		 Commutative property Distributive property Associative property 	-
72	Commutative property	DESIGN	The commutative property is a basic property of convolution in both continuous and discrete time.	-
73	Distributive property	Est	The distributive property states that both convolution integral for continuous time LTI system and convolution sum for discrete time LTI system are distributive.	-
74	Impulse Response	-	In signal processing, the impulse response, of a dynamic system is its output when presented with a briefinput signal, called an impulse.	-
75	Conditions required for transfer function	-	(i) System should be in unloaded condition(initial conditions are zero)(ii) The system should be linear time invariant.	-
	UNI	Γ-4 ANALYSI	S OF DISCRETE TIME SIGNALS	
76	DTFT	-	The discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values.	-

r				
77	Properties of		Periodicity, linearity, stability,	
//	DTFT	-	timeshifting, frequencyshifting, time and	-
			frequency scaling.	
			The discrete-time Fourier transform	
70	Applications of		(DTFT) is a form of Fourier analysis that is	
78	DTFT	-	applicable to a sequence of values. The	-
			DTFT is often used to analyze samples of a	
			continuous function.	
70	Discrete time		discrete-time Fourier series representation	
79	Fourier series	-	provides notions of frequency content of	-
			discrete-time signals.	
			This discrete-time Fourier series	
			representation provides notions of	
			frequency content of discrete-time signals,	
80	Uses of DTFS	-	and it is very convenient for calculations	-
			involving linear, time-invariant systems	
			because complex exponentials are Eigen	
			functions of LTI systems.	
	Sampling		The sampling theorem essentially says that	
81	theorem	-	a signal has to be sampled at least with	-
-			twice the frequency of the original signal.	
			The sampling theorem specifies the	
	Properties of sampling		minimum-sampling rate at which a	
82			continuous-time signal needs to be	_
	theorem		uniformly sampled so that the original	
	theorem		signal can be completely recovered or	
			reconstructed by these samples alone.	
			There are three types of sampling	
	Sampling		techniques:	
83	theorem types		Impulse sampling.	-
	theorem types		Natural sampling.	
			Flat Top sampling.	
	The Region of	D D D D D D D D D D D D D D D D D D D	The Region of Convergence has a number	
84	convergence of z	ce of z DESIGN	of properties that are dependent on the	-
	transform		characteristics of the signal, x[n]. The ROC	
		ES	cannot contain any poles.	
			To analyze a system, which is already	
0.5	The inverse z		represented in frequency domain, as	
85	transform	-	discrete time signal then we go for Inverse	-
			Z-transformation. Mathematically, it can be $(1, 2, 1)$	
			represented as; $x(n)=Z-1X(Z)$	
			Properties of the Z-Transform	
			Linearity.	
			Symmetry.	
96	Properties of z		Time Scaling.	
80	transform	-	Time Snifting.	-
			Convolution.	
			Time Differentiation.	
			raise val s Kelation.	
	The weilet 1		The Lipiteteral = transformer' 1 111	
87	the unilateral Z	-	The Unitateral Z-transform is also called as	-
	transform		one-sided z- transform. It is defined for. i.e.	

88 Uses of unilateral z transform The unilateral z-transform is autoportant signal- processing tool for analyzing the interaction between signals and systems. 90 Fourier transform - A function derived from a given function and representing it by a series of sinusoidal functions. 91 Fourier transform - A function derived from a given function and representing it by a series of sinusoidal functions. 91 Fourier transform - The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 between z transform and DTFT - The Fourier transform to the unit circle in the complex plane, the Fourier transform. 93 Uses of Fourier transform - OTFT, So the z-transform is a powerful tool in solving problems where sequences of impulsive actions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform - The basic idea now known as the Z- transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. 95 use Z transform - Effective ausing Z transform. 96 Advantages of z transform - Effective ausing Z transform. 97 <th></th> <th></th> <th></th> <th>Causal sequences.</th> <th></th>				Causal sequences.	
88 z transform - difference equations with initial conditions 89 Uses of z transform - The z-transform is an important signal- processing tool for analyzing the interaction between signals and systems. 90 Fourier - A function derived from a given function and representing it by a series of sinusoidal functions. 91 Fourier - The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship Restrict the z-transform to the unit circle in the complex plane, the Fourier transform DTFT 93 Uses of Fourier transform and - (DTFT, So the z-transform is like a DTFT after multiplying the signal by the signal . 94 Applications of z transform - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extrensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - ESIGE 96 Advantages of z transform - ESIGE 97 Fourier fourier - ESIGE 98 Applications of transform - ESIGE 97 Fourier - Transform is used for the		Uses of unilateral		The unilateral z- transform is used to solve	
89 Uses of z transform The z-transform is an important signal- processing tool for analyzing the interaction between signals and systems. 90 Fourier transform A function derived from a given function and representing it by a series of sinusoidal functions. 91 Fourier transform The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 93 Uses of Fourier transform The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extremsively used in the analysis and synthesis of discrete- time feedback control systems 94 Applications of z transform The basic idea now known as the Z- transform was known to Laplace, others as a way to treat sample/-data control systems used with read. T gives a tractable way to solve linear, constant-coefficient difference equations. 95 use Z transform Z transform is used for the digital signal. Both Discrete-time signals and linear time- invariant (LTI) systems can be completely characterized using Z transform. 96 Advantages of z transform ES 97 Fourier transform Transform is used for the digital signal. Both Discrete-time sign	88	z transform	-	difference equations with initial conditions	-
89 Uses of 7 transform processing tool for analyzing the interaction between signals and systems. 90 Fourier transform A function derived from a given function and representing it by a series of sinusoidal functions. 91 transform application The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform interpolate functions and to smooth signals. For example, in the processing of pixelated images. 93 Uses of Fourier transform The Fourier transform is in a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 94 Applications of z transform The basic idea now known as the Z- transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. 95 use Z transform Z transform is used for the digital signal. Both Discrete-fine signals and linear time- invariant (LTI) systems can be completely characterized using Z transform. 96 Advantages of z transform Essifting Property. Time Reversal Property. Time Reversal Property. Time Reversal Property. Differentiation and Convolution Properties. Multiplication and convolution Properties. Multiplication and converted to Z- transf		II C		The z-transform is an important signal-	
1 interaction between signals and systems. 90 Fourier A function derived from a given function and representing it by a series of sinusoidal functions. 91 Fourier transform The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 93 Uses of Fourier transform The Fourier transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 94 Applications of z transform The basic idea now known as the Z- transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. 95 use Z transform Z transform is used for the digital signal. 96 Advantages of z transform Effect 97 Properties of Fourier Time Shifting Property. Time Shifting Property. Time Reversal Property. Time Reversal Property. Time Reversal Property. Time Reversal Property. 98 Applications of transform Transform is used in a wide range of applications su	89	Uses of z	-	processing tool for analyzing the	-
90 Fourier transform - A function derived from a given function and representing it by a series of sinusoidal functions. 91 Fourier transform application - The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform of the z-transform is like a DTFT after multiplying the signal The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 93 Uses of Fourier transform - 94 Applications of z transform - 95 use Z transform in control system - 96 Advantages of z transform - 97 Properties of Fourier transform - 98 Applications of transform - 97 Properties of Fourier transform - 98 Advantages of z transform - 97 Properties of Fourier transform - 98 Applications of transform - 98 Applications of transform -		transform		interaction between signals and systems.	
90 Fourier transform - and representing it by a series of sinusoidal functions. 91 transform application - The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform is the a DTFT after multiplying the signal the complex plane, the Fourier transform after multiplying the signal between z transform 93 Uses of Fourier transform - 94 Applications of z transform - 94 Applications of z transform - 95 use Z transform in control system - 95 use Z transform in control system - 96 Advantages of z transform - E 97 Properties of Fourier transform - - 98 Applications of transform - - 98 Applications of transform - - 98 Applications of transform - - 97 Properties of Fourier transform - -<		Esseries		A function derived from a given function	
1 fransform functions. 91 Fourier transform - The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform is like a DTFT after multiplying the signal the protein transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 93 Uses of Fourier transform - 94 Applications of z transform - 95 use Z transform in control system - 95 use Z transform in control system - 96 Advantages of z transform - 97 Properties of Fourier transform - 97 Properties of Fourier transform - 98 Applications of transform - 98 Applications of transform - 98 Applications of transform - 98 Applications of transform - 99 Converting of Laplace to z transform - 99 Converting of Laplace to z transform - 99 <td>90</td> <td>Fourier</td> <td>-</td> <td>and representing it by a series of sinusoidal</td> <td>-</td>	90	Fourier	-	and representing it by a series of sinusoidal	-
91 Fourier transform application The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform is like a DTFT after multiplying the signal by the signal The Fourier transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 94 Applications of z transform - 95 use Z transform in control system - 96 Advantages of z transform - Estimation transform 96 Advantages of z transform - Estimation transform - 97 Properties of Fourier transform - - Estimation transform - 98 Applications of transform - - Estimation transform - 98 Applications of transform - - - - 97		transform		functions.	
91 Fourier application image processing tool which is used to decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform can be used to interpolate functions and to smooth signal) 93 Uses of Fourier transform The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system The basic idea now known as the Z-transform is used for the digital signal. Both Discrete-fines agained data control systems 96 Advantages of z transform - EFECION equations. OFECION equations coefficient difference equations. OFECION equations. OFECION equations and the digital signal. Both Discrete-fine signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 96 Advantages of z transform - EFECION equery Shifting Property. Time Shiftin		Fourier		The Fourier Transform is an important	
91 Datasofinition application - decompose an image into its sine and cosine components. 92 Relationship between z transform and DTFT - Restrict the z-transform to the unit circle in the complex plane, the Fourier transform 93 Uses of Fourier transform - The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform - The bourier transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. - 96 Advantages of z transform - Extension is used for the digital signal. 97 Properties of Fourier transform - Extension. - 98 Applications of z transform - - - 98 Applications of z transform - - - - 97 Properties of Fourier transform - - - - -	01	Fourier		image processing tool which is used to	
application cosine components. 92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 93 Uses of Fourier transform - The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known as the Z- transform is used for the digital signal. Both Discrete-time signals and linear time- invariant (LTD) systems can be completely characterized using Z transform. 96 Advantages of z transform - E 97 Properties of Fourier transform - E 98 Applications of transform - - 98 Applications of transform - - 99 Converting of Laplace to z transform - - 99 Converting of Laplace to z transform - - 99 Con	91		-	decompose an image into its sine and	-
92 Relationship between z transform and DTFT Restrict the z-transform to the unit circle in the complex plane, the Fourier transform (DTFT, So the z-transform is like a DTFT after multiplying the signal by the signal 93 Uses of Fourier transform - 94 Applications of z transform - 95 use Z transform in control system - 96 Advantages of z transform - 97 Properties of Fourier transform - 97 Properties of Fourier transform - 98 Applications of transform - 98 Applications of transform - 98 Converting of transform - 98 Applications of transform - 99 Converting of transform - 99 Converting of transform - 91 Applications of transform -		application		cosine components.	
92 between z transform and DTFT - the complex plane, the Fourier transform (DTFT, So the z-transform is like a DTFT after multiplying the signal by the signal The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known as the Z- transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. 96 Advantages of z transform - E 97 Properties of Fourier transform - E 98 Applications of transform - Transform is used in a wide range of applications and convolution Properties. Multiplication and Convolution Properties. Multiplication sof transform - 98 Applications of transform - - - 99 Converting of Laplace to z transform - - - 99 Converting of transform - - - 99 Converting of transform - - <td></td> <td>Relationship</td> <td></td> <td>Restrict the z-transform to the unit circle in</td> <td></td>		Relationship		Restrict the z-transform to the unit circle in	
92 transform and DTFT - (DTFT, So the z-transform is like a DTFT after multiplying the signal by the signal The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform - - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems - 95 use Z transform in control system - The basic idea now known as the Z- transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. 96 Advantages of z transform - E 97 Properties of Fourier transform - E 98 Applications of transform - Transform is used in a wide range of applications such as image analysis, image filtering, image reconstruction and image compression. - 99 Converting of Laplace to z transform - Laplace Transform can be converted to Z- transform by the help of bilinear Transform by the help of bilinear -	02	between z		the complex plane, the Fourier transform	
93 DTFT after multiplying the signal by the signal 93 Uses of Fourier transform The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. 96 Advantages of z transform - Z transform is used for the digital signal. Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform - - - 98 Applications of transform - - - - 98 Applications of transform - - - - 99 Converting of Laplace to z - transform is used in a wide range of applications of transform - - - 99 Converting of Laplace to z - transform is used no an image reconstruction and image compression. <td>92</td> <td>transform and</td> <td>-</td> <td>(DTFT, So the z-transform is like a DTFT</td> <td>-</td>	92	transform and	-	(DTFT, So the z-transform is like a DTFT	-
93 Uses of Fourier transform The Fourier transform can be used to interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform Z transform is used for the digital signal. Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform - 98 Applications of transform - 98 Applications of transform - 99 Converting of Laplace to z transform to used in a wide range of applications such as image analysis, image filtering , image reconstruction and image compression. - 99 Converting of Laplace to z - - - 99 Converting of Laplace to z - - - 99 Converting of Laplace to z - - - 99 Converting of Laplace to z - - -		DTFT		after multiplying the signal by the signal	
93 Uses of Fourier transform interpolate functions and to smooth signals. For example, in the processing of pixelated images. 94 Applications of z transform The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete-time feedback control systems 95 use Z transform in control system The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform The basic idea now known as the Control systems 96 Advantages of z transform Z transform is used for the digital signal. Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform Time Shifting Property. Differentiation and Integration Properties. Multiplication and Convolution Properties. Multiplication and Convolution Properties. 98 Applications of transform Transform is used in a wide range of applications such as image analysis, image filtering , image reconstruction and image compression. 99 Converting of Laplace to z transform to the help of bilinear Transform to the help of bilinear transform by the help of bilinear				The Fourier transform can be used to	
93 transform - For example, in the processing of pixelated images. 94 Applications of z transform - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. In PUTIPE 96 Advantages of z transform - ESIC equations. In PUTIPE 97 Properties of Fourier transform - Esting Property. - 98 Applications of transform - Equation and Integration Properties. Multiplication and Integration Properties. Multiplication such as image analysis, image filtering , image reconstruction and image compression. 99 Converting of Laplace to z transform to the help of bilinear transform to transform by the help of bilinear transform to transform to the help of bilinear transform to transform to the help of bilinear transform to transform to transform to the help of bilinear transform to transform to transform to the help of bilinear transform to the help of bilinear transform to trans	03	Uses of Fourier		interpolate functions and to smooth signals.	
94 Applications of z transform - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. 96 Advantages of z transform - E 97 Properties of Fourier transform - E 98 Applications of transform - Time Reversal Property. Time Shifting Property. Time Reversal Pr	95	transform	_	For example, in the processing of pixelated	-
94 Applications of z transform - The z-transform is a powerful tool in solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform - Example: - - 96 Advantages of z transform - Example: - - 97 Properties of Fourier transform - Example: - - - 98 Applications of transform - - - - - 98 Applications of transform - - - - - 99 Converting of Laplace to z transform - - - - - 99 Transform - - - - - - 99 Converting of Laplace to z transform - - - - - 99 Transform - - - - - - 99 <td< td=""><td></td><td></td><td></td><td>images.</td><td></td></td<>				images.	
94 Applications of z transform - solving problems where sequences of impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system - The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform - - Z transform is used for the digital signal. 96 Advantages of z transform - - E Z transform is used for the digital signal. 97 Properties of Fourier transform - - Time Shifting Property. - 98 Applications of transform - - Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression. - - 99 Converting of Laplace to z - - - - - 99 Laplace to z - - - - - -				The z-transform is a powerful tool in	
94 Applications of z transform - impulsive actions are involved, and has been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform - Z transform is used for the digital signal. 96 Advantages of z transform - Z transform is used for the digital signal. 97 Properties of Fourier transform - Time Shifting Property. 98 Applications of transform - Transform is used in a wide range of applications such as image analysis, image filtering , image reconstruction and image compression. 98 Applications of transform - Transform can be converted to Z-transform can be converted to Z-transform by the help of bilinear 99 Laplace to z - - Transform can be converted to Z-transform by the help of bilinear	94	Applications of z		solving problems where sequences of	
94 transform been extensively used in the analysis and synthesis of discrete- time feedback control systems 95 use Z transform in control system The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform Z transform is used for the digital signal. Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform - 98 Applications of transform - 98 Applications of transform - 99 Converting of Laplace to z - 91 Transform to be converted to Z-transform by the help of bilinear				impulsive actions are involved, and has	
95 use Z transform Image: Systems in control system 95 use Z transform Image: The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems used with radar. It gives a tractable way to solve linear, constant-coefficient difference equations. Uncentrate invariant coefficient difference 96 Advantages of z transform Image: Z transform is used for the digital signal. Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform Image: Linearity Property. Time Reversal Property. Time Reversal Property. Time Reversal Property. Time Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties. Multiplications such as image analysis, image filtering , image reconstruction and image compression. 98 Applications of transform Image: Transform can be converted to Z-transform by the help of bilinear 99 Laplace to z transform by the help of bilinear Image: Transform by the help of bilinear	74	transform		been extensively used in the analysis and	-
95 use Z transform The basic idea now known as the Z-transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform DESIGN equations: DESIGN equation: DESIGN eq				synthesis of discrete- time feedback control	
95 use Z transform Image: Converting of transform <td></td> <td></td> <td></td> <td>systems</td> <td></td>				systems	
95 use Z transform - transform was known to Laplace, others as a way to treat sampled-data control systems 96 Advantages of z transform - - Z transform is used for the digital signal. 96 Advantages of z transform - Z transform is used for the digital signal. 97 Properties of Fourier transform - - Z transform. 98 Applications of transform - - - - 98 Applications of transform - - Transform is used in a wide range of applications such as image analysis, image filtering , image reconstruction and image compression. - 99 Laplace to z transform - Laplace Transform can be converted to Z-transform can be converted to Z-transform by the help of bilinear				The basic idea now known as the Z-	
95 use Z transform a way to treat sampled-data control systems 96 a way to treat sampled-data control systems solve linear, constant-coefficient difference 96 Advantages of z transform Z transform is used for the digital signal. 96 Advantages of z transform Z transform is used for the digital signal. 97 Properties of Fourier transform - 98 Applications of transform - 98 Applications of transform - 99 Converting of Laplace to z transform - 99 Converting of Laplace to z transform - 100 Converting of Laplace to z transform - 101 - - - 102 Converting of Laplace to z - - 103 Converting of Laplace to z - - 104 Converting of Laplace to z - - 105 - - - 105 - - - 105 - - - 105 - - - 105 - - -				transform was known to Laplace, others as	
96 Advantages of z transform - - Estimation of the second	95	use Z transform		a way to treat sampled-data control systems	-
96 Advantages of z transform - ES Z transform is used for the digital signal. 96 Advantages of z transform - ES Z transform is used for the digital signal. 97 Properties of Fourier transform - ES Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform - Time Shifting Property. 98 Applications of transform - Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression. 98 Converting of Laplace to z transform - Laplace to z transform by the help of bilinear	20	in control system		used with radar. It gives a tractable way to	
96 Advantages of z transform - ES Z transform is used for the digital signal. 96 Advantages of z transform - ES Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform - Linearity Property. 97 Fourier transform - Time Shifting Property. 98 Applications of transform - Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression. - 99 Laplace to z transform - Laplace to z transform by the help of bilinear -				solve linear, constant-coefficient difference	
96Advantages of z transform- ESZ transform is used for the digital signal. Both Discrete-time signals and linear time- invariant (LTI) systems can be completely characterized using Z transform.97Properties of Fourier transform- ESLinearity Property. Time Shifting Property. Time Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties. Multiplications such as image analysis ,image filtering , image reconstruction and image compression98Applications of transform-Transform can be converted to Z- transform by the help of bilinear Transform by the help of bilinear			DESIGN	equations. UR FUTURE	
96 Advantages of z transform - ES Both Discrete-time signals and linear time-invariant (LTI) systems can be completely characterized using Z transform. 97 Properties of Fourier transform - Linearity Property. Time Shifting Property. Frequency Shifting Property. Time Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties. Multiplications of transform - 98 Applications of transform - Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression. - 99 Laplace to z transform - Laplace Transform by the help of bilinear time-invariant (LTI) systems can be converted to Z-transform time. -				Z transform is used for the digital signal.	
transformInvariant (LTI) systems can be completely characterized using Z transform.97Properties of Fourier transform-Linearity Property. Time Shifting Property. Frequency Shifting Property. Time Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties98Applications of transform-Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression99Converting of Laplace to z transform-Laplace Transform can be converted to Z- transform by the help of bilinear Transform application-	96	Advantages of z	- ES1	Both Discrete-time signals and linear time-	-
97Properties of Fourier transform-Linearity Property. Time Shifting Property. Frequency Shifting Property. Time Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties.98Applications of transform-Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression99Laplace to z transform-Laplace Transform can be converted to Z- transform by the help of bilinear Transformation-		transform		invariant (L11) systems can be completely	
97Properties of Fourier transform-Linearity Property. Time Shifting Property. Frequency Shifting Property. Time Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties.98Applications of transform-Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression98Converting of Laplace to z transform-Laplace Transform can be converted to Z- transform by the help of bilinear Transform properties				characterized using Z transform.	
97Properties of Fourier transform-Time Shifting Property. Frequency Shifting Property. Time Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties98Applications of transform-Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression99Laplace to z transform-Laplace Transform can be converted to Z- transform by the help of bilinear Transform properties				Linearity Property.	
97Fourier transform-Frequency shifting Property. Time Reversal Property. Differentiation and Integration Properties.98Applications of transform-Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression98Converting of Laplace to z transform-Laplace Transform can be converted to Z- transform by the help of bilinear Transformation-		Properties of		Time Shifting Property.	
transformTime Reversal Property. Differentiation and Integration Properties. Multiplication and Convolution Properties.98Applications of transform-Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression99Converting of Laplace to z transform-Laplace Transform can be converted to Z- transform by the help of bilinear Transformation-	97	Fourier	-	Frequency Similing Property.	-
98 Applications of transform - Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression. - </td <td></td> <td>transform</td> <td></td> <td>Differentiation and Integration Properties</td> <td></td>		transform		Differentiation and Integration Properties	
98 Applications of transform - Transform is used in a wide range of applications such as image analysis ,image filtering , image reconstruction and image compression. - </td <td></td> <td></td> <td></td> <td>Multiplication and Convolution Properties.</td> <td></td>				Multiplication and Convolution Properties.	
98 Applications of transform - Applications such as image analysis, image filtering, image reconstruction and image compression. - 98 Converting of Laplace to z transform - Laplace Transform can be converted to Z-transform by the help of bilinear - 99 Laplace to z transform - Transformation -				Transform is used in a wide range of	
98 Applications of transform - applications such as image analysis, image filtering, image reconstruction and image compression. 98 Converting of Laplace to z - Laplace Transform can be converted to Z-transform by the help of bilinear - 99 Laplace to z - Transformation -		Applications of		applications such as image analysis, image	
Interning , mage reconstruction and mage compression. 99 Laplace to z transform - Transformation	98	transform	-	filtering image reconstruction and image	-
Converting of Laplace Transform can be converted to Z- 99 Laplace to z - transform Transformation				compression	
99Laplace to z transform-Laplace Transform by the help of bilinear Transformation-		Converting of		Laplace Transform can be converted to 7	
transform	00	Laplace to 7	_	transform by the help of hilinear	_
		transform	_	Transformation	-

100	Importance of inverse z transform	-	The Inverse Z-transform is very useful to know for the purposes of designing a filter.	-
	UNIT-5 LI	NEAR TIMEIN	VARIANT DISCRETE TIME SYSTEMS	
101	Casual LTI system	-	A discrete-time LTI system is causal if the current value of the output depends on only the current value and past values of the input. A necessary and sufficient condition for causality is. Where. Is the impulse response.	-
102	LTI	-	Linear Time-invariant	-
103	Z transform		In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain representation. It can be considered as a discrete-time equivalent of the Laplace transform	_
104	Types of Z transform	-	Bilateral Z-transform. Unilateral Z-transform	_
105	Block diagram		A block diagram illustrates the sub-systems and signal paths within a larger system for processing signals.	-
106	Importance of LTI		Time-invariant systems are systems where the output does not depend on when an input was applied. These properties make LTI systems easy to represent and understand graphically	-
107	Convolution Sum	DESIGN	The total response of the system is referred to as the CONVOLUTION SUM or superposition sum of the sequences x[n] and h[n].	-
108	Properties of Linear Convolution	Est	Commutative Law Associate Law Distribute Law	-
109	Commutative Law	-	(Commutative Property of Convolution) x(n) * h(n) = h(n) * x(n)	-
110	Associate Law	-	(Associative Property of Convolution	-
111	Distribute Law	_	(Distributive property of convolution) $x(n)$ * [$h1(n) + h2(n)$] = $x(n) * h1(n) + x(n) * h2(n)$	-
112	Types of convolution sum	-	Continuous convolution. Discrete convolution.	-
113	Fourier Transform	-	The Fourier Transform is a mathematical technique that transforms a function of time, $x(t)$, to a function of frequency, $X(\omega)$. It is closely related to the Fourier Series.	-

114	Recursive system	-	A recursive system is a system in which current output depends on previous	_
	5		output(s) and inputs	
117	Non-Recursive		In non-recursive system current output	
115	system	-	does not depend on previous output(s	-
			The z-transform is an important signal-	
116	Application of Z	-	processing tool for analyzing the	-
	transform		interaction between signals and systems.	
			Generally, an impulse response is the	
117	Impulse response	-	reaction of any dynamic system in response	-
			to some external change.	
			"Continuous-time, linear, time invariant	
	Lincortimo		systems" refer to circuits or processors that	
110	inverient systems		take one input	
110	invariant systems	-	signal and produce one output signal with	-
			the following properties.	
			Continuous convolution.	
110	Types of		- Discrete convolution	
119	convolution sum		• Discrete convolution.	-
			In signal processing, a recursive filter is a	
120	Recursive filter		type of filter which re-uses one or more of	-
			its outputs as an input.	
	Continuous		Continuous convolution is an operation on	
121	continuous		two continuous time signals defined by the	-
	convolution		integral.	
	Discrete		Any discrete time signal x[n] can be	
122	convolution		represented as a linear combination of	-
	convolution		shifted Unit Impulses scaled by X(n)	
	Impulse response		The recorded spectrum by a recording	
123	convolution	onvolution -	spectrophotometer it may be considered as	-
	example	DESIGN	the convolution of the impulse response	
		LUCSION	Time-invariant systems are systems where	
	Advantage of	Eat	the output does not depend on when an	
124	LTI systems	- CS	input was applied. These properties make	-
	5		L11 systems easy to represent and	
			understand graphically.	
105	Disadvantage of		Disadvantages are LTI does not handle so	
125	LTI systems	-	well discontinuity and non-linearity (eg	-
			amplitude quantization, saturation).	
		PLACEMENT	QUESTION AND ANSWERS	
	Y (t) = x (t/5) is			
			Answer: b - Expanded signal	
	a) Compressed		Explanation: $v(t) = x(at)$ comparing this	
	signal		with the given expression we get $a = 1/5$. If	
126	b) Expanded	-	0 < a < 1 then it is expanded (stretched)	-
	signal		version of x (t).	
	c) Time shifted			
	signal			
	d) Amplitude			

	scaled signal by			
	Time scaling is			
	an operation performed on			
127	 a) Dependent variable b) Independent variable c) Both dependent and independent variable d) Neither dependent nor independent variable 	-	Answer: b - Independent variable Explanation: Time scaling is an example for operations performed on independent variable time. It is given by $y(t) = x(at)$.	-
128	Which of the component performs integration operation? a) Resistor b) Diode c) Capacitor d) Inductor		Answer: c - Capacitor Explanation: Capacitor performs integration. V (t) developed across capacitor is given by v (t) = $(1/C)^* \int_{-\infty}^{t} i(\partial) . d\partial$, I (t) is the current flowing through a capacitor of capacitance C.	_
129	AM radio signal is an example for a) y (t) = a x (t) b) y (t) = x1 (t) + x2 (t) c) y (t) = x1 (t) * x2 (t) d) y (t) = -x(t)	DESIGN	Answer: c Explanation: AM radio signal is an example for y (t) = x1 (t) * x2 (t) where, x1 (t) consists of an audio signal plus a dc component and x2 (t) is a sinusoidal signal called carrier wave.	_
130	Which of the following is an example of amplitude scaling? a) Electronic amplifier b) Electronic attenuator c) Both amplifier and attenuator d) Adder	-	Answer: c -) Both amplifier and attenuator Explanation: Amplitude scaling refers to multiplication of a constant with the given signal. It is given by $y(t) = a x(t)$. It can be both increase in amplitude or decrease in amplitude.	-
131	Exponentially damped sinusoidal signal	-	Answer: b - Non periodic Explanation: Exponentially damped sinusoidal signal of any kind is not periodic	-

	 is a) Periodic b) Non periodic c) Insufficient information d) Maybe periodic 		as it does not satisfy the periodicity condition.	
132	The time period of continuous- time sinusoidal signal is given by \overline{a}) T = $2\pi / w$ b) T = $2\pi / 3w$ c) T = π / w d) T = $\pi / 2w$	-	Answer: a - T = $2\pi / w$ Explanation: X (t) = A cos (wt+ ϕ) is the continuous-time sinusoidal signal and its period is given by T = $2\pi / w$ where w is the frequency in radians per second.	-
133	A causal DT system is BIBO stable only if its transfer function has		A causal DT system is stable if poles of its transfer function lie within the unit circle.	-
134	Which are the fourier coefficients in the following? a) a ₀ , a _n and b _n b) a _n c) b _n d) a _n and b _n		Answer: a - a_0 , a_n and b_n Explanation: These are the fourier coefficients in a trigonometric fourier series. $a_0 = 1/T \int x(t) dt$ $a_n = 2/T \int x(t) \cos(nwt) dt$ $b_n = 2/T \int x(t) \sin(nwt) dt$	-
135	Do exponential fourier series also have fourier coefficients to be evaluated. a) True b) False	DESIGN	Answer: a - True Explanation: The fourier coefficient is : $X_n = 1/T \int x(t)e^{-\frac{1}{j}wt} dt$.	-
136	The fourier series coefficients of the signal are carried from – T/2 to T/2. a) True b) False	-	Answer: a - True Explanation: Yes, the coefficients evaluation can be done from $-T/2$ to T/2. It is done for the simplification of the signal.	-
137	Fourier series is not true in case of discrete time signals. a) True b) False	-	Answer: b - False Explanation: Fourier series is also true in case of discrete time signals. They just need to follow the dirichlet's conditions.	-

138	What is the disadvantage of exponential Fourier series? a) It is tough to calculate b) It is not easily visualized c) It cannot be easily visualized as sinusoids d) It is hard for manipulation	-	Answer: c -) It cannot be easily visualized as sinusoids Explanation: The major disadvantage of exponential Fourier series is that it cannot be easily visualized as sinusoids. Moreover, it is easier to calculate and easy for manipulation leave aside the disadvantage.	-
139	How does Fourier series make it easier to represent periodic signals? a) Harmonically related b) Periodically related c) Sinusoidally related d) Exponentially related		Answer: a - Harmonically related Explanation: Fourier series makes it easier to represent periodic signals as it is a mathematical tool that allows the representation of any periodic signals as the sum of harmonically related sinusoids.	-
140	The lengths of two discrete time sequence $x_1[n]$ and $x_2[n]$ are 5 and 7 respectively. The maximum length of a sequence $x_1[n] * x_2[n]$ is a) 5 b) 6 c) 7 d) 11	DESIGN	Answer : d – 11 UTURE Explanation : 5+7-1 = 11	_
141	A signal x (t) has its FT as X (f). The inverse FT of X(3f +2) is \overline{a} 12x(t2)ej3 π t b) 13x(t3)e-j4 π t/ 3 c) 3x(3t)e ^{-j4πt d) x(3t + 2)}	_	Answer: b - $13x(t3)e^{-j4\pi t/3}$ Explanation: Applying the time shifting and scaling property, we get, X [3(f+2/3)] = $13x(t3)e^{-j4\pi t/3}$.	_

142	The impulse response of a continuous time system is given by $h(t) = \delta(t-1) + \delta(t-3)$. The value of the step response at t=2 is $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ 0	-	Answer: b - 1 Explanation: For step response, the impulse response can be integrated. So, y (t) = u (t-1) + u (t-3) Hence, y (2) = u (1) + u (-1) = $1 + 0 = 1$.	-
143	Fourier series uses which domain representation of signals? a) Time domain representation b) Frequency domain representation c) Both combined d) Neither depends on the situation		Answer: b - Frequency domain Explanation: Fourier series uses frequency domain representation of signals. $X(t)=1/T\sum X_n e^{jnwt}$. Here, the $X(t)$ is the signal and $X_n = 1/T \int x(t) e^{-jwtn}$.	-
144	What is the polar form of the fourier series? a) $x(t) = c_0 +$ $\sum cncos(nwt+\phi_n)$ b) $x(t) = c_0 +$ $\sum cncos(\phi_n)$ c) $x(t) =$ $\sum cncos(nwt+\phi_n)$ d) $x(t) = c_0 +$ $\sum cos(nwt+\phi_n)$	Est -	Answer: a Explanation: $x(t) = c_0 + \sum cncos(nwt+\phi_n)$, is the polar form of the fourier series. $C_0=a_0$ and $c_n = \sqrt{a_2} + b_2 n$ for $n \ge 1$ And $\phi_n = tan^{-1} b_n/a_n$.	-
145	Advantage of FFT over DFT	-	FFT algorithm reduces number of computations	-
146	Steps involved in finding convolution sum	-	folding Shifting Multiplication Summation	-

147	Zero padding	-	The method of appending zero in the given sequence is called as Zero padding	-
148	In the equation x (t) = be^{at} if $a < 0$, then it is called a) Growing exponential b) Decaying exponential c) Complex exponential d) Both Growing and Decaying exponential	-	Answer: b - Decaying exponential Explanation: If $a > 0$ in x (t) = be^{at} it is called growing exponential and if <0 it is called decaying exponential. Hence Decaying exponential is correct.	-
149	Examples of CT signals		AC waveform, ECG, Temperature recorded over an interval of time etc	-
150	Causal condition for LTI CT system		An LTI continuous time system is causal if and only if its impulse response is zero for negative values of t.	-
Faculty Prepared M.Gayathri Devi, Assistant Professor, Department of BME.			vi, ssor, BME.	

HOD

Estd. 2000

DESIGNING YOUR FUTURE